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Summary. The "energy in a small disturbance" in a viscous compressible heat- 
conductive medium is defined as a positive definite quant i ty  characterizing the m e a n  
level of fluctuation in the disturbance which, in the absence of heat transfer a t  t h e  
boundaries and of work done by boundary forces or body forces, and in the absence 
of heat and material sources, is a monotone non-increasing function of time. For 
small disturbances a quant i ty  satisfying these requirements is found. When viscosity 
and heat conductivity are neglected, it reduces to the familiar acoustic energy in 
the theory of sound. Stability in the mean of such a fluid system can thus be discussed 
with reference to the growth and decay of the energy in the disturbance. 

The effects of body forces, heat and material sources are discussed. I~AYL~IG~'S 
criterion for the staI~ility of systems involving heat sources is derived and its limitations 
shown. Transfer of energy from a steady main stream to a disturbance is then examined, 
and the particular case of a parallel main stream is worked out in detail. The last 
analysis will be useful in the discussion of the mechanism of hydrodynamic instability 
for a viscous compressible heat-conductive flow. I n  addition to the work done by 
the ~:~EY~7OLD'S stress, there is another major energy transfer term caused by the 
transport of entropy spots across layers of fluids of different mean temperature. 

Zusammenfassung. Die ,,Energie in einer kleinen StSrtmg" in einem z~hen, 
kompressiblen und w~rmeleitenden Medium wird als eine positiv definierte GrSl3e 
eingefiihrt, welche die mittlere Schwankung in der StSrung eharakterisiert und bei 
Abwesenheit yon W~rme- mid Massequellen eine monoton nieht anwachsende Funk-  
tion der Zeit ist, falls kein W~rmeiibergang an der Oberflgche stattfindet und keine 
Arbeit von den Oberfl~chcn- und Volumskr~ften gcleistet wird. Fiir ldeine StSrmigen 
wird eine solehe Funkt ion  angegeben. Sie reduziert sich, weun Z~higkeit und W~rme- 
leitung vernaehliissigt werden~ auf die bekalmte akustische Energie in der Theorie 
des Schalles. Mit Hilfe des Anwaehsens und Abnehlnens der StSrungsenergie kann  
dann die Stabilit~t im Mittel diskutiert werden. 

Die Einfliisse der Volumskr~fte und der YV~rme- und Massequellen werden 
besproehen. ])as RA~Em]~sche Kri ter ium ffir die Stabilit~t eines Systems mit  
W~rmequellen wird hergeleitet mid sein Geltungsbereich gezeigt. Der Energie- 
iibergang yon der statloni~ren HauptstrSmung auf dm StSrungen wlrd untersucht 
und der Sonderfall der Parallelstr5mung im einzelnen ausgearbeitet. Letztere Unter- 
suchung erscheint niitzlich bei der Diskussion des Mechanismus der hydrodynamisehen 
Instabflit~r in einer zi~hen, kompressiblen, w~rmeleitenden StrSmtmg. Zus~tzlich zur 
Arbeit, die von den l~x~oLDssehen Spalmungen geleistet wird, gibt es noch ein 
weiteres wichtiges Energiefibertragungsglied, das yore Transport yon Entropienestern 
quer dureh Fliissigkeitsschiehten mit  verschiedener mittlerer Temperatur herriihrt. 

* Part  I of this paper originally appeared as a report prepared under U. S. Air 
Force Contract AF 18 (600)-1121 with the Johns Hopkins University�9 
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Notations 
= velocity of sound of the flow. 
= velocity of sound in the main stream. 
= sound speed in an undisturbed uniform medium. 
= specific heat at constant pressure. 
= specific heat ut constant volume. 
----defined by Eq. (33 e). 
= energy in a disturbance; see Eqs. (9) and (34). 

/~u~ ~uJ t : rate of strain tensor =~ axj ~- ax i I" 

~-component of body force per unit  muss in the xi-direction. 
= component of body force per unit  mass in the x-, y-direction, 

respectively. 
---- gravitational acceleration. 
= a non-negative quanti ty;  see Eq. (27). 
- -def ined by Eq. (33 g). 
= indices: 1, 2, or 3; summation convention being used 

K 

/~  K0 = 
K t = 

M ~  m r = 

7 b ~  

p =  

~9 r = 

~0 0 = 
Q, 
Q* 
R 
S =  

S =  
S I ~_  

T =  

T =  
T r = 

T o 

! 
g i  = 

throughout. 
coefficient of conductivity. 

K at T = T and T = To, respectively. 
K - / A  

rate of mass production per unit  volmne. 

normal vector at the boundaries. 
pressure of the flow. 
pressure of the main stream. 
pressure in the disturbance. 
pressure in an undisturbed uniform medium. 

: rate of heat release per unit  volume. 
= defined by Eq. (43). 
= gas constant. 

entropy of flow. 

entropy of the main stream. 
entropy in the disturbance. 
entropy in an undisturbed uniform medium. 
temperature of flow. 

temperature of the main stream. 
temperature in the disturbance. 
temperature in an undisturbed uniform medium. 
time. 
component of velocity of flow in the xi-direction. 
component 
component 
component 
component 

of velocity of the main stream in the x~-direction. 
of velocity of the disturbance in the x~-direction. 
of velocity of flow in the x-direction. 
of velocity of the main stream in the x-direction. 
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u' : component  of velocity of the disturbance in the x-direction. 
v' = component  of velocity of the  disturbance in the y-direction. 

xi & (x, y) = Cartesian coordinates. 

(~i~ ~ K R O N E C K E R  delta. 

~ ~ viscous dissipation function -- ~- r~j e~ . 
- -  I 
~5 = ~ - ~ j  e~. ~> O. 

1 
qh' = ) - ~ i /  e~/ >~ O. 

: densi ty  of flow. 
: dens i ty  of the main  stream. 

9 ' -  densi ty  of the  disturbance.  
9o : densi ty  in the  undis turbed uniform medium. 

a ~ - :  stress tensor in the  flow field. 
~ j  : stress tensor in the main  stream. 

a i / :  stress tensor in the  disturbance,  Eq. (4). 
d a - - a n  element  of surface area. 
~ .  : viscous stress tensor in the flow field. 
~i~. -- viscous stress tensor in the  main stream, Eq. (30 a). 

v ~ j ' =  viscous stress tensor in the disturbance, Eqs. (4) and (33 a). 
wit* = defined by  Eq.  (33 f). 

d~ : a volume element.  
# : coefficient of viscosity. 

fi,/~0 = coefficient of viscosity at  T = T and T = To, respectively. 
d~ 

k : defined by  Eq. (24 a). 

Bar  . . . . .  signifies t ha t  quantit ies to which i t  is a t tached are associated 
with the main stream, e .g. ,  i~ denotes the main  s tream 
pressure. 

Prime ..... signifies t ha t  quantit ies to which i t  is a t tached  are associated 
with the disturbance, e. g., p '  denotes the pressure in the  
disturbance.  

Subscript "o" signifies t h a t  quanti t ies to which i t  is a t tached  are associated 
with the undis turbed uniform state, e .g. ,  /90 denotes the  
undis turbed pressure. 

I. Introduction 

The "energy in a small d is turbance"  is a very  useful concept. Firs t ,  
i t  enables us to unders tand  why  and how a disturbance is amplified, and 
provides some indications as to  the  mechanism of instabi l i ty  in m a n y  
flow systems. Secondly, i t  is the  foundat ion  upon which the proof of 
uniqueness of solution of m a n y  correctly formulated initial-value problems 
depends. 

15" 
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Precisely what is the energy in a disturbance is rather difficult to 
define. We shall venture to give a functional definition after considering 
a few special examples where such a concept is used and generally accepted. 
But, to avoid any misunderstandings, it is necessary to define first what 
is meant by the terms "disturbance" and "main stream" used in this 
paper, since these terms are known to be used in more than one sense. 

In our study any time-independent solution of the basic equations 
governing the motion of a fluid can be considered as a "main-stream", 
and any deviation from this solution will be described as a "disturbance". 
For a given physical set-up, the boundary conditions usually determine 
one and only one time-independent solution. This solution may be taken 
as the main stream. Any small deviation from the main stream is a small 
disturbance. In the course of time this small disturbance may grow or 
decay. In  this paper we shall be interested in small disturbances only. 

The definition given above for the main stream automatically rules 
out the possibility tha t  the main stream may vary with time. Furthermore, 
for space-wise periodic disturbances, the above definition of disturbance 
does not guarantee tha t  the fluctuations in it, averaged over one wave 
length, is necessarily zero. 

Let us now consider a few special instances in which the concept of 
energy in a disturbance has been introduced and generally accepted. In  
an incompressible medium, the energy in a small disturbance is usually 
taken to be its kinetic energy. On this basis, I~Eu shows tha t  the 
main factor responsible for the growth of a small disturbance in an in- 
compressible flow is the work done by the I~EYNOLD'S stress [1]. Indeed, 
LIX [2] contributed much in clarifying the mechanism of stability of 
laminar boundary layer by a study of this energy production term. In 
acoustics, the energy in a small disturbance is taken as the sum of the 
kinetic energy of the disturbance plus the energy of condensation. On 
this basis, it is possible to derive an energy production term for systems 
involving heat release [3] which is a mathematical description of a 
criterion first stated by I~AYLEIGg [4]. t~AyLS.mg'S criterion has been 
used extensively in explaining the cause of instability in many thermal 
acoustic systems by t~AYLEm~I himself [5] and in recent years by many 
other authors. 

In  the case of an incompressible medium, the main stream acts as 
the energy source while in the thermal acoustic systems, the heat sources 
supply the energy to the disturbance. Two things stand out clearly from 
the  above examples. First, the energy in a disturbance must be a positive 
definite quanti ty having the dimension of the energy. Secondly, if there 
are no energy sources in the system, the energy in the disturbance must 
be a monotone non-increasing/unction o/time. Whether these two properties 
are sufficient to define uniquely the energy in a disturbance is not obvious. 
Itowever, they do limit greatly the possible choice as to which quanti ty 
may represent the energy in a disturbance. 

Part  I of this paper deals with the energy in a disturbance in a perfect 
gas and an incompressible fluid. The search for such a quanti ty is not 
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only of basic importance in understanding the mechanism of instability 
of many flow systems where conduction and viscous effects are important,  
but  it also allows one to examine from a single point of view the different 
physicaI phenomenon involving the question of stability, whether it be 
purely hydrodynamical or thermal or gravitational. 

II, Energy in Small Disturbances 

The state of a flow field is specified when the pressure p, density Q, 
temperature T, and velocity ui (i = 1, 2, 3), are known as functions of 
the space and time variables: xi and t. The six unknowns: p, ~, T, Ux, 
us, u3, are governed by  the six equations: 

@ @ us -- 0, (1 a) 

~ui ~ui _ ~aij i --~ 1, 2, 3, ( lb)  ~ -r ~ u~. ~zj ~xj ' 

~I' ~ '  ~ u j _  ~ (K ~l' ) 

and the equation of state. In these equations, aii denotes the stress tensor, 
and r denotes the viscous dissipation function. They are related to the 
velocity field through the viscous stress tensor, z~j, and the rate of strain 
tensor, e i j .  Thus, 

w h e r e  
1 

Ti]  -~ /~ eir - -  - ~  ek]c 6i i, (2b) 

~u~ ~uj (2 c) 

and 

1 # 
r = ~ j  e~j = -~  [ ( e ~  - e~)~  + ( e ~  - e~)~  + (e~3 - e ~ )  ~ + 

+ 6 (e~e 2 + e232 + %2)] >~ 0. (2d) 

C~, #, and K in the equations denote respectively, the spezific heat at 
constant volmne, coefficient of viscosity, and coefficient of heat conductivity 
of the medium. They are, in general, functions of the temperature and 
the pressure. For simplicity, we assume that  C~ is a constant 1 and neglect 
the pressure dependence of the viscosity and conductivity, which is 
small for a gas under normal conditions. Unless the contrary is explicitly 
indicated, we shall take our medium as a perfect gas whose equation of 
state is 

p - ~  e R T ( ld)  

In actuality, results obtained in this and the following section are not affected 
by the assumption. I t  is relevant only in Section IV. 
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where R is the gas constant. On several occasions, we shall make comparisons 
between our results and the case when the medium is an incompressible 
fluid, for which medium the equation of state is ~ = a constant. 

In a uniform homogeneous medium at rest u~ = O, and p, o, T, #, 
and K are all constant. The latter will be denoted by po, ~0, etc. Suppose 
that  some small disturbances are introduced into the system. The pressure, 
velocity, density, etc., will then be p = /9  0 § p', u~ = ui ' ,  ~ = ~o § ~', 

I ol'" < etc.,where ~ .  ~ 1, ~ 1, 1, etc., (% = being the sound 

velocity). Substituting these into the system (1 a)-(1 d) and neglecting 
all quadratic terms of the small quantities, one obtains the following 
linearized system: 

w h e r e  

o- i i ~ 

~" + ~r = O, at ~o axj 

aUi" __ ~(YiJ 
~176 at ax~ ' 

aT '  ~ur __ a2T" 

pc + -~o 

: - - P ' ~ i j + z i J  : -- #o\ axj § ax~!-~#~ 

(3a) 

(35) 

(30) 

(3d) 

(4) 

For an incompressible fluid, (3 d) must be replaced by o' = 0. The system 
of equations governs the change of the six variables: p', e', T', u( ,  and, 
therefore, the evolution of the disturbance. What  is the total energy 
in such a disturbance? The energy in the disturbance should be a positive 
definite quanti ty which, in the absence of heat transfer at the boundaries 
and of work done by them, must be a monotone non-increasing function 
of time; the rate of change of the quanti ty should depend on the coefficients 
of viscosity, /~o, and heat condition, K0, and is zero when /~0 = Ko = 0. 
Such a quanti ty can indeed be constructed for our system by first 

~)t ! _ _  

multiplying (3 a) with a~ (3 b) with u~, (3 c) with T' 
~' ~o ' To ' 

adding the three equations: 

w h e r e  

and then 

[ , , l ~ o G T ' ~ l  a 1 ao ~ ~,2 § ~ ~0 Ui Ui @ 2 T o ] 
T /  2 Yoo 

a ~ [Ko_T' a T ' ) _  ~ ,  K o aT" aT'  
a~ (~"' u;) § -g-~ ~ To ~x~ ~o a~:j a~ (5) 

1 , , 1 
= ~ e~ =- ~T~j ~ ~x~. § ax~ ! [(e11' -- e~') ~ + 

+ (e~'  - -  e3~') ~ + (e3~' - -  e11') ~ § 6 (el~ '~ + e ~  '3 § e~l'~)] > 0, 
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~nd y is the ratio of specific heat at constant pressure to that  at  constant 
volume. In the derivation of (5), use has been made of Eq. (3 d) 2. For 
:stationary insulated boundaries, we have: 

u ' = 0 ,  ~. - - 0  (6) 

If  at the solid boundaries, ~ being the normal vector at the boundaries. 
the  disturbance dies down at infinity, we must  have 

u' - - ,o ,  T'- 0 (7) 

at  infinity. Now if we integrate (5) over the entire region occupied by  
the medium and make use of the boundary conditions (6) and (7), we find 

K o  m f aT, 
~x~ ~x I 

which is evidently ~< 0. Thus, the quanti ty  

I l l  , 1 ao2p'2 § 1 QoC~oT'2]dv (9) 

possesses all the properties pertaining to the energy- in the system and 
will be defined as the total energy in the disturbance. I t  is, in fact, an energy 
of the disturbance in the sense that  it characterizes the mean level (or 
intensity) of fluctuation in the disturbance. 

If the disturbance is periodic in space so that  it does not die out at 
the infinity in some direction and (7) ceases to be valid, the integral in (8) 
must be restricted, in that  direction, to one single period to ensure its 
convergence. With the understanding of this change of the range of 
integration, it is clear that  (8) is nevertheless still valid for periodic 
disturbances since the periodicity condition which replaces (7) in that  
particular direction still eliminates any contribution to (8) fi'om the terms 

of (5). 
u / )  + To ! 

2 Eq. (5) is still val id for an incompressible medium for which (3d) must  be 
replaced by  the condition Q' ~ 0. In  fact, in such a case, we have a pair  of uncoupled 
.energy equations governing the changes in kinetic and thermal  energies: 

~ I  1 ] ~ ' u "  ~P" 

~t To = - ~  ~ ~ ~xsl T~ ~x~ ~xj" 

The sum of these two is identical to (5), provided tha t  q' is put  equal to zero in the 
lat ter .  
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If we restrict ourselves to phenomena in which conduction effects are 
negligible (i. e., K 0 = 0), the energy equation (3 c) and the continuity 
equation (3 a) can be combined to give the isentropic relation: 

5 '  __  i T '  _ 1 p '  

5o y - -  1 T O ? Po 

(The arbitrary function of integration is zero if we assume further that  
the disturbance is generated mechanically so that  the entropy which is 
initially uniform maintains its uniformity.) In such case, E reduces to 
the form: 

, , 1 a0 - d r ,  ( 1 0 )  E =  @oU~ u~ + ~ -  

which is immediately recognized as the total acoustic energy in the system. 
1 , , 

In  particular, ~-@o u~ ui dr represents the total kinetic energy in the 

"1 ao 2 ~,2 dr is the total energy of condensation or disturbance while 2 5o 

the potential energy in the disturbance [6]. If we now have in addition, 
Yo = 0 (non-viscous medium), then 

E = eonst. (11) 

In a similar fashion for the general case of non-zero K0 and #0, we 
1 l t can call ~ ~0 u~ u~ the kinetic energy in the disturbance per unit volume 

and de/ine the quanti ty 

,2 1 qo Cv T" 2 1 ~0 e + , ( 1 2 )  
2 Y @o 2 T o 

as the generalized potential energy per unit volume in the disturbance. 
In the general case, the potential energy will then consist of two parts, 
namely, that  associated with the pressure fluctuations (compression), and 
that  associated with entropy spottiness (resulting from heat exchange). 

T '  @~' 
This can be seen more readily if we write ~ ~ and 50 in terms of the 

pressure fluctuation, / ,  and the entropy fluctuation, S'. The entropy 
of a perfect gas is related to the pressure and temperature by  

7--1 S--So 

T __i p~_ 1 7 e c~ (13a) 
T0 ~po! 

where S is the entropy. Likewise 

i s--so 

_ee0 =(P)7_~o e % (13b) 

These equations dearly show that  density and temperature changes can 
be produced either by  a change in p (compression) or a change in S (heat 
exchange). For small changes, these equations can be written: 
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T' _ ~ - - 1  p' S' (14a) 
To 7 P0 -~ C , '  

Q' 1 p' S' 
Qo ~' Po C, (14b) 

The potential  energy per uni t  volume can be wri t ten as 

1 ao2~,2 1 ooCvT,~ 1 t p, ] ~ -  1 7__1 ( ~ ) 2 .  
2 YPo 2 T o - -  2 Q~176 2 7 29~ (15) 

The first term of the r ight  hand  side of (15) represents the compression 
effect while the  second represents the  effect of heat  exchange. [Again 

if K 0 = 0, the equations (3 a) and (3 c) can be combined to give ~t = 0, 

so t h a t  if S ' =  O initially, S'--~ O at  all times. The r ight  hand  side of 

1 ( P '  t 2 which is equal to Eq. (15) reduces to the single te rm ~-~o a o 2 \ r p o !  

1 a J  0 '2 the acoustic energy of condensation.] Thus, the total  energy, E, 
2 ~o ' 

in the disturbance can also be wri t ten as 

W E  ~ ~Ouit ui - ~ Y o ~ 1 7 6  2 ~ Po dr. (16) 

The fact  t ha t  ent ropy spottiness, S',  should also be considered as a 
form of energy in the disturbance m a y  at  first seem to be a little puzzling, 
especially because ent ropy is normal ly  taken  as a measure of the  unavailable 
energy. The impor tan t  thing to be recognized is t h a t  we are speaking 
here of the energy in  a disturbance; and as such, changes in en t ropy  
distr ibution of a gas will always induce a change in the fluid motion and 
hence, a change in the kinetic energy in the disturbance. Perhaps the 
simplest example i l lustrating this effect is the following one. Consider an 
infinite medium init ial ly (say t == 0) at  rest (i. e., u ~ ' =  0). We assume 
tha t  pressure is uniform initially (i. e., p ' =  0 at  t = O) and tha t  the 
en t ropy  distr ibution is not  uniform at  the initial ins tan t  (i. e., S' 4= O a t  
t ~ 0). Hence, initially the first two terms in (16) are zero while the last 
te rm is positive. For  t ~ 0, hea t  conduction will cause a diffusion of S' 
and hence, a change in densi ty  distribution. This change in density,  ~', 
causes a relative motion between different parts  of fluid (by the cont inui ty  

f l  , , equation) so t ha t  -~&u~ u~ dT is now greater than  zero. In  this 

example we find a part ial  conversion of the potent ial  energy associated 
with the en t ropy  spottiness into the kinetic energy of the disturbance. 
This example also shows tha t  with the absence of external  hea t  addit ion 
such conversion in a perfect gas is possible in a first order theory  only 
when the coefficient of heat  conduct iv i ty  is different from zero. For, if 

K o = 0 ,  Eqs. (3a) and (3c) can be combined to give ~t = 0 so t ha t  

0t 2 7 Po d~ = O, 
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in which case we have simply 

0-T ~o u /u~  + ~- ~o ao 2 = -- ~5' dr. (17) 
\ y p o l  ] 

Similarly, there is no conversion from the entropy fluctuation into the 
kinetic energy of the disturbance in an incompressible medium, for there 
the velocity field is independent of the temperature field. Since the heat 
conduction effect in a gaseous medium is not very marked, the conversion 
of the potential energy associated with S' into kinetic energy and vice 
versa will generally not be significant except in high frequency phenomena, 
or for large amplitude disturbances. The conversion may Mso be of some 
importance near solid boundaries where the flow velocity is small. 

Jus t  like the viscous dissipation, r  which tends to even out any 
velocity fluctuations, the non-negative integral 

I K 0T' ~T' 
dv, 

T o ~xj ~xj 

tends to wipe out any entropy spottiness. As such, it may be called the 
thermal dissipation. 

Finally, the energy in disturbances defined above has also a geometrical 
interpretation. The state of a fluid at any instant is characterized by  its 
velocity and two thermodynamic variables. Consequently, the state of 
fluid is completely specified by an ordered set of five functions (of the 
three space variables) giving the vMues of the two thermodynamic variables 
and three velocity components. I t  can thus be conveniently represented 
by  a point in a five-dimensional function space. If we take a Cartesian 
coordinate system in this space with the origin at the point representing 
our undisturbed state, and the five axes giving the vMues of ul' ,  u2', u3', 
p',  S' as functions of the space variables xl, x2, x3, then, at any instant, 
the disturbed state of the fluid will be represented by  a point in the 
neighborhood of the origin of our coordinate system. With proper scMing 
along each axis, the distance between the point and the origin can be made 
equal to the energy in the disturbance. Eq. (8) then says that  the point 
representing the disturbed state always tends toward the origin in the 
absence of external energy supply. From this point of view, it is not 
surprising that  the total energy in the disturbance should actually include 
a term S'. [In defining the disturbed state of the field by  a point in the 
function space, we could have chosen ul', u2', u3', ~', T' as the coordinate 
axes. By  virtue of relations (14) this system is related to the system u / ,  
u ( ,  u / ,  p', S' by  a rotation about the velocity axes.] 

HI. Addition of Energy to Small Disturbances by Body Force, 
Heat and Material Sources 

The first step toward generalizing the foregoing analysis for studying 
energy transfer from a non-uniform main stream to small disturbances 
is to consider the effects of the externally imposed body forces, heat and 
material sources on  the change of total energy of the disturbance in a 
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uniform medium. These effects appear through additional terms in the 
linearized equations of cont inui ty ,  momentum,  and energy as followsS: 

et ex~. = m', (18 a) 

bUi" ~ffi j '  ~_ O~ 0 i , - -  F '  (185) ~)o ~t ~xj 

qo C ~ - ~ V  -~ p o - ~ /  - Ko ~ ~x---~ + + R To, (]Sc) 

25" = ~_L" T' 
P, eo + To (18d) 

where m' and Q' are respectively the rate  of product ion of mass and heat  
per  uni t  volume, Fi '  is the body force per uni t  mass, and m', Q', F /  are 

,so small t ha t  u~ ~ 1. Mult iply (18 a) with a~ (18 b) 
a 0  7 ~)o ' 

T' 
wi th  u~, and (18 e ) w i t h - ~ 0  as before, and add them together,  and 

then  integrate the result  over the whole flow field. We find, after making 
use of the boundary  conditions (6) and (7), the following result:  

~E 1 f P ' m ' d v q -  1 f T ' Q '  f ' ' ~t = ~o -~o dT: + ~o F~ u~ d ~ -  

K~ f ~T" ~T" dv - - . f  qS' dv (19a) 
T o j ~x~ ~x~ 

where the range of integrat ion extends over the entire domain occupied 
b y  the fluid. Again, if the  disturbance is periodic in certain directions, 
(19 a) is still valid provided t h a t  the integral is t aken  over one single period 
in those directions (cf., p. 221). 

Thus, we see t h a t  there are three types  of terms which m a y  be 
responsible for an  increase of the energy and, therefore, the f luctuat ion 
level in the  disturbance. These terms can be interpreted as the energy 
sources (al though when their  values in a part icular  problem turn  out  to 
be negative, t h e y  really represent energy sinks). Since, in small disturbance 
theory,  pressure and en t ropy  f luctuat ions are two independent  modes of 

T' 
f luctuat ions [7], i t  is desirable to replace T o  in the th i rd  integral on the 

r ight  hand  side of (19 a), by  (14a). We then  have the al ternate form: 

~E 
' +  2<0) + ui 

K 0 ~T' ~T' 
To I 0% ~x~ clT --  I qS' d~'" 

~t  

(19b) 

s Here we assume that the fluid injected at any point has always a velocity, 
pressure, temperature and density equal to the local velocity ui, pressure p, tem- 
perature T, and density Q of the flow field. Consequently, if the rate of mass injected 
is M, there will be a momentum addition associated with it of amount M u i, and 

an energy of amount M G v T §  iu~. . 
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Before we apply the above result to the discussion of a few special 
eases, a few remarks are in order. First of all, there are two classes of 
phenomena to which the equation (19 a) or (19 b) can be readily applied: 
resonance and instability. When all the driving functions: m', El,  Q', 
are externally imposed, i. e., their amplitudes, frequencies, etc., are given, 
energy can be continuously fed into the disturbance, increasing its mean 
level of fluctuation, by  proper phasing of the driving functions with the 
various flow variables. Thus, for example, if m' is in phase with p', or 
F /  with ui', or Q' with T', energy will be continuously fed into the 
disturbance. Such a phenomena is described as resonance. The amplitude 
of the disturbance will eventually be limited by  the dissipation and, in 
some eases, non-linear behavior of the system. In  a similar manner, a 
180-degree out of phasing of these variables will result in a severe 
attenuation of the disturbance. 

In  physieM systems where the driving functions themselves are 
functions of the flow variables, and are zero when there is no disturbance 
in the system, any chance disturbance in the system may cause a change 
of the energy level in the disturbance which may either reinforce or 
attenuate the disturbance. When the disturbance reinforces itself through 
the action of the driving terms, the system is sMd to be unstable with 
respect to that  type of disturbance. If the disturbance is attenuated, 
the system is said to be stable with respect to that  disturbance. The flow 
system is said to be stable when it is stable with respect to all types of 
disturbances. Interpreted geometrieMly, the point representing the 
disturbed state in the five-dimensional function space will return (in the 
course of time) to the origin of the coordinate system if the flow system 
is stable. Otherwise, there will be at least one disturbed state whose 
representing point in the vector function space will wander away from 
the origin in the course of time. 

The simplest application of the energy relation, Eq. (19 a), is perhaps 
the familiar phenomenon of thermal instability under a gravitational 
field. Here m ' =  0 and Q'= o; the energy source responsible for this 

instability is then e0 I F~' u/dr.  If we take the x3-axis in the direction 
O / 

of gravitation, then -~'l' = 0, F~' = 0, and F / =  ~ g, so that  the energy 

production term is: 

f u;  = I d,. 

Hence, a heavier (than average) lump of fluid (~' > 0), when it is made 
to move against the direction of gravity (ua' < 0), extracts energy from 
the initiating disturbance. This extraction of energy from the disturbance 
will continue until the disturbance dies out. On the other hand, if the 
disturbance is such as to impart to the heavier lump of fluid a motion in 
the direction of gravity, energy will be fed into the disturbance reinforcing 
it and causing further motion of the lump in the direction of gravity. 
The same explanation applies to cases where the gravitational field is 
replaced by an acceleration field (TAYLO~ stability [8]). 
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Another case of some interest in combustion phenomena is the stability 
of systems containing heat sources. Let  us first examine the case where 
conduction effects are negligible. When K0 is put  equal to zero, Eq. (19 b) 
can be decomposed into two equations: 

~[  ~ ~o Ui u~ + -~ ~o ao ~ ~ 7 po l 

1 , Q '  

I[ 0' 
the first of which shows how mechanical energy in the disturbance (i. e., 
the sum of kinetic energy and potential energy associated with compression) 
changes with time while the second describes the change in level of entropy 
fluctuation in the disturbance. That such a decomposition is possible 

au~-' 
follows from the fact that  if we eliminate the divergence ~ from (18 a) 

and (18 c), we obtain the anticipated result: 

~)o To aS' _ Q,. (22) 
St 

Eq. (21 b) then follows immediately from this if we interchange the order 
of integration and differentiation in that  expression. Eq. (21 a) is then 
derived by  subtracting (21 b) from (19 b). 

The possibility of decomposing (19 b) into (21 a) and (21 b) when 
K 0 ~-- 0 indicates that  in such eases there will be no transfer between (or 
conversion of) the potential energy associated with the entropy fluctuation 
on the one hand, and the kinetic energy and energy of condensation on 
the other, even in presence of mass, momentum, and heat sources [see 
remarks in connection with Eq. (15)]. This situation is similar to the 
well-known state of affairs in the first order theory of an incompressible 
medium where there is no coupling between the velocity fluctuation and 
temperature fluctuation (see footnotes on p. 221). If we now neglect the 
effects of body forces ( F / ~  0) and material sources (m' ~ 0), Eq. (21) 
becomes: 

i [.1_ 2bit qs -~ 1 ~02 (~" ]2]dT__ ~--1 1 I~,QtdT__f+tdT, (23a) 

I[ ' - ' ,  a~- P0 dv ----- 

Eq. (23 a) is, in fact, the generalized I:~AYLEIGIt'S criterion, taking into 
account, in ~ddition, the viscous losses. For, in the absence of viscosity 
(# '  --~ 0), Eq. (22 a) states that  the mechanical energy in the disturbance 
will grow in time when the fluctuating heat release rate has a component 
in phase with the pressure fluetuation--RAyLmaH'S criterion (see [3] 
and [4]). However, the additional Eq. (23 b) shows that  RAYLEIGI~'S 
criterion in its original form may in some special instances be misleading. 
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Consider, for example, a system with distributed heat sources releasing 
heat  at a rate proportional to the local entropy fluctuation, i.e., 

Q' - -  ~ s ' .  ( 2 4 a )  

If 2 > 0, and S' # 0, Eq. (23 b) shows that  

~t 2 7 

Hence, any small accidental entropy fluctuation introduced into the system 
will induce a heat release which will reinforce the entropy fluctuation and 
cause further increase in heat release. The system is therefore unstable 4 
with respect to small entropy fluctuations even if we assume that  initially 
there is no pressure disturbance in the system at all. In  this instance, 
I=tAYL~m~'s criterion does not give any indication as to the stability of 
the system, although the pressure and velocity fluctuations do ultimately 

increase beyond all bounds and the integral i I P' Q' dz dt diverges. The 
o 

seemingly paradoxical situation can perhaps be best clarified by re-writing 
the governing differential equations (18) with the help of Eqs. (14) and (22) 
as follows: 

Su/ _ Q' 
Sp' + (25a) 

7P0  St Sxj @0 C~ T O ' 

~u/ ~p S~ui' 1 S2u/ (25 b) 
@0 St -- Sxj ~-#~ S%Sxj @~#~  Sx isxJ, 

~S' Q' 
- (25c) 

~t qo To 

The first two equations form a pair showing how p' and u /  vary with 
heat addition: Q'. The last equation shows how S' varies with Q'. When 
Q' is related to S' by (24 a), S' will increase exponentially with time. So 
will p '  and u /  increase exponentially with t ime--not  because Q' is in 
any way related to p', but  rather because Q', which is proportionM to S' 
and which acts as the externally applied forcing function in (25 a), increases 
exponentially with time. 

When K0~--0 but #0 ~=0, l~AYLmo~'s criterion must be modified 
slightly as follows: The condition that  a thermal system is unstable to 
small disturbance is that  the inequality 

!" p' Q' dr > - ~ f - p o  ! qh' d~: (26) 

is satisfied. Likewise, a mode of oscillation is a neutral mode if the two 
are equal. 

When K o -~ 0, the decomposition of (I9 b) into (21 a) and (21 b) is 
no longer permissible. We see that  what is essential for the growth of 

Thi s  c a n  a lso  b e  seen  i~f w e  s u b s t i t u t e  (24a) i n t o  (22) a n d  i n t e g r a t e .  T h u s ,  w e  

findS'=So" exp.[~o--~-o t]whereS o' i s t h e  e n t r o p y  d i s t r i b u t i o n  a t  t-----0. 
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disturbance under thermal action is that  T'  and Q' are positively correlated 

(i. e., I T' Q' dr > 0) instead of I P' Q' dr > 0. In  fact, I T' Q' & must be 
larger than the sum of the viscous and thermal dissipation, 

To f qS, dr + Ko i OT" S T ' d r  ' 
~x t ~xj 

before the energy in the disturbance begins to increase with time. This 
is the generalization of I~AvL~m~'s criterion for a thermal system. 

In  many systems (especially in combustion problems), the insulated 
boundary condition in (6) is not even approximately satisfied. A more 
realistic condition is that  

~T' 
~n § h T '~ -  0 (27) 

at the boundaries, where h ~> 0. The value of h depends on the radiation 
and conduction heat losses at the boundaries [9]. Using this boundary 
condition instead of the second part  of (6), we find 

instead of (19 a). (Here, we assume m ' =  0 and F i ' =  0.) Thus, in 
general, for the system to be unstable there must be one mode of fluctuations 
for which the integral of the product of the fluctuating heat release and 
the temperature fluctuation is greater than the heat lost through the 
boundaries [the surface integral of Eq. (28)], and the viscous and thermal 
dissipations [the two volume integrals of Eq. (28)]. 

One final application of (19 a) is concerned with the amplification of 
a disturbance through mass production. Such cases are of importance in 
rocket engineering where large quantities of gaseous products are evolved 
through combustion of liquid or solid fuels [10]. Eq. (19 a) shows that  
the most favorable condition for feeding energy into the disturbance occurs 
when the rate of mass production is in phase with the pressure fluctuation. 

IV. Transfer of Energy From a Steady Main Stream 

Let there be a steady flow whose pressure, density, temperature, arid 
celocity fields are described by p(xi), ~(xi), ~'(xi), and "u~(xi). Then 

@ ~J --  0, (29a) 
~xj 

@ uj u i _ @ ~ i~  (29 b) 
~xj ~x i § ~x-~. ' 

- [ s  1 ~xj ~xj ~xj 
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where vi3 is the viscous stress tensor, 

-- [ ~i ~t--j 2 (~iS aUK 1 
~ -- ~ [-~ + ax~ 3 ~-7/~ j' (3oa) 

and ~ is the viscous dissipation function, 

= ~.. ~ (Sob) 
~xj " 

Let us suppose that  for one reason or another, this flow field is slightly 
disturbed. The deviation of the flow field from that  given above will 
be indicated by  a prime in the superscript, e. g., p '  stands for the pressure 
fluctuations, etc. Hence, the pressure, density, temperature, and velocity 
of the flow at any point and any instant will be 

p : p ( x t )  § p ' (x~ ,  t),  (31 ~) 

o = ~(x,) § Q'(x~, t), (31b) 

T = T ( x i )  § T ' (x i~  t), (31 c) 

us : u~(xi)  4-  us ' ( x i ,  t) (31 d) 

T' 
, _u~' ~ 1, a(x~) being the velocity where p' ~-~' , O~ sound in , q 

the undisturbed flow. Substituting these into (1) and (2), and neglecting 
all quadratic and higher products of small quantities, we find 

= , 
~t - ~ /  m , 

~u~' __ ~p' § ~ '  , , 
at aX i ~ ~- F i  ' 

- ,~ 3T' a u ~ '  = ~  a I f  aT']  Q, m' 

p' ~' T" 

q T 

where ~ j '  is defined by 

, - [ ~ui" au~" 

and 

(32a) 

(32b) 

( a 2 c )  

(32d) 

m '  _ ~uj' ad s (33b) 
--  e -~ -~  § ~x s, 

, -- ~e '  aTi ~'* (33 c) 
F i  = - -  Ui ~ § Ox~ ' 

Q' ~- - C~ T ads. - au /  _ 1 9 ,  ~ s  , a ~  ax s - - P - ~  T~xj + 2 v i s  ~ x  + 

#' - -  K aT aT' ~h s (33d) 

aUKt 1 2 ~.j (33a) 
3 aXK J 
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(33e) 

Ti] ,  ~- __ t Ui us --  ~ ui' uj --  -Q u /  ui + ~-/ -T~j, (33f) 

K'  ~ h r 1 6 2  - ~ j .  (33g) 

:Now ,u = # ( T ) a n d  K = K ( T )  so that  if we introduce the notations 

~ =  - ~ ' T = f "  = ~ _ ~ ,  the changes in # and K will be 

given by 

#' = fi~ T', (33h) 

K'  = K~ T'. (33i) 

Let us multiply Eq. (32 a) with g2 e '  Eq. (32 b) with Uit , and Eq. (32 c) ~,~'  
T' 

with ~ , and then add them together. Again, if E is defined by 

[of. Eq. (9)], we find 

at - -  U] n] tiC; ~- I TiJ 9s n j  d(7 ~- I~  T" ~T" . . . .  o ~ ~xj nj da + 

~/ q~b t 
_ ' d r - -  + f ~ dv -T f Fi  ~ (  dv +" f Q" T" 

K. ~T" aT" dr --  Iris'  ~ui" ~ 

First of all, consider disturbances which vanish at infinity. Here, Eq. (6) 
applies. Assuming the solid boundaries to be stationary, u /  at the 
boundaries will be zero. If the heat loss from the boundaries satisfies the 
relation 

aT" T' ~n + h • 0 (36) 

where h is a non-negative function of the space variables defined along 
the boundaries, and ~ is the normal vector at the boundaries, Eq. (35) 
becomes: 

at --  ~ d r +  F / u ~ ' d T +  ~ d r - -  

~T' ~T' dr -- f ~ '  dr (37) - -  f h ~ T'2 f ~ ax~ ~x~ 

where r  is the dissipation function, 
Acta Mech. I/3 16 
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' ~Ui', (38) 

and the integration extends over the entire space occupied by the medium. 
If the disturbance is periodic in certain directions, Eq. (37) turns out to 
be still w l id  provided that  the range of integration is limited to one wave 
length in those directions. I t  is clear tha t  for such a system to be unstable, 
the first three integrals on the right hand side of Eq. (37) must have a 
sum greuter than that  of the last three integrMs. 

One important special case which deserves special mention is that  
where the main stream is a two-dimensional parallel shear flow specified by : 

= Po, ~ constant, (39a) 

= T(y), (39b) 

: po/R T(y), (39 c) 

~ -~ ~(y), (39 d) 

~ ~ 0 (39e) 

where the xx-axis is in the direction of the flow and is denoted as x-axis 
while the x2-axis is replaced by  the y-axis. One must remark that  such 
a flow is an exact solution of the NAVIEI~-STOKES equations only under 
very special temperature ~nd velocity profile (i. e., special types of T(y) 
and ~(y)). However, if we confine ourselves to a sufficiently restricted 
region in the direction of flow, the actual main stream can perhaps be 
approximated as such without introducing too great an error. In such 
a case,  

m' - ~" - - v '  d~ = - u - ~ -  ~ ,  

~" v,d~ ~ ( , d ~ )  

~v" ~ , 

~ dy ~y + l dy ] + - ~ -  K'  dT " 

Hence, 

(4ca) 

(4ob) 

(4Oc) 

(40d) 

p' m' , , Q' T" 

- -  ~ U" V' dY~ v' S' dT- (2 T' d~ i ~u' ~v' t 
dy --  ~ dy + f i ~ - - - ~ a ' )  dy \ ~y § f + 
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+ 

~ (u'~' ~-~)1 (4a) 
Consider disturbances which are periodic in x and die down at infinity 
in all other directions (if such directions exist). If we make use of the 
condition that  all solid boundaries are stationary and integrate Eq. (41) 
over one wave length in the x-direction and all y, we find 

where 

s --_~-~ d'c + F /  u~'dT: § d'r = 

= -- I ~ u' v' du -- ~̀J" O-v' S ' d'~ dT -f  i ~ -  O* dv 

Q* = (2 f~ - ~ ~) ~du ~--~-yl ~" + -g-~-) ~" ~ + ~ d~@ ~r'@ + 

(42) 

~dy I - k - ~  -~-Y I" (43) 

@* has the unit  of energy per unit  volume. The first two terms in the 
expression for Q* are similar in nature; they represent the energy transfer 
to the disturbance due to the interaction of the transport phenomena 
between the main stream and fluctuations. The last two terms in Eq. (43) 
represent additional energy transfer to the disturbance resulting from 
changes in the coefficients of viscosity and heat conduction with the 
temperature. Eq. (37) can now be written as: 

~Z _ f ~ u, v, d~ v' S' ~t -~y d~r -- i ~ 

S , nr.2 d _S or" or, (44) 

Perhaps the most interesting feature of the equation is the energy 
production term : 

_ i~u ,  v, d~ dT - - ~ v ' S '  dT dv (45) @ J ~ �9 

The first term in Eq. (45) is well-known as the work done by the REYNOLD'S 
stress. The second term results from the energy transfer due to the main 
stream temperature gradient. Note that  it is the transport of entropy 
spottiness across the temperature shear layers that  produces this energy 
transfer. For an incompressible fluid, the first term is solely responsible 
for the changes in the kinetic energy in the disturbance while the second 

term which assumes the reduced form: ~0 C~ f v' T' 1 dT dy d7;, is t he  

principle term which produces changes in the temperature fluctuation 
16" 
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level in the disturbance. Consequently, we expect that at low MACH numbers 
and small heat transfer rates at the boundaries, the intensity of the velocity 
fluctuations are determined principally by the energy production term, 

d~ 
! ~  u '  v'  d~, wh i l e  t h e  of t h e  f l u c t u a t i o n  is i n t e n s i t y  t e m p e r a t u r e  mainly 

controlled by the energy production term, I g v' S' ~ ' l j  dw. Finally, the 
, 2 J  

production term Q* d~ is in most cases, an order of magnitude smaller 

dg d T  
than t" -~ u' v' v' S' ~ - d ~  and I ~ ~ d~. I t  assumes an important role 
only in small scale disturbances. 

The author is pleased to acknowledge the helpful discussions of 
Dr. M. V. MO~KOVIAX and Dr. D. W. D u ~  who commented on several 
parts of the original manuscript. 
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