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w 1. Introduction 

We start with an algebraic curve B over an algebraically closed field k of 
characteristic zero, and let S~_B be a finite set of points. In [1] Arakelov has 
shown that there are only finitely many families of algebraic curves of genus 
g >  1 on B, with good reduction outside S, except for isotrivial families (iso- 
trivial = becomes constant on a finite cover of B). 

We want to consider the same question for principally polarized abelian 
varieties. Here the answer is more complicated: 

There is a condition (*) such that the number of abelian varieties fulfilling 
(,) is finite, while any variety not fulfilling it can be deformed. The condition 
(,) says essentially that all endomorphisms of the cohomology of the abelian 
variety are endomorphisms of the abelian variety itself. 

The method of proof consists of a combination of Arakelov's methods and 
Deligne's description of abelian varieties via Hodge-structures. In the next 
chapter we recall the necessary prerequisites, and after that we prove the 
theorem in two steps as in [1]. 

We first derive a boundedness-theorem and then we show that families 
fulfilling (,) cannot be deformed. From the form of the theorem it seems that it 
is difficult to take it over to characteristic p > 0  (see [7]). The author has 
learned about this subject from L. Szpiro, who kindly printed out to him that 
the following results are already known: 

a) L. Moret-Bailly has proved a boundedness-theorem in any characteristic. 
The result is contained in his thesis. (It will appear in the proceedings of the 
"seminar on pencils of abelian varieties, Paris 1981/82", and in the Comptes- 
Rendues). Unfortunately this theorem is weaker in characteristic zero than 
ours. 

b) L. Szpiro and L. Moret-Bailly have a very good theorem about bound- 
edness for S = 0 (any characteristic). 

c) They have derived rigidity for relative dimension two. (To appear also in 
"seminar on pencils of abelian varieties"). In characteristic zero our results 
cover relative dimension up to three. 
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The results were found during a stay at the I.H.E.S. I have to thank 
P. Deligne for some help concerning the example of an abelian variety not 
fulfilling (*). 

The referee has told me that the results of Zucker (Ann. of Math. 109) 
should allow to treat more general Hodge-structures on B - S .  As I am not an 
expert in this field I leave this to the reader. In any case I thank the referee for 
his suggestions. 

w 2. Notations 

k always denotes an algebraically closed field of characteristic 0, and in the 
proofs we assume that k = C ,  which we may do by the Lefschetz-principle. B 
denotes a connected complete smooth curve over k, and S~_B a finite set of 
points. We want to consider families 

p: X - ,  B - S  

of abelian varieties of relative dimension g over S. By [4] we know that giving 
such a family is the same as giving a polarizable Hodge-structure (or variation 
of Hodge-structure) of degree 1 on B - S ,  that is (except for the polarization) a 
locally constant sheaf V on B - S ,  locally isomorphic to Z 2g, plus a subbundle 

~ = ~ x  C_ V | 

of rank g, such that 3q/~ and its complex conjugate span the fibre of V in each 
point. We furthermore assume that it has a principal polarization, which 
means a skew-symmetric form 

( , ) : V x V - ~ Z ,  

which identifies V with its own dual, vanishes on ~f" • ~ ,  and which has the 
additional property that for we ~/r and w 4= 0 

1 
- - -  ( w , ~ )  > 0 .  

2hi  

Definition. (See [4], w A family 

p : X ~ B - S  

satisfies (*) if any anti-symmetric endomorphism A of 

V = R l p ,  Z 

defines an endomorphism of X (i.e., is of type (0, 0)). A is called anti-symmetric 
if 

(Au,  v) = - (u, Av).  

(We may use 6tale or de Rham cohomology to formulate that over base fields 
k , r  
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In [4], Proposition 4.4.11, there are given conditions which force X to 
fulfill (,). 

We furthermore need some information about moduli-spaces. We fix a 
number n > 3 and denote by d = d . ,  g the quotient of Siegel's upper half-plane 
lHg under the congruence-subgroup group F, of level n of Sp(2g, 7/.). It is a fine 
moduli-space for principally polarized abelian varieties with a level-n-structure. 
As before we have on it a principally polarized Hodge-structure V, together 
with a subbundle ~/U of V| ~#2 can also be described as the vector-bundle 
associated with the natural g-dimensional representation of U(g,~;), the ma- 
ximal compact  subgroup of Sp(2g, IR). We denote its maximal exterior power 
by co. 

We know [3-1 that ~r can be imbedded as an open subvariety into a compact  
variety d * ,  such that co extends to an ample line-bundle on d * .  There further 
exists another compactification ,~d of sr which dominates d * ,  such that d is 
nonsingular and that 

is a divisor with normal crossings (see [2]). We furthermore know that 
extends as a bundle to s~, such that the hermitian metric defined on it by the 
polarization of V has only logarithmic singularities at D o (see I-5])*. It is also 
wellknown that the extension of the second symmetric power is isomorphic to 
the sheaf of differential forms with logarithmic poles at D o: 

The latter fact can be seen as follows: 
There is such an isomorphism over d ,  and we only have to show that 

f2~[Do] is Mumford 's  extension of f2~. But this follows from the fact that 
locally the compactification looks like an embedding 

(r x IV b c_ r  x Cb, 

and that the extended bundle is generated by sections invariant under (l~x) a, 
(See the construction in [5], p. 257). 

If we have an abelian variety 

p : X ~ B - S  

as in the beginning, and if we assume that X has a level-n-structure, we obtain 
a mapping 

with 
r 

The pullback ~b*0cK ) on B is an extension of our previous bundle ~W (which 
was defined on B -  S). It  can be described as follows: 

* This means that for a matrix H=(hpa) giving the metric the functions Ihpq[, Idet(H)[-1 grow at 
most like powers of logll/fl, f a local equation for D~o 
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It is known that X extends to a stable family 

~: ~" ---~ B 

a semiabelian varieties over B. If 

s: B ~ ) (  

denotes its zero-section, then 

= s* (~}/B)- 

We can show this as follows: 
We may enlarge s, replace B by a covering B', or replace X by a larger 

abelian variety in which it is a factor. We may also change the polarization 
(since two of them are comparable), and finally we may assume that X is the 
Jacobian of a family of curves Y over B - S ,  which extends to a semi-stable 
family ~r over B. But then some easy and rather explicit calculations show that 
the canonical metric on s*(f2}/B) has a only logarithmic singularities, and we 
are done. 

The referee has pointed out to me that in the following chapter we need the 
equality of Mumford's extension of o9 to ~ and of the pullback of the ample line- 
bundle o9 on d * .  This can be derived from the calculations in [2], Chap. 
IV. w 1, by rewriting them for differential forms with logarithmic singularities 
(instead of ordinary differential forms): We get that for l>>0 the global sections 
of co | on ~r generate og| on ~ .  

w 3. Boundedness 

We want to prove the following 

Theorem 1. Let ~ be a line-bundle on ~r I f  (B, S) is a curve plus a finite set, 
there exists a constant c (depending on ~q~, B and S), such that 

deg (r < c 

for any morphism 
~ : B - ~ d  

with 
(p- l(Do~)c_S. 

(~b corresponds to an abelian variety over B - S  with a level-n-structure). 

Proof A moment's thought shows us that it is sufficient to prove the theorem 
for ~ r 1 6 2  (since ~b(B)$D~). We shall prove that for any stable abelian 
variety X over B - S  

deg (~Vx) = deg (A g ~x )  

is bounded, where .~ is the N6ron-model of X over B, and ~r is the extension 
of ~r described at the end of the previous chapter. 
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We proceed as follows: 
By the Riemann-Roch theorem it is sufficient to bound the dimension of 

F(B, ~ x |  

(f2~[S]=differentials with simple poles in S). Any global section of 
~xx| defines a holomorphic 2-form on X and therefore a class in 

H2(X, •). 

We note that the dimension of H2(X, r is bounded (use EP2'q=HP(B-S, 
Rqp,~)~HP+q(X, C)), and so we are done if we prove that the mapping 

r(B, r174 H2(X, r 
is injective. 

By Deligne's theorem ([4], Cot. 3.2.13) this would be true if our 2-forms 
would have only logarithmic poles at infinity, for some compactification of X. 
We avoid the construction of such a compactification if we note that for the 
proof of our claim we may enlarge S, replace B by a finite covering, or replace 
X by a bigger abelian variety in which it is a factor. We thus reduce to the 
case that X is the Jacobian of a semi-stable curve Y over B - S ,  with a regular 
semi-stable model Y over B. We furthermore may assume that the mapping 
from f" to B has a section. This gives us a commutative diagram 

Y - -  , X  

\ /  
B-S ,  

and it is sufficient to show that the mapping 

is an injection. 
Now for semi-stable curves explicit calculations are rather easy, and they 

show that the elements of F(B, ~x @O~[S]) are precisely the global 2-forms on 
~" with logarithmic poles in the preimage of S. By Deligne's theorem we are 
ready. 

Remark. The proof gives the bound (which is not the best): 

deg 0~U) =< g(3- genus (B) + order (S) + 1). 

Corollary. The scheme 
Horn ((B, S), (d,  D~)) 

which classifies the morphisms 

with 

is of finite type over k. 

~p : B--+ ~ 
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w 4. Deformations 

Let 
05: B--*~' 

G. Faltings 

be a morphism as before, with 

05-1(D~)~_S. 

We want to determine the tangent-space at 05 of 

Hom ((B, S), (d,  D~)). 

By the usual calculations it is isomorphic to 

H o m .  (qS* (fib [D~o]), (9.) = H o m .  (S 2 (~x), (gB)" 

We know by general arguments that the canonical metric on ~U x has positive 
curvature. It is known that this tends to prevent the existence of linear forms 
on such a bundle. There are some inequalities which have to become equalities, 
and we leave it to the reader to verify the following 

Lemma. Suppose 8 is a bundle on B which has a hermitian metric with logarith- 
mic singularities and non-negative curvature. I f  

05: g ~(gB 

is a nontrivial morphism let 

Y = Kern (05). 

Then ~ is isomorphic to the orthogonal direct sum 

and 05 corresponds to the projection onto the second direct summand. 
Retourning to our problem we see that any nonzero element s of 

HOmB ($2 (~x), (gB) 

gives rise to a section 

t~F(B, $2 (~Ux)) 

of constant norm 1, and such that (h, {) is holomorphic for any local section h 
of S 2 ~U x. 

Here ( , )  denotes the scalarproduct on 

S2(V)(~Z (gB ( V = R  1 p .  Z) 

derived from the Hodge-structure on S2(V). 
We denote by 

V: S2(V)| (gB--, SZ(V) | Q~ 

the connection (defined on B - S ) .  
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Then 
(V (t),V (t))---dO(t, t)  = 0  

and for h a local section of $2(~r ~) we have 

(V (t),/~) = e (t, h) = c~(h,t) = 0. 

By the fundamental properties of V we known that V(t) has components of 
bidegree (2, 0) and (1, 1). The second equality says that it is of bidegree (1, 1), 
and by the first identity it vanishes. Thus t is parallel. 

Finally some easy calculations show that there exists a (parallel) endomor- 
phism A of V |  such that 

i) A is pure of type ( - 1 ,  1) 
ii) A is anti-symmetric for ( , ) ,  

such that 
s(h 1| = (h i ,  A (h2) ) 

for local sections hi, h 2 of ~r 
Conversely it is clear that any such A define an element s (using for 

example the results of Schmid [6] to treat the behaviour at S). We have thus 
nearly proved the 

Theorem 2. 
Hom((B, S), (s~', D~)) 

is smooth. 
Its tangent-space at a point corresponding to an abelian variety X over B - S  

is isomorphic to the space of  ( , >-anti-symmetric endomorphisms of  

V Q z I ~  = R  1 p(~)  

of pure type ( - 1, 1). 

Proof. It remains to show that any A as above defines deformations. A as well 
as its complex conjugate A are V-parallel, so that the eigenvalues of AA are 
constant on B. They are easily seen to be (positive) real numbers, and we shall 
define a deformation corresponding to A provided these eigenvalues are smal- 
ler than + 1. 

If these conditions are fulfilled we define a new Hodge-structure supported 
by V, by choosing 

exp(A) (3r = (Id + A) (~r ~_ V|  z (9 B 

as space of type (1,0): 
We only have to show that for h a local nonzero section of 

((Id + A) (h), (Id + A) (h)) = ((Id - .~A)  (h),/~) 
is positive. 

This follows from our assumptions because the selfadjoint transformation 

[d - AA 
of r has positive eigenvalues. 
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We thus have defined a deformation of the Hodge-structure (and therefore 
of X) parametrized by a neighbourhood of the identity in our space of A's. 
This proves theorem 2. 

Corollary. There exist only finitely many families of principally polarized abe- 
lian varieties of dimension g over B, with good reduction outside S and satisfying 
(*). I f  there is one such variety which does not fulfill (,), there are infinitely 
many. 

Proof. We know that there is a finite Galois-covering B' of B such that any 
such family has a level n-structure after base-change to B'. We let S' be the 
preimage of S in B', and n the Galois-group of the covering B'/B. For any 
representation 

p: n--* S p(2 g, 71/nZ)c_Aut(o~) 

we obtain an action of n on 

Hom((B', S'), (~,  D~)), 

and the set of abelian varieties over B injects into the disjoint union of the 
fixed-point sets of n, corresponding to all representations p. 

From Theorem 2 it can be derived that these fixed-point-sets are manifolds 
at the points given by families 

p : X ~ B - S  

over B - S ,  and that their tangent-spaces there are the symmetric endomor- 
phisms (over B) of 

R 1 p ,  (~) 

of type ( -  1, 1). 
They vanish precisely if X fulfills (*). 
Therefore the points corresponding to such X ly in the zero-dimensional 

components of the fixed-point-sets. As this are varieties of finite type over k 
(Theorem 1) their number is finite. 

Conversely if X does not fulfill (*), we have constructed deformations of X 
in the proof of Theorem 2. 

Remark. The proof gives that only finitely many pairs (V, ( , )) occur as 
cohomology of principally polarized abelian varieties over B - S .  By an hyper- 
plane section argument the same is true for any normal algebraic variety U. 

w 5. An Example 

We want to show that there exist indeed nontrivial examples of abelian 
varieties which do not satisfy (,) (constant ones of course fall into this cat- 
egory). We proceed by following the arguments in [4], w We restrict 
ourselves to the simplest case, but the method can be generalized. 

Let K be a real quadratic number-field, D a quaternion-algebra over K which 
splits at one of the infinite places of K but not at the other. D has a canonical 
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involution denoted by 

such that for aeD 

and 

are in K. 

aw-~ a*, 

N(a) = a a* 

T(a) = a + a* 

345 

We denote by V• the rational vectorspace (of dimension 8) 

Ve~= D. 

D acts by multiplication on the left and on the right on V. For any element s 
of D with 

S* ~ --S 

we obtain a new involution on D, denoted by 

at=sa*s -1. 

We further obtain a skew-symmetric form on V~ by 

(a, b) = trr/~ (T(a s b*)). 

Then (ac, b) = (a, b ct), and ( , ) is respected by the algebraic group G with 

G(II~) = {aeD]N(a)= 1}, 

which acts by left-multiplication. 
By assumption 

D R = D | N ~ Q x m 2 (]R) (Q = quaternions), 

G(R)~-SU(2, (171) x SL(2, ~ )  
and 

VIR = V @ Q R  ~ I~ 2 (~) (R2 (~) R2).  

The decomposition of V~ is written in such a way that SU(2, ~2) acts on the 
first summand by its natural representation, SL(2, R) on the first factor of the 
tensor-product, and Mz(IR ) by right-multiplication on the second factor. 

The bilinear form ( , ) decomposes accordingly: 

( , ) m . (  , ) 1 ( ~  ( , ) 2 @ (  , )3" 

Here ( , ) 1  (for suitable coordinates) is a real multiple of the skew-form 

(ul, u2) x (vl, vz)w-, Im (ul vl + u2 v2) 

on II; 2, ( , )2 the skew form 

(1/1' 1/2) X 0)1, V2)I-"* 1/1 V 2 --l /2 O 1 

on I(  2, and ( , ) 3  a symmetric form on N 2. We now choose s in such a way 
that ( , ) 1  is a positive multiple of the standard form listed above, and that 
( , )3 is positive definite. 



346 G. Faltings 

After extending scalars to the complex-numbers we obtain 

vr v~@~ =(r @ r162 @F. 2) 

where the first direct sum has been split such that 

~ 2  = Kern (~2 | r ~2). 

1 
For 04=w6C 2 we have - ~  (w, # ) > 0 ,  and thus we see that for a suitable 

one-dimensional complex subspace Lc_{17 2 w e  can define a polarized Hodge- 
structure on V by 

Vd'~ = ( r  @O)@(L@~Z). 

The stabilizer in G(IR) of such a Hodge-structure is a maximal compact 
subgroup 

M~-SU(2, G) x U(1, C), 

and G(~)  acts transitively on these Hodge-structures which are parametrized 
by the upper half-plane 

It{ ~- G (F,.)/M. 

Note that any a6D defines an endomorphism of V~, but that not all such 
endomorphisms respect the Hodge-structure. 

Otherwise the subspaces 
~2@0 

and 

of 

0 |  2 

~20~72 

would be fixed by SU(2, ~) and Q |  which cannot happen by a simple 
dimension-count. Unfortunately the antisymmetric a's still respect the Hodge- 
structure. 

We thus take the direct sum of two copies of V~: Here the algebra 

A=M2(D) 
acts, with involution 

(: 7=C ;). 
A is generated by its antisymmetric elements, so some of them will not respect 
the Hodge-structure. 

If we choose a lattice 
v, =_ 

such that ( , )  takes integral values on V z and has determinant 1, we obtain a 
family of 8-dimensional abelian varieties over IH which does not satisfy (*). If 
F = G(Q) is a torsion-free arithmetic subgroup which stabilizes V z we can take 
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q u o t i e n t s  and  we o b t a i n  such  a fami ly  o v e r  the  c o m p a c t  R i e m a n n  surface  

B = F \ I H  = F \ G ( ~ ) / M .  

As F is Za r i sk i -dense  in G it can  be  easi ly seen tha t  this H o d g e - s t r u c t u r e  does  
n o t  h a v e  a fixed par t  on  any  f ini te c o v e r i n g  o f  B. 
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