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Summary. The Runge-Kutta-Chebyshev method is an s-stage Runge-Kut ta  
method designed for the explicit integration of stiff systems of ordinary differ- 
ential equations originating from spatial discretization of parabolic partial 
differential equations (method of lines). The method possesses an extended 
real stability interval with a length fl proportional  to s z. The method can 
be applied with s arbitrarily large, which is an attractive feature due to 
the proportionali ty of fl with s 2. The involved stability property here is 
internal stability. Internal stability has to do with the propagat ion of errors 
over the stages within one single integration step. This internal stability 
property plays an important  role in our examination of full convergence 
properties of a class of 1st and 2nd order schemes. Full convergence means 
convergence of the fully discrete solution to the solution of the partial differ- 
ential equation upon simultaneous space-time grid refinement. For a model 
class of linear problems we prove convergence under the sole condition 
that the necessary time-step restriction for stability is satisfied. These error 
bounds are valid for any s and independent of the stiffness of the problem. 
Numerical examples are given to illustrate the theoretical results. 

Subject Classifications: AMS(MOS): 65M20; 65M10; CR: G1.8. 

1 Introduction 

This paper  is devoted to an examination of convergence properties of a class 
of Runge-Kutta-Chebyshev (RKC) schemes. These schemes have been designed 
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by van der Houwen and Sommeijer [7] for the explicit time integration of 
stiff systems of ODEs, 

(1.1) U(t)=F(t, U(t)), 0<t__< T, U(0)given, 

which originate from spatial discretization of parabolic partial differential equa- 
tions (method of lines). For the time being, it is not necessary to define a particu- 
lar class of parabolic problems or to specify the space discretization technique. 
The only restrictions for application of the RKC schemes are (i) The eigenvalue 
spectrum of the Jacobian matrix OF(t, U)/O U should tie in a narrow strip along 
the negative axis of the complex plane, and (ii) The Jacobian matrix should 
'not  deviate too much from a normal matrix'. These two conditions trivially 
hold if OF(t, U)/O U is symmetric and negative definite, properties frequently 
encountered when discretizing elliptic operators. 

The RKC method is a typical example of an explicit, stabilized RK method. 
Such a method can be characterized by the fact that it possesses a large number 
of stages of which almost all serve to obtain good stability properties and only 
a few to obtain the desired order of consistency (see van der Houwen [5, 6]). 
The RKC method has been designed such that it possesses an extended real 
stability interval. Its real stability boundary fl is in fact proportional to s 2, s 
being the number of stages, while its main characteristic is that s can be taken 
arbitrarily large. This is made possible by an intelligent use of Chebyshev polyno- 
mials, thus explaining the name of the method. The possibility of using arbitrarily 
large values for s is of practical relevance due to the fact that the effective 
real stability boundary ills linearly increases with s. Hence, in applications it 
is possible and advantageous to choose the stepsize on the basis of accuracy 
and to adjust s to meet the demand of (linear) stability (see Sommeijer and 
Verwer [13] and Sommeijer and van der Houwen [12] for numerical illustra- 
tions). 

When the problem becomes very stiff, the conditional stability may remain 
too much of a disadvantage, of course. For example, standard central differencing 
of the first initial-boundary value problem for the model heat equation 

(1.2) u,=Au, u=u(x, t), xelR a, 

on a uniform mesh of width h, yields the time-step restriction z o =</3 for stability. 
Here v is the stepsize of the RKC method and a~-4d/h 2 is the spectral radius 
of the resulting Jacobian. A typical value for ~ is 2s 2, so that, given z, the 
number of stages s should be at least (2zd)~/h. On a fine mesh, say h=0.01 
in two space dimensions, this yields 2001/~ stages per time step, which may 
be considerable. On the other hand, the explicitness guarantees an easy applica- 
tion to linear and nonlinear problems in two and three space dimensions and, 
needless to say, offers optimal prospects for implementation on vector/parallel 
computers. When the stiffness is modest, like for the reaction-diffusion problem 

(1.3) u,=eAu+f(u, x, t), u=u(x, t), xeg~ a, 

where f represents the reaction term and 0 < e ~  1, the RKC method offers a 
very attractive alternative for standard explicit integration schemes and uncondi- 
tionally stable, implicit ones. 
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Van der Houwen and Sommeijer [7] have developed a 1st and 2nd order 
RKC scheme. In this paper we examine both these schemes (the coefficients 
of our 2nd order scheme slightly differ; they have been taken from Sommeijer 
and Verwer [13]). While these schemes have been developed along the lines 
of the classical ODE theory, the purpose of the present examination is to analyse 
their full convergence properties. Full convergence means convergence of the 
fully discrete solution with respect to the solution of the PDE upon simultaneous 
refinement of the space-time mesh. For linear PDE problems, whose semi-discre- 
tizations take the form 

(1.4) (J(t)=MU(t)+g(t) ,  0 < t <  T, U(0) given, 

with M a symmetric, constant coefficient matrix possessing non-positive eigen- 
values, we prove convergence under the sole condition that the necessary time- 
step restriction ra(M)<f l  is satisfied, where a(M) is the spectral radius of M. 
Of interest is that the derived error bounds are independent of a(M) and valid 
for arbitrarily large s, the number of stages, thus showing that in applications 
the best strategy is to have the size of r determined by the desired accuracy 
level and s by the stability demand. It is stipulated that this result is quite 
uncommon for an explicit method. We owe this to the favourable internal stabili- 
ty property of the RKC method. Internal stability has to do with the propagation 
of errors over the stages within one single integration step. 

The convergence analysis presented in this paper is akin to the analysis 
of Sanz-Serna, Verwer and Hundsdorfer [10] and Hundsdorfer and Verwer 
[9] which, in turn, was inspired by the B-convergence analysis from the stiff 
ODE field (see Dekker and Verwer [2], Ch. 7). 

The remainder of the paper consists of five sections. In Sect. 2 we review 
the 1st and 2nd order scheme under examination. This section is entirely based 
on [7] and [13]. Section 3 is devoted to the concept of internal stability, while 
Sect. 4 contains the derivation of local defects for exact PDE solutions. The 
results of the two latter sections are combined in Sect. 5 so as to obtain bounds 
for the full global errors. Finally, Sect. 6 presents two numerical examples with 
the aim of illustrating the convergence behaviour of the method and its perfor- 
mance in practice. 

2 Description of the Method 

For the ODE system (1.1), the RKC formula considered here is of the form 

(2.1) ro = V., 

r~ = ro + s ~ r Fo, 

y j = l . t j y j _ l + v j Y j _ 2 + ( 1 - # j - v j )  Yo+~jzFj_ l+~jzF o (2< j<s ) ,  

U,+I = Y,, n=0 ,  1, ..., 

where F~= F(t, + c i ~, Yj); U, represents the approximation to the exact solution 
U of (1.1) at time t = t, and z = t , + l - t ,  is the stepsize. Throughout  it is assumed 
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that the increment parameters cj are defined by the integration coefficients 
/~, v j, ~j and ~j in the following way, 

(2.2) Co=0, c~ = ~ l ,  

cj=#jCj_l-~-vjcj_2~-fij--}-~j (2=<j<s). 

Then, if we bring Yj in the standard RK form 

j - 1  

Yj=U,+z  ~ ajlF(tn+clz, Yt) (O<j<=s), 
/ = 0  

where the coefficients aj~ are expressions in /~j, v j, fij, 7i, it is readily seen that 
the usual condition 

j - 1  

CJ = E aj l  
I=O 

is satisfied. Hence, (2.1) is an explicit, s-stage RK method and Yj is an intermediate 
approximation at the intermediate point t = t, + cj z. Due to the specific recursive 
nature of the method, as shown in the formula defining Yj, formula (2.1) is 
more convenient to work with than the common RK formula. The rationale 
behind the specific form (2.1) is that this form is easily identified with stable 
three-term Chebyshev recursions. This will become clear later on. Note that 
irrespective the number of stages, the number of required storage arrays is maxi- 
mal 6. 

Let us determine the consistency conditions (in the classical ODE sense) for 
order 1 and 2. Suppose U,=U(t,), where U(t), t > t ,  is a sufficiently smooth 
solution of (1.1). By definition of cj it then holds that all Yj satisfy an expansion 

(2.3) Yj -~- U (tn) -~- Cj "~ I f  (tn) + X j "g 2 U (2) (tn) -~- 0 (273), 

where, similar as c j, X j  is determined by the integration coefficients. Substitution 
of this expression into (2.1) gives 

(2.4) Xo = X t = 0, 

X j  = ~j  X j  _ 1 -~- vj X j_  2 ~- ~j  c j_  1 (2 < j  < s). 

We conclude that the RKC method is consistent of order 1 if 

(2.5) c~ = 1, 

and note that the j th  stage formula is consistent of order 1 at t = t, + cj z. 
It follows from (2.3) that each stage formula is consistent of order 2 at 

t = t, + ej T, for 2 =<j =< s, if Xj = �89 c 2. In terms of cj this gives 

(2.6) c 2 = 2fi2 Cl, 

C32 =/.t 3 C 2 +2/~ 3 C2, 

2__ 2 +vjC2 2+2ftjCj_t cj - #i c j_ 1 (4 <j__< s). 
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As pointed out in [13], it is possible to satisfy this condition in a satisfactory 
way for all 2<j<s.  We here adopt this condition and hence the 2rid order 
scheme derived below has all its stages consistent of order 2 at the intermediate 
step points t = t, + c~ z, except the first one. The original 2nd order scheme from 
[7] is only consistent of order 2 at the main step points. 

For future reference, it is stipulated that the derivation of the current con- 
sistency conditions follows the lines of the classical numerical ODE theory [4, 6], 
as it is based on expanding F-terms. This means that it is tacitly assumed 
here that F satisfies a Lipschitz condition so that z 11F I] = O (z). For stiff problems 
this is unduly restrictive and particularly so for semi-discrete parabolic equations 
for which l[F4[~oo upon grid refinement. In Sect. 4 we will re-examine the 
consistency properties of the RKC scheme. The derivation presented there is 
inspired by the B-convergence theory for stiff ODEs, the central theme of which 
is the derivation of error bounds which do not depend on the stiffness of the 
problem (see [2], Ch. 7 and [9-1 i]). 

Finally, a natural condition is that all (intermediate) step points lie within 
the step interval [t,, t,+ 1] and increase monotonically with j: 

(2.7) O = c o < c 1 < c 2 < . . . < c s - i  <cs = 1. 

It will turn out this condition is satisfied for the two selected schemes. 
We proceed with the stability function. Because the RKC method is an s- 

stage, explicit RK method, application to the scalar test equation 0 ( t )=  2U(t) 
leads to the linear, one-step recursion 

(2.8) U,+I = P~(z) U,, z=z2,  

where the stability function P~: 117--+ti2 is a polynomial of degree s. P~ itself is 
also defined recursively as follows: 

(2.9) Po (z)= 1, P1 (z)= 1 -I-fil Z, 

Pi(z)=(1-1~j-yj)+~jz+([aj+~jz)Pj_l(Z)-I-vjP)_2(z) (2<j<s). 

In fact, all polynomials P~ are of degree j and satisfy 

(2.10) Yi= Pi(z) U, (O<j<s). 

Therefore we will also call the intermediate polynomials P~ stability functions, 
but note that they play no role in the step-by-step stability like P~. 

According to (2.3), each stability function P~(z) approximates the exponential 
e cj~ for z--+O as 

(2.11) Pi(z) = 1 + c~ z + X~ z 2 + O (z3). 

Hence, each P~ is consistent of order 1 (with the exponential e cj z) and consistent 
of order 2 if, in addition, Xj=c2/2. Substitution of this expansion into (2.9) 
and equating powers of z then reveals relations (2.2) and condition (2.6). Hence, 
if we select the coefficients #~, v j, ~j, ~ in the recursion (2.9) such that Pj is 
of order 1 or 2 in the sense of (2.11), then the 1st or 2nd order conditions 
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associated to expansion (2.3) are automatically satisfied. This is very convenient 
since it enables us to concentrate entirely on the choice of the stability functions. 

The choice of the stability functions Pj is the central issue in the development 
of the RKC method. This choice underlies two design rules: 

(I) The coefficients #j, v~,/~j, ~ in the recursion (2.9) are chosen such that the 
real stability boundary 

(2.12) [l(s)=max { -  z: z<O, IP~(z)l ~ 1} 

of the genuine stability function P~ is as large as possible, so as to obtain good 
stability properties for parabolic equations. This requirement leads to the Cheby- 
shev polynomial of the first kind 

T~ (x) = cos (s arccos x), -- 1 < x < 1, 

to which we owe the quadratic increase of fl(s) with s. For example, within 
the class of 1st order consistent polynomials, the shifted Chebyshev polynomial 

(2.13) P~(z) = T~ 1+ , -fl(s)<z<O, 

yields the largest possible value for fl(s), viz, fl(s)= 2 s  2. The use of this polynomial 
for numerical integration purposes is extensively discussed in van der Houwen 
E6]. [] 

(II) The second design rule has to do with the desirability of applying the method 
with an arbitrary number of stages which means that, given s, all coefficients 
I~j, v j,/~, 7-~ must be known in analytic form. Further, and this is most important, 
it should be possible to let s arbitrarily large without severe accumulation of 
errors within one single step (internal stability). The notion of internal stability 
will be discussed at length in Sect. 3. Here we mention that both these require- 
ments are fulfilled by adjusting the three-term recursion (2.9) for P~ to the known 
three-term recursion of appropriately chosen shifted Chebyshev polynomials. 
For example, the polynomials P~(z) = T~(1 + z/s z) satisfy the recursion 

z 

(2.14) Po(z) = 1, Pl(z)= 1-~ s2, 

Pj(z)= 2 ( l + ~22 ) Pj- ~ (z)-  P~- 2 (z), j > 2 ,  

and adjusting (2.9) gives 

/~ t= l / s  2, # j=2 ,  ~tj=2/s 2, v j = - l ,  ,Tj=O (2<j<s) .  

Note that [Pj(z)l __< 1 for allj__<s as long as z lies within the real stability interval 
[ - 2 s  2, 0] of the genuine stability function P~. [] 
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Having outlined these two design rules, we are now ready to specify the 
stability functions P~ with the associated coefficient sets for the 1st and 2nd 
order RKC schemes examined in this paper. They all fit in the general form 

P~(z)=aj+bjT~(wo+wlz), O<j<s, (2.t5) 

where the parameters a t, b j, Wo and w~ have been chosen in accordance with 
the design rules (I) and (II). Before specifying them, there is one point left that 
should be mentioned (to save space we must refer to [6, 7] for more details). 
This point concerns the parameter Wo. Consider the polynomial (2.13) where 
Wo= 1. This polynomial alternates between + 1 and - 1 ,  i.e., ]P~(z)]= 1 at s +  1 
points z e [ - / ? ,  0]. It is desirable to introduce some damping in P~, i.e., to let 
P~ alternate between values "-~ 1 - 5  and - ~ -  1 +5 for all z~ [ - /~ ,  0] (with the 
exception of a small neigbourhood of z = 0), where e is a small positive number. 
The damping is obtained by choosing Wo= Wo(e), called the damping parameter, 
slightly larger than 1. By introducing this damping in the stability function, 
we achieve that the stability region becomes a long, narrow strip around the 
negative axis of the complex plane. On the other hand, the real stability boundary 
slightly decreases [6]. There is practical evidence that with damping the RKC 
method becomes more robust for nonlinear problems. Finally we wish to note 
that an early paper on the subject, where a.o. the use of damped Chebyshev 
polynomials is suggested, is that of Guillou and Lago [3]. 

The 1st Order Case: RKC1 [7] 

_ T , ( w o )  
(2.16) a t=0,  bj=Ti-l(Wo), w o = l + ~ 2 ,  wl T~'(Wo) (O<j<s). 

It can be shown that with this choice of parameters 

~(s)~_(w~176 2 for e ~ 0 .  
T~(wo) 

A suitable values for e is 0.05. Since T~- 1 (Wo)~- 1 - e ,  this yields about 5% damp- 
ing with only a very little decrease in fl(s), fl(s)~-1.90s 2. Note that with e,=0 
we recover the polynomials (2.14). Adjusting recursion (2.9) to the current choice 
for P~ completely defines the general 1st order scheme (2.1): 

(2.17) 
WI 

~A 1 = - - ,  
WO 

b1 
/~j :  2Wo ~j_ 1' 

bj 
fij=2wl b j - l '  

bj 
v j -  bj_z' 

'Tj = 0 (2 < j  < s). 

Note that each value of s defines a different coefficient set. Also note that #j + vj 
= 1 and that the increment parameters 

Z(Wo) L'(Wo) 
(2.18) cj T~'(Wo) T~(wo) ~-JZ/sZ 

satisfy condition (2.7). For  more details we refer to [6, 7]. 
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The 2nd Order Case: RKC2 [7, 13] 

(2.19) aj=l-bjT~(wo), bj Tj'(Wo) 
- (Tj(wo)) 2 , (2 < j<s ) ,  

_ T / ( w o )  

w o = l + - j ,  w 1 T,,(Wo), 

a o = l - b o ,  a 1 = l - b l w o ,  bo=bl=b2 . 

For this choice of parameters one can prove that 

fl(s)"~(w~176 for e, o 0 .  
T/(wo) 

A suitable value for e is ~ .  This gives about  5% damping (as+bs~-1-�89 with 
a reduction in fl(s) of about  2%. The current choice of stability polynomials 
covers roughly 80% of the optimal real stability interval for 2nd order consistent 
polynomials (van der Houwen [8]). Adjusting again recursion (2.9) completely 
defines the general 2nd order scheme (2.1): 

(2.20) f i l  = bl W1 

#j - -2wobbJ  , 
bj 

v j -  bj_ 2' 

~Tj= - ( 1  - b i _  1 Tj_ 1 (WO)) ]~j 

The increment parameters are 

(2 =<j =< s). 

c2 c 2  T~'(Wo) Tj'(Wo) j 2 - 1  
(2.21) C l  = T~(wo) - 4 - '  c j -  T~"(Wo) Tj(wo) - s 2 -  1 ( 2 < j < s )  

and thus satisfy conditions (2.7). For  more details, see [6, 7]. 

3 Convergence Analysis: Internal Stability 

The remainder of the paper is devoted to the full convergence analysis of the 
schemes defined by the coefficient sets (2.17), (2.20) when applied to the linear 
problem class (1.4). Hence, it is supposed that the m x m constant coefficient 
matrix M is symmetric and possesses nonpositive eigenvalues 2(M). This covers 
all linear parabolic problems with time-independent coefficients in the elliptic 
operator. We stipulate that the R K C  method is very well applicable to nonlinear 
parabolic problems, provided the spectrum of the Jacobian F'(t, U) is located 
in a long, narrow strip around the negative axis of the complex plane and 
F'(t, U) does not 'deviate too much from a normal matrix'. A nonlinear analysis 
of the R K C  method is likely to become very complicated, if feasible at all. 
Our convergence analysis for the linear problem gives also insight in handling 
nonlinear problems. 
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Throughout, 11" ][ denotes the common (appropriately weighted) Euclidean 
norm in IR m, or the associated spectral matrix norm. Recall that, since M is 
normal, IIM[I =a(M),  a being the spectral radius. Further, for any polynomial 
P(z), the spectrum of the matrix polynomial P(zM) is the set of values P(z2), 
where ~2 runs through the spectrum of rM;  P(~M) is also normal and 

IIP(~M)II = a ( P ( r M ) ) =  m a x  IP(zA)[. 

By assumption on M, 

- z a (M) =< z 2 (M) < m a x  (z 2 (M)) < O. 

Hence, if we select the stepsize z and the number of stages s such that the 
stability condition z a(M)< fl is satisfied, then H Ps(zM)H _-< 1 for the genuine stabili- 
ty function P~ of the scheme under consideration. 

In the analysis of the RKC scheme (2.1), the notion of internal stability 
plays an important role. Internal stability is investigated with the perturbed 
scheme 

(3.1) Y o = ~ ,  

Yj =[Aj ~rj_ 1 AvYj Yj-2-I-(I--~j--Yj) YoAv~jTFj-I @ ~jTFoAvFj 

0 . +  1 = gs, t l = 0 ,  1, . . . ,  

(2= j<s ) ,  

where now 

(3.2) ~=-Fj(t +cj~, ~)=M~ +g(t +cjr) 

and ~j represents a perturbation introduced at stage j (e.g. round off). Likewise, 
O, represents a perturbation of U,. 

Let 

(3.3) e . = U , - U , ,  dj=~-Yj  (O<=j<s) 

represent the errors introduced by these perturbations. Note that, by definition, 
do=e, and e,+l =ds. If we subtract the non-perturbed scheme (2.1) from (3.1), 
while taking into account the linear system form (1.4), we get the error scheme 

(3.4) do=e,, 

dl = do +/21 rMdo + 71, 
d~ =lljdj_ l + vjdj- 2-l-(1-11i- vj) do-t-fijzMdj-14-~i'cMdo 4-rj 

e ,+ l=ds ,  n=O, 1 , . . . .  

Due to the linearity, dj can be written as 

J 
(3.5) dj=Pj(zM)e.+ ~ Qjk(rM)fk (l =<j _<_ s), 

k = l  

(2<j<s) ,  
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where Pj are the previously introduced stability functions (cf. (2.10)) and Qjk 
are new polynomials of degree j - k .  Of importance is that these new polynomials 
determine the propagation of all internal perturbations over the stages within 
one single integration step. We therefore call them internal stability functions. 
In particular, together with the stability function P~, the internal stability func- 
tions Qsl, ..., Qsk occurring in the final stage error formula 

(3.6) e,+~=P~(rM)e,+ ~ Q~k(ZM) fk, 
k = l  

determine the error e,+l of U,+~. In order to avoid large contributions 
Q~k(ZM) rk, the polynomials Qsk(Z) should mimic, in some sense, the behaviour 
of the stability function P~(z) for all z = z 2(M)e [ -  z a(M), 0]. This is particularly 
important in applications where both the number of stages s and the spectral 
radius za(M) are large. 

Let us determine a closed expression for all Qjk. Substitution of (3.5) (put 
e , = 0  for simplicity) into (3.4), and equating coefficients of fk, reveals after a 
little inspection that they satisfy a three-term recursion with stage index j as 
recursion index. This suggests that Qjk is also a shifted Chebyshev polynomial 
like Pj. More precisely, Qjk exists for 1 <k<s, k<j<s; for k =  1, 2 . . . . .  s - 2  there 
holds 

(3.7) Qjk(Z)=(l~j+~jz)Qj_l,k(Z)+vjQj_2,k(Z), j = k + 2  . . . .  , s ,  

Qkk(Z)-= 1, Qk+ 1,k(Z)=~k+ l "Jff ~k+ 1 Z, 

while Q~_ 1,~- 1 (z) = Q~s(z) = 1 and Q~,s- 1 (z) = /~  +/3~ z. 
Inserting the coefficient values of (2.17), (2.20) gives, for k = 1, 2, ..., s - 2 ,  

bj 
(3.8 a) Qjk(Z)=2b~-~_l(Wo+Wlz)Qj_l,k(Z)--~Qj_z,k(Z), j = k + 2  . . . . .  s, 

Qkk(Z) = 1, Qk+ 1, k(z) = 2 ~ (W o + Wl Z), 

while 

bs 
(3.8b) Qs_l,s_1(z)=Qs,(z)=l and Qs,~_l(z)=2~(Wo+WlZ). 

Vs-1 

It follows that bf 1 Qjk(Z) satisfies the recursion for the shifted Chebyshev polyno- 
mial of the second kind, due to the factor 2 occurring in the definition of the 
Second starting value Qk + 1,k" We thus have 

(3.9) 
bj 

Qjk(Z)=~kSj_k(Wo+WlZ ) ( l<k<s, k<j<s), 

where Si(x) is the ith degree Chebyshev polynomial of the second kind (in 
literature usually denoted by U~(x) [1-]). 
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The error scheme (3.6), that is 

(3.10) e,+t=PAzM)e,+ ~ S~_k(woI+wlzM)f k, 
k = l  

gives a complete description of the stability of the schemes under examination. 
To proceed with it, we briefly recall a few properties of the second kind Cheby- 
shev polynomial [1]. As opposed to T~(x), Si(x) is not bounded by + 1 for 

- 1 _<x___ 1. There holds Si(+_ 1)=(_+ 1)i(i+ 1) and i+  1 is also the maximal value 
for - l_<x_< 1. On the greater part of this interval, S~(x) alternates between 
(approximately) + 1 and - 1. The slope of Si(x) near x =  1 is also larger than 
that of T~(x). There holds S'~(1) = i(i + 1)(i + 2)/3. 

Theorem 3.1. Suppose that z and s are such that the stability time-step restriction 
z cr(M) <= fl is satisfied. Then the following error bound is valid, 

(3.11) Ile.+~ll~lle.ll+C ~ (s-k+l)llUkll~lle.l l+ls(s+l)fmaxll~kll ,  
k= 1 k 

where C is a constant of moderate size independent of M, �9 and s. 

Proof The bound 11P~(z M)It < 1 is a trivial consequence of the time-step restriction 
ze(m)<fl(s). If - f l (s )<z=~2(m)<o,  then, by definition of wl, - 1  <Wo+Wl z 
<Wo and Wo >1.  Hence, due to the normality of M and the behaviour of 
Ss-dWo+WlZ), 

IIS~-k(WoI +w~ ~m)ll <S~-~(Wo). 

We now distinguish two cases: 
(i) No damping (e=0). Then w0= 1 and S~_k(1)=s--k+ I. For  the 1st order 

schemes, all coefficients bk are equal to 1 (see (2.16)) and (3.11) is valid with 
C = I .  For  the 2rid order schemes, bk=~(1-k  -2) for 2<_k<_s and b t=bE (see 
(2.19)); (3.11) is valid with C=b~b; 1 <=~. 

(ii) Damping (e>0). Now wo=l+e/s  2, so that in this case S~_,(Wo) and 
bk must be expanded at x = l  in terms of es -2. The negative quadratic s -2 
then implies that S~_k(Wo) is bounded by 

( s - k +  1)(1 +Ce), 

where C is a constant of moderate size. This also holds for all bk. The proof 
is merely technical and a bit lengthy and therefore omitted. It is obtained by 
properly bounding all higher derivatives of the occurring Chebyshev polynomials 
at x = l .  []  

This result shows that within one full RKC step the accumulation of internal 
perturbations, such as round-off errors, is independent of the spectrum of M 
as long as ra(M)<fl. As far as rounding errors are concerned, the quadratic 
increase with the number of stages renders no problem. For  example, if s = 1000, 
which for a serious application is of course a hypothetical value, the local pertur- 
bation is at most , - ~  106 max 11~i11. If the machine precision of the computer 
is about 14 digits, a common value, this local perturbation still leaves 8 digits 
for accuracy which for PDEs is more than enough. 
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Table 3.1. Internal stability test. The machine accuracy of the Alliant is -~ 10-14 (double pre- 
cision) and of the Macintosh -~ 10 -7 

h- 1 s Alliant FX/4; d = 14 Macintosh PC; d = 7 

~/s 2 ~ ~/s  2 

10 25 0.38 0.60 10 -3 0.72 101 0.11 10 -I 
20 50 0.69 0.28 10 -3 0.33 102 0.13 10 -t 
40 t00 1.29 0.t2 10 -3 0.17 103 0.17 10 -1 
80 t99 9.84 0.25 10 -3 0.41 103 0.10 10 -1 

160 397 6.91 0.44 10 -4 0.30 104 0.19 10- t 
320 794 51.76 0.82 t0 .4 0.10 105 0.16 10 -I 

Van der Houwen and Sommeijer [7] also discuss two different stabilized, 
explicit RK methods. These two methods possess the same stability function 
P~ as the RKC method, but show a very strong, spectrum dependent accumula- 
tion of internal perturbations (see their numerical experiment). They also con- 
clude that for the RKC scheme the accumulation of internal perturbations is 
negligible and almost independent of s. Their conclusion is not quite correct 
since it is based on the assumption that this accumulation is governed by the 
stability functions Pj, rather than by the internal stability functions Qjk- 

By way of illustration, we have carried out a similar experiment with RKC2 
(coefficient set (2.19)-(2.21) with e = ~ ) .  RKC1 shows similar results. It consists 
of carrying out one integration step from t = 0 to t = T =  1 with the model system 
that arises from spatially discretizing the first initial-boundary value problem 
for 

u , = u x x + x ( 1 - x ) + 2 t ,  0_<x_<l. 

The boundary and initial values are adjusted to the exact solution u(x, t )= 1 
+ t x ( 1 - x ) .  Standard central differencing is used so that in exact arithmetic 
the RKC schemes should return this exact solution (see following sections). 

Let U1,j represent the j th  component of the approximation vector UI at 
t-- 1. For  two different computers, the errors 

~ = l O a m a x [ U l , j - u ( x j ,  1)1, d = 7  or 14, 
J 

listed in Table 3.1 for several values of the spatial gridsize h, nicely illustrate 
the limited error growth. We note that Uo,j---1, so that the only contributions 
come from round-off. Apparently, the round-off and the quadratic error growth 
are more pronounced on the Macintosh than on the Alliant. The number of 
stages s varies with h such that 

s =  1 +entier[(1 +za(M)/0.65)~], z =  1, o ( M ) = 4 h  -2. 

This choice of s guarantees that za(M)<fl(s) .  Note that we select s slightly 
larger than necessary. It is stipulated that s is rather large since z--1 for all 
h. Needless to say that if in a practical application such large values for s 
are necessary, the costs of the integration are too large and one should use 
implicit methods. 
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4 Convergence Analysis:  The Local  Defects  

We continue the convergence analysis with the computation of the local defects 
which arise if an exact PDE solution is inserted in the Runge-Kutta scheme. 
Consider the semi-discrete PDE problem [9-11] 

(4.1) fih(t)=-F(t, Uh(t))q-O~h(t), 0 < t <  T, Uh(O) given, 

that is associated to the ODE system (1.1). Hence, Uh(t) represents an exac t  
PDE solut ion restricted to some space grid parametrized by h, and C~h(t ) is the 
local space truncat ion error that originates from replacing the original PDE 
problem by its exact, semi-discrete counterpart (4.1). The derivation of the local 
defects applies to any initial-boundary value problem whose semi-discretization 
can be put in the generic form (4.1). In particular, in this section F is allowed 
to be nonl inear and merely smoothness assumptions on Uh(t) will be made (cf. 
the B-convergence theory). 

In the previous section we have introduced the perturbed scheme (3.1) for 
examining the internal propagation of local, arbitrary perturbations fj. If we 
set in the perturbed scheme ~ equal to Uh(t,+c~T), then the f~ represent residual 
(local) discretization errors, which will be called the local defects.  These defects 
will be denoted by rj in order to distinguish them from the general ?j. The 
local defects are thus defined by 

(4.2) uh (t,  + c 1 z) = Uh (t,) + ~I Z F (t , ,  Uh (t,)) + r i, 

Uh(t n + Cj "C) = ~j  Uh(t n ~- C j _  1 "C) + Vj Uh(t n -]- Cj _ 2 27) --[- (1 --  ]2j --  •j) Uh(t,) 

+ ~j  z F  (t, + C j -  ~ ~, un(t, + C j_  ~ z)) + ~j ~ F (t , ,  Uh (t,)) + rj 
(2=<j=<s). 

Let p e n  and a s s u m e  Uhf~:C p+ 1 [0,  T]. From (4.1) and the Taylor series expansion 
of Uh, fih at the in termediate  step point  t, + cj_ 1 z, it follows that 

( 4 .3 )  rj='COljfth(tn-[-Cj--l"C)+...wzPOpjU(hP)(tn+ej-t'Q+'~p+lpj 
+z[ t j c~h( t .+c j_~  z)+r~jc~h(t , )  (2<j<s) ,  

where the coefficients 0qj and remainder  term pj are given by 

(4.4) 0 1 j = ( c j - c j _ O - v i ( c j _ 2  c j _ l ) + ( 1 - # j - v j ) c j - l - ~ j - ~ j ,  

o - L  )q Z 1 qj--  q! ( c i - - c j _  t -- q! v j ( c j -  2 - - c J -  1)q--~. ( 1 --I tJ--  vJ)(--cJ - 1)q 

1 
(q--1)! ~J(--cJ- 1)q- a (2<q<p),  

1 c w+ 1 u~p+ 1 ( c j - c j - 1 ) P + l u ( p + I ) ( * )  (p+l)! • j (C j -2 - -  j - l J  1)( , )  
PJ (p+ 1)! 

1 ( l _ l A j _ y j ) ( _ C j _ l ) P + l u ( P + l ) ( , ) _ L ~ j ( _ C j _ l ) P U ( P + a ) ( , ) .  
(p-t- i)~.. h ~ p! 
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In the remainder term, u(h p§ is evaluated in various points in (tn, tn+l). The 
formulas (4.3), (4.4) also hold for j =  1 if we set Pl = 1, Co=C_ ~ =0  and vl = ~  =0. 

The coefficients Olj, Oat can be written in a more convenient form. We have 

(4.5) 0t j = c j - # j c j _  1 - vjcj_ 2 - f i j -  ~j. 

Relations (2.2) then imply that 0x j = 0  ( l < j < s )  and thus the contribution of 
the temporal errors to all defects rj is always O(z2). Furthermore, by inserting 
the expression for ~j that follows from (2.2) into (4.4), we get 

(4.6) 02j= 1 2 2 2 - ( C j  - -  ],,lj C j  _ 1 ( 1  <j --  Yj C j -  2) --  ~ j  C j -  I ~ S). 

For the second order scheme, the conditions (2.6) then imply 

(4.7) 02j=0 (4<j<s) ,  02~=�89 022=- �89  c2, 0 2 3 = - �8 9  c2. 

In the next section these results will be used to prove convergence. Formula 
(4.3) will be applied with p =  1, 2 for the 1st and 2nd order schemes, respectively. 
For the convergence analysis an upper bound for the remainder terms pj is needed. 
For the sake of simplicity, we will here derive such a bound for the undamped 
schemes (e = 0). 

Consider the 1st order scheme, defined by (2.16)-(2.18), with e=0.  There 
holds, for all 1 <j  < s, 

I c j - c j _ l l = s - 2 ( 2 j - l ) < 2 s  -1, l - p j - v j = O  and ~j=O. 

Further, v I = 0  and vj= - 1  for 2<j<s .  Hence, (4.4) with p =  1 gives 

(4.8) [}pjll<4s -2 max Hu~2)(t)l] (l__<j<s). 
tn<=t<--tn+ 1 

Next, consider the 2nd order scheme, whose coefficients are given by (2.19)- 
(2.21), with e=0.  There holds 

w l=3 / ( s2 -1 ) ,  b o = b l = b 2 ,  cl=�88 
and 

b 1,1 --2, j = ~ t - - J  ), C j ~ - - ( S 2 - - 1 ) - I ( J  2 - 1 )  (j>=2). 

It easily follows that there is a constant C>O, independent of j and s, such 
that 

[ r  [ ~ ) j [ S f s  2 (1 < j<s ) .  

Further we have 

( 1 - # j - v j ) c j _ l = ( b f 1 - 2 b f _ i l + b f _ 1 2 ) b j c j _  1 (2<j=<s) 

and it follows that 

I ( 1 - p j - v j ) c j _ x l < C s  -2 ( j=2,  3, 4) 
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for some C>0 .  For  j > 4 ,  

I(1 - p ~ - v j ) c  j_ 11 = [3 bi(s 2 -  1)- ' ( ( j -  1) 2 - 1) [(p ( j ) -  2 (p ( j -  1)+ q ) ( j -  2)] I 
<3bi ( s2 -1 ) - l ( ( j -1 )2 -1 )  max [cp"(x)l 

j - 2 < = x < j  

with ~o(x)=(x 2 -  1)-i  x 2 (for x>2) .  Since 

]q~"(x)l= 2go(x)3(3 + x-  e) x -4  <16x-4 

for x > 2, there is a C > 0 such that 

I(I - I ~ j - v j ) c j - d < C s  -2 (4<j<s) .  

Finally, with our convention/~1 = 1, vl =co=O,  we have ( 1 - # j - v j )  cj_ 1 = 0  for 
j =  t. Combining the above inequalities, we obtain for the 2nd order scheme 
with p = 2, 

(4.9) [IPjll<Cs -2 max Ilug3)(t)ll ( l < j < s ) ,  
tn<=t<:tn + I 

where C > 0 is independent of s. 
Of interest is to observe that the two bounds (4.8) and (4.9) are proportional 

to s-2. This means that at each stage the remainder term contained in the defect 
(4.3) diminishes with s-2 for increasing s. This is also true for the spatial error 
part in (4.3), i.e., 

(4.10) [[[tjc%(t,+ci-iz)+Tjah(t,)ll<Cs-2 max l[c~h(t)[t, 
t n ~ t < t n +  1 

since the coefficients fij, ~ are bounded by Cs-2 with C > 0 a constant indepen- 
dent of s and j. We have strong numerical evidence that these results are also 
valid in case of damping (e>0). However, the derivation of the bounds (4.8), 
(4.9) then becomes rather technical and lengthy, while no more insight is 
obtained. 

5 Convergence Analysis: A Bound for the Full Global Error 

The results of the two previous sections are now combined so as to derive 
a bound for the full global error. Hence we again consider the linear problem 
class (1.4) (cf. Sect. 3) and, for simplicity, restrict ourselves to the undamped 
schemes (cf. Sect. 4). In our analysis, the time step ~ and the grid distances 
in space, parametrized by h, are allowed to tend to zero simultaneously and 
independently of each other. Usually, convergence for explicit methods applied 
to parabolic equations requires a stepsize restriction z a ( M ) <  const., a(M)~ h-2, 
due to stability. With the RKC schemes za(M) is allowed to become arbitrarily 
large, stability being achieved by taking s sufficiently large. This advantage over 
standard explicit methods is fully justified by our unconditional convergence anal- 
ysis where the assumption ~a(M)<fl is to be interpreted as a condition on 
s, rather than as a restriction on ~. 
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Let e n = u h ( t n ) - - O  n be the full global error. For these errors we have (cf. 
(3.6) or (3.10)) the recursion 

(5.1) e ,+,  = P~(Z) e, + ~ Qsk(Z) rk, 
k = l  

where Z = z M  and the vectors rk are the local defects due to discretization. 
Upper bounds for lie, t[ will be derived by elaborating this recursion with the 
help of our estimates of the local defects and our results on internal stability. 

In the following, C will denote a positive constant independent of z, M and 
s, not necessarily always with the same value. 

The R K C I  Method (e=0). Consider the method defined by (2.16)-(2.18) with 
e=0.  This method was constructed such that the temporal ODE order is one. 
With temporal ODE order we mean the order obtained from an analysis where 
the dimension of the problem, and thus the space grid, is fixed. We will show 
that we have also temporal order one for any value of a(M) and s, hence for 
any spatial grid refinement, provided z a(M)<= ft. 

Suppose Uh~C 2 [0, T]. From the results of Sect. 4 (see (4.8), (4.10)) it directly 
follows that there is a C > 0 such that 

(5.2) HrkH~=C'cs-2(~c m a x  [lU(h2)(t)l[-t - max l[ah(t)l[) (l_-<k<s). 
tn<=t<=tn+ I tn<=t<=tn+ 1 

Using Theorem 3.1, we then immediately obtain the following bound for the 
global errors: 

Theorem 5.1. Assume Uh~C2[0, T] and za(M)<f l .  Then the global errors of the 
undamped R K C I  scheme satisfy 

Ile,[l<C(~ max [fu~2)(t)ll+ max ll~h(t)]l) (n=l, 2, ...; nz<= Y) 
O<_t<_ T O ~ t < ~ T  

with a constant C > 0 independent of z, M and s. [] 

The RKC2  Method (e=0). Consider the method defined by (2.19)-(2.21) with 
e=0.  This method was constructed such that the temporal ODE order is two. 
We will derive an error bound which proves that RKC2 has 'a lmost '  order 
2 in time for any value of a(M) and s, provided za(M)<=fl. 

Assume Uhe C 3 [0, T] and z a(M) <= ft. Application of formula (4.3) with p = 2 
shows that, since 01k=O for all k, 

Q~k(Z)r k < z  2 ~ z) (5.3) k~l k~= , 02, Q~k(Z) U(h2)(t. + Ck-1 

+ ~ IIQ,~(z)tl (d llpkll +~(H/~k~h(t.+c,- ~ ~)+~Tk ~h(t.)[l)). 
k = l  

Using (4.9)-(4.10) and the inequality II(L~(z)It <C(s-k+l) ,  as in the proof of 
Theorem 3.1, the entire last term is bounded by 

C(z 3 max I/@)(t)ll+z max [l~n(t)ll). 
tn<=t<=tn+ I tn<=t<__tn+ I 
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Further, the coefficients 02k are known from (4.7). Using definition (3.9) for 
Qs~, the relations bl = b2, v3 = - b 3  b~ 1 and #a = 2, it then follows that 

(5.4) ~ 02kQ~k(Z) (2, Uh (t .+Ck-1 <llR(Z)u~2)(t,)ll 
k 1 

+ �89 c~ II ~2 Qs2 (Z) lush 2) (t. + c~ z) - -  U(h 2)  (t.)~] II 
1 2 

-}- ~ Cl It V3 Qs3 ( Z )  [U~h2)(t. + C2 Z)-- U~h2)(t,)] 11, 

where the polynomial R(z) is given by 

3 
(5.5) R(z)= ~ 02kQ~k(Z) - ~  2 - ~ c x b ~ l b ~ [ S s  l(1 +wlz)  

k=l 

- 2 S s _  2(1 q- w 1 z ) - t - S s_3 (1  + w  1 z)]. 

As c1=�88 c 2 = 3 ( s Z - 1 )  -1, we can bound IIR(Z)I[ by Cs -3 for some C>0 .  
Further we have [lu~h2)(t. + Ck Z)-- U(h2)(t~)l] < Ck Z max Ilu~3)(t)t[. Inserting all these 
bounds in (5.3), we obtain 

=s rk (5.6) k~1 Q~k(Z) < Cs -3 z 2 max [tu~2)(t)[I + Cz 3 max IlU(h3)(t)[I 

+ Cr max ]l~h(t)ll, 

and by using the recursion (5.1) we arrive at the following result: 

Theorem 5.2. Assume Uh~C3[0, T] and za(M)__<fl. Then the global errors of  the 
undamped R K C 2  scheme satisfy 

lie, I] < C ( s - 3 z  max ]lU~hZ)(t)lf + z  2 m a x  Itu(h3)(t)ll-l- max ]lO~h(t)ll) 
O<t<=T O<t<_T O<t<T 

(for n = 1, 2 . . . .  ; n z <-_ T) with a constant C > 0 independent of  z, M and s. [] 

Theorems 5.1 and 5.2 prove convergence of RKC1 and RKC2, respectively, 
irrespective the size of s or za(M). The analysis also shows that the use of 
many stages within one single step does not adversely affect the accuracy. The 
temporal error is merely determined by r and the smoothness of Uh as a function 
of t. The spatial error is merely determined by the size of the local space trunca- 
tion error, the common situation. 

Theorem 5.2 shows that RKC2 is of 'almost '  temporal order 2 and that 
with s large order 2 will be observed. Theorem 5.2 does not reveal the classical 
order 2 for fixed M (fixed space grid) and s. This property can be proved with 
the above analysis, based on the defects, by noting that R(0)=0. Then, since 
z-  1 R (z) is bounded as a function of z ~ [ - /3 ,  0], the estimate 

(5.7) IIR(Z) uk2)(tn)ll < IIR(Z)ll Ilu~a)(tn)ll 

that led to the zE-term in (5.6), can be replaced by 

(5.8) lie (Z) u~a)(t~)ll =< zllZ- 1 R(Z)]I II Mu~E)(t,)ll . 

This estimate gives an extra z because Mu~2)(t) is bounded on a fixed space 
grid. Mu(ha)(t) is also bounded for h ~ 0 if u ~z) satisfies homogeneous boundary 
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condi t ions  imposed by the homogeneous  opera tor  M (see, e.g., [10]). In that  
case, estimate (5.7) can also be replaced by (5.8) in the p roof  of  Theorem 5.2, 
which then leads to ' t r u l y '  order  2. We shall not  pursue the convergence mat ter  
further, since in mos t  applicat ions R K C 2  will use values of  s for which the 
error  term 

s - 3 z  max Itu~Z)(t)[I 
O<_t<_T 

is hardly noticeable. 

6 Numerical Examples 

Our  first example problem is Fisher 's equat ion 

(6.1) ut=u~x+uZ(1-u),  O<x, t< l ,  

with the exact solution u (x, t )=  (1 + exp (v ( x -  v t)))- ~, v = �89 If2. We use this equa- 
t ion to illustrate the convergence behaviour  in a non-model  situation. The second 
derivative is approximated  with 2nd order  central differences on a uniform grid 
with gridsize h. The schemes are applied with damping.  Fo r  R K C 1  the damping  
parameter  e = 0.05 (see (2.16)) and for R K C 2  e, = ~ (see (2.19)). In the experiment 
we let z = h  decrease and s is chosen to satisfy the stability condi t ion ra<fl(s), 
while s is taken as small as possible. We put  a = 4 h - 2 + 4  and 

(6.2) s = 1 + entier [(1 + za/1.90) ~] for RKC1 ,  
s = 1 + entier [(1 + z a/0.65) ~] for RKC2.  

The number  4 in the expression for the spectral radius a serves as a (conservative) 
uppe rbound  for the derivative of  the inhomogeneous  term in (6.1). Note  that  
we select s slightly larger than necessary to satisfy the condi t ion z a  < fl(s). 

Table 6.1 lists m a x i m u m  errors at t - 1  for a sequence of  z=h  values. As 
expected, R K C 1  converges with order  1 and R K C 2  with order  2. We owe 
the high level of  accuracy  to the high degree of  smoothness  of  u. 

Our  second example problem is a system of two reaction-diffusion equat ions 
in 2D, a type of  problem already ment ioned  in the in t roduct ion as being appro-  
priate to be solved with the explicit R K C  scheme. The problem is the Brusselator 
with diffusion given in 1-4], p. 381 : 

(6.3) ut = 1 + u 2 v -  4.4u + 6(u~x + ury), 
vt=3.4u--u2v+b(v:,~+vrr), O < x , y < l ,  t > 0 ,  

Table 6.1. Convergence test on Fisher's equation 

(z = h)- 1 RKC1 RKC2 

s error s error 

5 4 0.63 10 -4 6 0.15 10 -4 
10 5 0.26 10 -4 8 0.25 10 -s 
20 7 0.13 10 -4 12 0 .54  10 - 6  
40 10 0.44 10 -5 16 0.15  10 - 6  
80 14 0.21 10 -5 23 0.33 10 - 7  

160 19 0.99  10 - 6  32 0.77 10 -8 
320 26 0.48 10 - 6  45 0.t9 10 -8 
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i 

Fig. 6.1 Solution v of (6.3) for t = 0 ,  0.5, ... ,  1t.5 
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Fig. 6.1 (cont.) Solut ion v of (6.3) for t =  12, 12.5 . . . . .  23.5 
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subjected to homogeneous  N e u m a n n  boundary  condit ions and to the initial 
condit ions u(x, y, 0 ) = 0 . 5 + y ,  v(x, y, 0 )=  1 + 5 x .  Note  that these are not  consis- 
tent with the bounda ry  conditions. The reaction term and the diffusion parame-  
ter 6, here 0.002, are such that the flat initial solutions develop into 'periodically 
m o v i n g '  wave fronts with a 'pe r iod  of  about  8'. 

Us ing  2nd order  differencing, the P D E  is spatially discretized on the uniform 
mesh 

{(x,, yj): x ,=( i -  1) h, y j = ( j -  1) h, 1 < i , j<N, h= 1/(N- 1)}. 

Note  that  this mesh covers the boundary ,  i.e., we also integrate on the boundary .  
The addit ional  neighbouring points x_~, xu+ l ,  y - l ,  YN+I outside the mesh 
are eliminated with the central difference replacements for the N e u m a n n  bound-  
ary conditions.  We thus obtain  a semi-discrete system of dimension 2 N  2. 

In our  experiment, N =  101 resulting in 20402 equations. A fine mesh is 
needed as the moving fronts are locally rather steep. The spectral radius a 
of  the Jacobian  matrix of  the semi-discrete opera tor  is estimated as a = 1 0  
+ 8 6 h  -2  and, like before, the number  of  stages s per step is determined by 
(6.2). Using h = 1 0  -z  and z=~0,  we thus get a = 1 7 0  and s ( R K C 2 ) = 4 .  This 
small number  of  stages is due to the small value of  6. 

Figure 6.1 shows the evolution of  componen t  v, obtained with R K C 2  for 
h =  10-  2 and z =0.05,  over the time interval [0, 23.5]. The plots are at equidistant  
time values t - -0 ,  0.5, ... and show the computed  solution along every fifth grid 
line. R K C 2  performs very satisfactorily on this problem. The periodic solution 
behaviour  is accurately simulated. The costs of  the integration amoun t  to 
23.5 x 20 x 4 = 1880 explicit evaluations of the semi-discrete P D E  operator.  
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