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Abstract. Let G be a finite group of order v. A k-element subset D of G is called a (v, k, 3,,/z)-partial difference 
set if the expressions gh -1, for g and h in D with g ~ h, represent each nonidentity element in D exactly ), 
times and each nonidentity element not in D exactly # times. If e t~ D and g E D iff g-1 E D, then D is essen- 
tially the same as a strongly regular Cayley graph. In this survey, we try to list all important existence and nonex- 
istence results concerning partial difference sets. In particular, various construction methods are studied, e.g., 
constructions using partial congruence partitions, quadratic forms, cyclotomic classes and finite local rings. Also, 
the relations with Schur tings, two-weight codes, projective sets, difference sets, divisible difference sets and 
partial geometries are discussed in detail. 

1. Strongly Regular Graphs and Partial Difference Sets 

A graph I TM with v vertices is said to be a (v, k, k, #)-strongly regular graph if 

(i) it is regular of valency k, i.e., each vertex is joined to exactly k other vertices; 
(ii) any two adjacent vertices are both joined to exactly 3, other vertices and two nonadja- 

cent vertices are both joined to exactly/z other vertices. 

The structure of strongly regular graphs was first studied by Bose [1] in connection with 
partial geometries and symmetric association schemes of  class two. The general theory 
and constructions of strongly regular graphs can be found in Hubaut [2], Cameron [3], 
Seidel [4], Brouwer and van Lint [5] and Cameron and van Lint [6]. 

A Cayley graph is defined as a graph r = (v, E) which admits an automorphism group 
G acting regularly on the vertex set V (see Yap [7] for background on Cayley graphs). 
I f  we identify the vertices of I ~ with the elements of  the regular automorphism group G, 
then r can be generated by a subset D of  G such that two vertices g, h E G are joined 
if  and only if  gh -1 E D. Note that e ~ D since I ~ has no loops, and g-1 E D iff g E D 
since I ~ is not directed. 

Let G be a group of order v and D be a subset of  G with k elements. Then D is called 
a (v, k, )~, #)-partial difference set (PDS) in G if the expressions gh -1, for g and h in D 
with g ~ h, represent each nonidentity element in D exactly h times and represent each 
nonidentity element not in D exactly # times. Furthermore, the PDS is called abelian (resp. 
nonabelian) if  the group G is abelian (resp. nonabelian). 

For a subset S of  a group G, let S it) = {g~ : g E S} for any integer t. 
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PROPOSITION 1.1. A Cayley graph F, generated by a subset D of the regular automor- 
phism group G, is a strongly regular graph if and only if D is a PDS in G with e ~ D 
and D (-~) = D. �9 

PDSs were named by Chakravarti [8] but they were introduced by Bose and Cameron 
[9] in their studies of calibration designs and the bridge tournament problem. Although 
a systematic study of PDSs was started by Ma [10], [11] as a generalization of difference 
sets, there were a lot of earlier results written in terms of strongly regular graphs or related 
topics, e.g., Delsarte [12]-[14], Camion [15], Bridges and Mena [16]-[17] and Calder- 
bank and Kantor [18]. (Readers are warned that the parameters defmed in some of the 
references are different from the definitions in this paper.) 

In view of Proposition 1.1, it is natural for us to concentrate on the case when e r D 
and D (-1) = D. In the following, such a PDS will be called regular. For a PDS D with 
D (-1) = D, we can count the expressions gh instead of the expressions gh -1. Hence, 
regular PDSs are also called partial addition sets, e.g., see Ghinelli and I.bwe [19]. 

Note that the regular condition of PDSs is not restrictive. If D is a PDS with e E D 
and D (-1) = D, then D \  {e} is also a PDS. The following proposition shows that D ~-1) = D 
is quite common for PDSs. 

PaoposmoN 1.2. (Ma [10]) If D is a (v, k, k,/x)-PDS with 9~ ;a /z, then D (-1) = D. �9 

A PDS with k =/~ is just an ordinary difference set and there are a lot of good surveys 
on this topic, e.g., see Beth, Jungnickel and Lenz [20], Lander [21] and Jungnickel [22]. 

Usually, the study of PDSs is carried out using the group ring R[G] where R = 2Z or r 
First, we have the following notation: for S C G, let S = ~g~sg E R[G]; and for t E 7z 
and y = F,g~Gagg E R[G] where ag E R, let y(t) = ~,g~aaggt. 

TI-mOaEM 1.3. Let G be a group of  order v and D be a subset of  G with k elements. Then 
D is a (v, k, X, #)-PDS in G if  and only i f  

/ )  b ~-l) = ttG + (h - #)D + "re (1.1) 

where 7 = k - tz i f  e ~ D and 7 = k - )~ i f  e E D. Furthermore, i f  D <-t) = D, then 

b 2 = I ~ G +  C A -  tt)D + 7e. (1.2) 

The following is another useful form of (1.2): 

( 2 / )  - -  ~ e )  2 : 4 / , tG  -4- Ae (1.3) 

where/$ = h - /~ and A = ~2 -4- 4% Note that the parameters/~ and A are very impor- 
tant in the study of PDSs. As a consequence of (1.2) and (1.3), we have some restrictions 
on the parameters. 
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PROPOSITION 1.4. The parameters of a regular (v, k, ~, /~)-PDS satisfy 

(a) (v + ~)2 _ (A - ~2)(v - 1) must be a squa re ;  

03) k = [(v + ~)  __+ ~](v + /~)2 _ (A --  ~2)( v --  1 ) ] / 2 ;  

(c) ~ and A have the same parity; and 
(d) i f D  # O a n d G \ { e } , t h e n 0  < X _< k -  1 and0  _< /z < k. [] 

Suppose D is a PDs with e E D and D (-1) = D. If D has parameters (v, k, h, #,/3, A), 
then D '  = Dk{e} has parameters 

( v ' , k ' , k ' , l ~ ' , [ 3 ' , A ' )  = ( v , k -  1, h - 2 , # , t 5  - 2 ,  A). 

Hence Proposition 1.4 holds for D if we change k to k - 1 and/3 to [3 - 2. Throughout 
this paper, we shall state most of our theorems in terms of regular PDSs. For a PDS D 
with e E D and D (-1) = D, readers have to transform D to D '  as above in order to obtain 
the corresponding results. 

Let G be a finite group. It is easy to see that 0, {e}, Gk{e} and G are PDSs with 
(/3, A) = (m, m2), (m + 2, m2), (m -- 2, m 2) and (m, m2), respectively, for any interger 
m. (For these cases, either X or # is not defined in the definition of PDSs and hence can 
be any number.) Also, if H is a subgroup of G, then GkH, (GkH) U {e}, Hk{e} and 
H are PDSs with (/~, A) = (--w, w2), (--w + 2, we), (w - 2, w 2) and (w, w2), respec- 
tively, where w is the order of H. In the following, a subset D of G is called trivial if  either 
D t3 {e} or (GLD) U {e} is a subgroup of G (it is equivalent to say that the Cayley graph 
generated by Dk{e} is a union of complete graphs or its complement); otherwise, D is 
called nontrivial. 

PROPOSITION 1.5. Let D be a regular PDS with parameters (v, k, h,/~, t ,  A). Then D 
is nontrivial if and only if -x/A < [3 < v~  - 2. Furthermore, i f D  ~ G\{e},  thenD 
is nontrivial if and only if 1 _ # __< k - 1. [] 

2. Some Examples 

In this section, we shall see some nontrivial examples of regular PDSs. The first example 
can be dated back as early as Paley [23]. 

THEOREM 2.1. Let G be the additive group of  a finite f ieM IFq where q is an odd prime 
power and q - 1 mod 4. Then the set D of  all nonzero squares in lFq forms a regular 
(q, (q - 1)/2, (q - 5)/4, (q - 1)/4)-PDS in G. Note that [3 = -1  and A = q. [] 

Theorem 2.1 can be regarded as a particular case of the construction method using 
eyclotomic classes which we shall discuss in Section 10. 

Let G be a group of order n 2. A partial congruence partition of G with degree r (an 
(n, r)-PCP) is a set 6' of r subgroups of G of order n such that U f3 V = {e} for every 
pair of distinct elements U, V of 6 ). Sprague [24] has shown that an (n, r)-PCP of G is 
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equivalent to a translation net, see Example 14.2(2). Readers are referred to Bailey and 
Jungnickel [25] for results of  PCPs and Jungnickel [26] for a survey of related topics. 

TI--II~OI~M 2.2 (Ma [10]) Let  G be a group o f  order n 2 and (P be an (n, r)-PCP o f  G. Then 
D = ( J v ~ ( U \ { e } )  is a regular (n 2, r (n  - 1), n + r 2 - 3r, r 2 - r)-PDS in G. Note 

that fl = n - 2r and A = n 2. �9 

Example 2.3. 

1. Let G = H • K w h e r e  H a n d  K a r e  groups of  order n. Then D = {(h, e) : h  E H \ { e } }  
13 {(e, g) : g E K\{e}}  is a regular (n 2, 2(n - 1), n - 2, 2)-PDS in G. 

2. Let G = H • H where H is a group of  order n. Then D = {(h, e), (e, h), (h, h) : 
h E H \ { e } }  is a regular (n 2, 3(n - 1), n, 6)-PDS in G. 

3. Let G be the additive group of  a vector space of  dimension 2 over  a finite field IFq 
and H l, 1-12, �9 � 9  Hr (where r _ q + 1) be r distinct hyperplanes of  the vector space. 
Then D = (//1 U //2 LI . . .  O Hr)\{0} is a regular (q2, r(q - 1), q + r 2 - 3r, 
r 2 - r)-PDS in G. �9 

THEOREM 2.4. (Bailey and Jungnickel [25]) Let G be an abelian group o f  order n 2 with 

n = p~lp2~'" .p~s where Pl ,  P2, �9 . . ,  Ps are distinct primes. 

(a) / f  r > min {pa i+  1}, then no (n, r)-PCP exists in G. 

(b) Suppose all Sylow Pi-subgroups o f  G are elementary abelian. Then an (n, r)-PCP 

exists in G i f  and only i f  1 <_ r <_ min{p ai + 1}. �9 

COROLLARY 2.5. Let n = p~lp~2. . .p~s where Pl,  P2 . . . . .  Ps are distinct primes. Then 
there exists an abelian regular (n 2, r(n - 1), n + r 2 - 3r, r 2 - r)-PDS whenever 

1 <_ r <_ min{p a~ + 1}. �9 

A PDS having parameters (v, k, X, #) = (n 2, r(n - 1), n + r 2 - 3r, r 2 - r) is called 
a Latin square type PDS. The name comes from the construction of strongly regular graphs 
by using Latin squares which yield the same type of parameters, see Chapter 8 of Cameron 
and van Lint [6]. All examples constructed by Theorem 2.2 belong to this type. Another 
type of parameters which is closely related to the Latin square type is (v, k, X, ~) = 
(n 2, r (n  + 1), - n  + r 2 + 3r, r 2 + r). A PDS with these parameters is called a negative 

Latin square type PDS. 
Let q be a power of  a pr ime and IFq be a field of  q elements. A function Q : IF~ -o IFq 

is called a quadratic form if  

(i) Q(ax) = ot2O(x) for all c~ E ]Fq and x ~ IF~, and 
(ii) the function B : IF~ x IF~ ~ IFq defined by B(x, y) = Q(x + y) - Q(x) - Q(y) is 

bilinear. 

Furthermore,  Q is called nondegenerate if  B is nondegenerate, i.e., B(x, y) = 0 for all 
y E IF~ implies x = 0. The following is a well-known result, e.g., see Calderbank and 
Kantor [18] or Cameron and van Lint [6]. 
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THEOREM 2.6. Let Q : IF 2m ~ IFq be a nondegenerate quadratic foren. Then D = {x E 
lF2m\{0} : Q(x) = 0} is a regular (q2m, q2m-1 + eqm-l(q _ 1) -- 1, q2m-2 + 
eqm-l(q -- 1) -- 2, q2m-2 + eqm-1)_PDS in the additive group o f  IF2q m, where e = +_1 
and depends on the choice o f  Q. Note that t5 = eqm-l(q - 2) - 2 and A -- qEm. �9 

Example 2. 7. 

1. When e = 1, the PDSs constructed by Theorem 2.6 have parameters (v, k, ~k, /z) = 
(qZm, r(qm _ 1), qm + r 2 _ 3r, r z - r), where r = qm-1 + 1, which belong to the 
Latin square type. 

2. When e = -1 ,  the PDSs constructed by Theorem 2.6 have parameters (v, k, X, t~) = 
(q2m, r(qm + 1), _qm + r 2 + 3r, r 2 + r), where r = qm-1 _ 1, which belong to the 
negative Latin square type. []  

Some other examples of  nontrivial PDSs will be given in Sections 8, 9, 10, 11 and 12. 
Here, we give one particular example which has parameters v ~ A. This is also an exam- 
ple of  reversible difference sets which will be discussed in Section 12. 

Example 2.& (McFarland [27]) Let V be the additive group of a vector space over ]F 5 of 
dimension 3 and/-/1, H2, . . . ,  H31 be all hyperplanes of the vector space. Let K = {go, 
gl . . . . .  g31} be a group of order 32. Then D = {(gi, hi) : hi E H i and i = 1, 2 . . . .  , 
31} is a (4000, 775, 150, 150)-PDS in G = K x Vand D is regular when K i s  elementary 
abel�9 and go = e. Note that t3 = 0 and A = 2500. []  

3. Character Values and Duals 

For an abel�9 group G, let G* denote the group of characters of  G. For any X E G*, the 
induced homomorphism from r to r is also denoted by X, i.e. X(~geoagg) = r.ge~agxg 
where ag E r 

THEOREM 3.1. (Fourier Inversion Formula) Let G be a finite abel�9 group and y = 
~,gEGagg E ~[G] where ag E Ig. Then fo r  every g E G, 

1 ~ (XY)(Xg- 1). (3.1) 
a s -  I G] x~* 

[] 

The proof  of Theorem 3.1 can be found in Mann [28]. As a consequence of Theorem 
3.1, we have the following results. 

COROLLARY 3.2. Le t  G be a finite abel�9 group and y, z E r Then y --- z i f  and only 
i f  x y  = xz for  all X E G *  �9 

A character X E G* is called trivial if  xg  = 1 for all g E G; otherwise, it is called 
nontrivial. 
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COROLLARY 3.3. Let  G be an abelian group o f  order v and D be a subset o f  G such that 
D (-1) = D. Suppose k, 3, and l~ are positive integers satisfying k 2 = Izv + (h - Iz)k + 3, 
where T = k -  I~ i f  e ~ D and'Y = k -  X i f  e E D. Then D is a (v, k, X, ID-PDS in 
G i f  and only i f  

xD = ( k  
(/3 _ x/A)/2 

i f x  is trivial; 

i f x  is nontrivial. 
(3.2) 

where l3 = ~ - Iz and A = /3 2 + 4% 

Let G be an abelian group of order v and D be a (v, k, X,/z)-PDS in G with D (-1) = D. 
I f  D # I~, {e}, G~_{e} and G, then the dual of D is defined to be D + = {X E G* : X 
is nontrivial and x D  = (/3 + x/A)/2}. Note that if  e E D, then D + = (D\{e})  +. 

THEOREM 3.4. (Delsarte [14]) Let G be an abelian group o f  order v and D( ~ fJ and G) 
be a regular (v, k, X, lz)-PDS in G. Then the dual D + o f  D is a regular PDS in G* with 
parameters 

(v +, k +, X +, /z +, /3 +, A +) = (v, [(x/A - /3)(v - 1) - 2k]/(2x/A), ~+ + #+,  

[4k + - A + + (/3+)21/4, (v - 2k + /3 - X/A) /~ ,  v2/A). 

Note that 

[ 2/~+ _ v - 2 k + / 3 - x / A  2 ~ [ ( V ~ - B -  1) 2 1 ] 0 "  + ~ - X 0  
~/A xo = - (3.3) 

where X0 is the trivial character of  G. 

Delsarte [14] obtained Theorem 3.4 in connection with his new approach to coding theory. 
He  had pointed out that Theorem 3.4 could be regarded as a particular case of  a theorem 
on Schur tings obtained by Tamaschke [29]. Schur rings will be studied in Section 5. Now, 
let us see some examples. 

Let  G be an abelian group and H a subgroup of G. A character X is called principal 
on H if xg  = 1 for all g E H. Also, we define 

H • = {X ~ G* : X is principal on H} 

which is a subgroup of G*  of order v/lH[. 

Examp/e 3.5. 

1. Let G be the additive group of IF2q and/-/1,//2,  . . . ,  Hr (where r _ q + 1) be r distinct 
hyperplanes of IF2q. By Example 2.3(3), D = (H 1 t.J H 2 O " "  O Hr ) \{0  } is a regular 
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(~, r(q - 1), q + r 2 - 3r, r 2 + r)-PDS in G. Note that/3 = q - 2r  and A = q2. 
Since H/~ Cl Hj • = {Xo} where Xo is the trivial character, we have 

xb=x I= l" rel ~ r(q - 1) 

= ~ ( / 3  + V ~ ) / 2  = q T r  
~_(/3 - V~)/2 - 

if x = Xo; 
i f \  E H~ \{Xo} for some i; 
if X ~ H/~ for all i. 

Hence D + = (Hi L U H~ U ' "  U H~)\{Xo} which is a regular (q2, r(q - 1), q + 
r 2 - 3r, r 2 + r)-PDS in G *  Note that D + has the same structure as D. 

2. Let V be the additive group of IF3; H1, /-/2, �9 �9  H31 be all hyperplanes of  IF33 and 
K = {go  = e ,  g l  . . . . .  g31}  be an elementary abelian 2-group of order 32. By Exam- 
ple 2.8, D = {(gi, hi) : hi E Hi and i = 1, 2, . . . ,  31} is a regular (4000, 775, 150, 
150)-PDS in G = K x K Note that/3 = 0 and 2x = 2500. We have the following 
observations: 

(i) We can identify the elements of G* with elements of  K* • V* such that X E G* 
is written as (XK, Xv) where Xlc = X[K E K* and Xv = \ I v  fi V* 

(ii) For any nontrivial character Xv E V* Xv is principal on exactly one Hi for i = 1, 
2 . . . . .  31. Let Xo be the trivial character. Then {Xo}, H~ \{X0}, H~- \{X0} . . . .  , 
H131\{X0} form a partition of V* 

Hence, for X = (XK, Xv) E G *  we have 

X/~ = X  I k  Z (gi, hi) 1 
L j = I  hiEH i 

31 

= Z (xKgi)(XzlSIi) 
i=1 

t 
' -775 

= (/3 + 4 a ) / 2  = 25 
._(/3 - ~ ) / 2  = - 2 5  

if X is trivial; 
i f x v  E H~\{X0} and XKgi = 1 for some i; 
otherwise. 

So D + 1.131 .L = i=1 [ < g i >  X (H~ \{Xo})] is a regular (400, 1984, 1008, 960)-PDS in 
G*. Note that/3+ = 48 and A + = 6400. []  

Since the parameters of D + and the coefficients of (3.3) are integers, we have the follow- 
ing corollary. 

COROLLARY 3.6. If there exists an abelian regular (v, k, X, I~)-PDS D such that D ~ 0 
and G\{e} ,  then 1 )2 E (2k - /3) 2 -= (/32 -t- 2/3)v - 0 mod A. [] 

Let G be an abelian group. For any g E G, we define Xg to be a character of G* such 
that Xg(X) = xg for all X E G*  Note that the mapping g ~ Xg is a one-to-one cor- 
respondence between G and (G*)* the group of characters of G *  Thus we can always 
identify Xg with g for all g E G. The following result is a consequence of  Theorem 3.1. 
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TrlEOREM 3.7. Using the notation above, i f  D is a regular PDS in G, then (D+) + = D. �9 

4. Multipliers 

Let G be a finite group and D be a subset of G. An automorphism tr of G is called a multiplier 
o f D  ifcrD = D. Note that the definition of multipliers is different from that for difference 
sets, see Beth, Jungnickel and Lenz [20] and Lander [21]. 

Let G be an abelian group of order v and t be an integer relatively prime to v. Then 
the mapping g ~ gt is an automorphism of G. I f  the mapping is a multiplier of a subset 
D of G, i.e., D (t) = D, then we say that t is a (numerical) multiplier of D. As we shall 
see in the following theorem, abelian PDSs are rich in multipliers. 

THEOREM 4.1. Let G be an abelian group o f  order v and D a regular (v, k, X, tO-PDS 
in G. Then t 2 is a multiplier o f  D for  any t relatively prime to v. Furthermore, i f  A is a 
square, then t is a multiplier o f  D for  any t relatively prime to v. �9 

Theorem 4.1 was first obtained by Hughes, van Lint and Wilson [30] but not published 
and latter was proved independently by Ma [10]. Also, Bridges and Mena [17] had proved 
implicitly the case when A is a square. 

Example 4.2. 

1. Let G be an abelian group of order n 2. For any PDS D in G constructed from PCP 
as in Theorem 2.2, it is obvious that D (t) = D for all t relatively prime to n. Also, 
in this case, A = n 2 is a square. 

2. Let G be the additive group of the finite field IFq, where q - 1 mod 4, and D be the 
set of all nonzero squares. By Theorem 2.1, D is a regular PDS With A = q. Let 
q = pr, where p is a prime, and let t be any integer relatively prime to p. If  r is even, 
i.e., A is a square, then t is a multiplier of D. If  r is odd, i.e., A is not a square, then 
t is a multiplier of D if and only if t is a square modulo p. �9 

Up to now, there is no multiplier theorem for nonabelian PDSs. On the other hand, GhineUi 
and L6we [19] have some related results. A subset D of a group G is called normal if  
D is a union of conjugacy classes of G. Ghinelli and L6we study when a normal regular 
(v, k, X, /z)-PDS D can be fixed by the mapping g ~ gt, i.e., D (t) = D, where t is an 
integer relatively prime to v. However, for nonabelian groups, the mapping g ~ gt is not 
an automorphism. The following is their main result. 

THEOREM 4.3. (Ghinelli and LSwe [19]) Let G be a finite group o f  exponent w, D a normal 
regular (v, k, X, t~)-PDS in G and t an integer relatively prime to w. In the f ie ld (~[g'], 
where ~ is a primitive wth root o f  unity, let a be the automorphism which maps ~ to ~t. 
Then D (0 = D i f  and only i f  tr(~/A) = x/-A. �9 



A SURVEY OF PARTIAL DIFFERENCE SETS 229 

5. Sehur Rings and Some Nonexistence Results 

Let G be a finite group and Do, DI, . . . ,  D a be nonempty subsets of G with properties 
that 

(i) Do = {e}; 
(ii) G = Do U . . .  U Da and Di fq Dj = fJ if  i # j ;  
(iii) D} -1) = D, for some j depending on i; 
(iv) DiD j ~=0 Pk/)k for i, j = 0, 1 . . . . .  d, where p/~'s are integers. 

Then the subalgebra S of  C[G] spanned by / )o , /91  . . . .  , / ) a  is called a Schur ring of 
dimension d + 1 over G. Furthermore, if 

(V) D! -1) = D i for i = 0, 1 . . . . .  d. 

then S is called symmetric. 
Historically, Schur tings were first studied by Schur [31] and Wielandt [32] in their works 

concerning permutation groups. For the work done by group theorists, pleas see Wielandt 
[33], and Scott [34]. Recently, Schur rings had been found to be useful in constructing 
association schemes which are used in coding theory and experimental designs, see Bose 
and Mesner [35], Delsarte [14], Bannai, and Ito [36] and Ma [11]. 

Let G be a finite group. For y E r let Ty denote the support of y, i.e., Ty = {g E 
G : The coefficient of g in y is nonzero.}. A Schur ring S over G is called primitive if  
< Ty> = {e} or G for all nonzero y E S. If S is spanned by/)0 = e, D 1 . . . .  , /)d, then 
S is primitive if and only if each Di, i = 1, 2, . . . ,  d, is not contained in any proper 
subgroup of G. 

PROPOSITION 5.1. Let D be a subset of a finite group G such that D (-1) = D. Then/)0 = e, 
/)1 = D \  {e},/)2 = G - / ) 1  - e span a primitive symmetric Schur ring of dimension 
3 over G if and only if D is a nontrivial PDS in G. [] 

The existence of primitive Sehur rings is a main topic for group theorists working on 
Schur rings. The following are some of the results. 

A Schur ring S over a finite group G is called trivial if S is spanned by b o = e and 
1)1 = G - e; otherwise, S is called nontrivial. 

THEOREM 5.2. (Wielandt [33]) Let G be a finite abelian group and P be the Sylow p- 
subgroup of  G. No nontrivial primitive Schur ring exists over G i f  either (a) P is cyclic and 
o(G) ~ p or (b) P _~ 77ps • Z v,with s ~ t. [] 

THEOREM 5.3. (Wielandt [32]) No nontrivial primitive Schur ring exists over dihedral groups. 
[] 

THEOREM 5.4. (Scott [37]) Let H be an abelian group with exactly one element h of  order 
2 and let G be the generalized dicyclic group generated by H and j where j 2 = h and 
jgj  -1 = g-1 for all g E H. Then no nontrivial primitive Schur ring exists over G. [] 
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THEOREM 5.5. (Scott [34]) Let G be a group of order p + 1 where p is an odd prime. 
Suppose there exists a nontrivial primitive Schur ring of  dimension d + 1 over G. Then 
p > 37 a n d d  >_ 3. �9 

By Proposition 5.1 and Theorems 5.2, 5.3, 5.4, 5.5, we have the following nonexistence 
theorem on PDSs. 

THEOREM 5.6. No nontrivial regular PDS exists in each of the following groups: 

(a) any abelian group G with a cyclic Sylow p-subgroup and o(G) ~ p; 
(b) any abelian group with a Sylow p-subgroup isomorphic to 7zps • ~Tpt where s ~ t; 
(c) any dihedral group; 
(d) a generalized dicyclic group G generated by H and j where H is an abelian group with 

exactly one element h of  order 2 and j is an element of  G satisfying j 2 = h and jgj -1 
= g-1 for all g E H; 

(e) any group of order p + 1 where p is an odd prime. �9 

Let G be a cyclic group of order p, where p is a prime, such that there exists a nontrivial 
regular PDS D in G. Note that p ;~ 2 since D is nontrivial. Let g be a generator of G. 
Then by Theorem 4.1, D is either Q = {gt : t is a nonzero square modulo p} or 
(G\Q) \{e} .  Also, D (-1~ = D implies p - 1 mod 4. 

COROLLARY 5.7. Let G be a cyclic group of  order v. The following are all regular PDSs in G: 

(a) Either D U {e} or GkD is a subgroup of  G. 
(b) v is an odd prime with v =- 1 rood 4 and D is of the form 

{gt: t = 6o2j+Cforj = 0, 1, 2, . . . ,  (v - 3)/2} 

where g is a generator of G, co is a primitive root modulo v and c = 0 or 1. �9 

Corollary 5.7 was also proved independently by Bridges and Mena [16] and Ma [10] 
without knowing the result on Schur rings. Similarly, Bridges and Mena [17] proved a 
particular case of Theorem 5.6(b); Ma [38] proved Theorem 5.6(c) and de Resmini and 
Jungnickel [39] proved Theorem 5.6(d) for the case when H is cyclic. 

With the results of Corollary 5.7 and Theorem 5.6(b), (c), de Resmini and Jungnickel 
[39] conjecture that every regular PDS in a group having a cyclic normal subgroup of in- 
dex 2 is trivial. By Example 5.10 below, we shall see that this is not true. However, we 
still think that their conjecture is true for almost all such groups, probably with a finite 
number of exceptional cases. 

Problem 5.R Determine all groups which have a cyclic normal subgroup of index 2 and 
have a nontrivial regular PDS. �9 
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The following is a theorem in this direction. 

TUEOREM 5.9. (de Resmini and Jungnickel [39] and Leung and Ma [40]) No nontrivial 
regular PDS exists in any 2-group G with a cyclic subgroup of  index 2 except when 
G = <g, h : g8 = h 2 = e, hgh -1 = g3> and G = < g ,  h : g8 = h 2 = e, hgh -1 = 
g5 >.  [] 

Examples exists for the two exceptions in Theorem 5.9. 

Example 5.10. 

1. For G = < g ,  h : g8 = h 2 = e, hgh -1 = g3>, the subset D = {g, g7, h, gh, g2h, 
gSh} is a regular (16, 6, 2, 2)-PDS in G. 

2. For G = < g ,  h : g8 = h 2 = e, hgh-1 : g5~>, the subset D = {g, g3, gS, g6, gh, 
gSh} is a regular (16, 6, 2, 2)-PDS in G. []  

6. Restrictions on the Parameters 

In this section, we shall study some restrictions on the parameters of  a regular PDS. First, 
let us consider a relation between v and A. 

THEOREM 6.1. (Ma [10]) I f  there exists a nontrivial regular (v, k, X, #)-PDS in an abelian 
group, then v, A and v2/A must have the same prime divisors. I 

Next, we study the case when A is not a square. 

THEOREM 6.2. (/Via [10]) Suppose there exists a regular (v, k, X, #)-PDS in a group G 
such that A is not a square. Then 

(a) there is a positive integer t such that 

(v, k, X, /z, /3, A) = (4t + 1, 2t, t - 1, t, - 1 ,  4t + 1); 

(b) v = A = uZp where p is a prime such that p - 1 mod 4; and 
(c) I G/G '1 is a power of  p where G'  is the derived subgroup of  G. [] 

When G is abelian, G '  = {e}. Thus we have the following corollary. 

COROLLARY 6.3. Suppose there exists an abelian regular (v, k, ),, Iz)-PDS such that A 
is not a square. Then 

(v, k, ~, #, /3,  A) = (p2S+l, ( p Z s + l  _ 1)/2, (p2s+l _ 5)/4, (p2S+l _ 1)/4, p2s+a) 

where p is a prime such that p - 1 mod 4. I 

For  the abelian case, we know more  about the structure of  such a PDS. 
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THEOREM 6.5. (Ma [41]) Let G be an abelian group o f  order v = p2~+l for  a prime p -- 1 
mod 4 and D be a regular (v, (v - 1)/2, (v - 5)/4, (v - 1)/4)-PDS in G. Then for  any 
integer t relatively prime to p, D (t) = D i f  t is a square modulo p; and D (t) fq D = 0 
i f  t is not a square modulo p. [] 

Example 65. By Theorem 2.1, if G is the additive group of the finite field IFp2~+l, then 
the set of nonzero squares forms a regular PDS with parameters as stated in Corollary 
6.3. Note that G is an elementary abelian p-group. Also, for any integer t relatively prime 
top,  tD = D i f t  is a square modulop; and tD tq D = 0 i f t  is not a square modulo p . 1  

Up to now, all known examples with A not a square are in elementary abelian p-groups. 
Ma [42] had asked the following question. 

Question 6 6  Is it true that elementary abelianp-groups are the only abelian groups which 
consist of regular PDSs such that the parameter A is not a square ? [] 

There is a result related to Question 6.6. 

TaEOP.EM 6.7. (Davis [43]) I f  there exists a regular (v, (v - 1)/2, (v - 5)/4, (v - 1)/4)-PDS D 
in an abelian group G where v = p2S+l for  a prime p - 1 mod 4 where s >_ 1, then the 

exponent o f  G cannot exceed pS. [] 

Finally, we consider the case when A is a square. Most of the known examples are of 
this type, e.g., Examples 2.3, 2.7 and 2.8. Note that if G is abelian, then by Theorem 4.1, 
a PDS D in G with D (-1) = D has the property that D (t) = D for all t relatively prime 

to  v = I a l .  

Tt-IV.OREM 6.8. Suppose there exists a regular (v, k, ~, I~)-PDS in an abelian group o f  order 
v = pS where p is a prime. I f  A is a square, then k is a multiple o f p  - 1. [] 

TrIEOREM 6.9. (Ma [41]) Let G be an abelian group o f  order v and exponent w. Let p be 
a prime such that f f  strictly divides v and pr strictly divides w. I f  there exists a nontrivial 
regular (v, k, X, I~)-PDS in G such that A is a square then p 2r divides A and p 2(t-r+l) does 

not divide A. [] 

By Theorem 6.9, if 2r > t, then no nontrivial regular PDS exists in G with A being 
a square. Hence this gives another proof of Theorem 5.6(a) and (b) for the case when A 
is a square. 

7. Subsets of Abelian Partial Difference Sets 

In this section, we study a very interesting phenomenon about abelian PDSs--some subsets 
of a regular PDs are themselves PDSs. 
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THEOREM 7.1. (Ma [44]) Let D be a nontrivial regular (v, k, )~, lz)-PDS in an abelian 
group G. Suppose A is a square, say A = 62. I f  N is a subgroup o f  G such that g.c.d.( I NI ,  
I GI/INI) = I and I GI/INt is odd, then D1 = D f3 N is a regular (vl, kl, X1, #O-PDS 
with 

v~ = I N I ,  13a = ha  - #1  = /3 - 207 r ,  A 1 = /32 .{_ 4(kl _ #1) = 7r2 

and 

k l  = ~ (v1 ~- /31) -4- ~j(v 1 -~ ~1)  2 - (A  1 - /3~)(v 1 - 1) 

where r = g.ad. ( [N t ,  6) andO is the integer satisfying (20 - 1)r  < 3 < (20 + 1 ) r . I I  

Example 7.2. 

1. Let  G be an abd i an  group of  order n 2 and 6' be an (n, r ) -PCP of  G. By Theorem 2.2, 
D = U w , ( U \ { e } )  is a regular (n 2, r(n - 1), n + r 2 - 3r, r 2 - r)-PDS in G with 

/3 = n - 2r  and A = n 2. Suppose n = uw where g.c.d.(u, w) = 1 and w is odd. 
Let  N be the subgroup in G of  order  u 2. Since IU (3 NI = u for all U E 6", 6"1 = 

{U ('1 N : U E 6"} is a (u, r ) -PCP of G. By Theorem 2.4(a), we have 1 _< r _ u + 1. 

(i) Suppose 1 < r __. u. Then D 1 = D N N = U t / l~ , l (Ul \{e})  is a regular (u 2, 
r ( u -  1) ,u  + r e - 3 r , r  2 - r ) - P D S i n N w i t h l 3 1  = u - 2 r a n d A 1  = u  2 .Note  
that lr = g.c.d.(u, n) = u and 0 = (w - 1)/2. 

(ii) Suppose r = u + 1. Then D 1 = D fl  N --- N \ { e } .  Since there is no nonidentity 
d e m e n t  in D1 not contained in N, the value #1 is undefined from the definition of 
PDSs. Thus we can always regard D1 as a (u 2, u 2 - 1, u 2 - u, u 2 - 2)-PDS in 

Nwi th /31  = u - 2 a n d A  1 = u 2. Note t h a t l r  = u a n d 0  = ( w -  3)/2. 

2. Let  V be the additive group of IF]; H 1 , / / 2  . . . . .  /-/31 be all hyperplanes of  IF 3 and 

K = {go = e, g l ,  - � 9  g31} be an elementary abelian 2-group of  order 32. By Exam- 
ple 2.8, D = {(gi, hi) : hi E H / a n d  i = 1, 2 . . . .  , 31} is a regular  (4000, 775, 150, 
150)-PDS in G = K • V w i t h / 3  = 0 and A = 2500. Let  N = K • {0} which is 
a subgroup of  G of order 32. Since D1 = D f'l N = N \  {(e, 0)}, it can be regarded as a 
(32, 31, 30, 30)-PDS in N with/31 = 0 and Z~ 1 = 4. Here,  7r = 2 and O = 0. I I  

Theorem 7.1 can be used as a nonexistence theorem, see Theorems 12.3, 13.1, 15.1 
and Table 15.3. Now, let us have a theorem describing the structural relation between D 
and D1. 

THEOREM 7.3. (Ma 44]) Let D be a nontrivial regular (v, k, ),, #)-PDS in an abelian group 
G. Let p be an odd prime divisor o f  v, say v = f l u  and A = p2r r2 where u, r are relatively 
prime to p. Let P and N be the subgroups o f  G o f  order pt and u, respectively, and let 
D1 = D t') N which is a regular (vl, kl,  ~1, IZl)-PDS in N. 
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(a) Let P : G ~ N be a projection with Ker P 

O/) -- D1 mod (p  - 1) 

and 

2p{)  - t~e = pr[aN + 2el) 1 + be] 

= P Then 

(7.1) 

(7.2) 

where 6 = ___1 and a, b are integers. I f  D1 ;e 0 and N \{e} ,  then a = [(2k - /3) - 
epr(2kl - -  ~l)]](pru) and b = -e(31. 

(b) Regard the subgroup P • of G* as the group of  characters of  N. Let R = D + 13 P • 
and p '  : G*  ~ P J- be a projection with Ker p '  = N • . Then 

p ' / ) +  - k rood (p  - 1) (7.3) 

and 

2 p , D +  _ /3+X0 = p t - r [ ( p r  _ e - 2 0 ) P "  + 2eR + dXo] (7.4) 

where X0 is the trivial character of  N, d is an integer and e is the same as in (7.2). 
Furthermore, if D 1 ~ 0 and N \  {e}, then 

D~- = ( R  

(e" {x0} 

i f e  = 1 

if e = - 1 .  

(c) I f p  _ 5 and D1 ;e 0 and N \  {e}, then the value o f  e in (7.2) is equal to 1; and either 
O) r is even  and O - 0 m o d  (p  - 1) or (ii) r i s  o d d a n d 0  -- (p  - 1)/2 mod (p  - 1 ) . 1  

Finally, we want to point out that not too many examples o f  regular PDSs are known 
when v is not a prime power. All o f  them are either o f  the PCP type (see Section 2) or 
related to reversible difference sets (see Section 12). 

8. Two-Weight Codes  

In this section, we study the relation between regular PDSs and error-correcting codes. 
Readers are referred to MacWilliams and Sloane [45], van Lint [46] and Pless [47] for 
an introduction to coding theory. Let q be a power of a prime p. An (n, s)- l inear code 
C over lFq is a s-dimensional subspace of IF~. Vectors in C are called codewords. The dual 

code of C is the (n, n - s)-linear code C "  = {u E IF~ : u �9 v = 0 for all v ~ C}. The 
weight  w(x)  of a vector x E IF~ is the number of  nonzero entries in x. The distance d(x,  y) 



A SURVEY OF PARTIAL DIFFERENCE SETS 235 

of  two vectors x, y E IF~ is the number of  coordinate positions in which x and y differ. 
Note that d(x, y) = w(x - y). The minimum weight of  a code C is the minimum weight 
o f  all nonzero codewords in C. I f  C is a linear code with minimum weight d, then C is 
an a-error-correcting code where a = L(d - 1)/2J . A code C is called a two-weight 
code if  I{w(u) : u ~ C\{0}}l  = 2. 

Let C be an (n, s)-linear code over  lFq. Then there exist Yl, Y2 . . . . .  y ,  in IF 2 such that 

C = {(x �9 Yl, x " Y2 . . . .  , x "  y,) : x ~ IF~}. 

We say that C is generated by Yl, Y2, �9 �9  Yn. I f  no two of the vectors Yl, Y2, �9 �9  Yn are 
dependent, then the code C is said to be projective. Note that C is projective if and only 
if the minimum weight of  the dual code C z is at least 3. The following theorem gives 
the relation between a two-weight projective code and a PDS in an elementary abelian group. 

THEOREM 8.1. Let Y l, Y2, �9 �9 -, Yn be pairwise independent vectors in IF~. Then Yl, Y2, �9 �9  
Yn generate a two-weight (n, s)-projective code C i f  and only i f  

D = {ty i :  t 6 IFq\{0} and i = 1 , 2  . . . .  , n }  

is a regular PDS in the additive group of lF~ Furthermore, i f  the two nonzero weights o f  
C are Wl and w2, then the parameters o f  the PDS D are 

(v, k, k ,  /z, /~, A) = (qS, n(q - 1), k 2 + 3k - q(k + 1)(Wl + w2) + q2wlw2, 

k 2 + k - qk(Wl q- w2) + q2w1w2, 2k - q(wl + w2), q2(wl - w2)2). [] 

Theorem 8.1 was first proved by Delsarte [12]-[14] in terms of strong regular graphs 
and it was written in terms of difference sets by Camion [15]. 

Given a vector x E IF~, the sphere Sr(x) with center at x and radius r is given by Sr(x) 
= {v ~ IF~ : d(v, x) <- r}. I f  C is an a-error-correcting code, then the S~(u), u E C, are 
pairwise disjoint. The code C is called perfect if  the union of the spheres S~(u), u ~ C, 
covers IF~. 

THEOREM 8.2. (MacWilliams [48], [49]) Let C be an a-error-correcting code. Then C is 
perfect i f  and only i f  C • has exactly a nonzero weights. [] 

Example R 3. 

1. Let C = {00000, 11111} be a binary repetition code. Then C "  is generated by 1000, 
1100, 0110, 0011, 0001 over IF 2. The PDS corresponding to C • has parameters 
(v, k, h, #) = (16, 5, 0, 2). 

2. Golay [50] constructed a perfect 2-error-correcting (11, 6)-linear code C over  IF 3. 
Since C • is a two-weight (11, 5)-projective code with nonzero weights 6 and 9, by 
Theorem 8.1, a regular (243, 22, 1, 2)-PDS D exists in the additive group of IF35. Note 
that 0FaSkD}\{0} is a regular (243, 220, 199, 200)-PDS. [ ]  
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Perfect codes have been classified by Tiet~v//inen [511 and van Lint [52]. The only perfect 
2-error-correcting codes are the binary repetition code and the ternary Golay code men- 
tioned above. 

Let  C be an a-error-correcting code. For x E IF~, let d(x, C) denote the minimum 
distance of x f rom the codewords of  C; and let B(x, i), where i is a nor, negative integer, 
denote the number  of codewords in C with distance i f rom x. As a generalization of perfect 
codes, Semakov, Zinovjev and Zaitzev [53] introduced the concept of uniformly packed 
codes. C is called uniformly packed with parameters a and b if the followings hold for 
a l l x E  IF~. 

(i) if  d(x, C) = a, then B(x, a + 1) = a; and 
(ii) if  d(x, C) > a + 1, then B(x, a + 1) = b 

where a < (n - a)(q - 1)/(a + 1). Note that for an arbitrary a-error-correcting code, 
a counting argument proves that if  d(x, C) = a ,  then B(x, a + 1) < (n - a)(q - 1)/ 
(a  + 1). Also, Goethals and van Tilborg [54] have proved that C is perfect i f  and only 
if (i) and (ii) hold and a = (n - ot)(q - 1)/(a + 1). 

TnEOVa~M 8.4. (Goethals and van Tilborg [54]) Let C be an a-error-correcting code. Then 
C is uniformly packed i f  and only i f  C • has exactly a + 1 nonzero weights. �9 

Van Tilborg [55] proved that there are no uniformly packed a-error-correcting code for 
a _> 4 and the extended binary Golay code is the only binary uniformly packed 3-error- 
correcting code. However, many examples exist when a = 1. 

COROLLARY 8.5. Let C be a 1-error-correcting code over IF q. Then C is uniformly packed 
with parameters a and b i f  and only i f  C • is a two-weight projective code with nonzero 
weights w1 and w2 where 

2a = (n - 1)(q - 1) + [P(Wl) + 1][P(w2) + 1] and 

2b = n(q - 1) + P(wl)P(w2) 

with P(x) = n(q - 1) - qx. (I f  C is a uniformly packed (n, s)-linear code with parameters 
a and b, then the corresponding PDS as in Theorem &l has parameters (v, k, ~, #) = 
(qn-S, n(q - 1), q - 2 + 2a, 2b).) �9 

Example 8~6 

1. Let D = IF~LH where H is an r-dimensional subspace of IF~ with 1 _ r < m. Note 
that D is a trivial (qm, qm - qr, qm _ 2qr, qm _ qr)_pD S in the additive group of IF~ 

with tD = D for all t E lFq\{0}. We choose vectors Yl, Y2, " ' ' ,  Yn E IF~, where 
n = (qm _ qr)/(q _ 1), by picking one representative from each of the sets {ty : 
t ~ IFq\ {0} }, y E D. Then Yl, Y2 . . . .  , Yn generate a two-weight (n, m)-projective code 
with nonzero weights qr-1 and q~-I  _ qr-1. The dual code is a uniformly packed code 
with parameters a = (qm _ 2q~ _ q + 2)/2 and b = (qm _ q')/2. When r = 1, the 
uniformly packed code obtained is a shortened Hamming code, see van Lint [46]. 
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2. Let ql = qm where q is a pr ime power. By Example 2.3(3), there exists a regular ( ~ ,  
2 ]F2q m of PCP r(ql - 1), qa + r2 - 3r, r 2 + r)-PDS D in the additive group of IFql = 

type for each r _< qa + 1. Note that tD = D for all t ~ lFq\{0} C IFql\{0}. Regard- 
2m ing D as a subset of  lFq , by the same method as above, we obtain a two-weight 

(r(q m - 1)/(q - 1), 2m)-projective code with nonzero weights (r - 1)q m-1 and rq 'n-1. 
The dual code is a uniformly packed code with parameters a = (qm _ q + r 2 _ 
3r + 2)/2 and b = (r 2 - r)/2. 

3. Delsarte [ 12] has constructed a two-weight (276,11)-projective code with nonzero weights 
128 and 144 obtained from the extended binary Golay code, see also Calderbank and 
Kantor [18]. The dual code is a uniformly packed code with parameters a = 22 and 
b = 18. The corresponding regular PDS has parameters (v, k, k, #, 13, A) = (2048, 
276, 44, 36, 8, 1024). []  

Readers are referred to Calderbank and Kantor [56] for a list of  two-weight codes. In 
Sections 9 and 10, we shall also study other construction methods of two-weight codes 
and regular PDSs. The following result is a consequence of Corollary 3.6 and Theorems 
6.1, 8.1. 

TaEOaEM 8.7. Let q be a power o f  a prime p. Then a two-weight projective code in IF~ 
has nonzero weights Wl = p i t  and w2 = pJ(t + 1) for  some integers j and t. [] 

9. Projective Sets 

Let q be a pr ime power. An (n, s, hi, h2)-projective set 0 is a proper, nonempty set of 
n points of the projective space PG(s - 1, q) with the property that every hyperplane meets 
0 in either h 1 or h E points. (In some articles, 0 is also called a two-intersection set in 
PG(s  - 1, q) or an n-set o f  type (hi, h2) in PG(s - 1, q).)  The complement of  0 is a 
([(q~ - 1)/(q - 1)]-n, s, [(qS-1 _ 1)/(q - 1)] - hi, [(q~-a _ l)/(q - 1)] - hE)-projective 
set. Calderbank and Kantor [18] have a detailed discussion of projective sets. In the following, 
for y E IF~, we use < y >  to denote the point {ky : k E IFq} in PG(s - 1, q). 

PROPOSITION 9.1. (Delsarte [13]) Let 0 = { <yi>  : i = 1, 2, ~  n} ,  where Yi ~ IFq, 
be a set of  n points in PG(s  - 1, q). Then 0 is an (n, s, hi, h2)-projective set that spans 
PG(s  - 1, q) i f  and only if Yl, Y2 . . . .  , Yn generate a two-weight (n, s)-projective code 
with nonzero weights wl = n - hi and w 2 = n - h2. [ ]  

By making use of  Proposition 9.1, we can construct two-weight projective codes by some 
known results in projective spaces. By results in Section 8, new regular PDSs are constructed. 

Examples 9.2. 

1. Let 0 be a hyperoval in PG(2,  2 m) (see Hirschfeld [57]), i.e., 0 is a set of  n = 2"  
+ 2 points, no three collinear, and with the property that IL f) 0 t  = 0 or  2 for any 
line L in PG(2,  2m). There are unique examples when m = 1, 2 and 3 but many 
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different examples for larger m. The code over IF2,, obtained from 0 is a two-weight 
(2 m + 2, 3)-projective code with nonzero weights 2 m and 2 m + 2. The corresponding 
regular PDS has parameters (v, k, X,/z,/3,  A) = (23m, (2 m + 2) (2 m - 1), (2 m - 1), 
2 m - 2, 2 m + 2, - 4 ,  22m+2). 

2. Let 0 be an ovoid in PG(3, q) (see Dembrowski [58] and Hirschfeld [57]), i.e., 0 is a 
set of q2 + 1 points, no three collinear, and with the property that In r -- 1 or 
q + 1 for any plane H in PG(3, q). The code over lFq obtained from 0 is a two-weight 
(q2 + 1, 4)-projective code with nonzero weights q2- - q and q2 The corresponding 
regular PDS has parameters (v, k, X, /~, /3, A) = (q4, r(q2 + 1), _q2 + r 2 + 3r, 
r 2 + r, _q2 + 2r, q4), where r = q - 1, which belongs to the negative Latin square 
type. 

3. Let Q : IF~ m ---' lFq be a nondegenerate quadratic form. By Theorem 2.6, 0 = { < y >  
: Q ( y )  = 0}, which is called a quadric in PG(2m - 1, q),  is a projective set which 
gives us a two-weight ((qm _ e)(qm-1 + e)/(q - 1), 2m)-projective code with nonzero 
weights q2m-2 and q2m-Z + eqm-1 where e = +1. Elliptic quadrics in PG(3,  q) are 

ovoids which is a particular case of  (2), see chapter 16 of Cameron and van Lint [6]. �9 

THEOREM 9.3. (Denniston [59]) Let Q : IF 2m ~ ]F2m be a quadratic form such that Q(x)  

= 0 i f f x  = O, and let K be a subgroup o f  the additive group o f  IFq with 2 r elements where 
1 <_ r < m. ThenO = { < l , a , b ) >  : Q ( a , b ) r  m + r - 2  m + 2  r , 3 , 2  r ,0 ) -  
projective set that spans PG(2 ,  2m). �9 

Example 9. 4. The regular PDSs constructed above have parameters 

(v, k, ) % / x , / ~ ,  A)  = (23m, (2 m+r - 2 m -t- 2 r )  (2 m - 1),  2 m - 2 r 
-[- (2 m+r --  2 m -{" 2 r) (2 r --  2) ,  (2 m+r --  2 m 

+ 2 r )  (2 r --  1), - - 2  m+r + 2 m+l  --  2 r + l ,  22m+2r).  

When r = 1, this yields the PDSs in Example 9.2(1). 

Let  ql = qm for m _> 1. Regard ]F~ as a subfield, of  ]F~I. Let tr : 1Fq~ --* IFq be the 
trace map, i.e.,  t r (x)  = x + x q + �9 �9 �9 + x r  Let Vbe the vector space of  dimension 
d over lFql and V0 be the same vector space but now regarded as a vector space of  dimen- 
sion dm over lFq. Note that if Q : V --* IFq~ is a quadratic form on V, then t r o  Q is a 
quadratic form on V0. 

THEOREM 9.5. (BRoIYWHR [60] )  Use the notation above. Let  Q be a quadratic form on 

V such that t r o  Q is a nondegenerate quadratic form on V o. Let  0 = { < y > : y ~ V o 
(=  V), Q ( y )  ~ 0 and t r ( Q ( y ) )  = 0} be a set o fpoin ts  in PG(dm - 1, q).  I f  d is even, 
say d = 2t, then 0 is a (n, 2tin, n - wl ,  n - w2)-projective set that spans PG(dm - 1, 

q) with 

n = (qm-1 _ 1) (q2tm-m _ e q r m - m ) / ( q  _ 1), 

Wl = (qm-1 _ l ) q 2 t m - m - 1  and w2 = (qm-1 _ l ) q 2 t m - m - 1  __ ~qtm-1 

where E = +_ 1 and depends on the choice o f  Q. �9 
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Example 9. 6. 

1. I f  e = 1, then the corresponding regular PDSs have parameters (v, k, X, #, fl, A) = 
(q;.tm, r ( q ~  _ 1), qtm + r 2 _ 3r, r z - r, qtm _ 2r, q2tm), where r = (q,n-1 _ 1)qtm-m, 

which belong to the Latin square type. 
2. I f  e = -1 ,  then the corresponding regular PDSs have parameters (v, k, X, /z, 3, A) 

= (q2rm, r(qtm + 1), -- qtm + r 2 + 3r, r 2 + r, _qtm + 2r, q2tm), where r = (qm-1 

- 1)q an-m, which belong to the negative Latin square type. []  

"INEo~M 9.7. (de Resmini [61], [62]) and de Resmini and Migliori [63] ( (m+q)  

(q2 _ q + 1), 3, m + q, m)-projective sets in PG(2,  q2) exist in each o f  the foUowing 

cases: 

(a) q i s a s q u a r e a n d m  = s ( q  + V~ + 1) - q where s = 1 ,2 ,  . . . ,  q - ~ .  

(b) (q, m)  = (3, 2) and (4, 2). 

The corresponding PDSs have parameters (v, k, X, tz, fl, A) = (q6, r(q3 + 1), _q3 + 
r 2 + 3r, r 2 + r, _q3 + 2r, q6), where r = (q - 1) (m + q),  which belong to the negative 
Latin square type. [] 

There are some other sporadic examples of  projective sets, see Calderbank and Kantor 
[18] For example, Segre [64] and Hill [65] had studied a (56, 6, 20, 11)-projective set 
in PG(5, 3) which gave us a (729, 112, 1, 20)-PDS. 

The following are some characterization theorems of projective sets. 

qNEOREM 9.8. (Calderbank [56]) Let s >_ 3 and 0 be an (n, s, n - w 1 ,  n - w2)-projective 
set in PG(s  - 1, q).  Suppose no three points o f  0 are collinear. 

(a) I f  
1. 
2. 

(b) I f  
3. 
4. 
5. 

. 

q = 2, then either 
0 is the complement of  a hyperplane in PG(s  - 1, 2), or 
0 is an ovoid in PG(3, 2). 

q # 2, then either 
q is a power of  2 and 0 is a hyperoval in PG(2,  q),  
0 is an ovoid in PG(3, q),  

n(q  - 1) = t (q  ~/2 + 1), Wl = tq (s-2)/2, w2 = (t + 1)q (s-2)/2 where t is a positive 
integer and (2t + 3) 2 = 4q s/z + 4q + 1, or 
2n(q - 1) = (2t + 1)q (s-l)/2 + (q - 2) - (t 2 + t) /q,  Wl = tq (~-3y2, w2 = 

(t + 1)q (s-3)/2 where t is a positive integer and (2t + 2q + 1) 2 = 4q (s+a)/2 

+ 4 q +  1. []  

Tzanakis and Wolfskill [66] solved the diophantine equation x z = 4q a/2 + 4q + 1 which 
appeared in (5) and (6) of  Theorem 9.8 and gave us the following result. 
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THEOREM 9.9.  (Tzanakis and Wolfskill  [66]) Let s >_ 3 and 0 be an (n, s, n - Wl, 
n - w2)-projective set in PG(s  - 1, q). Suppose no threepoints o f  O are collinear. Then 
only the following values o f  k, n, Wl, w2 are possible: 

(a) For  any q, s = 2, n = 2, w 1 = 1, w2 = 2; 
s = 4, n = q2 + 1, wl = (q - 1)q, w2 = q2. 

(b) For  q = 2, n = 2 s - l ,  Wl = 2 s-z, w2 = 2 s-1. 

(c) F o r q  = 3, s = 5, n = l l ,  w I = 6, w2 = 9; 
s = 6, n = 56, wl = 1, w2 = 2 .  

(d) F o r q  = 4 ,  s = 6, n = 78, wl = 56, w 2 = 64; 

s = 7, n = 430,  w 1 = 320, WE = 352. 
(e) For  q = 2 m, s = 3, n = 2 m + 2, w 1 = 2 m, w 2 = 2 m + 2. 

The  next  two theorems consider  (n, s, h , / ) - p ro j e c t i ve  sets with a given integer i. The 
readers are r eminded  that an  (n, s, h, 0)-projective set is the complemen t  of  a hyperplane 

i f s  _> 4. 

THEOREM 9.10.  (Thas [67]) I f  0 is an (n, s, h, 1)-projective set in PG(s - 1, q) where 
s >_ 4, then 0 is either a line in PG(s  - 1, q) or an ovoid in PG(3, q). �9 

THEOREM 9.11.  (Calderbank  and Kantor  [18]) I f O  is an (n, s, h, i)-projective set that 
spans PG(s  - 1, q) where i >_ 1 and s >_ 4, then s <_ (q + 1)i + 1, h _< (q + 1)i, 

and h = (q + 1)i i f  and only i f  O is an ovoid in PG(3, q). �9 

10. Cyclotomic Classes 

In  this section, we consider  the const ruct ion of  PDSs  us ing cyclotomic classes in a finite 

field. Readers can  obta in  the background knowledge f rom Storer [68]. Let q = p'~ = 
~ f  + 1 where p is a pr ime and let ~0 be a primitive e lement  in IFq. Then  the ~th cyclotomic 

classes Co, C1 . . . .  , Ca_ 1 are defined by 

Ci = {o: ~j+i : j = O, 1 . . . .  , f  - 1}. 

In  particular, the elements of Co are called the t~th power residues. The cyclotomic numbers 

of  order  c~ are the number s  

( i , j )~  = I{(x, y)  ~ Ci • Cj : x  + 1 = y}[ 

where  i, j = 0, 1 . . . . .  o~ - 1. Storer [68] had listed the values of  (i, j )~  for ~ = 2, 3, 

4, 6 and  8. 

THEOREM 10.1. Use the notation above. Let I C {0, 1 . . . . .  t~ - 1} and D = tO ia Ci. 

I f  for  each m = O, 1 . . . . .  c~ - 1, 
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r if  m I 

2 . . J ( m - j , i - J ) ~  = 
i,jEl ~ ls if  m ~ I, 

then D is a (q, k, ~, I~)-PDS in the additive group of]Fq where k = f { I I .  Furthermore, 
i f  f is even, then D is regular. I t  

Example 10.2. 

1. When  ot = 2 and f is even, (0, 0 ) 2  ---- ( f  - -  2)/2 and (0, 1)2 = f /2 .  Hence the set Co 
of  the 2nd power residues is a regular (q, (q - 1)/2, (q - 5)/4, (q - 1)/4)-PDS. This 
gives us the result of  Theorem 2.1.  

2. W h e n  ot = 4 a n d f i s  even,  by  the values o f ( 0 ,  m)4 f rom Storer [68], we know that 
the set Co of  the 4th power residues is a regular (q, (q - 1)/4, (q - 11 - 6s) /16,  
(q - 3 + 2s /16) -PDS if and only if  q = p2m for a pr ime p = 3 mo d  4, where 
s = (_p)m. I I  

Baumert ,  Mills and Ward [69] has obtained an interesting result that gives us the values 
of  the otth cyclotomic numbers when - 1  is a power of  the characteristic p of  IFq modulo cr 

"IM~.OREM 10.3. (Baumert,  Mills and Ward [69] Let q be a power o f  a prime p and 
tx >_ 3 be a divisor o f  q - 1. Suppose -1  is a power o f  p modulo oL. Then either p = 2 
or f = (q - 1)/tx is even; and q = s 2 with s - 1 mod ~ such that 

(0, 0)~r ~-~ 17 2 -- (e -- 3)~/ -- 1; 

(0, i)~ = (i, 0)a = (i, i)~ = ,/2 + ~ for i ~ 0; 

(i ,j),~ = ~/2 for i, j ;~ 0 and i ~ j 

where ~ = (s - 1)/~. []  

COROLLARY 10.4. (Calderbank and Kantor [18]) Let q be a prime power and Co, C 1 . . . .  , 
Cq be the (q + 1)th cyclotomic classes in IFq2m. For any I C {0, 1 . . . .  , q} ,  D = Ui~l 
Ci is a regular (q2m, u(q2m _ 1)/(q + 1), u2~ 2 + (3u - q - 1)~/ - 1, u2~ 2 + u~I)-PDS 

in the additive group o f l F q ~  where u = 1I[ a n d  ~7 = [ (_q)m _ 1]/(q + 1). Note that 
/~ = (2u - q - 1)71 - 1 and  A = q2m. [] 

Example 10. 5. 

1. I f  m is odd, say m = 2t + 1, then the PDSs constructed by Corol lary 10.4 have 
parameters (v, k, ~ , /~ , /3 ,  A) = (q4t+2, r(q2t+l _ 1), q2t+l + r 2 _ 3r, r 2 -- r, q2t+l 

-- 2r, q2t+l), where  r = u(q 2t-1 + 1)/(q + 1), which belong to the Latin square type. 
2. I f m  is even, say m = 2t, then the PDSs  constructed by Corol lary 10.4 have parameters 

(v, k, )~, #, ~, A) = (q4t, r(q2t + 1), _q2t + r 2 + 3r, r 2 + r, _q2t + 2r, q2t), where 

r = u ( q  2t - 1)/(q W 1), which belong to the negative Latin square type. Ill 
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Calderbank and Kantor [ 18] proved Corollary 10.4 directly using arguments concerning 
projective sets, see Section 9. Note that Example 10.2(2) is a particular case of Corollary 
10.4 since the 4th power residues is a union of (p + 1)th cyclotomic classes when p --- 3 
mod 4. Examples constructed by Corollary 10.4 also cover other known families of PDSs, 
e.g., the family found by van Lint and Schrijver [70]. 

The following are some PDSs constructed by using cyclotomic classes which do not belong 
to examples from Corollary 10.4. 

Example 10. 6. 

1. (van Lint and Schrijver [70]) D = C O U C1 t3 C3, where the C/are the 8th cyclotomic 
classes in IF34 is a (81, 30, 9, 12)-PDS, see also Example 14.2(4). 

2. (Hill [71] D = Co U C7, where the Ci are the 35th cyclotomic classes in IF212, is a 
(4096, 234, 2, 14)-PDS. �9 

Other constructions of PDSs using cyclotomic classes has been reported by de Lange 
[72]. In particular, new PDSs are constructed with (v, k, ~, #) = (6561, 2296, 787, 812), 
(6561, 2870, 1249, 1260), (4096, 273, 20, 28) and (4096, 1911, 950, 840). The last two 
are dual of each other. 

11. Finite Local Rings 

In Sections 8, 9 and 10, we have seen a lot of examples of PDSs in elementary abelian 
p-groups. Now, let us see a construction method for PDSs in abelian p-groups which are 
not elementary abelian. Let p be a prime and R be a finite local ring of characteristic p 
with its maximal ideal ! generated by a prime element 7r. Note that R is a finite evaluation 
ring such that every element in R can be written as ~r ru where u is a unit in R. 

Proposition 11.1. Let R, I and a" be as defined above. Then 

(a) R/I = IFpd for some integer d; 
(b) IP-11 = pd where s is the smallest positive integer such that I s = (a "s) = O; and 
(c) if p = 7rtul and s = qt + s', where ul is a unit in R and 0 _ s '  < t, then R =_ 

d~' ~ , - s ~  as an ~pq+l X additive group. �9 

Let q~ be a mapping from R to R such that ~b(~r r u) = 7rru -1 where r = 0, 1 . . . .  
s - 1 and u is a unit in R. Let A be a subset of R such that IA n (a +/~-1)1 = m for 
all a E R where m is a positive integer less than pa. Such a subset A of R can always be 
found since {a + p-1 : a E R} is a partition of R with la + Is-al -- pa for every a E R. 

THEOREM 11.2. (Leung and Ma [73]) Using the notation above, 

D = {(a ,b )  E R • R : (a(a)b E A }  



A SURVEY OF PARTIAL DIFFERENCE SETS 243 

is a PDS in the additive group o f  R • R with parameters 

~ ( n  2, r(n -- 1), n + r 2 -- 3r, r 2 -- r, n -- 2r, n 2) if 0 ~ A 

(v, k, ~, /z , /3,  A) = ~( n2, n + r(n - 1), n + r 2 - r, r 2 + r, n - 2r, n 2) i f0  ~ A, 

where n = psd and r = mp (s-l~d. [ ]  

When 0 ~ A ,  the PDSs constructed above are regular and they belong to the Latin square 
type. 

Example 11.3. 

1. Let R = 719. Then I = (3), R / I  _~ IF  3 

I s-1 = I = {0, 3, 6}. A = {1, 2, 3} 
Note that 

(a(a)b = 1 ~* (a, b) E S 1 = 

(~(a)b = 2 r (a, b)  E $2 = 
tk(a)b = 3 r (a, b)  E $3 = 

{(1, 1), 
{(1, 2), 
{(1, 3), 
(5, 6), 

and 12 = (0), i.e., d = 1 and s = 2. Since 
satisfies the required condition with m = 1. 

(2, 2), (4, 4), (5, 5), (7, 7), (8, 8)}; 
(2, 4), (4, 8), (5, 1), (7, 5), (8, 7)}; 
(2, 6), (3, 1), (3, 4), (3, 7), (4, 3), 
(6, 2), (6, 5), (6, 8), (7, 3), (8, 6)}. 

Then D = S 1 13 S 2 U S 3 is a regular (81, 24, 9, 6)-PDS in 77 9 • 77 9. 

2. L e t R  = ;'z4[~]/(2~) = {0, 1, 2, 3, ~, 1+~,  2+~ ,  3+~} where ~2 = 2. T h e n / =  (~), 
R / I  = ]172 and 13 = (0), i.e., d = 1 and s = 3. Since p - 1  = 12 = {0, ~},  the 

subset A = {2, 3, 2 + ~, 3 - ~ }  satisfies the required condition with m = 1. Note that 

4~(a)b = 2 r (a, b) E S1 = {(1, 2), (2, 1), (2, 3), (2, 1+~), (2, 3 + 0 ,  
(3, 2), (~, ~), (7, 2+~) ,  (1+~, 2) (2+~,  ~), 
(2+~,  2 - ~ ) ,  (3+~,  2)}; 

ck(a)b = 3 0~ (a, b) E S 2 = {(1, 3) ,  (3, 1), (1+~,  3+~) ,  (3+--~, i - ~ ) } ;  
(a(a)b = 2+~  r (a, b) E $3 = {(]', 2--~), O, 2+~) ,  (7, 1--~), (~', 3+~);  

(1+~,  ~), ( 2 - ~ ,  1), (2+~,  3), (3+~, ~)}; 
(a(a)b = 3+~ ~* (a, b) E $4 = {(1, 3---~), (3, 1+~), (1+~, 1), (3+~,  3)}; 
Then D = $1 tO $2 t0 S 3 tO S 4 is a regular (64, 28, 12, 12)-PDS in (R • R, +)  = 
(77 4 X 772) X (77 4 X ~772). [ ]  

Dillon [74] proved a special case of Theorem 1 1.2 when R = Z~2~ and m = 1. The PDSs 
in this case have parameters (v, k, 3,,/z) = (2 2s, 2 2s-I + 2 s-l, 2 2s-2 • 2 s-l, 2 2s-2 :i: 2 s-l) 
and hence each of them is a reversible difference set in 712, • 7z2s, see Example 12.4(3). 

Let C be a regular (p4, mp(p2 _ 1), p2 + mp2 _ 3mp, (mp) 2 - mp)-PDS in 42Zp2 _><2 
71e2, where 1 _< m _ p - 1, obtained by Theorem 1 1.2. We can always find a ( p ,  t(p 
- 1), p2 + t 2 _ 3t, t 2 - t)-PDS E of PCP type in ;Zp2 x Zp2 (see Theorem 2.2), where 
1 _ t _ < p  + 1, such that C ('l E = O a n d D  = C U E i s a P D S :  
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THEOREM 1 1.4. (Davis [43]) There exists a regular (/74, r (p  2 - 1), p2 + r 2 _ 3r, r 2 - r)-  
PDS in 7Zp2 • 77p2, where r = t + rap, 1 <_ t <_ p + l and l <_ m <_ p - 1. 

As pointed out by Davis [43], other PDSs in the additive groups of R • R can be con- 
structed in a similar manner. 

12. Reversible Difference Sets 

Let G be a group of order v and D a subset of  G with k elements. Then D is called a 
(v, k, ),)-difference set in G if the expressions gh-1,  for g and h in D with g ~ h, repre- 
sent each nonidentity element in G exactly X times, i.e., 

~) ~)(-1) = XG + ne (12.1) 

where n = k - ~ is called the order of D. Note that D is a (v, k, )0-difference set if and 
only if D is a (v, k, X, X)-PDS. Difference sets are well-known combinatorial configura- 
tions and have applications in various fields of studies. For detailed descriptions of dif- 
ference sets, please consult Beth, Jungnickel and Lenz [20] and Lander [21]. Jungnickel 
[22] has a survey of the recent development. 

Let D be a difference set in a group G. Then D is called reversible if D(-1) = D. A 
reversible difference set D with e ~ D is a regular PDS. Here, fl = 0 and A = 4n. A 
lot of  work has been done on this topic, especially when G is abelian (see Jungnickel [22]). 

First, we examine some nonexistence results on abelian reversible difference sets. 

Tt-IEO~M 12.1. Let D be a nontrivial reversible (v, k, X)-difference set in an abelian group 
G. Then one has the following results: 

(a) v is a multiple o f  4, X is even and n is a square. 
(b) v and n have the same odd prime divisors. 
(c) I f  p is a prime divisor o f  n such that p2rln, then prlk, pr[~ and pr+l[v. 

(d) D (t9 = D for  any integer t relatively prime to v. 

Theorem 12. l(a) was first proved by Johnsen [75]. Theorem 12. l(b), a particular case 
of  Theorem 6.1.,  was given by Ghinelli [76] in terms of difference sets. Theorem 12. l(c) 
was independently proved by Jungnickel [77] and Lander [21]. Finally, Theorem 12. l(d) 
follows from Theorem 4.1 and n is a square. All these results are well-known and various 
proofs are provided in the literature, e.g., see McFarland and Ma [78]. 

By Theorem 12.1, we can set n = u 2, ~, = ua, k = ub and v = uc for some integers 
a,  b, c. Substitute into the parameter  relations n = k - X and k 2 = Xv + n. We obtain 
the following corollary. 

COROLLARY 12.2. (Johnsen [75]) Suppose a nontrivial reversible (v, k, ),)-difference set 
exists in an abelian group. Then 
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(v, k, X, n) = (u(u + oz - 1)(u + ~ + 1)/~, u(u + c~), us ,  u 2) 

where ~, u are positive integers of  opposite parity and ~ is a divisor of  u 2 - 1. �9 

As a consequence of  Theorem 7.1, we have a result on subsets of  reversible difference sets. 

THEOREM 12.3. Suppose there exists a nontrivial reversible difference set o f  order n in an 
abelian group G; and let N be a subgroup o f  G such that g.c.d. (IN[, I G [/I N I) = 1 and 
IUl is even. Then there exists a reversible difference set in U o f  order n I = g.c.d.(Iu[ 2, 
n). �9 

Theorem 12.3 was first proved by McFarland [79] for abelian reversible difference sets 
with parameters (v, k, X) = (4u 2, 2u 2 - u, u 2 - u),  u ~ 7/. Later, Ma [80] generalized 
it to all abelian reversible difference sets. Now, let us see some examples of abelian revers- 
ible difference sets. 

Example 12.4. 

1. Let G = 7/2 o r  77 4. Then D = {x }, where x E G with 2x = 0, is a reversible (4, 1, 
0)-difference set and G ~ D  is a reversible (4, 3, 2)-difference set. 

2. Let G = zz 2 -=- 7z~ • 7732. By example 2.3(2), D = {(x, 0), (0, x) ,  (x, x)  : x  = 1, 
2, 3, 4, 5} is a reversible (36, 15, 6)-difference set and G \ D  is a reversible (36, 21, 
12)-difference set. 

3. In Theorem 11.2, i f p  = 2 and m = 2 a-l ,  then D is a reversible (22sa, 22sd-1 ___ 2 sd-1, 
22se-2 ___ 2sa-1)-difference set in the additive group of R • R. In particular, there exist 
reversible (22s, 22s-1 + 2 s-l,  22s-2 + 2s-1)-difference sets in 712~. 

4. The set D in Example 2.8 is a reversible (4000, 775, 150)-difference set in G - 
7i~ • 7/3 and G \ D  is a reversible (4000, 3225, 2600)-difference set. �9 

Note that Example 12.4(1), (2) and (3) have parameters of the form (v, k, X) = (4u z, 
2u 2 - u, u 2 - u) where u is an integer. A difference set with these parameters is called 
a Menon difference set (in some literature, it is called a Hadamard difference set.) 

For Menon difference sets, we have further construction methods. 

THEOREM 12.5. (Xia [81]) L e t p  be apr ime  such tha tp  w. 3 mod 4; q = p2r = 4m + 1 
and q2 = e~f + 1 where ~ = 8m + 4 and f = 2m. Let o~ be a primitive element in lFq2 
and C/ = {wo,j+l : j = 0, 1, . . . ,  f - 1}, i = 0, 1 . . . .  , c~ - 1, be the e~th cyclotomic 
classes. Let G be the additive group oflFq2; K = {ga, g2, g3, g4} be a Klein four group 
and 

D = (gl, G \ E )  U (g2, co~/4E) U (g3, c~ U (g4, ~ 

where 
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E m-I0 C4i+21 U IU 1 C4i+(2m+l)l U Imo 1 C4i+(6m+3)1 . 
~i=0  ki=O Li=0 

Then D is a reversible (4q 2, 2q 2 - q, q2 -q) -d i f ference  set in K x G. 

THEOREM 12.6. (Menon [82]) Let D 1 and DE be reversible Menon difference sets in groups 
G 1 and G2, respectively. Then 

D = (D 1 X 92) U ( G I \ D  1 X (72,,92) 

is a reversible Menon difference set in the group G = G 1 x G 2. 

THEOREM 12.7. (Turyn [83]) Let K = {gl, g2, g3, g4} be a Klein four  group. Let  D1 = 
U4=1 (gl, Ai) and D 2 = U4=1 (gi, Bi) be reversible Menon difference sets in groups 

G 1 = K • 1-11 and G2 = K • 1-12, respectively, where A i C H I and Bi C 1-12. Define 

D = (gl, V ( a l ,  A2; B1, B2)) U (g2, V(A1, A2; B3, B4)) O 

(g3, V(A3, h4; B1, B2)) O (g4, V(A3, a4; 83, 84)) 

where 

V(W, X; Y, Z) = [(W (3 X) • Y] U [(W' fq X') x Y'] 

U [(W r3 X') x Z] t.J [(W' n X) x Z'] 

with W'  = H i \ W ,  X '  = H i \ X ,  Y' = H 2 \ Y  and Z '  = H2\Z.  Then D is a reversible Menon 

difference set in the group G = K x HI X H 2. �9 

Example 12.8. By applying Theorems 12.6 and 12.7 to Example 12.4(1), (2), (3) and 
Theorem 12.5, reversible (4u 2, 2u 2 - u, u 2 - u)-difference sets are constructed in 

abelian groups 

G = ~.2a X Z b X ~,~2q 1 X . . .  X ~2  X ~1 . . .  

with u = +2 a+b+cl+'''+cs-1 �9 3 a" p2~1 . . . p ~ t ,  where Pi ~- 3 mod 4 are primes;  a,  b, 
c i, d, t~ i, s, t are nonnegative integers; and i f  d + oq + �9 �9 �9 + o/t > 0, then a > 0. Let 
D be such a reversible difference set. It can be checked that there exists elements x and 
y in G such that 2x = 2y = 0 and x E D while y ~ D. Hence D + y is an abelian regular 
(4u 2, 2u 2 - u, u 2 - u, u 2 - u) -PDS in G and (D + x ) \ { 0 }  is an abelian regular (4u 2, 
2u 2 - u - 1, u 2 - u - 2, u 2 - u)-PDS. N o t e t h a t a ( 4 u  2 , 2 u  2 - u , u  2 - u, u 2 - 

u) -PDS belongs to the Latin square type i f u  > 0 and belongs to the negative Latin square 

type i f u  < 0. �9 
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The following is a restriction on the parameters o f  an abelian reversible Menon dif- 
ference set. Readers can compare it with Theorem 7.3(c). 

ThEOReM 12.9. (McFarland [79]) I f  the square free part  o f  u is not equal to +_2a3 b, then 
no reversible (4u 2, 2u 2 - u, u 2 - u)-difference set exists in any abelian group o f  order 
4u 2. [] 

With Example 12.8, it is natural to ask the following question. 

Question 12.10. I f  u has a pr ime factor p -- 1 mod 4, does there exist a reversible (4u 2, 
2u 2 - u, u 2 - u)-difference set in any abelian group of order 4u2? In particular, does 
there exist a reversible (4p 4, 2p 4 + p2, p4 + p2)_differenc e set in any abelian group of 
order 4p 4 if  p -= 1 mod 4 is a prime? []  

We have a theorem on the structure of the groups. 

Tt-IEOREM 12.11. (Ma [42]) Suppose G is an abelian group which contains a reversible 
Menon difference set. Let q be the exponent o f  the Sylow p-subgroup P o f  G. I f  q ~ 4, 
then P contains a subgroup isomorphic to 2Zq • 2Zq. [] 

For non-Menon type reversible difference sets, Example 12.4(4) is the only known non- 
trivial abelian example. The following is the McFarland Conjecture, see Arasu [84] or 
Jungnickel [22]. 

CONJECTURE 12.12. I f  a nontrivial reversible difference set of order n exists in an abelian 
group of order v, then either v = 4n or v = 4000, n = 625. (When v = 4n, the difference 
set belongs to the Menon type.) []  

McFarland and Ma [78] and Ma [80] have shown that Conjecture 12.12 is valid for 
n _< 108. By a result by Mann [85], all nontrivial difference sets in abelian 2-groups 
belong to the Menon type. Together with Theorem 12.3, we have the following theorem. 

Tn•ognM 12.13. (Ma [80]) Suppose there exists a nontrivial reversible difference set o f  
order n in an abelian group o f  order v. If22a strictly divides n, then either a = 0 or 22a+2 
strictly divides v. [] 

By applying Theorems 12.1 and 12.13 to the case when v has only one odd prime divisor 
and using the observation that v 2 + 4n(v  - 1) is a square, Ma [80] proposed the follow- 
ing conjecture which implies Conjecture 12.12. 

CoNJECrum~ 12.14. Let p be an odd prime, a _> 0 and b, t, r _> 1. Then 

(i) Y = 22a+2p  2t - 22a+2p t+r + 1 is a square if  and only if t = r (i.e., Y = 1); 
(ii) Z = 22b+2p 2t -- 2b+2p t+r -b 1 is a square if  and only if p = 5, b = 3, t = 1, 

r = 2 (i.e., Z = 2401). []  
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For Case (i) of  Conjecture 12.14, Y = 1 corresponds to the parameters of the Menon 
type. For Case (ii), Z = 2401 yields the parameters of  Example 12.4(4). 

It is interesting to see that the nonabelian case is completely different from the abelian 
case. For example, we have a reversible (4u 2, 2u 2 - u, u 2 - u)-difference set for u = 5 
which violates Theorem 12.9. 

Example 12.15. (Smith [86]) Let 

G = < a , b , c : a  5 = b 5 = c 4 = [ a , b ]  = c a c - l a  -2 = c b c - l b  -2 = e > .  

Then 

/3 = [(e + a + a 4) + (e + a)b + (e + a 2 + a 3 + a4)b 2 -4- 

(e + a + a 2 + a3)b 3 + (e + a4)b 4] + 

[(a 2 + a 4) + a4b + a3b 2 + (e + a2)b 3 + (a + a 2 + a 3 + a4)b4]c + 

[a 4 + (a + a 2 + a4)b + (a + aa)b 2 + (e + a 2 + aa)b 3 + aab4]c 2 + 

[(a 3 + a 4) + (e + a4)b + a3b 2 + (a + a 2 + a 3 + a4)b 3 + ab4]c 3 

is a reversible (100, 45, 20)-difference set in G and G \ D  is a reversible (100, 65, 30)- 
difference set. �9 

Also, we have a family of  non-Menon type reversible difference sets which do not agree 
with Theorem 12.1. 

TrIEOREM 12.16. (Miyamoto [87] and Ma [88]) Let E be the additive group oflF3,+~. Sup- 
pose 2 t strictly divides (3 s+l - 1)/2. Let M be an elementary abelian 2-group o f  order 
2 t and K be the cyclic subgroup o f  the multiplicative group o f  order (3 ~+1 - 1)/2 t+l in 
lFas+l\{0 } . Define G = {(x, y, z) : x E M, y E E and z E K} to be a group with the opera- 

tion (xl, Yl, zl) (x2, Y2, z2) = (xlx2, Yl + ZlY2, ZlZ:)for all (Xl, Yl, Zl), (x2, Y2, z2) E G. 
Let 1-11, 1-12 . . . . .  H2t be hyperplanes in ]Fas+l such that for  i ~ j ,  H i ~ gI-Ij for  all g E K. 
Let M = {hi, h2 . . . .  , hw} and K = {gl, g2 . . . . .  gr} where w = 2 t and r = (3 s+l - 
1)/2 t+l. Then 

D = (hi, E \H1,  e) U 
LI (hi, g?) 1 i=1 ,2 , . . . , r  

j =  1,2 . . . .  ,w 
(i,j) ~ (1,1) 

is a reversible (3s+1(3 s+l - 1)/2, 3s(3 s+l + 1)/2, 3s(3 s + 1)~2)-difference set in G. �9 

Finally, we conclude this section with a generalization of  some of  the results in theorem 
12.1 to the nonabelian case. 
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THEOREM 12.17. (Ghinelli [89]) Let D be a reversible (v, k, X)-difference set in a finite 
group G. Then 

(a) n (=  k - X) is a square, say n = m2; 
(b ) v - k ==- X mod m ; and 
(c) f o r  every g E G, IfG(g)llO n gGI -- k mod m where Ca(g)  and ga  denote the cen- 

tralizer o f  g in G and the conjugacy class o f  g, respectively. III 

13.  T h e  C a s e  W h e n  X - # = - 1  

In Section 12, we have seen PDSs with X - / z  = 0 and -2 .  It is natural to ask what will 
happen if X - /z = -1. In fact, this kind of PDSs is closely related to certain types of 
divisible difference sets which we shall discuss later in this section. By using Theorems 
7.1, 7.3(c) and some results concerning diophantine equations, we have the following char- 
acterization of abelian regular PDSs with X - /~ = -1. 

THEOREM 13.1. (Arasu, Jungnickel, Ma and Pott [90]) The following are all possible 
parameters for  a nontrivial abelian regular (v, k, k ,  # )-PDS D to exist with X - / z  = -1: 

(a) (v, k, X, /z) = (v, (v - 1)/2, (v - 5)/4, (v - 1)/4) where v ~ 1 mod 4; 
Co) (v, k, X,/z) = (243, 22, 1, 2) or (243, 220, 199, 220). II 

As to existence, Theorem 2.1 gives us regular (v, (v - 1)/2, (v - 5)/4, (v - 1)/4)-PDSs 
when v -- 1 mod 4 is a power of an odd prime. Also, Example 8.3(2) yields regular (243, 
22, 1, 2) and (243,220, 199, 200)-PDSs. 

Let G be a group of order mn with a normal subgroup N of order n. An (m, n, k, Xl, 
X2)-divisible difference set in G with respect to N is a k-element subset B of G such that 
the expressions gh-1 ,  for g and h in B with g ~ h, represent each nonidentity element 
in N exactly Xl times and each dement in GXN exactly X 2 times. It is known that a divis- 
ible difference set is equivalent to a symmetric divisible design that admits a normal Singer 
group, see Jungnickel [91]. An (m, n, k, ~1, X2)-divisible difference set is called proper 
if Xl ;e X2, m ;e 1, n ;a 1 and X2 ;a 0, 2k - mn. A divisible difference set B is called 
reversible if B (-1) = B. Two divisible difference sets B1 and B2 are called equivalent if 
B1 = gB2 for some g E G. 

Divisible difference sets satisfying k - Xl = 1 were investigated by Arasu, Jungnickel 
and Pott [92], [93]. In particular, they showed that any proper abelian divisible difference 
set with k - h 1 = 1 is either reversible or has (up to complementation and equivalence) 
parameters 

~ q -  1 1  ( q - 1 1  ~ - ~ 1  (m, n, k, )kl,  )k2) ~-" (q, n, n ~ + 1, n ~ , n + 1) 

where q --- 3 mod 4 is a prime power. One can construct examples for the parameters 
in the latter case for all values of n and q, see Arasu, Jungnickel and Pott [93]. For the 
reversible case, the existence question reduces to that for abelian regular PDSs. 
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TnEOPd/M 13.2. (Arasu, Jungnickel and Port [92]) Let G be an abelian group with a subgroup 
N of  order 2, let H = G/N and p be the natural epimorphism from G to H. I f  D is a regular 
(m, h, )~, )~ - 1)-PDS in H, then B = p - l ( D )  U {e} is a proper reversible (m, 2, 2h 
+ 1, 2h, 2)Q-divisible difference set in G with respect to N. Moreover, up to complementa- 
tion and equivalence, every proper reversible divisible difference set with k - )~1 = 1 
arises in this way. �9 

As a consequence of Theorems 13.1 and 13.2, we have the following corollary. 

COROLLARY 13.3 Suppose there exists a proper (m, n, k, ~,1, X2)-divisible difference set 
in an abelian group G with k - )k 1 = 1. U p  to complementation and equivalence, one 
of  the following cases is true: 

(a) B is reversible and (m, n, k, )kl, )k2) m (243, 2, 45, 44, 4) or (m, 2, m, m - 1, 
(m - 1)/2) where m - 1 mod 4. 

(b) (m, n, k, )~1, )~2) = (q, n, [n(q - 1)/2] + 1, n(q - 1)/2, [n(q - 3)/4] + 1) where 
q - 3 mod 4 is a prime power. �9 

In the following a regular (v, (v - 1)/2, (v - 5)/4, (v - 1)/4)-PDS, where v -- 1 mod 
4, is called a Paley PDS. Arasu, Jungnickel, Ma and Pott [90] have asked the following 
questions. 

Questions 13.4. Suppose G is an abelian group of order v -- 1 rood 4. I f  v is not a pr ime 
power, does there exist a Paley PDS in G?  I f  v is a pr ime power, does G need to be  elemen- 
tary abelian? �9 

The first question is still open. However, we have counter examples for the second ques- 
tion. By Theorem 11.4, i f  we put t = m = (p - 1)/2, then we obtain a Paley PDS in 
z/p2 • z/p2. Recently, with a similar but more complicated construction, Leung and Ma 
[94] obtained examples of  Paley PDSs in some abelian groups of higher exponent. 

There is an exponent bound for an abelian group to have a Paley PDS. I f  v = p2S or 
p2~+1 for some odd prime p,  then by Theorems 6.7 and 6.9, except the case v = p (i.e., 
G ~- 7/p), the exponent of  G cannot exceed pS. 

14. Partial Geometries 

Apartial  geometry with parameters s, t, cz (apg(s + 1, t + 1, or)) is an incidence structure 
having the following properties: 

(i) every line has s + 1 points and every point lies on t + 1 lines; 
(ii) any two lines intersect at most one point (and any two points are incident with at most 

one line); 
(iii) if  a point x is not on a line L, then there are cz lines through x which intersect L. 
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Partial geometries were introduced by Bose [1] in order to provide a setting and generaliza- 
tion for known characterization theorems for strongly regular graphs. There are several 
surveys on partial geometries, e.g.,  see Thas [95], Brouwer and van Lint [5] and Cameron 
and van Lint [6]. 

Suppose we have a pg(s + 1, t + 1, or) with a regular automorphism group G acting 
regularly on the points and we identify the points with the dements  of  G. Let L0, L l, 
. . . .  Lt be the t + 1 lines through e, the identity element in G. Then {gLi : g E G and 
i = 0, 1 . . . . .  t} is the set o f  all lines and for any g E G, gLo, gL1 . . . . .  gLt are the 
t + 1 lines through g. By the axioms of  partial geometries,  we have 

[Lil = s + 1 for i = 0, 1 . . . . .  t; (14.1) 

ILl f) gLjl <- 1 ff L i ~ gLj; and (14.2) 

(14.3) 

THEOREM 14.1. With the notation above, D = (U~=0 Li)\{e} is a regular PDS with 
parameters 

(v, k, )x, t~,/3, A) = ((s + 1)(or + st)l~, s(t + 1), s + t(ot -- 1) -- 1, ot(t - 1), 

s - a - t -  1 , ( s - a  + t +  1)2). 

Furthermore, 

/~ib = otG + (s - ol)/~i for i = 0, 1, . . . ,  t. (14.4) 
I 

Example 14.2 

1. The projective plane PG(2, q), where q is a prime power, is a pg(q + 1, q + 1, q + 1) 
which gives us the trivial PDS D = G\{e}  where G is the cyclic Singer group of 
PG(2, q), see Baumert [96]. 

2. Let G be a group of order n 2 and 6 ) be an (n, r)-PCP, see Section 2. Let the dements  
in G be points and gU, U E 6) and g E G, be lines. Then we obtain a pg(n, r, r - 1). 
Note that a partial geometry with cr = t is called a net. Lines of a net can be partitioned 
into parallel classes, see Chapter 7 of  Cameron and van Lint [6]. A net with an automor- 
phism group acting regularly on the points and fixing each parallel class is called a 
translation net, see Jungnickd [26] and Bailey and Jungnickel [25]. Sprague [24] has 
shown that all translation nets are obtained f rom PCPs. 

3. Let G be a group of  order n 2, N be a normal subgroup of  order n in G and R be an 
(n, n, n, 1)-relative difference set in G relative to N, see Jungnickel [91]. A pg(n, n, 
n - I) can be obtained by regarding the dements  of  G as points and gR, g E G, as 
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lines. It is a net but the action of G does not fix any parallel class. The corresponding 
PDS is D = G \ N .  Furthermore, if a parallel class of lines, {gN : g E G} ,  is added, 
we get an affine plane which is a pg(n, n + 1, n). 

4. (van Lint and Schrijver [70]) Let 3" be a primitive 5th root of unity in 11734 and S = 
{0, 1, 3", 3"2, 3,3, 3,4}. Let the elements in IF34 be points and S + b, b E 1F34, be lines. 
The~ we obtain a pg(6, 6, 2). The PDS constructed is the regular (81, 30, 9, 12)-PDS 
of Example 10.6(1). �9 

Using projective sets in Section 9, we can construct partial geometries which have reg- 
ular automorphism groups acting regularly on the points, see Chapter 7 of Cameron and 
van Lint [6]. 

THEOREM 14.3. Let 0 be an (n, 3, h, O)-projective set in PG(2, q). Let the elements in 
lFSq be points and {•y : X E lFq} + x, (y> E 0 a n d x  E IFSq, be lines. Then the incidence 
structure is a pg(q, n, h - 1). (Note that n = (q + 1)(h - 1) + 1.) �9 

Example 14.4. By Theorem 9.3, for 1 _< r < m, there exists a (2 m+r - 2 m + 2 r, 3, 2 r, 0)- 
projective set in PG(2, 2m). Hence there exists a pg(2 m, 2 m+r - 2 m + 2 r, 2 r - 1) such 
that the additive group of IF~m acts regularly on the points. The PDS constructed from 
the partial geometry is exactly the same as the PDS constructed from the projective set, 
see Example 9.4. �9 

Recently, Ma [97] has obtained the following result for the case when s = t and G is 
abelian. 

Tl-iEo~ra 14.5. (Ma [97]) Suppose L o, L 1, . . . ,  Ls be distinct subsets of  an abelian group 
G such that [ Li I = s + 1 and e E Li for all i. I f  a pg(s + 1, s + 1, ~) is obtained by 
regarding the elements of  G as points and gLi, 0 <_ i <_ s and g E G, as lines, then 

(a) either L! -1) = Li for  all i or Li N L! -1) = {e} for all i; 
(b) i f  L! -1) = Li for all i, then ot = s and the partial geometry is a translation net (see 

Example 14.2(2)); and 
(c) i f  L i N L! -1) = {e} for  all i, then {g-lLo : g E G} = {1_~, LI, . . . ,  Is}  and 

Z0]~ -1) = b q- (s -[- 1)e (14.5) 

and 

f_~f_~-l) = c~G + (2s - c~ + 1)f~o (14.6) 

where D = (US=0 Li) \{e}  (see Example 14.2(1), (3) and (4)). 

Furthermore, Ma [97] has conjectured the following and proved that it is true for s _ 500. 
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COmECa'URE 14.6. I fapg(s  + 1, s + 1, el) admits an abelian automorphism groups act- 
ing regularly on the points, then (s, o0 = (s, s + 1), (s, s) or (5, 2). [] 

A pg(s + 1, t + 1, or) with cr = 1 is called a generalized quadrangle of  order s and 
t (a GQ(s, t)). There is an extensive literature on generalized quadrangles, see Payne and 
Thas [98]. In Example 14.4, if  r = 1, then we have a GQ(2 m - 1, 2 m + 1) 
such that the additive group of IF3m acts regularly on the points. I.Awe [99] has con- 
strutted some examples of  GQ(q - 1, q + 1) admitting regular automorphism groups 
for odd prime power q. 

For s = t, GhineUi [89] has studied the existence problem in detail. The only known 
example is the GQ(1, 1) obtained from Example 14:2(3) with n = r = 2. 

CoNJECrUPa~ 14.7. A GQ(s, s) with s > 1 does not admit a regular automorphism group 
acting regularly on the points. [] 

Suppose there is a GQ(s, s) which has an automorphism group G acting regularly on 
the points. By Theorem 14.1, we get a regular ((s + 1)(s 2 + 1), s 2 + s, s - 1, s + 
1)-PDS D. Then D t.J {e} is a reversible ((s + 1)(s 2 + 1), s 2 + s + 1, s + 1)-difference 
set in G. Note that if s > 1, then G must be nonabelian. The following theorem is obtain- 
ed by studying this nonabelian reversible difference set, see also Theorem 12.17. 

Tt-IEOP, Er, i 14.8. (Ghinelli [89]) Suppose s is even. In each of  the following cases, a group 
G of  order (s + 1)(s 2 + 1) cannot be a regular automorphism group of  a 
GQ(s, s). 

(a) G has a nontrivial center. 
(b) G is a Frobenius group. 
(c) s 2 + 1 is square-free. [] 

Ghinelli [89] has also pointed out that if s is odd, then the problem is more difficult 
since G may not be solvable. For this case, the Suzuki groups and the Sylow 3-subgroups 
of line stabilizers will play an important role. 

15. A Table of Parameters 

In table 15.3, we give a list of  possible parameters (v, k, X, #, t ,  A) for which nontrivial 
abelian regular PDSs may exist with k _ 100. First, we obtain a list of  possible values 
of  k, X, /~ with 

2 _ k _< 100 ,0  _< X _< k -  1 and 1 ___ # _< k -  1. (15.1) 

Other parameters are computed by the formulae 

= x - ~ ,  A = B E + 4 ( k  - ~ )  a n d  v = (k  2 - ~ - k + ~ ) / ~ .  ( 1 5 . 2 )  
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Then the parameters are tested with the following criterions drawn from Proposition 1.4, 
Corollaries 3.6, 6.3 and Theorems 3.4, 6.1, 6.9. 

(i) ~ and n have the same parity; 
(ii) v 2 - ( 2 k -  ~2  _ (/~2 + 2 / 3 ) v -  0 m o d A ;  
(iii) v, A, v2/A have same prime divisors; 
(iv) if A is not a square, then there exists an odd prime p - 1 rood 4 such that (v, k, 

)~,/~,/3, A) = (p2S+l, (p2S+l _ 1)/2, (p:s+l _ 5)/4, (p2S+l _ 1)/4, -1 ,  p2S+l); and 

(v) if v = pS, where p is a prime, and A is a square, then k is a multiple of p - 1. 

I f D  is a nontrivial abelian regular PDS with parameters (v, k, ~, #, /3,  A), then D '  = 
(GkD) \{e}  is a regular PDS with parameters 

( v ' , k ' , X ' , / z ' , / ~ ' , A ' )  = ( v , v - k -  1, v - 2 k - 2  + / ~ , v - 2 k + h , - / ~ - 2 ,  A) 

and the dual D + is a regular PDS with parameters 

(v +, k +, h +, /z +, /~+, A +) = (v, [(x/~ - /3)(v - 1) - 2k]/(2n/A), /~§ + /z § 

[4k + - A + + (~+)2]/4, [V -- 2k + /3 - "vr~]/'~/~, v2/A). 

Hence we only list those parameters with 

k_< ( v -  1)/2 a n d A  _< v (15.3) 

since the case k > (v - 1)/2 can be obtained by the complement and the case z~ > v 
can be obtained by the dual. 

The following theorem is a particular case of Theorems 7.1 and 7.3(c) which is useful 
in determining the existence of nontrivial abelian PDSs. 

THEOPmM 15.1. Suppose there exists a nontrivial regular (v, k, X, Iz)-PDS in an abelian 

group where v is not a pr ime power. Let  p be an odd pr ime divisor o f  v, say v = ptu and 
A ---- p2rTr 2 where p X u and p X re. Let  {31 = {3 - 20~r where (20 - 1)a" ___ /3 < (20 
+ 1)a'. Then 

( a )  A = ( u  -1- i l l )  2 - (Tr 2 - ~ 2 ) ( u  - 1) i s  a square; and 

(b) either kl = (u + ~1 - -  ~/-A)/2 or kl = (u + f31 + vrA)/2 satisfies all the following: 

(i) 0 ___ kl < rain {k, u}; 
(ii) i f  k 1 ~ 0 and u - 1, then hi ,  #1, u - 2k 1 + ~1, u - 2kl - 2 + /~1 are non- 

negative where where Pl = kl - [( ~r2 - /3~)/4] and hi = /~1 + /Xl; and 
(iii) i f  p >_ 5 and kl ~ 0, u - 1, then either (1) r is even and 0 - 0 rood (p - 1) 

or (2) r is odd and 0 - (p - 1)/2 mod (p - 1). �9 
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The following is a result that we need in Table 15.3. 

Remark 15.2. Brouwer and Neumaier [100] have proved that there is no (1944, 67, 10, 
2)-strongly regular graph and hence no abelian regular (1944, 67, 10, 2)-PDS. Readers 
are referred to the survey by Brouwer and van Lint [5]. [] 

Table 15.3. We give a table of parameters (v, k, 1% #, B, A) satisfying (15.1), (15.2), (15.3) and criterions (i), (ii), 
(iii), (iv), (v). In the following, Paley refers to regular PDSs constructed by Theorem 2.1; PCP refers to regular 
PDSs constructed by Theorem 2.2; and ? means the existence of such a regular PDS is still unknown. 

No. v k X /~ /~ A Examples/Remark 

1 5 2 0 1 - 1 5 - -  Paley. 
2 9 4 1 2 - 1 9 - -  Paley. 
3 16 5 0 2 - 2  16 - -  Example 12.8. 
4 16 6 2 2 0 16 - -  (4, 2)-PCP. 
5 13 6 2 3 - 1 13 - -  Paley. 
6 25 8 3 2 1 25 - -  (5, 2)-PCP. 
7 17 8 3 4 - 1 17 - -  Pale),. 
8 36 10 4 2 2 36 - -  (6, 2)-PCP. 
9 49 12 5 2 3 49 - -  (7, 2)-PCP. 

10 25 12 5 6 - 1 25 - -  Paley. 
11 36 14 4 6 - 2  36 - -  Example 12.8. 
12 64 14 6 2 4 64 - -  (8, 2)-PCP. 
13 29 14 6 7 - 1 29 - -  Paley. 
14 36 15 6 6 0 36 - -  (6, 3)-PCP. 
15 81 16 7 2 5 81 - -  (9, 2)-PCP. 
16 64 18 2 6 - 4  64 - -  Example 9.2(1). 
17 49 18 7 6 1 49 - -  (7, 3)-PCP. 
18 100 18 8 2 6 100 - -  (10, 2)-PCP. 
19 37 18 8 9 - 1 37 - -  Paley. 
20 81 20 1 6 - 5  81 - -  Example 2.7(2). 
21 121 20 9 2 7 121 - -  (11, 2)-PCP. 
22 41 20 9 10 - 1 41 - -  Pale),. 
23 64 21 8 6 2 64 - -  (8, 3)-PCP. 
24 100 22 0 6 - 6  100 - -  .9 

25 243 22 1 2 - 1  81 - -  Example 8.3(2). 
26 144 22 10 2 8 144 - -  (12, 2)-PCP. 
27 81 24 9 6 3 81 - -  (9, 3)-PCP. 
28 169 24 11 2 9 169 - -  (13, 2)-PCP. 
29 49 24 11 12 - 1 49 - -  Paley. 
30 196 26 12 2 10 196 - -  (14, 2)-PCP. 
31 53 26 12 13 - 1  53 - -  Paley. 
32 100 27 10 6 4 100 - -  (10, 3)-PCP. 
33 64 27 10 12 - 2  64 - -  Example 12.8. 
34 64 28 12 12 0 64 - -  (8, 4)-PCP. 
35 225 28 13 2 11 225 - -  (15, 2)-PCP. 
36 81 30 9 12 - 3  81 - -  Example 10.6(1). 
37 121 30 11 6 5 121 - -  (11, 3)-PCP. 
38 256 30 14 2 12 256 - -  (16, 2)-PCP. 
39 61 30 14 15 - 1 61 - -  Paley. 
40 81 32 13 12 1 81 - -  (9, 4)-PCP. 
41 289 32 15 2 13 289 - -  (17, 2)-PCP. 
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Table 15.3. (Continued). 

No. v k ~ t~ /~ A Examples/Remark 

42 100 33 8 12 - 4  100 - -  ? 

43 144 33 12 6 6 144 - -  (12, 3)-PCP. 

44 324 34 16 2 14 324 - -  (18, 2)-PCP. 

45 169 36 13 6 7 169 - -  (13, 3)-PCP. 

46 100 36 14 12 2 100 - -  ? 

47 361 36 17 2 15 361 - -  (19, 2)-PCP. 

48 73 36 17 18 - 1 73 - -  Paley. 

49 400 38 18 2 16 400 - -  (20, 2)-PCP. 

50 144 39 6 12 - 6  144 - -  ? 

51 196 39 14 6 8 196 - -  (14, 3)-PCP. 

52 216 40 4 8 - 4  144 - -  ? 

53 121 40 15 12 3 121 - -  (11, 4)-PCP. 

54 441 40 19 2 17 441 - -  (21, 2)-PCP. 

55 81 40 19 20 - 1  81 - -  Paley. 

56 288 41 4 6 - 2  144 - -  NOT EXIST by Theorem 15.1 with p = 3. 

57 288 42 6 6 0 144 - -  NOT EXIST by Theorem 15.1 with p =- 3. 

58 225 42 15 6 9 225 - -  (15, 3)-PCP. 

59 484 42 20 2 18 484 - -  (22, 2)-PCP. 

60 216 43 10 8 2 144 - -  ? 

61 144 44 16 12 4 144 - -  (12, 4)-PCP. 
62 100 44 18 20 - 2  100 - -  NOT EXIST by Theorem 12.9. 

63 529 44 21 2 19 529 - -  (23, 2)-PCP. 

64 89 44 21 22 - 1 89 - -  Paley. 

65 196 45 4 12 - 8  196 - -  ? 

66 256 45 16 6 10 256 - -  (16, 3)-PCP. 

67 100 45 20 20 0 100 - -  NOT EXIST by Theorem 12.9. 

68 392 46 0 6 - 6  196 - -  ? 

69 576 46 22 2 20 576 - -  (24, 2)-PCP. 

70 225 48 3 12 - 9  225 - -  ? 

71 289 48 17 6 11 289 - -  (17, 3)-PCP. 

72 169 48 17 12 5 169 - -  (13, 4)-PCP. 

73 625 48 23 2 21 625 - -  (25, 2)-PCP. 

74 97 48 23 24 - 1 97 - -  Paley. 

75 121 50 21 20 1 121 - -  (11, 5)-PCP. 

"76 676 50 24 2 22 676 - -  (26, 2)-PCP. 

77 101 50 24 25 - 1 101 - -  Paley. 
78 256 51 2 12 - 10 256 - -  Example 2.7(2). 

79 392 51 10 6 4 196 - -  ? 

80 324 51 18 6 12 324 - -  (18, 3)-PCP. 

8 1  144 52 16 20 - 4  144 - -  ? 

82 196 52 18 12 6 196 - -  ? 
83 729 52 25 2 23 729 - -  (27, 2)-PCP. 
84 361 54 19 6 13 361 - -  (19, 3)-PCP. 

85 784 54 26 2 24 784 - -  (28, 2)-PCP. 

86 109 54 26 27 - 1 109 - -  Paley. 

87 144 55 22 20 2 144 - -  ? 
88 225 56 19 12 7 225 - -  (15, 4)-PCP. 

89 841 56 27 2 25 841 - -  (29, 2)-PCP. 
90 1 t 3 56 27 28 - 1 113 - -  Paley. 

91 324 57 0 12 - 1 2  324 - -  ? 
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Table 15.3. (Continued). 

No. v k )~ /~ /~ A Examples/Remark 

92 400 57 20 6 14 400 - -  (20, 3)-PCP. 

93 900 58 28 2 26 900 - -  (30, 2)-PCP. 

94 196 60 14 20 - 6  196 --  ? 

95 256 60 20 12 8 256 - -  (16, 4)-PCP. 

96 441 60 21 6 15 441 - -  (21, 3)-PCP. 

97 169 60 23 20 3 169 - -  (13, 5)-PCP. 

98 961 60 29 2 27 961 - -  (31, 2)-PCP. 

99 121 60 29 30 - 1 121 - -  Paley. 

100 1024 62 30 2 28 1024 - -  (32, 2)-PCP. 

101 125 62 30 31 - 1 125 - -  Paley. 

102 484 63 22 6 16 484 - -  (22, 3)-PCP. 

103 225 64 13 20 - 7  225 - -  NOT EXIST by Theorem 15.1 with p = 5. 

104 289 64 21 12 9 289 - -  (17, 4)-PCP. 

105 1089 64 31 2 29 1089 - -  (33, 2)-PCP. 

106 196 65 24 20 4 196 - -  ? 

107 144 65 28 30 - 2  144 - -  Example 12.8. 

108 529 66 23 6 17 529 - -  (23, 3)-PCP. 

109 144 66 30 30 0 144 - -  Example 12.8. 

110 1156 66 32 2 30 1156 - -  (34, 2)-PCP. 

111 1944 67 10 2 8 324 - -  NOT EXIST by Remark 15.2. 

112 256 68 12 20 - 8 256 - -  Example 9.6(2). 

113 324 68 22 12 10 324 - -  ? 

114 1225 68 33 2 31 1225 --  (35, 2)-PCP. 
115 137 68 33 34 - 1 137 - -  Paley. 

116 576 69 24 6 18 576 - -  (24, 3)-PCP. 

117 512 70 6 10 - 4  256 - -  Example 9.2(1). 

118 225 70 25 20 5 225 - -  NOT EXIST by Theorem 15.1 w i thp  = 5. 

119 1296 70 34 2 32 1296 - -  (36, 2)-PCP. 

120 361 72 23 12 11 361 - -  (19, 4)-PCP. 

121 625 72 25 6 19 625 - -  (25, 3)-PCP. 
122 169 72 31 30 1 169 - -  (13, 6)-PCP. 

123 1369 72 35 2 33 1369 - -  (37, 2)-PCP. 

124 512 73 12 10 2 256 - -  ? 

125 1444 74 36 2 34 1444 - -  (38, 2)-PCP. 

126 149 74 36 37 - 1 149 - -  Paley. 

127 676 75 26 6 20 676 - -  (26, 3)-PCP. 

128 256 75 26 20 6 256 - -  (16, 5)-PCP. 
129 196 75 26 30 - 4  196 - -  ? 

130 324 76 10 20 - 10 324 - -  ? 

131 400 76 24 12 12 400 - -  (20, 4)-PCP. 

132 1521 76 37 2 35 1521 - -  (39, 2)-PCP. 

133 729 78 27 6 21 729 - -  (27, 3)-PCP. 
134 196 78 32 30 2 196 - -  ? 

135 1600 78 38 2 36 1600 - -  (40, 2)-PCP. 

136 157 78 38 39 - 1 157 - -  Paley. 

137 441 80 25 12 13 441 - -  (21, 4)-PCP. 
138 225 80 25 30 - 5  225 - -  ? 

139 289 80 27 20 7 289 - -  (17, 5)-PCP. 
140 1681 80 39 2 37 1681 - -  (41, 2)-PCP. 

141 784 81 28 6 22 784 - -  (28, 3)-PCP. 
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Table 15.3. (Continued). 

No. v k h /z /3 A Examples/Remark 

142 1764 82 40 2 38 1764 - -  (42, 2)-PCP. 
143 400 84 8 20 - 12 400 - -  ? 
144 484 84 26 12 14 484 - -  ? 
145 841 84 29 6 23 841 - -  (29, 3)-PCP. 
146 225 84 33 30 3 225 - -  ? 
147 1849 84 41 2 39 1849 - -  (43, 2)-PCP. 
148 169 84 41 42 - 1 169 - -  Paley. 
149 800 85 0 10 - 1 0  400 - -  NOT EXIST by Theorem 15.1 with p = 5. 
150 256 85 24 30 - 6  256 - -  Example 10.5(2). 
151 324 85 28 20 8 324 - -  ? 
152 1936 86 42 2 40 1936 - -  (44, 2)-PCP. 
153 173 86 42 43 - 1 173 ~ Paley. 
154 900 87 30 6 24 900 - -  (30, 3)-PCP. 
155 441 88 7 20 - 1 3  441 - -  NOT EXIST by Theorem 15.1 wi thp  = 7. 
156 529 88 27 12 15 529 - -  (23, 4)-PCP. 
157 2025 88 43 2 41 2025 ~ (45, 2)-PCP. 
158 361 90 29 20 9 361 - -  (19, 5)-PCP. 
159 961 90 31 6 25 961 - -  (31, 3)-PCP. 
160 256 90 34 30 4 256 - -  (16, 6)-PCP. 
161 196 90 40 42 - 2  196 - -  NOT EXIST by Theorem 12.9. 
162 2116 90 44 2 42 2116 - -  (46, 2)-PCP. 
163 181 90 44 45 - 1  181 - -  Paley. 
164 196 91 42 42 0 196 - -  NOT EXIST by Theorem 12.9. 
165 484 92 6 20 - 14 484 - -  ? 
166 576 92 28 12 16 576 - -  (24, 4)-PCP. 
167 2209 92 45 2 43 2209 - -  (47, 2)-PCP. 
168 4000 93 8 2 6 400 - -  NOT EXIST by Theorem 15.1 wi thp  = 5. 

269 1024 93 32 6 26 1024 - -  (32, 3)-PCP. 
170 800 94 18 10 8 400 - -  NOT EXIST by Theorem 15.1 withp = 5. 
171 2304 94 46 2 44 2304 - -  (48, 2)-PCP. 
172 324 95 22 30 - 8  324 - -  ? 
173 400 95 30 20 10 400 - -  (20, 5)-PCP. 
174 625 96 29 12 17 625 - -  (25, 4)-PCP. 
175 1089 96 33 6 27 1089 - -  (33, 3)-PCP. 
176 289 96 35 30 5 289 - -  (17, 6)-PCP. 
177 225 96 39 42 - 3  225 - -  ? 
178 2401 96 47 2 45 2401 - -  (49, 2)-PCP. 
179 193 96 47 48 - 1 193 - -  Paley. 
180 225 98 43 42 1 225 - -  ? 
181 2500 98 48 2 46 2500 --  (50, 2)-PCP. 
182 197 98 48 49 - 1 197 - -  Paley. 
183 1156 99 34 6 28 1156 - -  (34, 3)-PCP. 
184 576 100 4 20 - 16 576 - -  ? 
185 676 100 30 12 18 676 - -  ? 
186 441 100 31 20 11 441 - -  NOT EXIST by Theorem 15.1 with p = 7. 
187 2601 100 49 2 47 2601 - -  (51, 2)-PCP. 
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Note  Added  in P r o o f  

Recently, Q. Xiang (preprint, Note on Paley type partial difference sets) proved a new 
exponent bound for abelian groups having (p2s+l, (p2~+1 _ 1)/2, (p:S+l _ 5)/4, (p2~+1 
- 1)/4)-PDSs, see Questions 6.6 and 13.4. His result says that i f p  e is the exponent of the 
abelian group and e > 2, then e _< (s + 1)/2. This bound is better than Theorem 6.7. 
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