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Summary, The “energy in a small disturbance’ in a viscous compressible heat-
conductive medium is defined as a positive definite quantity characterizing the mean
level of fluctuation in the disturbance which, in the absence of heat transfer at the
boundaries and of work done by boundary forees or body forces, and in the absence
of heat and material sources, is a monotone non-increasing function of time. For
small disturbances a quantity satisfying these requirements is found. When viscosity
and heat conductivity are neglected, it reduces to the familiar acoustic energy in
the theory of sound. Stability in the mean of such a fluid system can thus be discussed
with reference to the growth and decay of the energy in the disturbance.

The effects of body forces, heat and material sources are discussed. RAYLEIGH’S
criterion for the stability of systems involving heat sources is derived and its limitations
shown. Transfer of energy from a steady main stream to a disturbance is then examined,
and the particular case of a parallel main stream is worked out in detail. The last
analysis will be useful in the discussion of the mechanism of hydrodynamic instability
for a viscous compressible heat-conductive flow. In addition to the work done by
the REYNOLD’s stress, there is another major energy transfer term caused by the
transport of entropy spots across layers of fluids of different mean temperature.

Zusammenfassung. Die ,,Energie in einer kleinen Stérung‘ in einem zihen,
kompressiblen und wérmeleitenden Medium wird als eine positiv definierte GroBe
eingefithrt, welche die mittlere Schwankung in der Storung charakterisiert und bei
Abwesenheit von Wirme- und Massequellen eine monoton nicht anwachsende Funk-
tion der Zeit ist, falls kein Warmetibergang an der Oberfliche stattfindet und keine
Arbeit von den Oberfldchen- und Volumskriften geleistet wird. Fiir kleine Stérungen
wird eine solche Funktion angegeben. Sie reduziert sich, wenn Zghigkeit und Wérme-
leitung vernachléssigt werden, auf die bekannte akustische Energie in der Theorie
des Schalles. Mit Hilfe des Anwachsens und Abnehmens der Stérungsenergie kann
dann die Stabilitdt im Mittel diskutiert werden.

Die Einflisse der Volumskrdfte und der Wérme- und Massequellen werden
besprochen. Das Ravrmiemsche Kriterium fiir die Stabilitdt eines Systems mit
Wirmequellen wird hergeleitet und sein Geltungsbereich gezeigt. . Der Energie-
iibergang von der stationdren Hauptstromung auf die Stérungen wird untersucht
und der Sonderfall der Parallelstrémung im einzelnen ausgearbeitet. Letztere Unter-
suchung erscheint niitzlich bei der Diskussion des Mechanismus der hydrodynamischen
Instabilitdt in einer zdhen, kompressiblen, wirmeleitenden Stromung. Zusidtzlich zur
Arbeit, die von den RrEvworpsschen Spannungen geleistet wird, gibt es noch ein
weiteres wichtiges Energieiibertragungsglied, das vom Transport von Entropienestern
quer durch Fliissigkeitsschichten mit verschiedener mittlerer Temperatur herriihrt.

* Part I of this paper originally appeared as a report prepared under U. 8. Air
Forece Contract AF 18 (600)-1121 with the Johns Hopkins University.
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Notations

a = velocity of sound of the flow.
a = velocity of sound in the main stream.
@y = sound speed in an undisturbed uniform medium.
C, = specific heat at constant pressure.
C, = specitic heat at constant volume.
d; = defined by Eq. (33 e).
E = energy in a disturbance; see Eqgs. (9) and (34).
u; _.%)
ox; | ow |
; = component of body force per unit mass in the w;-direction.

¢;; = rate of strain tensor = (

F,, F, = component of body force per unit mass in the x-, y-direction,

respectively.
g = gravitational acceleration.
h = a non-negative quantity; see Eq. (27).
h; = defined by Eq. (33 g).

t,§, k=indices: 1, 2, or 3; summation convention being wused

throughout.
K = coefficient of conductivity.

K, Ky=K at T=T and T =T, respectively.

K=K K.
K, = (%{;)T:F

M, m = rate ot mass production per unit volume.

7% — normal vector at the boundaries.

p = pressure of the flow.

p = pressure of the main stream.

p" = pressure in the disturbance.

Py == pressure in an undisturbed uniform medium.
@' = rate of heat release per unit volume.
Q* = defined by Eq. (43).

R = gas constant.

8 = entropy of flow.

8§ = entropy of the main stream.

8§’ = entropy in the disturbance.

S, == entropy in an undisturbed uniform medium.
T = temperature of flow.

T = temperature of the main stream.
T’ = temperature in the disturbance.
T, = temperature in an undisturbed uniform medium.
1 = time.
#; == component of velocity of flow in the xz,-direction.
u,; = component of velocity of the main stream in the x;-direction.
u;” = component of velocity of the disturbance in the z;-direction.
u = component of velocity of flow in the a-direction.
u = component of velocity of the main stream in the x-direction.
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%’ = component of velocity of the disturbance in the z-direction.
v’ = component of velocity of the disturbance in the y-direction.
x; & (%, y) = Cartesian coordinates.
Y= Cp/ Cy.
8;; = KRONECKER delta.

. C e . 1
@ = viscous dissipation function = (—2— Tij€; ,-).

b+

Ts5€:; = 0.

|—-l\'>(

@' = _2"61;5, C.”-, > 0.
¢ = density of flow.
o = density of the main stream.
o' = density of the disturbance.
go = density in the undisturbed uniform medium.
g;; = stress tensor in the flow field.
o;; = stress tensor in the main stream.
g;; = stress tensor in the disturbance, Eq. (4).
an element of surface area.

I

do
7;; = viscous stress tensor in the flow field.
7;; = viscous stress tensor in the main stream, Hq. (30 a).
7,5 == viscous stress tensor in the disturbance, Eqgs. (4) and (33 a).
7,4 = defined by Eq. (33 {).

dr = a volume element.

= coefficient of viscosity.

I

U, i = coefficient of viscosity at T = T and T = T,, respectively.

— _ {du
M1 = (W)T: 7
A = defined by Eq. (24 a).

Bar “~” gignifies that quantities to which it is attached are associated
with the main stream, e.g., p denotes the main stream
pressure.

£t

Prime signifies that quantities to which it is attached are associated
with the disturbance, e. g., p’ denotes the pressure in the

disturbance.

Subseript ‘) signifies that quantities to which it is attached are associated
with the undisturbed uniform state, e.g., p, denotes the
undisturbed pressure.

1. Introduction

The “energy in a small disturbance” is a very useful concept. First,
it enables us to understand why and how a disturbance is amplified, and
provides some indications as to the mechanism of instability in many
flow systems. Secondly, it is the foundation upon which the proof of
uniqueness of solution of many correctly formulated initial-value problems
depends.

15%
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Precisely what is the energy in a disturbance is rather difficult to
define. We shall venture to give a functional definition after considering
a few special examples where such a concept is used and generally accepted.
But, to avoid any misunderstandings, it is necessary to define first what
is meant by the terms ‘“disturbance” and “main stream” used in this
paper, since these terms are known to be used in more than one sense,

In our study any time-independent solution of the basic equations
governing the motion of a fluid can be considered as a “main-stream”,
and any deviation from this solution will be described as a “‘disturbance’.
For a given physical set-up, the boundary conditions usually determine
one and only one time-independent solution. This solution may be taken
as the main stream. Any small deviation from the main stream is a small
disturbance. In the course of time this small disturbance may grow or
decay. In this paper we shall be interested in small disturbances only.

The definition given above for the main stream automatically rules
out the possibility that the main stream may vary with time. Furthermore,
for space-wise periodic disturbances, the above definition of disturbance
does not guarantee that the fluctuations in it, averaged over one wave
length, is necessarily zero.

Let us now consider a few gpecial instances in which the concept of
energy in a disturbance has been introduced and generally accepted. In
an incompressible medium, the energy in a small disturbance is usually
taken to be its kinetic energy. On this basis, REvNoLD shows that the
main factor responsible for the growth of a small disturbance in an in-
compressible flow is the work done by the REY~NoLD’s stress [1]. Indeed,
Lix [2] contributed much in clarifying the mechanism of stability of
laminar boundary layer by a study of this energy production term. In
acoustics, the energy in a small disturbance is taken as the sum of the
kinetic energy of the disturbance plus the energy of condensation. On
this basis, it is possible to derive an energy production term for systems
involving heat release [3] which is a mathematical description of a
criterion first stated by Ravrercu [4]. RAYLEIGH’s criterion has been
used extensively in explaining the cause of instability in many thermal
acoustic systems by Ravreren himself [5] and in recent years by many
other authors.

In the case of an incompressible medium, the main stream acts as
the energy source while in the thermal acoustic systems, the heat sources
supply the energy to the disturbance. Two things stand out clearly from
the above examples. Iirst, the energy in a disturbance must be a positive
definite quantity having the dimension of the energy. Secondly, if there
are no energy sources in the system, the energy in the disturbance must
be a monotone non-increasing function of time. Whether these two properties
are sufficient to define uniquely the energy in a disturbance is not obvious.
However, they do limit greatly the possible choice as to which quantity
may represent the energy in a disturbance.

Part T of this paper deals with the energy in a disturbance in a perfect
gas and an incompressible fluid. The search for such a quantity is not
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only of basic importance in understanding the mechanism of instability
of many flow systems where conduction and viscous effects are important,
but it also allows one to examine from a single point of view the different
physical phenomenon involving the question of stability, whether it be
purely hydrodynamical or thermal or gravitational.

II. Energy in Small Disturbances

The state of a flow field is specified when the pressure p, density o,
temperature T, and velocity u; (¢ =1, 2, 3), are known as functions of
the space and time variables: x, and t. The six unknowns: p, o, T, uy,
Uy, Uy, are governed by the six equations:

90 | deu; __
3 + o, 0, (1a)
ou; ou,; 00,4 .
e 0 Uy oz, = - 8_.’/&3- ) 1=1,2,3, (lb)
oT oT ou; 8 oT
901;7-1—9”10@*5%—5‘}']9 3w5~—a;;(K—59;;)+® (1c)

and the equation of state. In these equations, o,; denotes the stress tensor,
and @ denotes the viscous dissipation function. They are related to the
velocity field through the viscous stress tensor, 7,;, and the rate of strain
tensor, e¢,;. Thus,

05 = — P 0; + Ty (2a)
where
1
Tig = MU ey — g 1 exr Oigo (2b)
_ ouy ou;
eii-’_ axj _‘— axl (20)
and

1 2
¢ = 5 Tis €5 = % [(e11 — €29)* 4 (€35 — €33)* + (€33 — €11)* +

+ 6 (€12 + e€55® + €3] = 0. (2d)

C,, #, and K in the equations denote respectively, the spezific heat at
constant volume, coefficient of viscosity, and coefficient of heat conductivity
of the medium. They are, in general, functions of the temperature and
the pressure. For simplicity, we assume that C, is a constant! and neglect
the pressure dependence of the viscosity and conductivity, which is
small for a gas under normal conditions. Unless the confrary is explicitly
indicated, we shall take our medium as a perfect gas whose equation of
state is

=poRT : (1d)

1 In actuality, resuls obtained in this and the following section are not affected
by the assumption. It is relevant only in Section IV.
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where R is the gas constant. On several occasions, we shall make comparisons
between our results and the case when the medium is an incompressible
fluid, for which medium the equation of state is ¢ = a constant.

In a uniform homogeneous medium at rest %, =0, and p, g, T, o,
and K are all constant. The latter will be denoted by p,, po, ete. Suppose
that some small disturbances are introduced into the system. The pressure,
velocity, density, etc . wﬂl then be p=po+ P, us=u, 0 =0, + 0,

o (@ =
velocity). Substl’cu‘mng these 1nto the system (1 a)—~(1d) and neglecting
all quadratic terms of the small quantities, one obtains the following
linearized system:

etec., wher (

% 1 if;’] =0, (3a)
00 2 = 2”7 (3b)
Qoov%+Po%=K0%’ (3¢)
Lotk =

where
0if = —p' S+ 1 = —p b+ Mo( it + 8@% ) “%ﬂo%ﬁ% 8o (4)

For an incompressible fluid, (3 d) must be replaced by o" = 0. The system
of equations governs the change of the six variables: p’, ¢', 77, u,’, and,
therefore, the evolution of the disturbance. What is the total energy
in such a disturbance? The energy in the disturbance should be a positive
definite quantity which, in the absence of heat transfer at the boundaries
and of work done by them, must be a monotone non-increasing function
of time; the rate of change of the quantity should depend on the coefficients
of viscosity, pe, and bheat condition, K,, and is zero when wy= Ky, = 0.
Such a quantity can 1ndeed be constructed for our system by first

multiplying (3 a) with ————, (3 b) with «,’, (3 ¢) with —- T -~ and then
adding the three equablons

N 1 p, 0,17

(IR L a v
B . o (K, T’ oT’ , K, oT’ aT’ -
= Ga, (i W)+ 5 (“{IT‘ o, ) T, oz, o, (8)

where

1 1 ou;’ ou;’ "
@'———__1’..'3..’———_.—'(..’(__.1_ 7)—'*L .. — e ’2+
2 “iJ ¥ 9 vid 5417,‘ 3.’/Ui 6 [( 11 22)

+ (ene” — €33")2 4 (33" — €1/ 4 6 (12" + €95 +€5,'%)] > 0
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and y is the ratio of specific heat at constant pressure to that at constant
volume. In the derivation of (5), use has been made of Eq. (3d)%. For
stationary insulated boundaries, we have:

w=0,>- =0 (6)

at the solid boundaries, 7 being the normal vector at the boundaries. If
the disturbance dies down at infinity, we must have

w —0, T" =0 (7)

at infinity. Now if we integrate (5) over the entire region occupied by
the medium and make use of the boundary conditions (6) and (7), we find

2 (1 ay?g™ 1 9,0, T2 .
8[2 ¥ 0o _]- 2 G0 u’t U, + TO dT -
, o’ o1
SQS dv —TOS oz, om; e, (8)
which is evidently < 0. Thus, the quantity
_ (11 roor 1 oa?p® 1 9Oy T
E’S!ﬁ Qo Uy Uy +2 7 % + T, dr (9)

possesses all the properties pertaining to the energy in the system and
will be defined as the total energy in the disturbance. It is, in faet, an energy
of the disturbance in the sense that it characterizes the mean level (or
intensity) of fluctuation in the disturbance.

If the disturbance is periodic in space so that it does not die out at
the infinity in some direction and (7) ceases to be valid, the integral in (8)
must be restricted, in that direction, to one single period to ensure its
convergence. With the understanding of this change of the range of
integration, it is clear that (8) is nevertheless still valid for periodic
disturbances since the periodicity condition which replaces (7) in that
particular direction still eliminates any contribution to (8) from the terms

o (025 ;") 2 (KOT’ or”
by 017 M 5o, \" T, om,
f (5).
2 Hq. (5) is still valid for an incompressible medium for which (3d) must be

replaced by the condition ¢’ = 0. In fact, in such a case, we have a pair of uncoupled
energy equations governing the changes in kinetic and thermal energies:

a 1 ri Id a 7’ ré 7
i |3 0o U u|= o, (o;5 w/)— D,

871 0,0, T & (KOT’ aT’) K, oT" oT’
ot |2 T, Tooxy \ Ty ow T, ox; ox;

‘The sum of these two is identical to (5), provided that g’ is put equal to zero in the
latter.
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1f we restrict ourselves to phenomena in which conduction effects are
negligible (i.e., K, = 0), the energy equation (3 ¢) and the continuity

equation (3 a) can be combined to give the isentropic relation:
o 1 1’ 19

-Eo—“ y—1 T, ——?’— Do

(The arbitrary function of integration is zero if we assume further that
the disturbance is generated mechanically so that the entropy which is
initially uniform maintains its uniformity.) In such case, E reduces to
the form:

2 972
o dz, (10)

1 1 a
EZH?QO“/“/ + 5 .

which is immediately recognized as the total acoustic energy in the system.

In particular, g—é—go w;" u; dv represents the total kinetic energy in the

! a,% ¢"*
4

disturbance while Si dv is the total energy of condensation or

2 o
the potential energy in the disturbance [6]. If we now have in addition,
1o = 0 (non-viscous medium}, then

E = const. (11)

In a similar fashion for the general case of non-zero K, and u,, we
can call é— g0 %; u; the kinetic energy in the disturbance per unit volume
and define the quantity

1 @492 1 g0, T2

¥

2 v 2 T,

(12)

as the generalized potential energy per unit volume in the disturbance.
In the general case, the potential energy will then consist of two parts,
namely, that associated with the pressure fluctuations (compression), and
that associated with entropy spottiness (resulting from heat exchange).

’

? in terms of the

. s . T
This can be seen more readily if we write 77— and

0
pressure fluctuation, p’, and the entropy ﬂu(;)tuation, S’. The entropy
of a perfect gas is related to the pressure and temperature by

y—1 S—38,

T (p\y o
il vy I (132)
where S is the entropy. Likewise
1 88
2 (_p_)? e O» (13b)
Qo Po

These equations clearly show that density and temperature changes can
be produced either by a change in p (compression) or a change in § (heat
exchange). For small changes, these equations can be written:
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TI . :/____ 1 p/ S/

R 14a
A N (142)
Q, 1 p/ S/
S = — . 14b
@ ¥ P O (14b)
The potential energy per unit volume can be written as
Lage? | LaClt L, (Pt L=l (S
2 yp (2 T, %29"“"(;/%) Ty p"(R - (19

The first term of the right hand side of (15) represents the compression
effect while the second represents the effect of heat exchange. [Again
if K, =0, the equations (3 a) and (3 ¢) can be combined to give % =0,
so that if §" = 0 initially, 8" =0 at all times. The right hand side of
r 2
Eq. (15) reduces to the single term —;—@0 o2 (3%) which is equal to
1 a02 0’2 0
2 .
in the disturbance can also be written as

, the acoustic energy of condensation.] Thus, the total energy, Z,

. /7 \2 _ 7\ 2

B = H‘;"Qo (7 —I"é'Qo “oz(yppo) +‘;j 4 y L po(%) ]df- (16)

The fact that entropy spottiness, S’, should also be considered as a
form of energy in the disturbance may at first seem to be a little puzzling,
especially because entropy is normally taken as a measure of the unavailable
energy. The important thing to be recognized is that we are speaking
here of the energy in a disturbance; and as such, changes in entropy
distribution of a gas will always induce a change in the fluid motion and
hence, a change in the kinetic energy in the disturbance. Perhaps the
simplest example illustrating this effect is the following one. Consider an
infinite medium initially (say ¢ = 0) at rest (i.e., %,/ = 0). We assume
that pressure is uniform initially ({.e., p' = 0 at £ = 0) and that the
entropy distribution is not uniform at the initial instant (i.e., 8" == 0 at
t = 0). Hence, initially the first two terms in (16) are zero while the last
term is positive. For ¢ > 0, heat conduction will cause a diffusion of §’
and hence, a change in density distribution. This change in density, ¢,
causes a relative motion between different parts of fluid (by the continuity

equation) so that S—;—QO u; w/ dr is now greater than zero. In this

example we find a partial conversion of the potential energy associated
with the entropy spottiness into the kinetic energy of the disturbance.
This example also shows that with the absence of external heat addition
such conversion in a perfect gas is possible in a first order theory only
when the coefficient of heat conductivity is different from zero. For, if

’

S = 0 so that

K,=0, Eqs. (3a) and (3 ¢) can be combined to give aaz =

AERE NS -
i m () =,
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in which case we have simply

—:—tﬂé 00 U w; + —;—QO a2 ( ypj;oﬂdr = S &' dv. (1n

Similarly, there is no conversion from the entropy fluctuation into the
kinetic energy of the disturbance in an incompressible medium, for there
the velocity field is independent of the temperature field. Since the heat
conduction effect in a gaseous medium is not very marked, the conversion
of the potential energy associated with S’ into kinetic energy and vice
versa will generally not be significant except in high frequency phenomena,
or for large amplitude disturbances. The conversion may also be of some
importance near solid boundaries where the flow velocity is small.

Just like the viscous dissipation, @', which tends to even out any
velocity fluctuations, the non-negative integral

K, T’ oT’
Ve gy a4
tends to wipe out any entropy spottiness. As such, it may be called the
thermal dissipation.

Finally, the energy in disturbances defined above has also a geometrical
interpretation. The state of a fluid at any instant is characterized by its
velocity and two thermodynamic variables. Consequently, the state of
fluid is completely specified by an ordered set of five functions (of the
three space variables) giving the values of the two thermodynamic variables
and three velocity components. It can thus be conveniently represented
by a point in a five-dimensional function space. If we take a Cartesian
coordinate system in this space with the origin at the point representing
our undisturbed state, and the five axes giving the values of w,’, u,’, uy,
p’, 8§ as functions of the space variables x,, x,, x;, then, at any instant,
the disturbed state of the fluid will be represented by a point in the
neighborhood of the origin of our coordinate system. With proper scaling
along each axis, the distance between the point and the origin can be made
equal to the energy in the disturbance. Eq. (8) then says that the point
representing the disturbed state always tends toward the origin in the
absence of external energy supply. From this point of view, it is not
surprising that the total energy in the disturbance should actually include
a term S’. [In defining the disturbed state of the field by a point in the
function space, we could have chosen u,’, u,’, 43, o', 1" as the coordinate
axes. By virtue of relations (14) this system is related to the system w,’,
Uy, Us', P’y 8 by a rotation about the velocity axes.]

II1. Addition of Energy to Small Disturbances by Body Force,
Heat and Material Sources

The first step toward generalizing the foregoing analysis for studying
energy transfer from a non-uniform main stream to small disturbances
is to consider the effects of the externally imposed body forces, heat and
material sources on’ the change of total energy of the disturbance in a
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uniform medium. These effects appear through additional terms in the
linearized equations of continuity, momentum, and energy as follows®:

o’  ouy

g - I

ot Qo axj =m, (18&)

o’ 26, ,
90—;‘;—= o+ e B (18b)

T’ 5 2T ,
00 Cy Y +po Bx = K, G o, +Q +m'RT,, (18¢)
p/ Ql T/

L= 18d
Po Qo + T, ( )

where m’ and @’ are respectively the rate of production of mass and heat
per unit volume, F,’ is the body force per unit mass, and m/, Q F are

$0 small that |—/|, P , % , 1. Multiply (18 a) with 2 2. , (18 D)
Qo Do g

with u,;, and (18 ¢) with —7— as before, and add them together, and
0

then integrate the result over the whole flow field. We find, after making
use of the boundary conditions (6) and (7), the following result:

ﬁ.:-l_ p’m’dr—I——L T’QldT+ 0 Filuildf_
ot 2o T, e
K or o1 ,
— T%S—»——amj “ow; drv — S@ dv (19a)

where the range of integration extends over the entire domain occupied
by the fluid. Again, if the disturbance is periodic in certain directions,
(19 a) is still valid provided that the integral is taken over one single period
in those directions (cf., p. 221).

Thus, we see that there are three types of terms which may be
responsible for an increase of the energy and, therefore, the fluctuation
level in the disturbance. These terms can be interpreted as the energy
sources (although when their values in a particular problem turn out to
be negative, they really represent energy sinks). Since, in small disturbance
theory, pressure and entropy fluctuations are two independent modes of

fluctuations [7], it is desirable to replace % in the third integral on the
0
right hand side of (19 a), by (14 a). We then have the alternate form:

=i+ & o) & oo | B w vt | 8@ dr -
—TH Zg aagjd — (@ dr. (19D)

3 Here we assume that the fluid injected at any point has always a velocity,
pressure, temperature and density equal to the local velocity w;, pressure p, tem-
perature T', and density g of the flow field. Consequently, if the rate of mass injected
is M, there will be a momentum addition associated with it of amount M w,, and

1
an energy of amount M (C’p T+ o % ui).
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Before we apply the above result to the discussion of a few special
cages, a few remarks are in order. First of all, there are two classes of
phenomena to which the equation (19 a) or (19 b) can be readily applied:
resonance and instability. When all the driving functions: m’, F/, ¢,
are externally imposed, i. e., their amplitudes, frequencies, etc., are given,
energy can be continuously fed into the disturbance, increasing its mean
level of fluctuation, by proper phasing of the driving functions with the
various flow variables. Thus, for example, if m' is in phase with p’, or
F; with »/, or @ with 7", energy will be continuously fed into the
disturbance. Such a phenomena is described as resonance. The amplitude
of the disturbance will eventually be limited by the dissipation and, in
some cases, non-linear behavior of the system. In a similar manner, a
180-degree out of phasing of these variables will result in a severe
attenuation of the disturbance.

In physical systems where the driving functions themselves are
functions of the flow variables, and are zero when there is no disturbance
in the system, any chance disturbance in the system may cause a change
of the energy level in the disturbance which may either reinforce or
attenuate the disturbance. When the disturbance reinforces itself through
the action of the driving terms, the system is said to be unstable with
respect to that type of disturbance. If the disturbance is attenuated,
the system is said to be stable with respect to that disturbance. The flow
system is said to be stable when it is stable with respect to all types of
disturbances. Interpreted geometrically, the point representing the
disturbed state in the five-dimensional function space will return (in the
course of time) to the origin of the coordinate system if the flow system
is stable. Otherwise, there will be at least one disturbed state whose
representing point in the vector function space will wander away from
the origin in the course of time. '

The simplest application of the energy relation, Eq. (19 a), is perhaps
the familiar phenomenon of thermal instability under a gravitational
field. Here m’ == 0 and @ = 0; the energy source responsible for this

instability is then g, S F/ u/ dv. If we take the zs;-axis in the direction
of gravitation, then #,' =0, F,’ =0, and F; = %g, so that the energy
production term is:

905 Fu' drv = gs o ug dr.

Hence, a heavier (than average) lump of fluid (¢° > 0), when it is made
to move against the direction of gravity (u; << 0), extracts energy from
the initiating disturbance. This extraction of energy from the disturbance
will continue until the disturbance dies out. On the other hand, if the
disturbance is such as to impart to the heavier lump of fluid a motion in
the direction of gravity, energy will be fed into the disturbance reinforcing
it and causing further motion of the lump in the direction of gravity.
The same explanation applies to cases where the gravitational field is
replaced by an acceleration field (Tavror stability [8]).
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Another case of some interest in combustion phenomena is the stability
of systems containing heat sources. Let us first examine the case where
conduction effects are negligible. When K, is put equal to zero, Eq. (19 b)
can be decomposed into two equations:

il eom w4 5 oo () Jar =
= (m + CQT) dr+ oo B/ ufde — (@'ds,  (21a)
3%”%%‘1‘?0 (%‘)Tdf :0% |8 @ d (21b)

the first of which shows how mechanical energy in the disturbance (i. e.,
the sum of kinetic energy and potential energy associated with compression)
changes with time while the second describes the change in level of entropy
fluctuation in the disturbance. That such a decomposition is possible

follows from the fact that if we eliminate the divergence a;;’: from (18 a)
3
and (18 c), we obtain the anticipated result:
a8’ / ;
20 Ty T Q. (22)

Eqg. (21 b) then follows immediately from this if we interchange the order
of integration and differentiation in that expression. Eq. (21 a) is then
derived by subtracting (21 b) from (19 b).

The possibility of decomposing (19b) into (21a) and (21 b) when
K, = 0 indicates that in such cases there will be no transfer between (or
conversion of) the potential energy associated with the entropy fluctuation
on the one hand, and the kinetic energy and energy of condensation on
the other, even in presence of mass, momentum, and heat sources [see
remarks in connection with Eq. (15)]. This situation is similar to the
well-known state of affairs in the first order theory of an incompressible
medium where there is no coupling between the velocity fluctuation and
temperature fluctuation (see footnotes on p. 221). If we now neglect the
effects of body forces (¥, = 0) and material sources (m’ = 0), Eq. (21)
becomes:

“3%”‘;—00 w;’ ;' _l"%@?o doz(ypz;o )Z]dr — V”V_l }%Sp’@’dr—gdj'd‘[, (23a)

S g e e

Eq. (23 a) is, in fact, the generalized RaYLEIGH’s criterion, taking into
account, in addition, the viscous losses. For, in the absence of viscosity
(@' = 0), Eq. (22 a) states that the mechanical energy in the disturbance
will grow in time when the fluctuating heat release rate has a component
in phase with the pressure fluctuation —RAYLEIGH’s criterion (see [3]
and [4]). However, the additional Eq. (23 b) shows that RayrmiGH’S
criterion in its original form may in some special instances be misleading.



228 Boa-Ter CHU:

Consider, for example, a system with distributed heat sources releasing
heat at a rate proportional to the local entropy fluctuation, i e.,

Q =418 (24a)
If 2 >0, and 8" =0, Eq. (23 b) shows that
27l p—1 /8¢
\[ > ( Hd > 0. (24b)

Hence, any small accidental entropy fluctuation introduced into the system
will induce a heat release which will reinforce the entropy fluctuation and
cause further increase in heat release. The system is therefore unstablet
with respect to small entropy fluctuations even if we assume that initially
there is no pressure disturbance in the system at all. In this instance,
Ravyieie®’s criterion does not give any indication as to the stability of
the system, although the pressure and velocity fluctuations do ultimately

increase beyond all bounds and the integral H p' @ dv dt diverges. The

0
seemingly paradoxical situation can perhaps be best clarified by re-writing
the governing differential equations (18) with the help of Egs. (14) and (22)
as follows:

1 o euy 5
YPo Ot Ow; - ) Op T,’ (203‘)
LA 6p OPuy 1 o%uy’
Qo5 + 0x; 0y _{—3#0 8w, ox;’ (25b)
asl . Q/
T e T (25¢)

The first two equations form a pair showing how p' and %, vary with
heat addition: @’. The last equation shows how 8§’ varies with §’. When
Q' is related to 8’ by (24 a), S’ will increase exponentially with time. So
will p" and w," increase exponentially with time—mot because @' is in
any way related to p’, but rather because @', which is proportional to §’
and which acts as the externally applied forcing function in (25 a), increases
exponentially with time.

When K,=0 but u, ==0, RaYrLEIGH’s criterion must be modified
slightly as follows: The condition that a thermal system is unstable to
small disturbance is that the inequality

\der> 1100\(15 dr (26)

is satisfied. Likewise, a mode of oscillation is a neutral mode if the two
are equal.

When K, + 0, the decomposition of (19b) into (21 a) and (21 Db) is
no longer permissible, We see that what is essential for the growth of

¢ This can also be seen if we substitute (24a) into (22) and integrate. Thus, we

find 8" = 8, exp. {—Q_%_ t] where S| is the entropy distribution at ¢ = 0.
[} o
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disturbance under thermal action is that 7" and @ are positively correlated
(.e., | 7" Q dr > 0) instead of | p' Q' dvr >0. In fact, | 7' Q' dv must be
larger than the sum of the viscous and thermal dissipation,

T, | @ d + K, | or” oI

) 0z; oz

dr,

before the energy in the disturbance begins to increase with time. This
is the generalization of Rayreiaa’s criterion for a thermal system.

In many systems (especially in combustion problems), the insulated
boundary condition in (6) is not even approximately satisfied. A more
realistic condition is that

o
on

+hT =0 (27)

at the boundaries, where % > 0. The value of 2 depends on the radiation
and conduction heat losses at the boundaries [9]. Using this boundary
condition instead of the second part of (6), we find

oF
ot

hK,
T,

— o (TR g — e [ EE ST

To. 7 a—x:"df — E (p/ d‘[ (28)

1
instead of (19a). (Here, we assume m' =0 and F, = 0.) Thus, in
general, for the system to be unstable there must be one mode of fluctuations
for which the integral of the product of the fluctuating heat release and
the temperature fluctuation is greater than the heat lost through the
boundaries [the surface integral of Eq. (28)], and the viscous and thermal
dissipations [the two volume integrals of Eq. (28)].

One final application of (19 a) is concerned with the amplification of
a disturbance through mass production. Such cases are of importance in
rocket engineering where large quantities of gaseous products are evolved
through combustion of liquid or solid fuels [10]. Eq. (19 a) shows that
the most favorable condition for feeding energy into the disturbance occurs
when the rate of mass production is in phase with the pressure fluctuation.

IV. Transfer of Energy From a Steady Main Stream
Let there be a steady flow whose pressure, density, temperature, and
velocity fields are described by p(z;), o(2;), T(z;), and u,(x;). Then

0o Uy
ox;

=0, (29a)

(291b)

+ 3, (29¢)

p=0RT (29d)
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where 7,; is the viscous stress tensor,

— 2 Jug
Tig =l aac 896 3 " axg |2 (30a)
and @ is the viscous dissipation function,
B =7, (30b)

= T4j 3.~ 7
7

Let us suppose that for one reason or another, this flow field is slightly
disturbed. The deviation of the flow field from that given above will
be indicated by a prime in the superscript, e. g., p’ stands for the pressure
fluctuations, etc. Hence, the pressure, density, temperature, and velocity
of the flow at any point and any instant will be

P = p(x;) + p'(%, 1), (31a)
0 = o(®;) + (s 1), (31b)
T = T(x,) + T'(2;, 1), (3lc)
where l 1;_0, \, %— , IT" b | |<<1 a(x;) being the velocity of sound in

the undisturbed flow. Substltutmg these into (1) and (2), and neglecting
all quadratic and higher products of small quantities, we find

a e é:::; =m (822)
goui;f@f%%:f—j?j—g_f—if +Q+mRT,  (320)

where 7;;/ is defined by

ou;’

T = 89&1 + 69: BREIT'S (332)
and
m =g+ o8, (33b)
s (330)
Q=-0,T gi:'_ R R
s R oT oI’ | oy (33d)

39:, 8903 ox;’
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d; = — o u; — o uy, (33e)

T = o Wy By — B U Uy — O g - ’/; i (331)
- 71l — ' m — = ’ ’ aT

hj=—ou,C, T —ou/;C, T —0ou,C, T +K—3;v—. (33g)
5

Now u = u{T) and K = K(T) so that if we introduce the notations

ﬁ.lz (%)T—f’ and K, = (%)T='F the changes in y and K will be

pwo=uT, (33h)
K=K T. (33i)

Let us multiply Eq. (32 a) with %’—, Eq. (32 b) with »,’, and Eq. (32 ¢)

with —?T_'—, and then add them together. Again, if # is defined by

E:” g u + “;‘; +—;~§0’1T_T’2]dr (34)

[ef. Eq. (9)], we find

oF K T aT’

—Eﬁ—:—gp’uj’n,-daﬁ—gr“ uznda—}—g n; do -+
~{—g p/@m/ dr—&—gFi’ui’dr—!—gQ dr —
R (o -

First of all, consider disturbances which vanish at infinity. Here, Eq. (6)
applies. Assuming the solid boundaries to be stationary, u, at the
boundaries will be zero. If the heat loss from the boundaries satisfies the
relation

A ihr=o0 (36)

where % is a non-negative function of the space variables defined along
the boundaries, and 7 is the normal vector at the boundaries, Eq. (35)
becomes:

Q/ T

_aa_]fzgp;z/dt—{—gﬁ’i’ui’dr—%—g dr —
-—SET’zdr—g—g—% ZZ’ dv — | @ dr (37)

where @’ is the dissipation function,
Acta Mech. 1/3 16
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’
ou;

' !
V=

(38)
and the integration extends over the entire space occupied by the medium.
If the disturbance is periodic in certain directions, Eq. (37) turns out to
be still valid provided that the range of integration is limited to one wave
length in those directions. It is clear that for such a system to be unstable,
the first three integrals on the right hand side of Eq. (37) must have a
sum greater than that of the last three integrals.

One important special case which deserves special mention is that
where the main stream is a two-dimensional parallel shear flow specitied by:

P = Py, a constant, (39a)
T = T(y), (39Db)
o= po/RT(y), (39¢)
w, = u(y), (39d)
Uy = 0 (39¢€)

where the x;-axis is in the direction of the flow and is denoted as x-axis
while the x,-axis is replaced by the y-axis. One must remark that such
a flow is an exact solution of the NaviER-STOKES equations only under
very special temperature and velocity profile (i. e., special types of T(y)
and u(y)). However, if we confine ourselves to a sufficiently restricted
region in the direction of flow, the actual main stream can perhaps be
approximated as such without introducing too great an error. In such
a case,

I SN
m = — e — v (40a)
;L — . Ouw _ ., du 7 , du
Fo)= —eu—g-—0ov 5~ *@'(M _d?)’ (40D)
, —_ o ( , du
F/ = —~ou i +_5a7(” 7), (40¢)
R I Y _ ., d _{du\ | o
¢ =~y () - pr g (w) 2 () (5 &)
K 4dT o1 di \2 2 ar
T AL K~) 40d
+Tdy6y+ﬂ(y)+6y( dy (40d)
Hence,
P +le z,_l'_Q-I’ -

LIRSS
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FE e G - gl
el ) oy o ) )

Consider disturbances which are periodic in « and die down at infinity
in all other directions (if such directions exist). If we make use of the
condition that all solid boundaries are stationary and integrate Eq. (41)
over one wave length in the z-direction and all y, we find

S p’@m’ dr + SF/ u, dv + S Q/T:F dr =

— ., ,du Y ST
——Sguvmdydr——jgvSTy dr—}—jMTer (42)
where

ouw’ o’ K dT o1

= i
oy T 3W)+_T_ dy "oy

@ = @i —jn T) 4
) (67 5) .

@* has the unit of energy per unit volume. The first two terms in the
expression for @* are similar in nature; they represent the energy transfer
to the disturbance due to the interaction of the transport phenomena
between the main stream and fluctuations. The last two terms in Eq. (43)
represent additional energy transfer to the disturbance resulting from
changes in the coefficients of viscosity and heat conduction with the
temperature. Eq. (37) can now be written as:

T/

o8 — ., du o AT
B Joww e fors Las [ Lo
hK T K o1 oT’ -
—_S———: dO'*'—S—:f——a—a}?— 3-’1)7- dT—*Sd) dT. (44)

Perhaps the most interesting feature of the equation is the energy
production term:

(=, , du — o 4T

‘u\guv—d?dT‘—‘SQvSWdT. (4:5)
The first term in Eq. (45) is well-known as the work done by the REyNoLD’s
stress. The second term results from the energy transfer due to the main
stream temperature gradient. Note that it is the transport of entropy
spottiness across the temperature shear layers that produces this energy
transfer. For an incompressible fluid, the first term is solely responsible
for the changes in the kinetic energy in the disturbance while the second
term which assumes the reduced form: g, C, & v T —%—%{g—dm’, is the
principle term which produces changes in the temperature fluctuation

16*
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level in the disturbance. Consequently, we expect that at low MAacH numbers
and small heat transfer rates at the boundaries, the intensity of the velocity
fluctuations are determined principally by the energy production term,

g@ u' v %—Z;dr, while the intensity of the temperature fluctuation is mainly

controlled by the energy production term, gév' S’%dr. Finally, the

’

. T - . .
production term g @* dv is in most cases, an order of magnitude smaller

T
than SZ) w v’%zdr and gév’ S’%dr. It assumes an important role
only in small scale disturbances.

The author is pleased to acknowledge the helpful discussions of
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