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Abstract. The design PG: (4, q) of the points and planes of PG (4, q) forms a quasi-symmetric 2-design with 
block intersection numbers x = 1 and y = q + 1. We give some characterizations of quasi-symmetric designs 
with x = 1 which have a spread through a fixed point. For instance, it is proved that if such a design D is also 
smooth, then D = PG2 (4, q). 

1. Introduction 

A t-(v, k, X) design D is called quasi-symmetric (q.s.) if any pair of its blocks intersect 
in x or y points (x < y). There has been much recent interest in such designs. For example, 
for t = 2: [1], [3], [9], [10] and in case t = 3: [4], [11], [13]. 

Cameron [5], classified q.s. 3-designs with x = 0. In Sane and M.S. Shrikhande [13], 
q.s. 3-designs with x > 0 were considered and the case x = 1 was studied. The unique 
4-(23, 7, l) Witt design and its residual the 3-(22, 7, 4) design provide examples of q.s. 
3-designs with x = 1. It was conjectured in [13], that these are the only possibilities. This 
conjecture was proved true by Calderbank and Morton [4]. See Sane and Pawale [11] for 
an alternative short proof. As is well known, the combined efforts of Ito and others (see 
e.g., references in [15]) prove that up to complementation, the 4-(23, 7, 1) is the only q.s. 
4-design. Cameron [6] proved that no q.s. t-designs exist for t _> 5. For these and other 
results on quasi-symmetric designs, see M.S. Shrikhande and Sane [16]. 

The classification problem for q.s. 2-designs is open. One of the approaches has been 
to place some restrictions on the intersection numbers x, y and/or put some extra structural 
conditions on the design. For instance, in [1]: x = 0 and the design has no three mutually 
disjoint blocks, or in [10]: x = 0, y = 2 and the design satisfies some additional geometrical 
conditions. The paper [14] contains some generalizations of [113] to the case x = 0, y _ 2. 
Cameron [7] studies the other extreme considered in [1], namely assume x = 0 and the 
q.s. design D has a spread--i .e. ,  a family of pairwise disjoint blocks whose union is the 
point set of D. 

In this paper our interest is in q.s. 2-(v, k, X) designs with x = 1. I f  (x, y) = (1, 2), 
it is well known that D is the residual of a biplane. An infinite family of q.s: designs with 
x = 1, y = q + 1 is the design PG2 (4, q) of points and planes in PG (4, q). In PG2 
(4, q), the set of  blocks through any fixed point contains a spread. Also PG2 (4, q) is 
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smooth--i .e. ,  any three noncollinear points are contained in a constant number (p _> 0) 
of blocks. One of the purposes of this paper is to obtain some Dembowski-Wagner type 
characterizations of q.s. 2-(v, k, X) designs with x = 1. The well known Dembowski-Wagner 
results [8] characterize the symmetric design of points and hyperplanes of PG (n, q) in 
terms of smoothness. 

In Section 2, it is shown (Proposition 2.6), that if x = 1, y >__ 3 and the q.s. 2-design 
has a spread consisting of/3 blocks through a fixed point, then the integers 3' = (/3 - 1)/ 
(y - 1) and m = (k - 1)/(y - 1) satisfy the inequality 1 < 3' < m - 1. We refer to 
designs achieving these bounds as critical designs. Theorem 2.8 obtains a classification 
of q.s. 2-designs with x = 1 which have a spread and are critical. Section 3 is devoted 
to obtaining some characterizations of  the q.s. 2-design P Q  (4, q). I f  D is a q.s. 2-design 
with the same parameters as PG2 (4, q), then Theorem 3.6 obtains several conditions 
equivalent to assuming D ~ PG2 (4, q). We then consider q.s. 2-designs D with x = 1, 
y _> 3 and suppose, in addition, that D has a spread and is also smooth. We shown (in 
Theorem 3.8) that any three noncollinear points are contained in exactly one block and 
all line sizes are y. The proof depends on Cameron's result [7] on q.s. 2 -de  ,ns with an 
intersection number 0 and having a spread. We prove in Theorem 3.9, that if D is a q.s. 
2-design with x = 1 has a spread and is also smooth, then D ~ PG2 (4, q). Theorem 
3.10 is another characterization result. Assume D is q.s. 2-(v, k, X) design with x = 1 and 
suppose every point triple is contained in at least one block. Then Theorem 3.10 gives 
several Dembowski-Wagner type characterizations for D. 

2. Quasi-Symmetric Designs with x = 1 and Spreads 

Let D denote a quasi-symmetric (q.s.) 2-design with usual parameters v, b, r, k, X and 
block intersection cardinalities x and y (x < y). We assume always that D is a proper q.s. 
design, i.e., both x and y actually occur as block intersection sizes. It is well known (see 
e.g. [16]) that y - x divides k - x, so denote the integer (k " x) / (y  - x) by m. As men- 
tioned in the introduction, we shall be interested in the case x = 1 only. So from now, 
D will denote a proper q.s. 2-design with parameters v, b, r, k -- mq + 1, X, x = 1, 
y = q + 1 (q > 1). 

The following result is well known. 

Result 2.1. D is a q.s. 2-design with x = 1, y = 2 if and only if D is the residual of a 
biplane (=  symmetric design with X = 2). 

In view of  the above result, we assume from now on that q > 2. The following is a 
well known infinite family of q.s. 2-designs with x = 1. 

Example 2.2. Let PG (4, q) be the four dimensional projective geometry over a finite field 
of order q. Let D be the incidence structure whose points and blocks are respectively the 
points and planes of PG (4, q). Then D is a q.s. 2-(v, k, X) design with 

v = q 4  q_q3 +q2 + q +  1, k = X = q2 + q +  1, x =  1, y = q + 1. 
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Following usual convention (e.g., [2]), we denote the design D formed by the points and 
planes of PG (4, q) by PG2 (4, q). It is easily seen that in PG2 (4, q), the planes through 
any fixed point p contain a subcollection S of q2 + 1 planes which partition the points 
PG2 (4, q) other than p. A collection of such planes is said to form a spread of PG2 (4, q). 
One of our aims in this paper is to obtain characterizations of  the design PG2 (4, q). 

The next result is easy to prove and will be used often. 

LEMMA 2.3. Let D be a q.s. 2-(v, k, X) design with x = 1, y = q + 1. Fix a block B o f  D. 
Then the induced structure DB consisting o f  the points o f  B, and those blocks o f  D which 
intersect B in y points, forms a 2-(v*, k*, X*) design with v* = k = mq + 1, k* = y = 
q + 1, X* = k - 1. In addition, 

r* = m(X - 1). (1) 

b* = m(X - 1)(mq + 1)/(q + 1). (2) 

We observe from (2), that all our q.s. 2-designs have X _> 2. The next lemma is also 
easily verified. 

LEMMA 2.4. Let D satisfy the hypothesis o f  Lemma 2.3. Suppose further that D has a 
spread--i.e., a set S = {B1, B2 . . . . .  B~} o f  blocks such that B i f'l Bj = {z}, for  all 1 
< i ~ j <_ 13, where z.is a f i x e d p o i n t  and tO ~i=lBi = the point set o f  D. Then, 

v = 13mq + 1. (3) 

r = X13. (4) 

b = X13(13mq + 1)/(mq + 1). (5) 

LEMMA 2.5. Under the hypothesis o f  Lemma 2.4, put 3" = (13 - 1)/q. Then the following 
assertions hoM: 

(i) 3" is an integer with 0 < 3" <- m. 
ffi) I f  3" = m, then D has repeated blocks. 
6ii) 3" = 0 is impossible. 

Proof Let C be a block not containing z. Suppose C meets 3', blocks of the spread in i 
points. Then we obtain 

3'1 + 3'q+l ~- /~" (6) 

3'1 + (q + 1)3"q+l = k = mq + 1. (7) 

This implies that 

3"q+l = m - (t3 - 1)/q. (8) 
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Thus 3, = (13 - l)/q is an integer wi th  0 _< "~ - m. I f  3" = 0, then fl = 1 and using 
(3), we obta in  v = k, a contradic t ion .  I f  y = m, then 3'q+1 = 0 and 3'1 = 13. This impl ies  
that  all  the b locks  meet ing  B = B 1 in at least  two points  mus t  contain z. Using L e m m a  
2:3, we get  r* = b*. Then  (1) and (2) imply  mq + 1 = q + 1, i .e. ,  k = y, we see that 
D has repea ted  blocks.  This  comple tes  the p roo f  of  L e m m a  2.5. 

Assuming  f rom now on that the q.s. des ign D has no repeated  b locks  and has a spread,  
then L e m m a  2.5 gives the fol lowing inequal i ty  connect ing  the integers 7 = (13 - 1)/q and 

m = (k - 1)/(y - 1): 

1 < y  <<_ m -  1. (9) 

We now come  to one of  our  basic  tools. 

PROPOSITION 2-6. Let D be a q.s. 2-(v, k, X) design with x = 1 and y = q + 1. Suppose 

D has a spread consisting o f  13 blocks. Then the integers m, q, k and 3" satisfy the equation 

3"(m - y) / (m - 1) = (X - 1)(mq + 1)/Xq(q + 1). (lO) 

Proof Let  S = {Bb B2 . . . . .  Be } be  a spread o f  D, where  B i f3 Bj = {z}, a f ixed point ,  
for 1 <_ i r j <-- ft. Count  the number  of  pai rs  (B, C) of blocks,  where  B = Bi E S, 
z ~ C and I B 9/ C 1 = q + 1 in two ways. Fo r  a f ixed B, cons ider ing  the des ign  DB of  
L e m m a  2.3, this number  is b* - r*, while  for a f ixed C, this  number  is 7e+1 = m - y. 

Hence  we get  the equal i ty  

(b* - r*)/3 = (m - 3")(b - r) .  (11) 

But, using (1) and (2), this gives 

(b* - r*) = m(X - 1)(m - 1)q/(q + 1). (12) 

Next  (4) and  (5) imply  

(b - r) = Xmq2(yq + 1)3"/(mq + 1). (13) 

Now use (11),  (12) and (13) to get the des i red  equat ion  (10). 

Remark 2.7. We al ready know that  1 _ y _< m - 1. For  a f ixed m, the L .H .S .  of (10) 
is min imized  at  the two end points 3' = 1 and y = m - 1, and  in each case  the value 
of  the L .H.S .  of  (10) is 1. We refer to such des igns  D as critical designs. 

We are now ready to prove:  

THEOREM 2.8. Let D be a q.s. 2-(v, k, X) design with x = 1 and y = q + 1. Suppose 
D has a spread and is critical. Then one o f  the following holds: 
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(1) D has parameters o f  PG2 (4, q), 
(2) D h a s p a r a m e t e r s v  = (q + 1) 2 q  + 1, k = k = q2 + q + 1, 
(3) D h a s p a r a m e t e r s v  = q(q + 2)(q z + q + 1) + 1, k = (q + 1) 2 , k = q + 1. 

Proof Let  m , /3  and 2 / b e  def ined as earlier.  Then as observed  above, the L .H .S .  of (10) 
is at least  one.  Hence  (mq + 1) > q(q + 1), which  gives 

m _> q + 1 (14) 

Now since D is cr i t ical ,  X/(X - 1) = (mq + 1)/(q 2 + q) _> (q2 + q + 1)/(q2 + q). 

I f  3, = 1, then (8) gives "Yq+l = m - 1. Using (6), then /3  = q + 1 _> 3'q+1 = m - 1, 
giving m __< q + 2. Thus we obtain 

q + 1 <_ m < q + 2 .  (15) 

I f  m = q + 2, then (10) gives X/(X - 1) = ((q + 2)q + 1)/(q z + q) = (q + 1)tq. 
This y ie lds  k = q + 1. Using (4), we g e t r  = kfl = (q + 1) 2 , a n d k  = mq + 1 = 

(q + 2)q + I. This  impl ies  D is symmetr ic ,  which  is a contradict ion.  Thus m = q + 1. 
Then k / (k  - 1) = (q2 + q + 1)/(qa + q) gives X = q2 + q + 1. Then  using (3) and 
(4) gives v = (q + 1)2q + 1, k = q~ + q + 1, r = (qe + q + 1)(q + 1) a n d b  -= 
((q + 1)2q + l ) (q  + t) .  

Observe  also that  in this case (using L e m m a  2.3) ,  v* = q2 + q + 1, k* = q + 1, 
X* = q2 + q, r* = (q + 1 ) 2 q a n d r -  r* = q + 1 = /3. 

Next  assume 3' = m - 1. Then  (10) g ives  X/(X - 1) = (mq + 1)/(q 2 + q), which im-  
pl ies  X = (mq + 1)/((mq + 1) - (q2 + q)). F r o m  (14), m -> q + 1 with equal i ty  i f f  
X = qe + q + 1. I t  is eas i ly  checked that i f  m = q + 1, t h e n k  = X = q2 + q + 1, 
v = mqfl + 1 = q4 + q3 + qa + q + 1, which are the parameters  o f P G  2 (4, q). 

Assume  therefore  m _> q + 2. Suppose  first  k ___ q. Now k / (k  - 1) = (mq + 1)/(q a 
+ q), gives k(q 2 + q) = (k - 1)(mq + 1). This  impl ies  that  q d ivides  k - 1. But s ince 
k _< q was assumed,  we must  have X = 1, a contradict ion.  Thus k > q + 1. Then (mq + 1) 
__. (q + 1)(mq + 1) - (qa + q)(q + 1), which impl ies  (q + 1) 2 _ mq + 1 >_ (q + 2) 

q + 1. Therefore,  i f  k ;~ mq + 1, then m ___ q + 2 _< m, y ie ld ing  m = q + 2. In this 
case  X/(X - 1) = (mq + 1)/(q 2 + q) = ((q + 2)q + 1)/(q 2 + q) = (q + 1)/q, giving 
X = q + l a n d k  = mq + 1 = (q + 1) 2 . Then  (3) wi th /3  = q2 + q + 1 y i e l d s v  = 
q(q + 2)(q 2 + q + 1) + 1. This comple tes  the p r o o f  of  Theo rem 2.8. 

Remark 2.9. Tonchev [17] has  shown that  there are exactly five i somorph i sm classes  of  
quas i - symmet r i c  2-(31, 7, 7) designs.  They all have rank 16 over  GF(2)  and one of these 
designs  is fo rmed by the points  and planes  in PG(4 ,  2). 

The  fol lowing table lists the poss ib le  parameters  of des igns  D other  than those  of  PG2 
(4, q) for q = 2, 3, in Th eo rem 2.8. 
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Table 1. 

q v b r k )x x y Existence of D 

2 19 57 21 7 7 1 3 Does not exist [18] 
3 49 196 52 13 13 1 4 ? 
2 57 133 21 9 3 1 3 ? 
3 196 637 52 16 4 1 4 ? 

3. Some Characterizations of the q.s. Design PG2 (4, q) 

In this section, we give some characterizations of the q.s. design PG2 (4, q). These results 
(Theorems 3.6, 3.8, 3.9, 3.10) are in the same spirit  as the wel l -known Dembowski-Wagner  
Theorems ([8]) which characterize the symmetr ic  design of the points and hyperplanes 

of PG (n, q). We begin with the following. 

LEMMA 3.1. Let D be a q.s. 2-(v, k, k) with block intersection numbers x = 1, y = q + 

l(q >_ 2). Let  k = mq + 1 and v = mtSq + 1. Suppose (Pl,  Pz) is a f ixed  point-pair o f  
D. Let a i denote the number o f  points p distinct from Pl,  Pz such that the triple (Pl ,  P2, 
p) is contained in exactly i blocks o f  D (i = 0, 1, . . . ,  k). 

Then 

E (i - 1)(i - k)ai = )~[(k - 1)(q - 1) + (ml3q - 1) - k(mq - 1)]. (16) 

Proof. Standard two-way count ing produces  the following equations:  

E a i = v - 2 = ml3q - 1. (17) 

E i a i  = k ( k -  2) = k(mq - 1). (18) 

E i ( i -  1)ai = h ( k -  1 ) ( q -  1). (19) 

f rom which the relat ion (16) follows. 

COROLLARY 3.2. Let D be a q.s. 2-(v, k, X) satisfy the hypothesis o f  Lemma 3.1. Suppose 

fur ther  every point triple o f  D occurs in at least one block. Then m13 - 1 < X(m - 1). 
Furthermore equality holds i f  and only i f  every point-tripIe is contained in 1 or k blocks. 

Proof  By the above l emma,  (k - 1)(q - 1) + (mf3q - 1) -< k(mq - 1), which implies 

m/3 - 1 < k(m - 1). Equal i ty  holds i f fai( i  - 1)(i - k) = 0, for all i. This implies ai = O, 
for i # 1 and  i # X. This  shows that m~ - 1 = ),(m - 1) i f f  every point- tr iple occurs 

in 1 or k blocks.  

We now give some definit ions and concepts needed.  Details not  given here may be found 

in  [2, p. 573]. 
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DEFINITION 3.3. A projective incidence space is an incidence structure S = (P, s  ~) 
satisfying the following Veblen-Young Axioms: 

(A1) Any two points p, q are on exactly one line p--~. 
(A2) I f  p, q, r, s are four distinct points and ifp-q and Yg intersect, the p? and ~-~ intersect. 
(A3) Every line has at least three points. 
(A4) There are two disjoint lines. 

An incidence structure is called cohesive if any two distinct points are on a line (= block). 
I f  p, q are two distinct points of a design D, then the line p-~ is the intersection of all blocks 
of D through p and q. Three points p, q, r are collinear if they are on a line, otherwise 
{p, q, r} are said to form a triangle. A plane P-0r is the intersection of all blocks of D 
containing the triangle {p, q, r}. A cohesive incidence structure with triangles is called 
smooth if  every triangle is contained in the same number  p of blocks (p _> 0). Denote 
the set of lines and planes of  an incidence structure S by L and P. 

LEMMA 3.4. Let D be a 2-(v, k, X) design. Suppose D is smooth. Then for  any line g, [gl 
= (Xk - pv)/(X - o), where P denotes the number o f  blocks containing any triangle. 

Proof [2, page 578]. 

LEMMA 3.5. Let D be a smooth 2-(v, k, X) design, and p a f ixed point o f  D. Let D '  be 
a tactical configuration whose points are the lines through p, and whose blocks are the 
blocks o f  D through p. Then D '  is a 2-design with parameters (v; b; r; k', X') given by 
v' = (v - 1)/q', k '  = (k - 1)/q; k' = P, r' = X, b' = r, where q '  + 1 is the (constant) 
line size o f  D, q '  >_ 1. 

Proof [2, page 579]. 

We are now in a position to prove one of our characterization theorems. 

THEOREM 3.6. Let D be a q.s. 2-(v, k, X) design with v = q4 + q3 + q2 + q + 1, k = q2 
+ q +  1, X = q 2  + q  + 1, x =  1, y = q +  1. 

Then the following are equivalent. 

(i) D ~- PG2 (4, q). 
(ii) Every plane meets every block. 
(iii) Every line has q + 1 points. 
(iv) The planes o f  D are precisely the blocks o f  D. 
(v) Any three points are contained in at least one block. 
(vi), There are constants/Zm, #2 (#1 # #2) such that any three points are contained in #1 

or #2 blocks. 
(vii) D is smooth. 
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Proof It is clear that (i) implies all the rest. Suppose (iii) holds and f is any line of D. Since 
y = q + 1, the X blocks containing e are mutually disjoint outside f and since v - (q + 1) 
= v - l e [ = X(k - l e L), it follows that any three points are contained in 1 or ), blocks, 
where the first possibility occurs iff the three points form a triangle. Hence D is smooth 
(with 0 = 1). Also then every block is a plane and vice versa. This implies that for any 
block B, the induced design D~ is a projective plane of order q. Using this the Veblen- 
Young axioms of  Definition 3.3 can be verified. Hence (iii) implies (i). 

Let (vii) hold. Then every three collinear points are contained in ), blocks and every 
three noncollinear points are contained in a fixed number p of blocks, p > 1. Corollary 
3.2 implies p = 1. Using Lemma 3.4, we obtain l e I = q + 1, for any line e. Thus (vii) 
implies (iii). Essentially the same argument shows that (v) implies (vii) and hence (iii). 
Let (vi) hold and suppose iz 1 < /z 2. If  1 _< /~1, then Corollary 3.2 forces 1 = / z  1 < /~a = X 
and hence (v) is proved. Otherwise/zl = 0 < /~2 = /z (say). Using Lemma 3.1, we get 
ao + a~ = v - 2, pa~ = (k - 2)k, and/z(/x - 1)a~ = X(X - 1)(q - 1), where a i = 
number of points p with the property that the triple (Pl, P2, P3) is contained in i blocks 
and (Pl, P2) is a fixed pair. This implies (/z - 1)(k - 2) = (X - 1)(q - 1), giving a non- 
integral solution for/x. This contradiction proves/z _ 1 and hence (v) is proved. Let now 
(iv) hold. Then p = 1 and Lemma 3.4 shows that l e I = q + 1, for all the lines e. Thus 
(iii) holds. Next let (ii) hold. Let B be any block. Since every line contained in B has size 
_< q + 1, B contains a triangle (Pl, P2, P3). Let P be the plane containing this triangle. 
Clearly then P __. B. For every p ~ B, p ~ Pi (i = l, 2, 3), there is at least one block 
on p meeting B in p alone. Since (ii) holds, this implies that p E P, i.e., P = B. Thus 
(ii) implies (iv). Conversely assume that (iv) holds. Since any plane P is generated by three 
noncollinear points say, (Pb P2, s). Let B be any fixed block containing (Pl, P2). Since 
B is a plane and since the line P i ~  has size _< q + 1 and is contained in B, it follows 
that for all p r P i ~ ,  (Pl, P2, P) is contained in B alone (otherwise the plane containing 
(Pl, P2, P) will have size _< q + 1, a contradiction). So every block containing (Pl, P2) 
other than B must intersect B in P-q-PS. Hence the line ~ has size q + 1 and hence (iii) 
holds. 

This completes the proof of Theorem 3.6. 
We shall need the following result of RJ. Cameron [7] about q.s. 2-designs, with x = 0 

and having a spread. 

THEOREM 3.7. Let D be a q.s. 2-(v, k, X) design with x = 0 and y > 1. Let D have a 
spread (i.e., a family o f  disjoint blocks which partition the points o f  D). Then one o f  the 

following holds: 

(i) ~, = 1 (equivalently y = 1). 
(ii) D is an affine design (i.e., v = m2y, k = my, )x = (my - 1)/(m - 1) and any two 

blocks disjoint from a common block are disjoint from each other) (equivalently D 
has a parallelism such that every parallel class partitions the point set o f  D).  

(iii) v = y(2y + 1)(2y + 3), k = y(2y + 1), X = y(2y - 1), where y >_ 2. 

The next result concerns q.s. 2-designs with x = 1. 
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THEOm~M 3.8. Let  D be a q.s. 2-design with parameters  v, k = mq + 1, k and  block inter- 
section numbers  x = 1, y = q + 1 (q >_ 2). Suppose D has a spread and is also smooth 
with any three noncollinear points contained in p blocks. Then, the following assertions hoM: 

(i) p = 1. 
(ii) Every line o f  D has size q + 1. 
(iii) For any block B o f  D, the induced design D B is a Steiner System with v* = mq + 1, 

k * = q  + 1, X * =  1. 
(iv) Every block is a p lane  and every p lane  is a block. 

Proo f  Since D is smooth,  we obtain from L e m m a  3.5, the 2-design D '  with parameters 
v'  = (v - 1)/q', b'  = r, r '  = X, k '  = (k - 1)/q', X' = p, where  q '  + 1 is the constant  
l ine size of D. Further  since D has a spread of/3 blocks, D '  also has a spread with [3 blocks. 
Also D ' i s  q.s. with x '  = 0, y '  = q/q '. Hence,  Cameron ' s  Theorem 2.7 is applicable to D'. 

First  assume y '  > 2. Then  by Theorem 3.7, D '  is either an affine design or D '  has param- 

eters of a special type. Suppose D '  is an affine design. Then  the parameters of  D '  are v '  = 
(v - 1)/q' = m'2y ', k '  = (k - 1)/q' = m'y" k' = p = (m'y '  - 1)/(m' - 1). This  implies 
that m = m '  = /3. Since D has a spread of 13 blocks and /3  = m, this means  that 3/ = 
(t3 - 1)/q = (m - 1)/q. Since 3/ is  an integer this gives q + 1 _< m. Next (10) and 3,= 
(m - 1)/q yield k = q(mq + 1)/(m - 1). Now since q '  + 1 is the (constant) l ine size 
of D, using L e m m a  3.4, we obtain p = X(k - q '  - 1)/(v - q '  - 1). Now using v = 1 + 
m2q, k = 1 + mq, k = q(mq + 1)/(m - 1), p = (mq - q ' ) / q ' (m  - 1), we get the rela- 
t ion (mq 2 + q + 1) = m2q/q'. Since y '  = q/q '  is an integer this means  that m divides 
q + 1, which yields m _< q + 1. This  now implies  m = q + 1. Using (mq 2 + q + 1) = 
m2q/q'agedn with m = q + 1, this gives q '  = q(q + 1)/(q 2 + 1) = 1 + (q - 1)/(q 2 + 1). 

Since q > 2, this means  that q '  is not  an integer, a contradiction.  
This  means  that i f y '  _> 2 is asumed,  then by Cameron ' s  Theorem 2.7, the parameters  of 

D '  must  be  v '  = y ' ( 2 y '  + 1)(2y' + 3), k '  = y ' ( 2 y '  + 1), X' = y ' ( 2 y '  - 1). Then  y '  = q/q', 
m '  = k ' /y '  = ((k - 1) /q ' ) / (q/q ' )  = m, gives m = 2y '  + 1. Also v' /k '  = ((v - 1)/q')/ 

((k - 1)/q') = /3, then gives 13 = 2y '  + 3. Since D '  is a q.s. 2-(v', k', X') design with 
x '  = 0, y', then using the wel l -known relation ( r '  - 1)(y' - 1) = (k'  - 1)(X' - 1), gives 
r '  = (2y '  + 1)(k' - 1) + 1 = X. Now, y '  = q/q '  implies q = y 'q '  and by (14), 2y '  + 1 = 
m _> q + 1. So q < 2y', which then gives y ' q '  _< 2y'. Hence  q '  < 2. Suppose q '  = 2. 
Then  q = 2y '  (which by L e mma  2.5) divides 13 - 1 = 2y '  + 2. This implies  2y '  divides 
2, which means  y '  = 1, again a contradiction. Thus q '  = 1, and hence q = y '  which divides 
2y '  + 2. This implies q divides 2. Since y '  ;~ 1, q = 2 = y'. This implies that the parameters 
of D '  are v '  = 70, k '  = 10, X' = 6. Hence  the parameters  o l D  are found to be v = 71, 
k = 11, X = 46.  A l s o q  = 2, 13 = 2 y '  + 3 = 7 g i v e s 7  = (/3 - 1)/q = 3. But then 
m = 5, q = 2, X = 46, 3' = 3 do not  satisfy (10) in Lem m a  2.6. Thus y '  = 1 and D '  
is a Steiner system. Hence  k '  = 1, p = X' = 1 and q/q '  = y '  = 1. Thus q = q'. Hence  
every l ine o l D  through a fixed p o i n t p  has size q '  + 1 = q + 1. Since p = 1, D is smooth 
with every three noncol l inear  points contained in  exactly one  block.  Since a l ine through 
a fixed point  p has size q + 1 and all l ines of D are of size q + 1 (by Lem m a  3.4), we 
get 1 + q = [X(mq + 1) - (mq13 + 1)]/(X - 1). This implies  that k - 1 = m(k - /~). 
But then by Corol lary  3.2, every point  triple occurs in 1 or k blocks. This essentially com- 
pletes the proof  of Theorem 3.8. 
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We are now ready to prove another  characterization result .  

THEOREM 3.9. Let  D be a q.s. 2-design with parameters  v, k = mq + 1, h and block in- 

tersections x = 1, y = q + 1 (q >_ 2.).  Assume D has a spread and is smooth. Then 

D ~ PG2 (4, q). 

Proof  By Theorem 3.6, it suffices to prove that D has the same parameters as those of 
PG2 (4, q). By L e m m a  3.4 and Theorem 3.8, we have 

q + 1 = (X(mq + 1) - o(mq/3 + 1))/k - p), where  O = 1. 

This implies the relat ion 

X -  1 = m(X - /3). (20) 

This  gives 

(m - 1)(X - 1) = m(/3 - 1). (21) 

So m - 1 d iv ides /3  - 1 = yq. Now use (10) of  L e m m a  2.6 to obtain, 

3"q(m - 3")/(m - 1) = (X - 1)(mq + 1)/k(q + 1). (22) 

Since m - 1 divides 3"q, this means  that the L.H.S.  of (22) is an integer. 
Consequent ly  so is the R.H.S.  This implies that X divides (k - 1)(mq + 1), which means 

k divides mq + 1. The relat ion (20) gives 

k - 1 = mu,  w h e r e u  = k - /3. (23) 

Thus k = mu + 1 and k divides mq + 1. This  implies  that 

t(mu + 1) = mq + 1, for some t >-- 1. (24) 

This  means  m divides t - 1, so either t = 1 or t _> m + 1. Suppose t :~ m + 1. Then  
(m + 1)(mu + 1) --< mq + 1, which implies mu < q. Consequent ly  m _< q. Again  by 

(10), y(m - 3/) >_ m - 1, and 1 _< 3" _< m - 1. Then  (22) implies (k - 1)(mq + 1)/ 
(kq(q + 1)) >_ 1. This yields mq + 1 >_ qZ + q. Now m _< q gives q2 + q < q2 + 1, 

which means  q _ 1. This  yields q = I and m = 1, and hence k = mq + 1 = 2, a con- 

tradiction.  Hence  t = 1 is the only possibil i ty and  from (24), u = q. Then  (23) gives 
X = m q +  1 = k ,  and(21)  shows that k = /3 + q  = m q +  1, g iv ing/3  = ( m -  1)q + 1. 
Then  3' = (/3 - 1)/q = m - 1 gives "y(m - "y)/(m - 1) = 1, Using (10), this implies 
( k -  1 ) ( m q +  1) = X ( q  z +  q ) . T h i s g i v e s m = q +  1. H e n c e k = m q +  l = q Z + q +  1, 
/3 = ( m -  1)q + 1 = q2 + 1, v = m / 3 q  + 1 = q 4  + q3 + q2 + q + l a n d X  = q2 + 

q + 1. Thus D has parameters  of PG2 (4, q). This  completes the proof of Theorem 3.9. 
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Our final result is the following. 

THEOREM 3.10. Let D be q.s. 2-(v, k, ~) design with k = mq + 1 and having x = 1, 
y = q + 1 (q -> 2). Let D have a spread consisting of/3 blocks through a fixed point. 
Suppose further that every point triple of  D is contained in at least one block. 

Then the following are equivalent. 

(i) D = PG2 (4, q). 
(ii) D is smooth. 
(iii) B = X - (k - 1)/m. 
(iv) Every line of  D has size q + 1. 
(v) Every three points are contained in 1.1 or 1"2 blocks, where t*l ;~ 1.2 are constants. 
(vi) The blocks of  D are planes and conversely. 
(vii) Every plane meets every block. 

Proof The equivalence of  (i) and (ii) is Theorem 2.9. Also (i) implies the rest of the state- 
ments. Let (iv) hold. Let a , /3 ,  3" be three distinct noncollinear point of D and e the line 
through a , /3 .  Let B be a block containing ce,/3, Y- Suppose E ~ B also contains a , /3 ,  3'. 
Then I E O B] = q + 1 = ]el, a n d g  ___ B O E i m p l i e s B  O E = g. This implies 
7 E B n E = e, a contradiction. So any three noncollinear points are contained in a con- 
stant number p (=1) of blocks of D. This shows that D is smooth, giving (ii). Statement 
(iv) also shows that any three points are in 1 or ~ blocks. 

Let (iii) hold. Then by Corollary 3.2, D is smooth, i.e., (ii) holds. Let D satisfy (v). 
Suppose 1*a < 1.2. Then we must have 1 _< #1 < #2. Let o~, /3, 3' be any three collinear 
points. Then it is easily seen that c~,/3, 7 are contained in exactly X blocks. This implies 
that 1.2 = ~" Let now ~ /3, 3" be any three noncollinear points. Suppose, if  possible, that 
they are contained in 1.2 = ~k blocks. Then 3' is contained in all the X blocks through c~, 
/3. This implies that 3' is on the line through a , /3 .  This contradiction shows that any three 
noncollinear points are contained in a constant number p (=1.1) of blocks. This shows that 
D is smooth--i .e . ,  (ii) holds. 

Let (vi) hold. I f  (Pl, P2, P3) is a triangle contained in two different blocks B, C (say), 
then the plane (PlPzP3) is contained in B n c ,  a contradiction. Thus D is smooth (with 
P = 1) and hence (ii) holds. 

Finally let (vii) hold. Suppose a triangle (Pl, P2, P3) is contained in two different blocks 
B a n d  C. Then we can find a block E so that [E n BI  = l a n d  [E n B n c I  = o. 
This contradicts (vii). This implies that there is a unique block through (Pl, P2, P3). Hence 
D is smooth (with p = 1) and (ii) holds. This shows the equivalence of the conditions (i)- 
(vii) and completes the proof  of  Theorem 3.10. 
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