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w 1. Introduction 

Let G be a simply connected semisimple algebraic group over an algebraically 
closed field O. Let B_~T be respectively a Borel subgroup and a maximal 
torus. Let W = N ( T ) / T  denote the Weyl group of G. One then has the Bruhat 
decomposition of G into double cosets of B parametrized by W i.e. G 
= U BwB. 

w ~ W  

One also considers the generalized flag manifold G/B which then inherits a 
disjoint decomposition into cells, G/B= U By.B. (We use the convention of 

y e W  

writing By.B when it is being considered as a subset of G/B and simply ByB 
when considered as a subset of G itself.) 

The cell By.B is known as a Bruhat cell and it is algebraically isomorphic 
to an affine space O" where n is the length of y with respect to the set of simple 
reflections determined by B. The closure X(y) of By.B is a projective variety 
called Schubert variety and it is easy to see that X(y) is a union of Bruhat cells. 
This gives a partial order < on W called Bruhat ordering. Thus, x<y iff 
Bx. B~_ X(y). (This ordering has been studied extensively; see [D 1]). For  a later 
use, we introduce the notation W(y)= {x~W[x<y}. 

One also has a 'dual '  decomposition of G and G/B obtained by considering 
the opposite Borel subgroup B -  to B (cf. [Bo], [Ste]). Thus, G/B= U B - x . B  

x ~ W  

(disjoint union). One of the interesting problems now is to describe the in- 
tersection pattern of these two decompositions i.e. one is interested in de- 
scription of By. B n B- x. B. 

This intersection comes up in several different contexts e.g. [BB], [K-L1] ,  
[K-L2] .  We describe here one such instance. In order to compute the local 
cohomology groups of X(w) at point z.B(z<w), one needs a ' good '  open 
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neighbourhood of z. B in X(w). Since the big cell Bw o �9 B, w o being the element 
of maximal length in W, is open in G/B, it is easy to see that z woBw o �9 B c~ X(w) 
is an open neighbourhood of z . B  in X(w). A further analysis of this in- 
tersection leads one to several intersections of the form By.  B n B - x . B  for 
suitable x, ye  W. 

The first result of this paper is concerned with this problem. We have: 

Theorem 1.1. The Bruhat cell B y . B  can be decomposed into disjoint (non- 
empty) subsets {D_~}_~ ( ~  is an indexing set which can be described explicitely) 
such that 

(i) By.  B =  U D_~. 
a e ~  

(ii) For each _~e~, there exist unique non-negative integers re(if) and n(g) 
(which can be determined explicitely) such that D~-g2"(-~)x (Q*)"(~)(g2* =g2\{0}). 

(iii) For each _~e~, 9 x e W  such that D o ~ B - x . B .  This element x, which is 
unique, belongs to W(y) and is denoted by ~(g.). (Thus one has a map 
~: ~ - ~ W  (y)). 

Corollary 1.2. By.  B n B -  x .  B = U D_~. (In particular, By .  B n B -  x .  B + ~ iff 
x ~ W ( y ) . )  o ~  ~(_a)= x 

As a particular case, one considers a Coxeter element y = s l . . . . . s  ~ (l 
=rank  G). In this case, ~ turns out to be in a bijective correspondence with 
the power set of S. Moreover, m(fi)=0 V g ~ .  If g e ~  corresponds to a subset 
J(g)~_S, then n(g)=l-[J(g)l .  Further, lr is bijective and so B y . B n B - x . B  
=D~_(~2*y-Isc~)l where g e ~  is the unique element such that zr(g)=x. 

It is possible to extend these results to the case when G is a group 
associated with Kac-Moody Lie Algebras. These groups have been considered 
by several mathematicians ([G], [K-P] ,  [M-T] ,  [SI], IT1], IT2]) and the 
structure is described in terms of (infinite) root systems associated to Kac- 
Moody Lie algebras. This description closely resembles that in the finite case. 
In particular, one has the counterparts of B, G/B and B- .  The proof of 
Theorem 1.1 goes through with minor changes in this case and hence one gets 
counterparts of Theorem 1.1 and Corollary 1.2. We skip the actual details. 
These details have been worked out independently by Z. Haddad in his thesis 
([H, w 3]). 

The indexing set ~ in Theorem 1.1 can be described using a reduced 
expression s 1- . . . . s  k for y (k=l(y)). It consists of 'subexpressions' of this ex- 
pression which satisfy an additional property; the elements of ~ are called 
distinguished subexpressions (cf. Def. 2.3). This notion is in fact defined for any 
Coxeter group and it turns out to be extremely useful in considering problems 
associated to the Bruhat ordering. The author had formulated this notion 
along with the maps re, m and n while considering the Kazhdan-Lusztig 
polynomials P~,w(q) (cf. [K-L1] ,  [K-L2]).  These polynomials are defined re- 
cursively in terms of another set {R~,r(q) } of polynomials ( [K-L1,  2.2a]) and it 
turns out that the set ~ describes R~, r s completely for any Coxeter group. 
More precisely, we have 
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Theorem 1.3. Fix y 6 W  and a reduced expression Y=Sl- . . . -S k. Then for any 
x~W(y) (i.e. x<=y), 

Rx, y(q)= ~. qmC~)(q--1)"~-~). 

~(_a) = x 

We give a uniform proof which is combinatorial in nature. If W is a Weyl 
group, then one may deduce Theorem 1.3 from Theorem 1.1 and the following 
observations of ([-K-L1, A3, A4]): If F is a finite field of q elements then 
R~,y(q)=lBy.Bc~B-x .BI. 

In an earlier paper ([D3]) the author has described the 'shape' of the 
polynomial Rx,r. Theorem 1.3 gives complete information. 

Another application of the set ~ (or rather a subset 9 0 described in 
Prop. 5.3) is to the so-called L-shellability (cf. [B-W]) of the Bruhat ordering 
on W and related sets Ws( j~S) .  Recently a lot of work has been done on 
shellable posets and some interesting consequences in algebraic geometry are 
derived (cf. [Sta]). 

The present paper is arranged as follows: In w we give some preliminaries 
on the Bruhat decomposition and Bruhat ordering. We also give a formal 
definition of distinguished subexpressions. In w 3, we give a proof of Theorem 
1.1 and Corollary 1.2. In w we examine closely the special case of a Coxeter 
element, w is devoted to a study of some of the properties of distinguished 
subexpressions which enables us to prove Theorem 1.3. In w 6 we consider the 
application to L-shellability of Bruhat orderings. 

The author's sincere thanks are due to T.A. Springer and R.W. Richardson 
for many stimulating conversations on this topic. Sincere thanks are also due 
to J. Tits and V. Kac for pointing out the fact that Theorem 1.1 can be 
extended to affine Weyl groups. The author also wishes to thank A. Bjtirner 
for a preprint of his paper written jointly with M. Wachs ([B-W]) where the 
L-sheUability of Bruhat ordering is proved. On seeing the preprint, the author 
realized that the proof rests on the properties of the subset 9 o of ~ and thus 
the L-shellability can be proved using only a part of the information contained 
in the combinatorics of 9 .  

Part of this work was done while the author was a Research Fellow at 
Australian National University, Canberra and he takes this opportunity to 
express his gratitude for the hospitality extended to him by the members of 
that department. 

w 2. Notation and preliminaries 

We first expand the notation used in the introduction. Let �9 be the root 
system of the pair (G, T). Let ~+ be the set of positive roots corresponding to 
B and let A be the set of simple roots in ~+. For  a ~ ,  parametrize the one- 
parameter subgroup U, in such a way that h.x,( t) .h -1 =x,(a(h).  t) V t~I2, h~T. 
Let U + (respectively U-)  be the maximal unipotent subgroup of G correspond- 
ing to 4~ + (respectively - ~ + ) .  Given an order in ~+, any element u~U + can 
be uniquely written as Iq x,(t,) with respect to this order. 
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For a ~ + ,  let s ~ N ( T )  be defined by s ~ = x ~ ( 1 ) . x ~ ( - 1 ) . x ~ ( 1 ) .  One then 
has the following: 

Lemma 2.1. For t~f2*, x~(t-1),  s~. x~(t)=h, s . x ~ ( - t - 1 ) ,  s ;  1 for  a suitable h~ T. 

A proof of this lemma can be easily derived from [Ste, Lemma 19]. 
By abuse of notation, we write s~ for its image in W = N ( T ) / T .  
Fix y e W  and a reduced expression y = s l . . . s  k (sr the set of simple 

reflections corresponding to A). For 1 < j < k ,  let ~j be the simple root corre- 
sponding to s~ i.e. si=s~j. (Note that afs need not be distinct.) For 1 <j<=k+ 1, 
define Uj= U + c~ ...... kU- and U J = U + c~sk'"sJU+. (For a subset A of G and geG, 
g A = g A g - 1 ) .  One then has: 

Lemma 2.2. 
(i) Uj is the subgroup of  U + generated by 1-parameter subgroups correspond- 

ing to the set of roots {d~ ~ ~ + ]Sk...Sj(~) e -- �9 + }. This set consists precisely of the 
roots {ej, sj(~j+ 0 , . . . ,  sj.. .s k_ l(~k)}. Further, any element ue Uj can be uniquely 
written as 

x~,(t), xsj~,+ ,~(tj+ 1)...x ........ ,~(tk); 

thus Uj~-~2 k-j+1. 

(ii) UI ~_~'Uz ~_~'~U3 ~_... ~_~'~Uk+ a = {id}. 

(iii) U j is the subgroup of  U + generated by 1-parameter subgroups corre- 
sponding to the set of  roots {q~6q~ + [sj...sk(~b)64~ + }. 

(iv) U I ~ u 2 ~ . . . c T - U k + I = U  + . 

(v) For any 1 <j  <=k + 1, U + = Uj. ~" .... U j with a uniqueness of  expression. 

(vi) Any  element ~ B y . B  can be uniquely written as usx. . .Sk.B with u 6 U  1. 
Thus B y . B ~_ UI ~_ f2 k. 

A proof of this lemma is straightforward and can be easily deduced from 
the structure of the group U + as given in ([Ste, Lemma 17]). 

We now consider some fundamental properties of the Bruhat ordering. For  
the rest of this section, (W,,S) denotes any Coxeter group. One knows several 
equivalent ways of defining Bruhat ordering (l-D1, Thm. 1.1]) and we choose the 
following: For y e W  fix a reduced expression y = s l . . . s  k. Then x==y iff there 
exists a subsequence l < p l < . . . < p t < = k  (t>=O) of indices such that x=sl. . .gp~ 
.. .gp.. .s k. By abuse of language, we say that the above is a subexpression of y 
=s~.. .s  k whose value is x. (The correct way is of course to define the sub- 
expression as a sequence (px, ..., p,) of increasing integers.) 

There is another way to formalize this notion: A subexpression is a se- 
quence g = ( a  o . . . .  ,ak) of elements of W such that (i) a o = i d  and (ii) 
aT_llaje{id, sj} V 1 <j<=k. The correspondence between these two formulations 
is obvious viz. g = ( a o ,  a 1 . . . .  ,ak) corresponds to sl . . .g~. . .g~c. .s  k where 
{p~, ...,p~} ={j[af_~xaj=id}. Let 5 ~ denote the set of all subexpressions viewed 
as sequences with k + l  elements as above. We note that for _ ~  and 1 <=j<k, 
one has a trichotomy: ~r~_a < ~  or ~ _  1-~-O'j o r  O'j_ 1 >O'j,  (This is a con- 
sequence of condition (ii) of subexpressions). For  ~ 5  ~, define l(g)= {j[ 1 __<j = k 
and aj._ ~ =aj} and n(_q)=[l(g)I. Also define m(g)=[{j[ t <=j<k and aj_ x >aj}[. 
We will use these maps later on. Finally, let r~: 5 ~ W  denote the projection 



Some geometric aspects of Bruhat orderings. I 503 

onto the last factor i.e. r t (g)= a k. It is clear that  ~(6 e) = W(y)= {xs W I x < y} (cf. 
[D1, T he o rem 1.1]). 

We next come to the key definition of set 9 :  

Definition 2.3. An element  _ a s ~  is called a distinguished subexpression if it 
satisfies the following addi t ional  condit ion:  

(iii) aj ~ a j_ 1 Sj V 1 <j <= k. 
Let ~ be the set of all dist inguished subexpressions. We denote the re- 

strictions of maps  ~, m, n to ~ by the same letters respectively. 

Remark 2.4. It  is not  apriori  clear if n ( ~ ) =  W(y). However ,  it is true and  we 
will p rove  it in Proposi t ion 5.2 by methods  independent  of  the results of  w 
and w 4. 

Example 2.5. Consider  s,s'ES such that  ss'4:s's. Let y=ss 's  then l (y )=3  and 
the preceding is a reduced expression. The  set 5 e consists of 8 elements of 
which only one is not distinguished viz. a = ( i d ,  s,s,s). In general, however,  
turns out  to be a considerably smaller set than  St. 

w 3. Proof of Theorem 1.1 

T h r o u g h o u t  this section, W denotes  Weyl group associated to a semisimple 
simply connected algebraic group  G over  O. We use the no ta t ion  set in w 2. We 
begin with the following: 

Proposition 3.1. Let UleU 1 be fixed. For O<j<k,  let a j e W  be the unique 
element such that u l s l . . . s j eB-a jB .  Then _~=(ao, a 1 .... ,ak) is a distinguished 
subexpression. 

Proof. We first note that  the following holds for G: Fo r  w~W and seS, 
wBs ~_ B-  wsB u B-  wB. Moreover ,  wBs c~ B -  wB + 4) =~ I(ws) > l(w). This is a va- 
riant of the ' u sua l '  condi t ion (T3) satisfied by the Tits system (G,B, N, S) and it 
is very easy to prove using L e m m a  2.1. 

Clearly a o = i d .  Consider  1 <j<k.  Then  UlS t . . . s j=u l s l . . . S j_ lS j~B- tT j_xBs  j. 
Hence  f rom above,  u l s l . . . s j eB-a j_ l s jB  or B - a j _ I B  with the second possi- 
bility holding only if l(aj_ ~ sj) > l(aj_ 1). It is now clear that  either a j =  a j_ ~ sj or 
a j =  a j_ 1 with l(aj_ 1 s j) > l(aj_ 1). In either case, it can be seen tha t  condit ions 
(ii) and (iii) are satisfied for the sequence (ao, a 1 . . . . .  ak). Hence  _asN. This 
completes  the proof. 

We now have a m a p  r/: U a ~ N  defined in an obvious  way. We take a look 
at the fibers. Note  tha t  it is apriori  not  clear if t/ is surjective; we will p rove  it 
in the course of  the p roof  of T h e o r e m  1.1. 

Next  we have the following: 

Proposition 3.2. Fix _ a ~  and an integer j (1 <j<k)  Define a subset f2(_q,j) of f2 
as follows. 

{i0} /f a j - l > a ~  f2(.q,j) = if o'j_ 1 <o ' j  

if 0"j_1=(7 j. 
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Then one has: 

(i) There exists an injective morphism f): f2(g,j) x Uj+ 1--" U~ such that 

a j_ 1 f)(t, u j+ 1) s j . . . . ,  s, = b 7 a ju j .  1 sj+ 1"... "sk" vj+, (*) 

for suitable by e B -  and vj+ 1 e U j+ ~. 

(ii) The image of f) is a locally closed subset of  Uj and f j  is an isomorphism 
onto its image. 

Proof. Case (a).  a~_ 1 > aj. 
In this case, aj= aj_ 1 sj with a~(aj)e~ + and f2(g,j) = [2. Define f): Q x Uj§ 1--' Uj 
by f)(t, uj+l)=x~)(t) .s juj+~sf  1. It is easy to verify that (i) and (ii) hold in this 
case with Image f )=  U. 

Case (b).  %_ 1 < a~. 
In this case, aj-~-ffj_lS j and [2(if, j )=  {0}. Define f): {0} x U~§ t--,U~ by f)(O, uj+l) 
=sjui+~sf  ~. Again it is easy to check that (i) and (ii) hold in this case. We 
note that the image o f f j  is the closed set ~JUj+ 1. 

Case (c) .  e j_ 1 = gj. 
In this case, [2(g,j)=[2*. Also, l (~ j_ ls j )>l (a j_ l )  and so cri_l(aj)sr Given 
te~* and uj+leUj+l ,  Lemma 2.2(v) gives a unique ~j+leU)+l and v j+leU j+J 
such that 

Xo~j(t ) " U j+ 1 ~--- [~j+l S j + l " ' ' ' "  Sk" l)j-+ll " Sk 1 ,  .S j-+11 (**) 

Define f): f2* x U i+I --* U1 by f)(t, u~+t) = x ~ ( t -  1). sj. ~j+l. s ; '  ~ U~ where ~i+l is 
the element in U~+ ~ given by (*). It is easy to see that f) is injective. Since 
t,,* r 1 is a morphism from [2* to f2*, it can be checked that f) is a morphism 

8j too. The image of f) is the open set Uj\ Uj+~. To see this, consider 
x~(d), sj- f~i+ 1" s j  1 with d:4:0 and fij+ ~ e U~+ ~. By (**), 

x~j( -- d-  ~)" ~j+ ~ ---- u j +  1 s j+ 1 . . . S k  Vj+ 1" S k  1...Sj-+ll 

with u)+~eU~+l. It is easy to check that f~(d -~, uj+ ~)=x~(d)'sjE~j+ 1 .sj ~. This 
proves (ii). Next, 

a~_ 1 f ) ( t ,  u~+ 1) " % . . s ~  = % _  1 . x ~ ( t -  ~). " SjUj+ I . S j -1  S j . . . S  k 

= ~ r  ~_  ~ . x ~ , ( t -  1 ) .  . S jUj+ 1 S j+ 1"" "Sk" 
Using (**), we get 

O'j_ 1 f j ( t ,  Uj+ 1)" S j . . . S  k = O'j_ 1 x=,(t- 1). s~- x=,(t) u j+ 1 s j+ ~...sg" vj+ , 

=tTj_lhSjxaj ( - - t -1) ' s j lUj+lSj+l . . .Sk 'Vj+l  for some heT. 

(This follows from Lemma 2.1). 

= b; ~rj_ 1 U j+ 1 S j+  1"" "Sk" 1)j+ 1 

where b~- = gj_ 1 h six,j(  - t -  ~ s -  ~ tr- ~ ~ ~_1r since aj_~(~j)zq~+. Since ~r in 
this case, (*) is satisfied and (i) is proved. This completes the proof of this 
proposition. 
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We now come to the proof of Theorem 1.1. We take the set ~ of distin- 
guished subexpressions (cf. w as the indexing set. Recall the map q: Ul -o~  
given by Proposition 3.1. For _ a ~ ,  define D , =  {uly.B~By. B Iq(u0=_a }. (Note 
that By.B~_ U O. It is then clear that 

(i) By. B = U O~, a disjoint union. 
aE.~ 

(ii) Let _oe~ be fixed. Define subsets Aj~_Uj ( l < j < k + l )  by downward 
induction on j as follows: Ak+ 1 = -  id and Aj = fj(f2(.q,j)x A j+ 1) for 1 < j  < k, fj  as 
in Proposition 3.2. It is clear that A t is a locally closed subset of Uj which is 
isomorphic to a product f2"Jw)• (f2*) "Jr where mfl.q)=l{p[j<p<k and f2(_a,p) 
=t2}l and nt(g)=l{plj<p<k and f2(_q,p)=f2*}[. Note that m~(g)=m(g) and 
n l(-q) = n(_q). Thus A 1 ~- f2m~) X (f2*) "t-~) we claim that A 1 = r/- l(.q). 

Let UleA 1 then by definition, there exist sequences {Uj}~<=j<=k+~ and 
{tt}l<=t<=k such that for each j, (a)ureA t, (b)tjef2(_q,j) and (c)ut=f j ( t t ,  uj+ O. 
Using (*) of Proposition 3.2, it is easy to see that uls~...sjeB-aj.B\/j and so 
by definition t/(uj)=_a or Aj c__q-l(.q). 

Conversely, let ulet/-l(_q). We prove by induction on j that there exist 
sequences {Ut}l_<t_<k+ 1 (starting with the given ul) and {tt} l_<t__<k such that (a) 
tjeO(g,j) and (b) ut=fj( t i ,  ut+ 0. To see this, observe that the image of fj  is U~ 

sj (respectively ~, Uj+ 1, Uj\ U~+ 1) if a t_ 1 > a1 (respectively a t_ 1 < trt, ~rt- 1 = ~rt). It 
is easy to see that u~et/- ' (g)  implies u~elmage f~. Thus 3 unique t~et2(_a, 1) 
and u2eU 2 such that ul=fa(tx,u2) Having defined Ul,...,u t and t 1 .. . .  , tt_ 1, it 
can be proved that ujelmage f~ (or else u~r The definition of t t and 
uj+ ~ is now clear. Since Uk+ ~eAk+ 1 and uj=fj(tj, uj+O, it is clear that ujeAjVj 
and so uaeAx. Thus Aa=r/-l(.q). Now D_~=A~y'B-A~-f2mC~)x(f2*) " c ~ ) ' ~  pro- 
ving (ii). Note that this also proves that D~ 4: ~b V_ae~. 

(iii) Fix _ae~ and let uly.BeD~_. Then r/(ul)=g. Also, U~Sl...SkeB-ak.B by 
definition of map r /and  so uly. BeB-ak.B. Thus D~_B-ak.B. It is also clear 
that ak ~ W(y). 

This completes the proof of Theorem 1.1. 

Proof of Corollary 1.2. 
By. B n B - x . B = ( U  D,)~B-x .B 

= U o _ ~  
~r (g)= x 

by Theorem 1.1 (iii). 
Since rc(a_)eW(y), it is clear that By.BnB-x.B4:r  only if x~W(y). As 

mentioned earlier, it can be proved independently of this section (Prop. 5.3) 
that re: ~ W ( y )  is onto. Hence x~W(y)~By.BnB-x.B4:qS.  

w 4. The special case of  a Coxeter element 

In this section, we consider the case when y is a Coxeter element of W (or that 
of a parabolic subgroup of W). Thus y has a reduced expression y=sl...s k with 
si4:s j for i4:j. In this case, a lot of simplifications take place and one gets a 
very simple description of the sets D_~'s that occur in Theorem 1.1. 
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First of all, every subexpression in 5* is a distinguished one i.e. 5e=N.  
Next, the map r~: 5a~W(y )  is bijective and the Bruhat ordering in W(y) is 
simply given by: x < z ( < y )  iff I(n-l(x))~_I(n-l(z)).  It can be easily seen that 
~---~(A) in this case.) Further, m(.q)=0 for all a e N  so that l(n(_q))=k-nlg). 

Let x~W(y). Since n is injective and m(rt- l (x))=0,  B y . B c ~ B x . B  
=D,-,(x)~(f2*) k-"~). Unlike the general case (where the description is com- 
plicated), this isomorphism is quite simple to describe and this is done as 
follows: Identify U~ with f2 k as given in Lemma 2.2(i). Then 

D_~ = {(a 1 . . . .  , ak)[a j = 0  for jr  and a j + 0  for j~l(_a)}. 

This can be seen by taking a closer look at the proofs of Theorem 1.1 and 
Proposition 3.2. Since re(a)=0, case (a) of Proposition 3.2 doesn't occur and 
hence a~=0 for jr Next, we look at relation (**) of Proposition 3.2. Since 
c~i's are distinct, (**) gets simplified and fij+ 1 =us+ x. From this it follows that 
aj4=0 for j~I(_q). 

Remark 4.1. Consider the element id~W(y). Then lt-X(id)=_a~~ id .... ,id). 
Then from above, 

By. B c~B- id. B = D_~o, = {(a 1 . . . . .  ak)~f2k[aj#OV~}. 

This description is basically the same as given in ([L, Prop. 2.2]). 

Remark 4.2. The closure of D~(._ae~) in the affine space U 1 is very easy to 
describe. One has: 

W a -  
D _ . -  0 Dr={(al ,  ..,ak)la~=O forjr 

I(_o') ~ I (z) 

In other words, for xe  W(y), 

/)~ '~x) = U D~_qz)=By. Bc~ ~ B - z . B  
x<__z x<=z 

Remark 4.3. One can also consider the closure of D_~(g=n-l(x)) in the pro- 
jective space G/B. It can be shown that 

--p 
D ~_ ,~X)- x<=z~z <=y(Bz . B c~ B-  z' . B) 

In particular, for x = id, 

--p 
D ~ - ~ ( i d ) - -  ~) (Bz. BnB-z'.B). 

z'<_Z<_y 

Since D~_,~x) is a torus, one gets a toroidal imbedding (cf. [Ke]). 

Remark 4.4. The closures in the general case of a non-Coxeter element are 
more subtle to describe and we take this up in another paper. 
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w 5. Proof  of Theorem 1.3 and structure of 

For this and the next section, (W,S) is any Coxeter group. 
For y e W  fix a reduced expression y = s l . . . . . s  k. As explained in w we then 

have sets 5e and ~ of subexpressions and distinguished subexpressions respec- 
tively. We also have maps n : S e ~ W ( y )  (= { x e W I x <  y}), m: 5 e ~ E  + and 
n: 5a-<E +. 

We begin the proof of Theorem 1.3 by a simple lemma: 

Lemma 5.1. For _aeSe, l(Tt(.q))=k -n (g )  -2m(g).  
The proof of this lemma is easy to derive from definitions of maps ~t, m and n. 

Next we introduce some subsets of 5 e and @ as follows: For  xeW(y) ,  let 
5P(x)=n- l (x)  and @(x)=SP(x)c~ .  For  i eZ  +, let ~(x)=SP(x)c~m-l( i )  and 
~ i ( x )  = ~ ( x )  c~ ~ .  

We want to compare these sets with sets defined analogously for the 
element ySk and the reduced expression sl... Sk-1 for it. Let ~ ' ,  ~ ' ,  ~ '(x),  ~ ( x )  
denote these sets and m',n' denote corresponding maps. We have a natural 
map 0 : 5 e ~ 5  P' given by 0((0"0,0" 1 . . . .  ,O'k))=(O'0, O' l , . . . ,O 'k_l) .  It is easy to see 
that 0(~)~@' .  Let x~W(y). Then we have the following lemma for "compari- 
sons": 

Lemma 5.2. 

(a) I f  XSk <--_X then (i) XSk~W(ySk), 
(ii) kgdI(_a)'qg~(x) so that O(~(X))~_~'(XSk), 

(iii) n(_a)=n'(O(a))V~_~@(x) so that O(@i(x))~_@~(xsk)Vi and 
(iv) 0: ~i(x) ~ ~;(XSk) is bijective V i. 

(b) I f  x<=xs k but XSkCW(ySk) then (i) xEW(ySk), 
(ii) k ~ I ( _ q ) V ~ ( x )  so that O(~(x))c_~'(x), 

(iii) n(g)=n'(O(_~))+ l V g ~ ( x )  so that O(~i(x))~_~(x)Vi and 
(iv) 0: ~i (x ) - -*~(x)  is bijective Vi. 

(c) I f  x < x s  k and x sk~ W(ySk) then define subsets ~d(x) and ~(x)  of ~(x)  by: 
,~(x) = { g ~ ( x ) [ k r  and M(x) = ~(x)\,~/(x). Then one has: (i) n(g) = n'(0(g)) 
V ge~C(x) so that O(SJ(X)C~I(X))~_~'i_ ~(XSk) V i, (ii) 0: d ( X ) C ~ ( X ) ~ ' i _  a(XSk) 
is bijective Vi, (iii) n(g)=n'(O(g))+ l V_a~M(x) so that O(r162 
and (iv) 0: ~(x)  c~ ~i(x)--*~'i(x ) is bijective V i. 

The proof of this lemma is not difficult; we prove parts c(iii) and c(iv) as 
an illustration. 

Proof of c(i i i)  and c ( iv )  
Since ~(x )=~(x ) \ sC(x ) ,  k~I (g)Vg~J(x ) ,  i.e. a k _ l = a k = X g _ a ~ ( X ) .  Hence 
O(a_)e~'(x). Also, n(_q)= n'(O(g))+ 1 as is clear and so m(g)=m'(O(_q)) by Lemma 
5.1. Thus O(~(x)~i (x) )~_~ ' i (x )Vi .  Also, 0 is clearly injective on ~ ( x ) c ~ i ( x ) .  
Finally, given g'e~'~(x), let g=( ,q ' ,x)  then geM(x) since ak_lSk>ak_~ and 
keI(~). Also _ae~i(x ) as is clear. So 0 is surjective on ~ ( x ) ~ i ( x  ). This proves 
c (iii) and c (iv). 

Now we can give 
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Proof of Theorem 1.3 
Using notation introduced by us, we have to prove that 

gx, r(q)= 2 (q-1)"c~)'q m~). 
~e~(x) 

We proceed by induction on l(y). 
If l(y)=O, y = x = i d  and the above formula is trivially true. So let k 

= l(y)>= 1. 
We have the following recursive relations ([K-L1, w 2]). 

Case (a). If xs k ~_ x then Rx, y(q) = R .... ys~(q). 

Case (b). If x<=xs k but XSkq~ W(ysk) then R.,y(q)=(q-1).R~,ys~(q ). 

Case (c). If X<XSk and XSkeW(ySk) then Rx, r(q)=(q-1)R~,ys~(q) 
+ q" R .... r~k(q). 

Clearly these cases correspond respectively to the three parts of Lemma 5.2 
which enables us to establish the induction step. We give details of case (c) as 
an illustration. By induction, 

Rx, ys~(q)= 2 (q-1)"'c~')'q "'c~') 
_~'E~'(x) 

= 2 ( 2 (q - 1) "'~-~')) qi 

= 2 (  2 (q--1)"t~)-l)q i 
i _ae~(x In~ i (x )  

= ~ (q_ 1).(~)- 1. q.,r 
gE~(x) 

Similarly, Rx~,y~(q)= 2 (q-1)"c~)'q mc~)-l. Hence it is clear that R~,,y(q) 
q~(x )  

= 2 (q-1)"~-~)'q ~-~). This establishes the induction step in this case. The 
qE~(x) 

proof of Theorem 1.3 is now complete. 
Rewriting the expression on right hand side of Theorem 1.3, we get: 

R,,r(q) = I~o(X)l" (q - 1) k-tt~) + I~l(x)l. (q - 1) k-l~)- 2 .q + .... 

However, this gives no information about vanishing of terms i.e. when I~(x)l 
=0 or ~(x)=~b. Our next proposition brings out this aspect and we get a 
sharp description about the "shape" of Rx, y(q ) which was stated by the author 
in [D3, Rem. 2.2]: 

Proposition 5.3. Let x~ W(y). Then one has: 
(i) ~(x)4=q5 ~ 2 i < k - l ( x ) .  

(ii) ~(x)  4: q~ =~ ~,(x) ~ qS. 

(iii) ~(x)  ~ ~b and i + 0 ~ ~ _  ~ (x) ~ 4). 
(iv) ~o(X) consists of exactly one element. 
(v) I f  ~ o =  (Jy)~o(X)~w( then n: ~o  ~ W(y) is a bijection. 
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Proof. (i) Follows from Lemma 5.1. 
(ii) For  _ae~(x), recall that the set I (g)= {j[ t i_ 1= a j} has n(_q)= k -  l (x)-2i  

distinct integers. We arrange them in the increasing order and consider these (k 
-l(x)-2i)-tuples along with the lexicographic order on them induced from the 
set of all (not necessarily increasing) (k-l(x)-2i)-tuples of positive integers. 
Choose _ae6/~(x) such that the corresponding (k-l(x)-2i)-tuple is the smallest. 
We claim that a e ~ i ( x  ) in that case. If not, 3j~I(q) such that t j_ 1>=t j_ l Sj (cf. 
w Def. 2.3). By the strongest version of exchange condition for (W,S) ([D2, 
Prop. 3.1(iii)]), 3r such that (a) l__<r<j-1,  (b) rr and (c) tr_lSrtf_J 1 
=t j_lSj t i11=t ,  say. We also note that t r=a,_ls  ~ since rr and t j = t j _  1 
since j~I(g). Consider now a sequence _z={z o .. . .  ,Zk} given by: Zp=ttp for 
r<_p<=j-1 and zp=tp otherwise. It is easy to check that z ~ .  Also Zk=tk=X 
SO that n(y_)=x. Next, I(y_)=I(.q)w{r}\{j} so that n (z )=n~)  and so zeS~/(x). 
Since r<=j-1, it is clear that the (k-l(x)-2i)-tuple corresponding to z is 
smaller than the one for g which contradicts the choice ofg .  Hence a e ~ i ( x  ) as 
claimed. Thus ~i(x) 4: 4). 

(iii) can be proved using the strongest version of exchange condition in a 
way similar to one in (ii). 

(iv) Since x~W(y) and n is onto, ~9~(x)4:qS. Thus Se//(x)4:q5 for some i>0.  
Using (iii) repeatedly, Sr ~ and hence ~o(x)4:~b by (ii). We have now to 
show that g , Z ~ o ( X ) : * t = z .  We achieve this by showing I(.q)=I~). Let, if 
possible, I (.q) 4: I (5_). Consider the maximum integer j belonging to the sym- 
metric difference of these two sets. Thus, for j +  1 <=p<k, peI(g) iff peI(5_). It is 
then clear that tp=zp for all j+l<p<=k. (This can be proved by using 
downward induction on p and the fact that t~  1 tip+ I = 'Irp 1 Tp+ 1 Vj + 1 =< p =< k -- 1.) 
Now let j6I(.q) but j~I(!) (for the sake of definiteness). Then a~=aj+~ =z~+~ 
=zjsj+~. Since m(!)=0,  z i+~>z j. But this means that %>%sj+~ which is a 
contradiction since _~eN. Thus I(ff)=I(_z) and a = z .  This proves (iv). (v) follows 
from (iv). 

This completes the proof of Proposition 5.3. 

Remark 5.4. With reference to the proof of (ii) above, it can be proved that 
ae~q~i(x ) with ~ p minimal must also belong to Ni(x). However, these two 

pEl(~) 
minimality conditions for elements of ~ (x )  are independent of each other. 

Remark 5.5. One may sharpen the statement (i) above as follows: 
(i)' ~i(x)4:(o~2i<=k-I(x)-2 unless (a) x = y  or (b) x-lye,,UwwSw-X. In 

case (a) i = 0  and ~o(X) is a singleton set. In case (h) k - l ( x ) - I  is even and 
~k_,x)_~(x) is a singleton set. We thus recover Lemma 2.1 of [D3]. 

2 

Remark 5.6. If one considers the natural order on 90 given by a_<z iff o-~___z~ 
Vl<_i<k then it can be proved that for any x~<x2eW(y) and any _zE~(x2) , 
~ N z  where ~ is the unique element in No(X~). In particular, n: No ~ W(y) is an 
order-preserving bijection. The above order on ~ is related to the closure 
problem mentioned in Remark 4.4. 
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w 6. L-Shellability of Bruhat Ordering 

As mentioned in the introduction, the set 3 o =  U ~o(x) enables us to prove 
x~W(y) 

L-shellability of Bruhat ordering. We refer the reader to [B-W] for the defini- 
tion of this concept. Here we prove a proposition regarding 9 o which is the 
crux of the matter. This even proves the "relative version" viz. any interval 
Ix, y] in W s for any J c S is L-shellable (see below for definitions). 

We first need some notation. For x~W(y),  consider a chain C : y  
= y o > y l > . . . > y r = x  of elements in W(y) such that l ( y i )=k- i .  It is then easy 
to see that there exists a sequence (Pl, ...,Pr) of distinct integers and elements 
a(i)~SPo(yi) such that i(_q(0)= {Pl . . . .  ,p~}. We denote this sequence of integers by 
~b(C). Note that this sequence need not be increasing. Now consider all chains 
between y and x and corresponding sequences of r integers equipped with the 
lexicographic order. We then have: 

Proposition 6.1 
(i) S a unique chain C: y = ~ o > ~ l  > . . .  ~Yr = x  for which r . . . . .  Pr) is 

increasing. Moreover, the corresponding elements ~_(i) belong to ~o(Yl) respective- 
ly. 

(ii) For any chain C from y to x, q~(C)NqS(C). 

(iii) I f  J~_S is such that x and y belong to W J, the set of minimal coset 
representatives of W / W  s (cf. [D1, w 3]), then ~ie W s V i. 

Proof (i) Let _~=(#o,Pl . . . .  ,#k) be the unique element of @o(X) (cf. Prop. 
5.3(iv)). Let I ~ )  = {i~, P2 . . . . .  ~} with ~ < Pz < . . .  < Pr. Define elements ~i a < i < r 
as follows: ~o=y and ~=#~, .s~.#~1.~_1 V l < i < r .  Since #~=#~,_~ Vi, 
it is easy to see that ~ = x .  Also l(Yi)<l(~i_ 0 since l(#r,.sr,)>l(#~) and 

l(#~l~i_l)>l(sf,,la~l~i_l). Thus r= l (~o ) - l (~ r )=  ~ (l(~i_l)-l(~i))>r.  Hence 
i=1 

l ( ~ i _ l ) - l ( y i ) = l V l < i < r  and so l (~ i )=k- i .  Thus d :  y=yo_>_y~ _>_ ... >__y,=x is 
indeed a chain. Also, ~b(C)=(/3~ .. . .  ,/~,) and hence is an increasing sequence. It 
can be proved that the elements _~(1) corresponding to C belong to ~o(Yi). Note 
that _~(~)=~. 

Now given any chain C: Y=Yo~Y~ >= ...>=yr=x such that 4)(C)=(p~, ...,p,) 
is increasing, it can be checked that corresponding elements g(~ (The 
property of increasing ensures that.) Thus ~r(')e@o(X ) and so _a(r)=_~. Hence 
{p~ . . . . .  p~}=I(_q(~))=I~)={~ . . . .  ,i0,}. Since both these sequences are increas- 
ing, pi=~iVi. So C =  C. This proves (i). 

(ii) Let, if possible, ~ chain C such that ~b(C)<4)(C). Consider _o-(')eS~o(X ) 
corresponding to C. Then the r-tuple corresponding to _a (~) (cf. proof of Prop. 
5.3 (ii)) is a rearrangement of qS(C) in the increasing order and hence is smaller 
than it (qS(C)) in the lexicographic order. Therefore the r-tuple corresponding 
to _a (') < that corresponding to # (which is (/31 ... .  ,/3)). Now as seen in proof of 
Proposition 5.3 (ii), S_Ze~o(X ) such that the r-tuple corresponding to _~ <r-tuple 
corresponding to g(r). But _z=p as ~o(X) is a singleton set. This gives a 
contradiction. This proves (ii). 
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(iii) Let J~_S such that x, y e W s .  We use the following fact regarding 
elements of W J ([D1, Lemma 3.2]): If w < w ' e W  are such that (a) w e W  J and 
(b) l (w ' )=l (w)+ 1 then either w ' e W  J or w ' = w s  for some s~J.  

Consider the chain C constructed in (i). We prove by downward induction 
that ~ieWSVi .  For i=r ,  ~ r = x e W S .  Next, assume yieW J. Then the pair 
(Yi,Yi-1) satisfies conditions (a) and (b) mentioned above. Hence either 
y~_,e W J or ~ - ly i_  leJ .  Let, if possible, the second possibility hold. It can be 
checked that ~i - i  Yi-x =Sk'...'S~,+IS~,Spt+I'...'Sk. H e n c e  y.@il@i_x)=S1 ""sb, 
. . .s  k which is a contradiction since l ( y s ) > l ( y ) V s ~ J  whereas l ( s~ . . .~ ,  
�9 ..Sk) < l(y). This proves that Yi- le  W J. This proves (iii) by induction. 
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