
Designs, Codes and Cryptography, 5, 189-197 (1995) 
�9 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Thwarts in Transversal Designs 

CHARLES J. COLBOURN 
Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 

JEFFREY H. DINITZ 
Mathematics, University of Vermont, Burlington, Vermont, U.S.A. 05405 

MIECZYSLAW WOJTAS 
Institute of Mathematics, Technical University of Wroclaw, Wroclaw, Poland 

Editor: R. C. Mullin 

Received January 21, 1994; Revised July 8, 1994 

Abstract. A subset of points in a transversal design is a thwart if each block in the design has one of a small 
number of intersection sizes with the subset. Applications to the construction of mutually orthogonal latin squares 
are given. One particular case involves inequalities for the minimum number of distinct symbols appearing in an 
c~ x/~ subarray of a n x n latin square. Using thwarts, new transversal designs are determined for orders 408, 
560,600, 792, 856, 1046, 1059, 1368, 2164, 2328, 2424, 3288, 3448, 3960, 3992, 3994, 4025, 4056, 4824, 5496, 
6264, 7768, 7800, 8096, and 9336. 

1. T h w a r t s  

A transversal design of order n and blocksize k, or TD(k;  n), is a triple (X, G,/3), where 

X is a set o f k n  elements. ~ = {G~ . . . . .  Gk} is a partition of X into k sets each of size n; 
each class of the partition is a group. /3 is a set of k-subsets of X, with the property that 

each B 6 / 3  satisfies IB fq Gil = 1 for each 1 < i < k; sets in /3  are blocks. Finally, each 
unordered pair of elements in X occurs together either in a group, or in a single block, but 

not both. 

A incomplete transversal design of order n and blocksize k with holes of sizes h 1 . . . . .  he, 
or TD(k ;  n) - Y~=I TD(k;  hi), is a quadruple (X, 7-(, ~, /3).  X and G are as before. ~ = 

{ H1 . . . . .  He } is a set of pairwise disjoint subsets of X, with the property that [Hi fq G il = hj 
for 1 < j < s and 1 < i < k; each Hi is a hole. Then/3 is a set of k-subsets of X as before, 
with the property that every unordered pair of elements from X is either in a hole or group 
together, or in exactly one block of 13. 

Naturally, if there exist TD(k;  hi) for 1 < i < s and also a TD(k;  n) - Y]~-I TD(k;  hi), 
then there exists a TD(k;  n). This observation is used heavily in the construction of 
transversal designs [4]. The main application is the use of incomplete transversal designs 
in conjunction with Wilson's theorem 1. I. 

THEOREM 1.1 (Wilson) Assume there exists a T D ( k  + x; n) with groups G1 . . . . .  Gk, 
H~ . . . . .  Hx containing a subset S o f  ill . . . . .  Hx where I SI = s. Let sj = IS fq Hj I f  or each 
1 < j < x, and assume also that fo r  each block B ~ 13 there exists a TD(k;  m + uB) - 
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uBT D(k ;  1), where u8 = tB A SI, then there existsa 

x 

TD(k ;  mn + s) - Z TD(k ;  s)). 
j= l  

I f  in addition a T D(k; sj) exists for  each 1 5_ j <_ x, then a T D(k; mn + s) exists. 

We shall use a restricted form of Wilson's theorem. Let x be a nonnegative integer, and 
let Z = {il . . . . .  is} with 0 _< il < i2 < . . .  < is < x. Further suppose that 0 _< sl _< 
s2 <_ - . .  < Sx < n. Let (X, G, B) be a T D(k  + x ;  n) with ~ = {GI . . . . .  Gk, H1 . . . . .  Hx}. 
Then an (x, Z, sl, s2 . . . . .  Sx)-thwart is a set S = U j x l  Sj, where S 1 c_ Hj with ISj[ = sj 
for each 1 _< j < x, such that for every B c /3 ,  [B A S [ c  2-. 

Using this definition of thwarts, a restricted form of Wilson's theorem is: 

THEOREM 1.2 I f  a T D(k  + x; n) exists having an (x ,Z ,  S1, $2 . . . . .  Sx)-thwart, and if  for  
every i ~ Z there exists a T D(k; m + i) - i T  D(k; 1), then there exists a 

( T D  k ; m n +  sj - E T D ( k ; s j ) "  
j= l  j= l  

I f  in addition, a TD(k ;  sj) exists for  each 1 < j < x, then a TD(k ;  mn + ~]=l  sj) exists. 

We remark that a T D (k; m + i) always has i disjoint blocks for i < 3 unless k = m + i + 1 
[2], and hence the hypothesis can be relaxed to require only a TD(k ;  m + i) when i _< 3. 
When i > 3, we can delete one group from a T D ( k  § 1; m § i) to obtain the i disjoint 
blocks. We also note that value of the parameter m in Theorem 1.2 often is referred to as 
the weight of the construction. 

A more general form using thwarts can be obtained by employing weights other than one 
on the  points of  the thwart. Of  course, Theorem 1.2 is only productive when one can find 
ingredients with sufficiently large blocksizes. When Z = {0, 1 . . . . .  x}, Theorem 1.2 is 
just the usual application of Wilson's theorem obtained by truncating x levels, and is used 
extensively when x ~ { i, 2} [3]. Our goal is to find thwarts when Z is a proper subset of  

{0, l . . . . .  x } .  
The most obvious case where thwarts exist is the case of  a transversal design TD(k ;  n) 

which contains a sub-transversal design TD(k;  m). We have the following lemma in this 
situation. 

LEMMA 1.3 l f  there exists a T D(k  + x; n) containing a sub T D(k + x; m), then there exists 
a (x, {0, 1, x}, m, m . . . . .  m)-thwart in the T D ( k  + x; n). 

Proof Any block of the transversal design contains either 0 or 1 point of the subdesign or 
is completely contained in the subdesign. �9 

Let us mention one well-known instance of  such thwarts, corresponding to the presence 
of  a sub-transversal design in the transversal design arising from the projective plane: 
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LEMMA 1.4 If  p is prime, and ~ and ~ are nonnegative integers with/3 I or, then there 
exists a T D ( p  ~ + 1; pa) containing a (p~ + 1, {0, 1, p# + 1}, p~, p~ . . . . .  p#)-thwart. 

This lemma appears to be of  limited use in the manufacture of  transversal designs, how- 
ever. 

Before treating some classes of  thwarts, we establish a simple (but useful) preliminary 
result. Given a set 2", let 2"x = {x - i : i ~ 2}. 

LEMMA 1.5 If  a TD(k  + x; t) contains an (x, 2", sl . . . . .  sx)-thwart, it also contains an 
(x, 7.x, t - sl . . . . .  t - sx)-thwart. 

Proof. Simply complement the sets S1 . . . .  Sx with respect to the respective groups 
containing them. �9 

2. Subsquares in Latin Squares 

A latin square of side n is a n • n array, in which each entry contains a single symbol from 
a set S of  size n; moreover, every symbol occurs precisely once in each row and in each 
column. Evidently a TD(3;  n) is equivalent to an n • n latin square. Moreover, truncating 
blocks of a TD(k; n) by eliminating all elements in k - 3 groups yields a TD(3, n). Thus 
the presence of thwarts when Z c {0, 1, 2, 3} amounts to a question on latin squares arising 
from three levels of  a transversal design. 

Consider a thwart with 2- = {0, 1, 3} and x = 3. Examine the latin square corresponding 
to the three groups of  the thwart. A thwart is then a selection of rows, columns and symbols 
of  the latin square so that whenever two of row, column or symbol are among the chosen 
values, the third is also among them. Thus a thwart is simply a latin subsquare in this case. 

To apply Theorem 1.2, it remains to find latin subsquares on three levels of a TD(k + 
3; n), preferably with k "large". Suppose then that n is a prime power, and consider the 
TD(n + 1; n) arising from the finite field construction (see, for example, [2]). In the 
corresponding set of  n - 1 mutually orthogonal latin squares, one square L is defined by 
L (i, j )  = i + j in G F(n)  for 1 < i, j < n. It follows that a T D(p'~ + 1; p~) contains three 
groups corresponding to a latin square with subsquares of order p~ for each 0 < / 3  < or, 
and hence: 

LEMMA 2.1 For O < k < p~ - 2  and O </3 < or, there exists a T D(k + 3 ; p") containing 
a (3, {0, 1, 3}, p#, p#, p#)-thwart. 

COROLLARY 2.2 I f  there exists a T D(k; m), T D(k; m + 1) and T D(k; m + 3) and k < 
p# + 1, then there exists a T D(k, mp ~ + 3p~). 

In particular, taking p = 2,/3 = 4, ot = 5, m = 16 and k = 17, we find by this Corollary 
a TD(17;  560) (Brouwer [3] reports a TD(9;  560)). 

One can also consider the complementary thwart using Lemma 1.5, to obtain a (3, {0, 2, 3}, 
p'~ - p~, p'~ - p~, p~ - p~)-thwart. Again taking p = 2 and/3 = ~ - 1, we obtain a 
TD(k; (2m + 3)p  t~) when k < pt~ + 1 and TD(k; m), TD(k; m + 2) and TD(k; m + 3) 



192 CHARLES J. COLBOURN ET AL. 

all exist. Taking, for example, m = 125, we have TD(126; 125), TD(126; 127) and 
TD(126; 128) since all are prime powers. Thus with/3 = 5 and k = 33 we obtain a 
TD(33; 8096). 

We have seen that a TD(p/3  + 1; pt~) is contained in a T D ( p  ~ + I; pa) if and only if 
/3 I or. However, this condition is not necessary for the containment of a T D ( k ;  ptJ) with 
k < p~ + 1. In particular, we can find a TD(6; 25) in a TD(126; 125), and hence a 
(6, {0, 1, 6}, 25, 25, 25, 25, 25, 25)-thwart. Applying Theorem 1.2 with weight 31 (using 
{31, 32, 37}), we produce a TD(26; 4025). 

3. Subarrays of Latin Squares 

In this section, we examine thwarts with 2- = {0, 1, 2} and x = 3. A (3, {0, 1, 2}, a, b, c)- 
thwart in a T D ( k  + 3; n) also appears in a suitably truncated TD(3; n), or latin square. In 
fact, such a thwart arises from a set of a rows, b columns, and c symbols, with the property 
that none of the c symbols occurs in an array element that is both in a chosen row and in a 
chosen column. In other words, there is an a x b subarray containing at most n - c symbols. 

Let/~n be the set of all distinct latin squares of side n. An ot • subarray of a latin square 
L is an array obtained by retaining the entries in a fixed set of ot rows and/3 columns of 
L. Let Sq,t~(L) be the set of all ot • subarrays of L. For an array A, let cr(A) denote the 
number of distinct symbols in the entries of A. 

We consider the following question: Determine 

rn (ot, fl) = maxL~s )cr ( A ). 

In other words, Vn (oe,/3) is the smallest number of distinct symbols so that one can guarantee 
that every n • n latin square contains an ot x fl subarray on at most this many symbols. 

Evidently r,  (or,/3) = ro (/3, o0. Our interest in this function is the following: 

LEMMA 3.1 I f c  < n -- r , (a ,  b), then every T D ( k  + 3; n) contains a (3, {0, 1, 2}, a, b, c)- 
thwart, and  its complementary  (3, {1, 2, 3}, n - a, n - b, n - c)-thwart. 

Wojtas [5] used the inequality rn(a, b) < ab - max(a, b) + 1 in applying Theorem 1.2. 
It is natural to ask for improvements to the simple bound, both for latin squares in general, 
and for latin squares arising from specific transversal designs. 

3.1. Some Inequalities 

We start with some trivial computations: 

LEMMA 3.2 

r . ( o , / 3 )  = 

zn(1, t )  = 
rn(2, t )  = 
rn(2, n) = 

0 (o_</3 _n)  
fi (1 < f l _ < n )  

f l + l  ( 2 _ < f l _ < n - 1 )  
n 
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Proof For r~ (2,/~), proceed as follows. In an arbitrary n x n latin square L = (eij), choose 
two rows arbitrarily. Now choose a set of/~ columns, taking the first arbitrarily. In choosing 
the j t h  column, the first j -  1 choices account for either j or j -  1 symbols in the entries of  the 
two fixed rows. I f  they contain only j - 1, choose the j th  column arbitrarily. Otherwise, 
one of the j symbols appears in a column not yet chosen, so include such a column. 

[] 

Next we consider an inequality from a simple greedy strategy: 

LEMMA 3.3 If or + ~ < n, then 

Proof Consider an c~ x /~  subarray with Y distinct symbols. Consider the occurrences 
of  symbols in the chosen/~ columns and the remaining n - ot rows. Of  these/~(n - a )  
entries, at least/~(Y - ot) are occupied by symbols already in the subarray. Thus we may 
choose a row to append that contains at least t~(y-,~) entries with symbols already seen; the n I t ~  

remaining symbols in the new row are all distinct since the square is latin. Thus the chosen 
row could add as many as/~ ~@-~) symbols to those already seen. Thus we have n-c~ 

(the number of  additional symbols must be integer.) Since/~ < n - oe, this is maximized 
when y = rn (or,/3), and the proof is complete. [] 

Finally, we examine the use of conjugates of  the square: 

LEMMA 3.4 r,, (or, n -- rn (or, fl)) < n -- ft. 

Proof Consider an ~ • fl subarray on r(c~, fl) symbols. Conjugate the square by in- 
terchanging the roles of columns and symbols. The conjugate of  the chosen subarray is 
an a x r(ot, fl) subarray containing all occurrences of  fl symbols. Considering then the 
complementary set of  columns yields the inequality. [] 

To illustrate the strength (weakness?) of  these lemmas, we give below their conse- 
quences for n = 17. We present a 17 x 17 matrix whose (i, j )  entry is an upper bound on 
~17(i, j ) :  
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1 2 3 4 5 6 7 8 9 i0 ii 12 13 14 15 16 17 

2 3 4 5 6 7 8 9 I0 ii 12 13 14 15 16 17 17 

3 4 6 8 9 ii 12 12 13 14 14 15 15 16 17 17 17 

4 5 8 10 ii 12 13 14 14 15 15 15 16 17 17 17 17 

5 6 9 ii 13 13 14 14 15 15 15 16 17 17 17 17 17 

6 7 ii 12 13 14 15 15 15 15 16 17 17 17 17 17 17 

7 8 12 13 14 15 15 15 15 16 17 17 17 17 17 17 17 

8 9 12 14 14 15 15 15 16 17 17 17 17 17 17 17 17 

9 i0 13 14 15 15 15 16 17 17 17 17 17 17 17 17 17 

i0 ii 14 15 15 15 16 17 17 17 17 17 17 17 17 17 17 

Ii 12 14 15 15 16 17 17 17 17 17 17 17 17 17 17 17 

12 13 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 

13 14 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17 

14 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 

15 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 

16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 

These bounds may be quite weak for a,/~ > 3. In fact, determining rn (3, 3) already 
appears to be difficult. One can prove that rn (3, 3) > 5 for infinitely many values of  n (for 
example, in the cyclic squares of prime order at least 5). However, determining whether 
rn (3, 3) < 5 in general is open. 

3.2. Primes and Primepowers 

As with subsquares, in certain cases we need not treat arbitrary latin squares. Again we 
consider the addition latin square in the T D ( p  ~ + 1; p'~) to obtain: 

LEMMA 3.5 For p a prime, 0 < k < p~ - 2, there is a T D(k  + 3; p~) containing a 

(3, {0, 1, 2}, a, b, c)-thwart and its complementary (3, { 1,2, 3}, n - a ,  n -  b, n -  c)-thwart, 

whenever a + b + c < n + 1. 

Proof. Consider the subarray formed by the first a rows and the first b columns of  the 
cyclic latin square. This a x b subarray has at mos ta  + b  - 1 distinct symbols. Thus if these 
a rows and b columns are deleted, it suffices to retain n - c > a + b - 1 symbols in order 
to obtain a (3, {1, 2, 3}, n - a, n - b, n - c)-thwart. Thus a + b + c < n + 1 as required. 

This lemma leads to new constructions for transversal designs. In Theorem 1.2 use 
T D ( k  + 3; n) with the following (3, {1,2, 3}, a, b, c)-thwarts to obtain T D ( k ;  m n +  a + 

b q - c ) .  



THWARTS IN TRANSVERSAL DESIGNS 195 

k n m m n + a + b + c  a b c 

11 27 78 2164 16 17 25 
12 19 208 3992 11 13 16 
12 19 208 3994 13 13 16 

Abel [ 1 ] recently found a T D (11; 80) that is employed in the first case here. This implies 
in addition the existence of TD(10; x) for each x 6 {79, 80, 81, 82, 83}. Thus one can 
consider truncations of more than three levels. 

A (3, {1, 2, 3}, a, b, c)-thwart in a TD(k;  n) ensures the presence of a (4, {1, 2, 3, 4}, 
a, b, c, d)-thwart for all 0 < d < n. Using this simple observation, we obtain again by use 
of Theorem 1.2 two additional new results for existence of transversal designs: 

k n rn m n + a + b + c + d  a b c d 

10 13 78 1046 9 9 13 1 
10 13 79 1059 9 9 13 1 

One can exploit further properties of the squares to obtain better bounds. For example, 
in the cyclic squares of primepower (but not prime) order, subsquares appear for each 
divisor of the order. Naturally we obtain subarrays with fewer contained symbols from 
such subsquares. 

4. An Affine Subspace 

Brouwer [3] observes that the desarguesian projective plane PG(2 ,  q) contains an affine 
plane AG(2,  3) whenever q -- 0, 1 (rood 3) and q is a primepower. Thus we have: 

LEMMA 4.1 For n -- 0, 1 (mod 3) a primepower, there exists a T D(n + 1; n) containing 
a (4, {0, 1, 3}, 2, 2, 2, 2)-thwart. 

Proof  Form the T D  by removing any point of the AG(2, 3). m 

We find more use for the complementary thwart, a (4, { 1, 3, 4}, n - 2, n - 2, n - 2, n - 2) 
thwart. In particular, when n and n - 2 are both prime powers, we can apply weight 28 
(using TD(30; x ) f o r x  6 {29, 31, 32})or 124 (using TD(126; x ) f o r x  6 {125,127, 128}). 
The following new transversal designs TD(k;  t) can then be produced by Theorem 1.2: 
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t k m n 

408 10 28 13 
600 16 28 19 
792 22 28 25 
856 24 28 27 

1368 30 28 43 
2328 30 28 73 
2424 16 124 19 
3288 30 28 103 
3448 24 124 27 
3960 28 124 31 
4056 30 28 127 
4824 30 28 151 
5496 40 124 43 
6264 46 124 49 
7768 30 28 243 
7800 58 124 61 
9336 70 124 73 

One can also exploit the presence of other affine subdesigns, although general results en- 
suring their presence are not known. For example, the desarguesian plane PG(2, 49) con- 
tains a subplane PG(2,  7) and hence also an AG(2, 7). Thus there is a TD(50; 49) contain- 
ing a (8, {0, 1,7}, 6, 6 . . . . .  6)-thwart and its complementary (8, {1, 7, 8}, 43, 43 . . . . .  43)- 
thwart. 

General results ensuring the presence of other affine subdesigns, or indeed any thwarts 
corresponding to group divisible designs, appear to be of value in the construction of new 
transversal designs. 

5. Conclusion 

In this paper we have introduced the notion of thwarts in transversal designs. These are 
interesting subconfigurations of the transversal design that are particularly useful for finding 
new transversal designs via a restricted version of Wilson's Theorem. 

Let N(n) denote the maximum number of mutually orthogonal latin squares of order n. 
It is well-known that N (n) > k if and only if there exists a transversal design T D (k § 2; n). 
In the table below we summarize our new results on transversal designs in terms of N(n). 
The old bounds are all from [3]. We also list the section of this paper where the new bound 
is obtained. 
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n N(n )  > old N(n)  Section n N(n )  >__ old N(n)  Section 

408 8 7 4 560 15 7 2 
600 14 10 4 792 20 16 4 
856 22 18 4 1046 8 7 3.2 

1059 8 7 3.2 1368 28 7 4 

2164 9 7 3.2 2328 28 7 4 
2424 14 10 4 3288 28 7 4 

3448 22 18 4 3960 26 22 4 

3992 10 8 3.2 3994 10 8 3 2  
4025 24 15 2 4056 28 8 4 

4824 28 10 4 5496 38 8 4 

6264 44 40 4 7768 28 8 4 

7800 56 52 4 8096 31 30 2 

9336 68 11 4 
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