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Abstract. In this paper we proceed in the way indicated by R. M. Wilson for obtaining simple difference families 
from finite fields [28]. We present a theorem which includes as corollaries all the known direct techniques based 
on Galois fields, and provides a very effective method for constructing a lot of new difference families and also 
new optimal optical orthogonal codes. 

By means of our construction--just to give an idea of its power it has been established that the only primes 
p < 105 for which the existence of a cyclic S(2, 9, p) design is undecided are 433 and 1009. Moreover we have 
considerably improved the lower bound on the minimum v for which an S(2, 15, v) design exists. 

1. Introduct ion 

The major reference of  the present work is the classic paper by R. M. Wilson published 

in Journal of  Number Theory in 1972 [28]. Although the main result of  that paper is the 
asymptotic existence theorem (a milestone in design theory), some direct constructions of  
simple difference fami l i e s - -and  hence of Steiner 2 -des igns- -a re  also remarkable;  Wilson 

himself  concludes that they are only an indication of  the various possibili t ies for using 
finite fields to ease the task of  constructing difference families. Here we will successfully 

exploit  these possibilities in order to get new difference families and new optimal optical 
orthogonal codes but, firstly, we need some background. 

Definition 1.1. Let G be a group written in additive notation and let .T" = {B~ . . . . .  Bt} be 
a family of  k-subsets of  G: 

Bi = {bil, bi2 . . . . .  bik}, i = 1, 2 . . . . .  t. 

Such a family is called a (G, k, ~.)-difference fami ly  (briefly (G, k, L)-DF) when the 
following conditions hold: 

Any nonzero element of  G occurs exactly )~ times in the list of  differences 

(bij - bih [ 1 < i < t, 1 < j # h < k). (1.1.a) 

[Bi + g  = Bi ~ g = 0] fo r i  = 1 ,2  . . . . .  t. (1.1.b) 

The members of  a difference family are called base blocks. A difference family with a 
single base block is naturally called a difference set. A (G, k, )0 -DF is said to be simple 
when ~. = 1. Finally, a (Zv, k, )~)-DF is called cyclic and simply denoted by (v, k, L)-DE 
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Let 9 r = {B1 . . . . .  Bt} be a family of nonempty subsets of an additive group G; recall 
that the development of.T" is the incidence structure defined as follows: dev .T" = (G,/3, E) 
withB := {Bi + g  I i = 1,2 . . . . .  t;g c G}. 

The following proposition explains the reason for which difference families have great 
importance in design theory: 

PROPOSITION 1.2 Let G be an additive group of order v and consider the class of incidence 
structures which are the development of some (G, k, L) difference family. Such a class 
coincides with the class of 2-(v, k, L) designs having G as a group of automorphisms 
acting regularly on the point set and semiregularly on the block set. 

In particular the (v, k, 1)-DFs give rise to the class of cyclic S(2, k, v) designs without 
short orbits. 

Now, we define the concept of optical orthogonal code. We warn the reader that our 
definition is more general than the original one [12], but coincides with it when G is the 
cyclic group of residues modulo an integer v. 

Definition 1.3. Let G be a group written in additive notation and let C be a subset of (Z2) a 
whose elements have constant Hamming weight k. In other words any element of C is a 
mapx : G -+ Z 2 : g  ~+ xg such that Ig E G :Xg = 11 = k. The set C is called a (G, k, ~,) 
optical orthogonal code (briefly, (G, k, )0-OOC) when, for any pair of distinct elements x 
and y of C the following conditions hold: 

y ~  Xg+h "Xg+h, ~ )~ Yh, h' ~ G, h ~ h'; (l.3.a) 
geG 

~ Xg+h �9 Yg+h' < )~ Vh, h' ~ G. (1.3.b) 
gEG 

The cardinality and the elements of C are called the size and codewords of C respectively. 
A (G, k, X)-OOC is called optimal (briefly (G, k, )Q-OOOC) when there exists no 

(G, k, L)-OOC having larger size. 
A (G, k, )0-OOC is said to be simple when ~ = 1. Finally, a (Zv, k, X)-OOC is called 

cyclic and denoted by (v, k, X)-OOC. 
Note that when G = Z,  conditions (1.3.a) and (1.3.b) say that the ordinary inner product 

between two distinct cyclic shifts of a codeword (two cyclic shifts of distinct codewords 
respectively) is at most X. 

Let C be a (G, k, ~.)-OOC of size t. Identify any codeword x of C with the k-subset B of 
G whose characteristic function is just x: 

B := {g �9 G Ix~ = 1}. 
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In such a way, C can be identified as a family 5 t" = {B1 . . . . .  Bt} of k-subsets of G 
(codeword-sets) satisfying the following conditions: 

I(Bi + h) O (Bi + h')[ < & u ~ {1, 2 . . . . .  t}, Yh # h' ~ G; (1.3.c) 

I(B; + h) N (Bj + h')[ < )~ Vi # j c {1, 2 . . . . .  t}, u h' 6 G. (1.3.d) 

On the other hand conditions (1.3.c) and (1.3.d) are equivalent to the following: 

Any nonzero element of G occurs at most L times in the list of differences 

(b - b I [ b, b' ~ Bi, 1 < i < t). (1.3.e) 

Any nonzero element of G occurs at most X times in the list of differences 

(b - b' I b ~ Bi, b' ~ Bj, 1 < i ~ j < t). (1.3.0 

From now on we agree to consider a (G, k, 3.)-OOC as a family {Bi } of k-subsets of G 
satisfying conditions (1.3.e, f). With this convention, it is easy to see that any (G, k, 1) 
difference family can be regarded as a (G, k, 1) optimal optical orthogonal code. 

The study of (v, k, X) optical orthogonal codes was originally motivated by an application 
in optical code-division multiple-access communications systems. The main reason which 
induced us to generalize the concept of (v, k, Z)-OOC to that of (G, k, )0-OOC is the sake 
of uniformity of language. On the other hand we think that this generalization is also 
justified, at least in the case X = 1, by the following proposition (note the analogy with 
Proposition 1.2): 

PROPOSITION 1.4 The class o f  incidence structures which are the development o f  some 
(G, k, 1)-OOC coincides with the class o f  k-uniform semilinear spaces admitting G as a 
group o f  automorphisms acting regularly on the point set and semiregularly on the line set. 

Notation 1.5. For a subset B of an additive group G, we will denote by A B the set (not 
the list!) of all the nonzero differences in B: 

AB := { b -  b' I b,b '  6 B ,b  r b'}. 

We will use the following elementary proposition about simple OOCs: 

PROPOSITION 1.6 Let G be a group written in additive notation and let a ~ = { Bl , B2 . . . . .  Bt } 
be a family  o f  k-subsets o f  G. In order that .7: be a ( G, k, 1)-OOC it suffices that: 

IABil = k(k  - 1) for  1 < i < t. (1.6.a) 

ABi  n A B j  = 0 for  1 < i < j < t. (1.6.b) 
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If  in addition to this, the following condition also holds, 

t = k--2-2-s k (the integerpart of(v  - 1)/(k 2 - k)), (1.6.c) 

then the code is optimal. 

The difference families and the optical orthogonal codes which are considered in this 
paper are all simple and found in the additive group of a finite field. 

Notation I. 7. Let q be a prime power and let d be any divisor of q - 1. Set: 

GF(q)  := the Galois field oforderq .  

EA(q)  := the elementary abelian group of order q, i.e. the 

additive group of GF(q).  

~o := a fixed primitive element of GF(q).  

H a := the group ofd-th powers of GF(q).  

In particular, H l = H is the multiplicative group of GF(q) .  Note that if q - 1 = d �9 e, 
then H d can be also regarded as the group of e-th roots of unity in GF(q).  

2. A Summary of Known Simple Difference Families from Finite Fields 

In this section we review the theorems which lead to the known direct constructions of 
simple DFs in Galois fields. For the sake of brevity we do not specify the constructions 
in the statements. On the other hand such constructions will be clear in the light of the 
theorem in the next section. 

THEOREM 2.1 (Bose '  39). l f  q = 12t + 1 is a prime power such that 09 4t - -  1 is not a square 
in G F(q) (equivalently, - 3  is not a 4-th power) then there exists an (EA(q) ,  4, 1)-DE 

THEOREM 2.2 (Bose '39). l f  q = 20t + 1 is a prime power such that O) 4t + 1 is not a square 
in G F (q ) (equivalently, 5 is not a 4-th power) then there exists an ( E A (q ), 5, 1)-DE 

We have recently improved (cf. [7]) Theorems 2.1 and 2.2 as follows: 

THEOREM 2.3 (Buratti '93). Let q = 12t + 1 be a prime power and let 2 n be the highest 
power of 2 in t .  l f  o)  4t - 1 r H 2"+1 (equivalently, - 3  is not in H2"+2), then there exists an 
(EA(q) ,  4, 1)-DE 

THEOREM 2.4 (Buratti '93). Let q = 20t + 1 be a prime power and let 2 n be the highest 
power of 2 in t. l f  co 4t + 1 r H 2"+~ (equivalently, (11 + 5,r is not in H2"+'), then there 
exists an (EA(q) ,  5, 1)-DE 

It can be proved (cf. [7]) that Theorem 2.3 always succeds for powers of primes p -- 
2(mod 3) and that Theorem 2.4 always succeds for powers of primes p ___ +2(mod 5). 
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Equivalent results to Theorems 2.3, 2.4 are obtained by S. Bitan and T. Etzion (cf. [3], 
Theorems 5 and 8). 

Although it is not indicated in the statements, it should be noted that Theorems 2.3, 
2.4 provide necessary and sufficient conditions for the existence of difference families 
consisting of appropriate cosets of G F ( q ) ,  while the conditions of Bose's theorems are 
only sufficient for this. 

THEOREM 2.5 (Wilson '72). Let q = k(k  - 1)t + 1 be a prime power, with k odd. I f  the 
1 (k - 1)} is a complete system o f  representatives for  the cosets s e t  {(.o i ( k - 1 ) t  - 1 I 1 < i < 

o f  H ~k-1)/2, then there exists an ( E A (q), k, D-DE 

THEOREM 2.6 (Wilson '72). Let q = k(k - 1)t + 1 be a prime power, with k even. l f  the 
set {oJ kt - 1 I 1 < i < l k - 1} U {1} is a complete system o f  representatives for  the cosets 
o f  H k/2, then there exists an (EA(q ) ,  k, D-DE 

The above theorems of Wilson provide sufficient conditions for the existence of radical 
difference families (RDFs), i.e. DFs consisting in appropriate cosets of G F ( q ) ,  and are a 
generalization of Bose's theorems which correspond to the cases k = 4 and k = 5. The 
conditions of the next two theorems are also sufficient for the existence of RDFs but improve 
those of Wilson because are generally weaker than them. Moreover they are necessary at 
least for k < 7 (cf. [9]). 

THEOREM 2.7 (Buratti '93). Let q = k(k  - 1)t + 1 be a prime power, with k odd. Let 
dl I d2 I . . .  I d2s be a chain o f  divisors o f  �89 - 1)t such that: 

(i) l-II<~<sd2~/d2c~_ ~ = �89 -- 1). 

t (k 1)t 1 (ii) Foranypairo fd i s t inc te lementsx ,  y in the set {w" - - 1 I 1 < i < $(k - 1)} there 
is a suitable o t e  {1 . . . . .  s} such that x, y are in distinct cosets o f  H aa-* modulo H ca, 
i.e. x - l y  r H d~-I \ H  a2,. 

Then there exists an (EA(q ) ,  k, 1)-DF. 

THEOREM 2.8 (Buratti '93). Let q = k(k  - 1)t + 1 be a prime power, with k even. Let 
dl [ d2 I . . .  I d2s be a chain o f  divisors o f  �89 such that: 

1 (i) Fll<,~<sd~/d2,~-i = $k. 

(ii) For any pair o f  distinct elements x, y in the set {w ikt - 1 I 1 < i < �89 - 1} U {1}} 
there is a suitable ot ~ {1 . . . . .  s} such that x, y are in distinct cosets o f  H da-~ modulo 
H d2~ i.e. x - l y  c Hd2~ d2~ 

Then there exists an ( E A(q) ,  k, 1)-DE 

The next theorem, besides being very useful for constructing DFs with "small" block 
size, is worth of attention especially because leads towards Wilson's asymptotic existence 
theorem [28], one of the most important results in design theory. 
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THEOREM 2.9 (Wilson's lemma on blocks with evenly distributed differences, '72). Let 
q = k (k - 1)t + 1 be a prime power and let B be a k-subset o f  G F (q) such that any coset 
o f  H k(k-l)/2 contains exactly two elements (additive inverses o f  each other) o f  AB.  Then 
there exists an ( E A ( q ), k, 1)-DE 

To have an idea of how effective Theorem 2.9 is for low values of k, one can see an 
application of it in [8] where many DFs with block sizes 4 and 5 are easily obtained. 
However, as we have already said, the main reason why Theorem 2.9 is interesting is another: 
Wilson proves that for a fixed arbitrary k, the condition of Theorem 2.9 is asymptotically 
verified. This, combined with constructions of recursive type, implies that for v sufficiently 
large the conditions v - 1 --- 0(modk - 1) and v(v - 1) = 0(modk(k - 1)) are necessary 
and sufficient for the existence of an S(2, k, v) design (cf. [31]). 

R. M. Wilson concludes his cyclotomic paper with the following theorem on simple DFs 
with block size 6: 

THEOREM 2.10 (Wilson '72). Let q = 30t + 1 be a prime power  and suppose that there 
is an element b o f  G F(q)  such that {w l~ - 1, b(w l~ - 1), b - 1, b - w l~ b - co 2~ } is a 
complete system o f  representatives for  the cosets o f  the 5th powers. Then there exists an 
( E A ( q ) ,  6, 1)-DE 

3. The Main Construction 

In this section, proceeding as indicated by Wilson, we give a very useful theorem for con- 
structing not only difference families but also optimal optical orthogonal codes. Moreover, 
this theorem has a unifying function because all the theorems stated in the previous section 
are corollaries of it. We look for families in G F ( q )  whose members are unions of cosets of 
a multiplicative subgroup of G F(q)  and possibly {0}. The idea of modifying some known 
constructions of DFs in Galois fields in order to get OOOCs can be found also in [3]. 

THEOREM 3.1 Let k = e f  or k = e f  + 1 with e odd in both cases. Let q be a prime power  
such that the Euclidean division o f  q - 1 by k(k - 1) is o f  type: 

q - 1 = k(k - 1)t + r, 0 < r < k(k - 1), r divisible by 2et. (3.1.a) 

Set e = off q-1)/e and associate with any f - subse t  B = {bl = 1, b2 . . . . .  by } o f  H the list 
L B defined as follows: 

L B : = ( b i - - b j s h l  l < i = j < f ,  l < h <  - 1 )  

o r  

[1 < i  < j  5 f ,  1 < h  < e ] ) + L ~  

where L*~ is the null list for  k = e f  , while is the list (bl, b2 . . . . .  bf  ) o f  elements o f  B for  
k = e f  + l .  
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Let ( H  dl D . . .  D H d2") be a chain o f  subgroups between H and H(q-l)l(2e)--hence 

( dl . . . . .  d2s ) is chain o f  divisors o f  ( q - 1) / ( 2e ) - -and set do = I, d2s + l = ( q - 1)/(2e). 
Suppose that B is an f -subset  o f  H such that: 

L ~ is a subset o f  H, i.e. L8 has no repeated element and does not contain zero. (3.1.b) 

FIo<,~<sd2,~+l/d2~ = t. (3.1.c) 

x y  -l  e UI<~<s(Hd~-t\H a2~) U {I} u y 6 LB. (3.1.d) 

Then, ~ we set 

I : =  ai~ i 0_< i~ < d2a+lld2~;et = O, 1 . . . . .  s , 
/c~=0 

we have that the family ~ :=  {o)i B . H (q-1)/e U B* [ i E I}- -where  B* = ;g or B* = {0} 
according to which k = e f  or k = e f  + 1 respectively--is an (EA(q ) ,  k, 1 ) -O00C.  In 
particular, i f  r = O, it is an (EA(q) ,  k, 1)-DE 

Proof: Let's prove the theorem in the case k = e f .  
Firstly, we show that every member of f is a k-subset of  GF(q) .  Of course, H (q-1)/e 

and H (q-l)/(2e) are the groups of  e-th and 2e-th roots of  unity respectively: H (q-l)/e = 
{1, 8, 8 2 . . . . .  8 e - I  } and H (q-l)/(2e) -= {1, - 1 } -  H (q-l)/e. 

Now note that any two distinct elements of  B represent distinct cosets of  H(q-D/e: if 
b ib f  I E H (q-l)/e with 1 < i < j _< f ,  then there exists h e {0, 1 . . . . .  e - 1} such that 

bib] -1 = 8 h, i.e. b i - b j 8  h = 0 which contradicts (3.1.b). From this, we have that any 
member of  .U is a union of  f distinct cosets of  the group of  e-th roots of  unity and hence 
has cardinality e f  = k. 

We need the following identity: 

A ( B  �9 H (q-1) /e)  = H ( q - l ) / ( 2 e ) .  LB. (3.1.e) 

The inclusion H (q-1)/(2e) �9 LB c A(B �9 H(q -1)/e) is trivial. In order to recognize the 
inverse inclusion it suffices to express the general element bi 8h - bjE h' of A ( B  �9 H (q-1) /e )  

as follows: 

biEh__bjsh'_~ - { 8h(bi -- bjE h'-h) ! f i  < j or i f ( i  = j and 1 _< h '  - h < (e - 1)/2) 
--sh'(bj - -  bi 8 h - h  ) if i > j or if (i = j and 1 < h  - h '  < (e - 1)/2). 

Now, we must prove that conditions (1.6.a, b, c) hold. 
The family 5 t- satisfies condition (1.6.a): 
A trivial computation for the cardinality of Ls  gives: 

It~l = f ( e -  1)/2 + e f ( f  - 1)/2 = f ( e f  - 1)/2 = f ( k  - 1)/2. 
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By the assumption (3.1.d), distinct elements of L B represent distinct cosets of H (q-I)/(2e). 
Thus, by (3.1.e), A(B �9 H (q-l)/e) is the union of ILaI distinct cosets of the 2e-th roots of 
unity and hence has cardinality 2e �9 f ( k  - 1)/2 = k(k  - 1). 

The family ~" satisfies condition (1.6.b): 
Let i = Y~=0 dzcdc, and j = Y~=o d2~j'~ be elements of I such that A(co i B .  H (q-l)/e) f'l 

A(co j B .H (q-1)/e) ~ ~ .  In such acase by (3.1.e) we have: w i H (q-l)/(ze) .LBAco j H (q-1)/(2e). 
LB r O. Thus there exist x, y E LB such that coiH(q-1)/2ex = toJH(q-1)/Zey, i.e.: 

(D i - j  ~_ H(q-1)/(2e)x-ly with x, y c LB. (3.1.0 

Suppose i % j and show that such an assumption leads to a contradiction. Let 13 be the 
least integer such that it~ # Jt~; then (3.1.f) can be written as follows: 

I-I ,.,d~(i,-j,,) H(q- l ) / (2e)x- ly  ~<~<s~" 6 with x, y E LB. (3.1.g) 

The group H d2~ contains both H (q-l)/(2e) and co d~ for any ~ > ft. This, together with 
(3.1.g), gives x -  1 y ~ Hd:~. Then, by (3.1 .d), x -  1 y is also in H d2~+~ because the intersection 
between ( H  d2r \ H  d2~+~ ) and ( H  d~-' \ H  d~') is obviously empty for any c~ ~ { 1 . . . . .  s}. Thus, 
considering (3. l.g) again, we infer that co d:~ (i~-j~) C H d~B+l , i.e. o~ Op-)~) c H d2B+l/d2~. Hence 
d2t~+l/dz# divides lit~ - j~] which is smaller than d2t~+l/d2~ by definition of I. It follows 
that it~ = Jt~, a contradiction. 

The family Jr satisfies condition (1.6.c): 
The size of j r  is equal to the cardinality of I which is t by (3.1.c). On the other hand we 

have [ - ~ J  by (3.1.a). 

Remarks  3.2. (i) The reason for which in (3.1.a) r is required to be divisible by 2et 
(it seems that only divisibility by 2e is necessary to prove Theorem 3.1) is in order that 
there be compatibility with (3.1.c). In fact if (3.1.c) holds, then solving it for dz~+l we get: 
d~s+l = (q - 1)/(2e) = t �9 (Hl<_~<_sdz~/d2~-l) so that 2et is a divisor o fq  - 1 and hence 
o f r .  

(ii) Set m = (q - 1) / (2e t ) .  The most simple way of applying Throrem 3.1, is to look for 
a f-subset B of H such that: 

any two elements of LB are in distinct cosets of H m. (3.2.a) 

In fact if (3.2.a) holds, then conditions (3.1.b, c, d) are verified in the case of the trivial 
chain H D H '~. In this case the description of the difference family is more easy (cf. 
Section 4). 

(iii) With considerations as those made for radical difference famil ies  in [9, Remark 11], 
it is possible to show that conditions (3.1.b, c, d) are equivalent to condition (3.2.a) when 
m and t are coprime. 

However, for G C D ( m ,  t) # 1, conditions (3.1.b, c, d) are actually weaker than (3.2.a). 
For instance, the radical difference families presented in [7, 9] are all obtainable with (3.1.b, 
c, d) but not by means of (3.2.a). Another example where (3.2.a) fails while (3.1.b,c,d) 
succeed is the (577, 9, 1)-DF obtainable as follows: represent k = 9 in the form k = e f  with 
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Table 1. (p, 7, 1) difference families with p < 4000. 

p B p B p B p B 

337 {1} 1303 {I,6} 2521 {1,119} 3361 {1,61} 
421 {1} 1429 {1,168} 2647 {1,291} 3529 (1,265} 
463 {1} 1723 {1,138} 2689 {I,156} 3571 {1,9} 
631 {1,19l 1933 {1} 2731 {1,100} 3613 {1,178} 
883 {1} 2017 {1,29} 2857 {1,87} 3697 {1,159} 
967 {1,306} 2143 {1,139} 3067 {1} 3739 {1,342} 

1009 {1,69} 2269 {1,85} 3109 {1,18} 3823 {1,41} 
1051 {1,96} 2311 {1,105} 3319 {1} 3907 {1,108} 
1093 {1,6} 2437 {1,39} 

e = f = 3. With respect to this representation and using the chain H D H ~ D H lz D H 24, 
the list Li1.8.2o8 / from GF(577)  satisfies (3.1.b, c, d). 

(iv) Any theorem of Section 2 can be obtained as a corollary of  Theorem 3.1. For instance, 
for e = 1 and r = 0, condition (3.2.a) coincides with Wilson's lemma on blocks with evenly 
distributed differences. 

(v) By the previous remark and using Wilson's asymptotic existence theorem we have that 
for any fixed k Theorem 3.1 leads, at least in theory, to an infinite class of  ( E A  (q), k, 1)-DFs. 

On the contrary, for any fixed k, Theorem 3.1 leads to a finite number of  ( E A ( q ) ,  k, 1)- 
OOOCs which are not DFs. In fact (3.1.a) gives: r < k (k  - 1) - 2(r ~ k ( k  - 1) - 1 

1 ~ l k (  k 1) - 1. In because r is even) and hence when r r 0, as 2t divides r, t < Er 
1 2 conclusion: q < g(k - k )  2. 

(vi) Of  course, the number of  representations of an integer k in the form k = e f  or 
k = e f  + 1 with e odd, is the sum of the number of  odd divisors of  k and the number of  
odd divisors of k - 1. This sum is minimum and equal to 3 when k is a Mersenne prime 
or a power of  2 preceded by a prime. Therefore we meet the greatest difficulty in applying 
Thm. 3.1 to these values of k. 

4. Applying Theorem 3.1 

Now, we show the power of  Theorem 3.1 by applying it in the simplest way-- i . e ,  checking 
the possible validity of  condition (3.2.a) with the aid of  a computer - - in  order to give s o m e  
tables of  DFs and OOOCs. Each table refers to a fixed value of k; p denotes a prime and 
B a subset of G F ( p ) ;  the consequent (p, k, 1)-DF or OOOC is 

{oomiB �9 H ( p - l ) / e  LI B* [ 0 < i < t} where : 

e is the only odd integer in {k / lB[ ,  (k - 1)/[B[}; B* = O or B* = {0} according to which 
e = k / IB I  or e = (k - 1)/[BI resp.; t i s /~7_!2 /and  m is (p  - 1 ) / (2e t ) .  1 k~_k a 

Firstly note that by Theorem 2.5 the construction of (p,  3, 1)-DFs is trivial. For tables of  
(p ,  k, 1)-DFs with k ~ {4, 5} cf. [8]. A table of  (p,  6, 1)-DFs can be found in [28, p. 46]. 

About Table 2 we point out that it is an abbreviation of a longer one- -omi t ted  to save 
space- -where  we continue as far as p < 105. In both these tables the only missing 
admissible primes are 433, 577 and 1009. Since a (577, 9, 1)-DF has been constructed in 



22 M. BURATTI 

Table 2. (p, 9, 1) difference families with p < 5000. 

p B p B p B 

73 {1} 2089 {1,63,145} 3313 {1,16,210} 
937 {1,14,80} 2161 {1,28,968} 3457 {1,45,60} 

1153 {1} 2377 {1,129,275} 3529 {1,26,181} 
1297 {1,167, 264} 2521 {1, 2, 265} 3673 {1, 28, 1372} 
1657 {1,11,198} 2593 {1,15,163} 3889 {1,33,377} 
1801 {1,63,154} 2953 {1,29,41} 4177 {1,17,1082} 
1873 {1} 3169 {1,20,217} 4969 {1,116,987} 
2017 {1} 

Table 3. (p, 10, 1) difference families with p < 8000. 

p B p B p B 

1171 {1,31,409} 3691 {1,306} 6211 {1,468} 
1621 {1, 68,704} 4051 {1,76, 1397} 6301 {1,244} 
2521 {1,42,469} 4231 {1,683} 6571 {1,16,41} 
2 7 9 1  {1,253,448} 4 5 9 1  {1,43,2201} 6661 {1,223} 
2971 {1,23,568} 4861 {1,61} 6 8 4 1  {1,644,1487} 
3 0 6 1  {1,178,1471} 5 5 8 1  {1,125,930} 7 5 6 1  {1,16,3552} 
3 3 3 1  {1,126,415} 5851 {1,1277} 7741 {1,229} 
3511 {1,687} 6121 {1,145} 

Table 4. (p, 11, 1) difference families with p < 30000. 

p B p B p B p B 

10781 {1,1350} 14851 {1,783} 21011 {1,800} 23761 {1,536} 
12211 {1,2684} 15401 {1,2136} 21341 {1,205} 24091  {1,5742} 
12541 {1,725} 16061 {1,1229} 22111 {1} 24971  {1,1474} 
14081 {1,961} 19031 {1,2422} 22441 {1,1869} 25411 {1,596} 
14411 {1,2090} 19141 {1,1134} 23321 {1,1322} 27611 {1,416} 
14741 {1,452} 

Remark 3.2(iii), we may conclude that the existence of a cyclic S(2, 9, p) design of prime 
order p < 105 is undecided only for p ~ {433, 1009}. 

Recall that the task of constructing at least a non-trivial Steiner 2-design with block size k 
is easy when k is equal or subsequent to a prime power q. In fact in these cases we have the 
affine or projective spaces over the field GF(q). The first value of k for which it is rather 
difficult to construct a non-trivial S(2, k, v) is 15: the only non-trivial S(2, 15, v) that the 
author knows with v < 105 was found by Wilson by means of his Theorem 2.5 and has 
76231 points. In table 5 several other (cyclic) S(2, 15, v) designs are indirectly exhibited. 

In the introduction it has already been remarked that any simple difference family is also 
an optimal optical ortogonal code; tables 6--11 refer to OOOCs which are not DFs with at 
least two codeword-sets and are obtainable with Theorem 3.1. 

Two wide classes of OOOCs with Hamming-weight 4 and 5 and which are not DFs have 
recently been constructed using finite fields by S. Bitan and T. Etzion (cfr. [3], Thm 6 and 
Thm 9). 
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Table 5. (p, 15, 1) difference families with p < 105. 
p B p B 

13441 {1,214, 837} 72661 {1, 2431} 
45361 {1,632, 8778} 76231 {1} 
66571 {1,120, 6355} 80221 {1, 14398} 
71821 {1,488, 1100} 

p B 

89671 {1,4397} 
93871 {1,2305} 
97231 {1,11176} 

Table 6. (p, 4, 1) OOOCs which are not DFs. 
p B p 

29 {1, 2, 4, 12} 43 

B p B 

{1,2,4, 12} 71 {1, 2,4, 28} 

Table Z (p, 5, 1) OOOCswhichare not DFs. 
p B p 

53 {1,2,4,10,14} 79 
67 {1,2,4,12,54} 89 
73 {1, 2, 4, 8, 30} 

B p B 

{1, 2, 4, 10,29} 
{1,2,4, 10,42} 

97 
199 

{1,2, 5, 12,25} 
{1,2,4,8,83} 

Table 8. (p, 6, 1) OOOCs which are not DFs. 

p B 

73 { 1, 2} 
89 {1, 2, 4, 8, 13, 32} 
97 {1, 2, 4, 8, 25, 67} 

103 {1, 2, 4, 8, 32, 44} 
109 {1, 2, 4, 8, 22, 78} 
137 {1,2,4,9,37,48} 

193 
239 
257 
353 
449 

{1, 2, 4, 12, 19, 46} 
{1,2,4,9,37,138} 

{1,2,7, 16,51,110} 
{1,2,4,8,47, 103} 

{1, 2, 4, I0,242,395} 

Table 9. (p, 7, 1) OOOCs which are not DFs. 

p B 

97 {1,2,4,8,21,29,62} 
101 {1,2, 4, 8, 25,54, 91} 
109 {1,2,4,8,23,64,81} 
113 {11 
139 {1,2,10,55,70,113,117} 
151 {1,2,30,51,65,111,124} 

157 
163 
193 
277 
661 

B 

{1,2, 4, 8, 19, 35, 105} 
{1, lO} 
{1,57} 

{1,2,4,8,56,83,100} 
{1,2,10,69,221,613,659] 

Table 10. (p, 9, 1) OOOCs which are not DFs. 

p B p 

181 {1} 337 
193 {1, 10, 64} 421 
271 {1, 2, 6} 

B p B 

11,9,25} 
{1, 19,204} 

547 {1,25,147} 
859 {1,6,369} 

Table 11. (p, 10, 1) OOOCswhich are notDFs. 

p B p 

241 {1, 9} 401 
307 {1, 3, 71 433 
331 {1,3} 

B p B 

{1, 37} 
{1} 

601 
769 

{1, 42} 
{1,8, 176} 
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Added in Proof 

Note that Theorem 3.1, in the case r = 0, can be found in a slightly different form in 
M. Greig, Some Balanced Incomplete Block Design Constructions, Congressus Numeran- 
tium, vol. 77 (1990) pp. 121-134. 
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