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Summary. In the present paper we give a convergence theory for multi-grid
methods with transforming smoothers as introduced in [31] applied to a
general system of partial differential equations. The theory follows Hack-
busch’s approach for scalar pde and allows a convergence proof for some
well-known multi-grid methods for Stokes- and Navier-Stokes equations
as DGS by Brandt-Dinar, [5], TILU from [31] and the SIMPLE-methods
by Patankar-Spalding, [23].

Subject Classifications: AMS(MOS): 65N20; CR: G1.8.

1 Introduction

In the present paper we give a general convergence theory for multi-grid methods
with transforming smoothing as introduced in [31], applying to linear and quasi-
linear saddle-point problems as the Stokes and Navier-Stokes equations. The
theory allows a convergence proof for some well-known multi-grid methods
for those equations such as the so-called distributive GauB-Seidel by Brandt
and Dinar, [5], transforming ILU, introduced in [30, 31], and the SIMPLE-
methods originally due to Patankar and Spalding, {23]. Recently the importance
of these methods is growing more and more as illustrated by a number of
papers on that topic (see [3, 9, 21, 24, 25, 26, 31] and the references there).
The results given here are extensions of the ones in [30].

Sections 1.1 and 1.2 contain a short discussion of multi-grid technique and
convergence theory as well as a brief description of the incompressible, steady-
state Navier-Stokes equations, serving as model problem. After a short outline
of r-transforming smoothing in paragraph 2.1, we give a criterion for the conver-
gence of a multi-grid method with r-transforming smoother applied to a general
system of partial differential equations. Based on this criterion the smoothing
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16 G. Wittum

property and consequently two-grid convergence for a general block triangular
system is discussed in section 2.3, providing advice for the construction of suit-
able transformations. In sections 3.1 and 3.2 the theory from chapter 2 is applied
to the Stokes and Navier-Stokes equations.

1.1 Multi-Grid Technique

1.1.1 Notations and Preliminaries. Multi-grid methods are iterative solvers of
optimal efficiency, gained by a skilful combination of two parts, smoothing
and coarse-grid correction.

Let the linear boundary-value problem

(1.1.1a) Ku=f in Q
(1.1.1b) u=u, on 4Q

with a differential operator K: U — F between some Sobolev-spaces be given
on a domain 2cR Let (1.1.1) be discretized on I, grids

(1.1.2a) Q, I=1, ..., ]

with stepsizes

(1.1.2b) O<hyyy<h, I=1,..., 1,1
Let further

(1.1.3) K;: U-F

be the discretization of K on Q,, U, and F, some spaces of grid-functions, being
discrete analogues of the Sobolev-spaces U and F. Let the discrete problem

(1.14a) Kou=f, in @, I=1, .. 1.,
(1.1.4b) w=ug, on oQ, I=1,.. 1.

be well-posed. Now, classical iterations can be used as smoothers, as they primar-
ily reduce the high frequency components of the error. We denote one step
of such an iteration (“smoothing step”) by S. Furthermore, et some prolongation
and restriction

(115) D: le-1_>Uvb r. Fl—* 1—1s l=29 ---almax

between the spaces of grid-functions be given. Then the iteration matrix of
a two-grid method on the grids @, and ©,_, with v, pre- and v, post-smoothing
steps is given by

(1.1.6) Ty, (v, v2)=8"2(I—p (K, )" 1 K)) S™.
For a detailed introduction into multi-grid technique and algorithms see [13].

1.1.2 Convergence Theory. Our theory is a generalization of Hackbusch’s one
given in [13]. For a detailed introduction see there.
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Let U, be the space of grid-functions u, from (1.1.4a) with the norm |.},
and F, the space of grid-functions f, from (1.1.4a) with the norm |.|,. For
a scalar differential operator K it is sufficient to choose |.[y,=1.1r=1l.lo.
where

(1.1.7) lulo=(c* Y, lu(x)»)'?

xefy

is the Euclidean norm with a suitable scaling factor ¢, say c=h.
The situation becomes more complicated, if K represents a system of partial
differential equations

Kll Kln
(1.1.8a) K= :
Knl Knn
with
(1.1.8b) K=K, (D)= Y ¢, D"
la] Skij

where « is a multi-index, D=0/0x. Let my, ..., m,, m}, ..., m, be numbers with

(1.19a) 2m=Y (m;+mj)
i=1

so that

(1.1.9b) ki i<m+mj;

(cf. [1]). By virtue of these numbers we introduce the following norms for the
discrete spaces:

(1.1.10a) g, = Z s I
and
(1.1.10b) 1l =3 b 2™ £l

i=1

where y; refers to the i-th block of u corresponding to (1.1.8a).
The discrete spaces can be written as

(1.1.10¢) U=XprmMm=XMx...xX
and

(1.1.10d) F=Yy o mioy - mix | xY, ™



18 G. Wittum

with spaces of grid-functions X} and Y{*, u denoting the order of differentiability
of the corresponding continuous spaces (cf. [12]).
For a positive-definite and symmetric operator K, of order 2m

(1.1.11) s = 1K™ o

defines a norm which is independently of h equivalent to the discrete Sobolev
norms for spaces of grid functions as introduced in [15], provided —m<s<m
and the region , satisfies “property C” from [14].

The following theorem providing sufficient conditions for the convergence
of the two-grid method T, , is due to Hackbusch (cf. [13]).

Theorem 1.1.1. Let S, satisfy the smoothing property for K;, 1.e. there exist n(v)
and v'(h) so that

1K Silpeu=Snly)  Vvi 1svsyvihy), 122,
(1.1.12) n(v)>0 for vo oo, V(h)=00 or v(h)— oo for h—0,

and let K, fulfill the approximation-property:

1C,—0, independent of h so that
(1.1.13) IK ' —=p(Ki— )" rllpesCyy  VIZ2,

then there exist h and ve N :
(1.1.14) [T, (v, Oy =Cyn(v) <l

holds for v with v'(h)zvzv(h) and h,<h and the two-grid method T, , from
(1.1.6) converges monotonically, independently of h.

Proof. Follows immediately by T, ,(v,0)=(K; ' —p(K,_ )" 'r) (K, §)).

Remark 1.1.2. The norm of T, ,(v,,v,) is estimated similarly (cf. [13]). Under
the additional assumptions

(1.1.15) ISt loes SC VIZL,  O<v<V(h)

and

(1.1.16) Q;l““1—1”U,Al§“P“z—l”U,éCp”ut—1||u,_1 Vu,_1elU_q, =1,

which are usually satisfied, the smoothing-property (1.1.12) and the approxima-
tion-property (1.1.13) yield the h-independent convergence of the corresponding
multi-grid method with W-cycle too.

Proof. See [13], Theorem 7.1.2.

Remark 1.1.3. The smoothing-property allows a stability argument, i.e. it carries
over to problems perturbed by lower order terms (cf. [13], crit. 6.2.8).
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1.2 Model Problems

We consider the following saddle-point problem:

Ayu+Cp=
(1.2.1) b f‘} in Q,cR?
Byu,=f,
u=ug on 08,

with

(1.2.2a) A: X, 75Y 2, bounded,
(1.2.2b) B: X, 2-Y "2 bounded,
(12.2¢) C: X,7 1oy, bounded,

for some teR and X{ and Y/ from (1.1.10). Let further A4, be invertible with
bounded inverse and by means of A4;"! we define

(1.2.3) Ei=B A7 ' Cp: X2 x50+,

and require E, to be bounded and to have a bounded inverse. Then K; ! exists
and is bounded. For a precise discussion of regularity cf. [12] and [6]. Such
a problem is given by the Stokes and linearized incompressible Navier-Stokes
equations in primitive variables as described below, or by the mixed formulation
of the biharmonic equation (cf. [12]).

The incompressible Navier-Stokes equations describing the motion of a
viscous, incompressible fluid with the Reynolds-number Re, the velocity u
=(uy, ..., uy)7, the pressure p, under the outer force f=(fi, ..., fy)", inside a
region < R? are given by

(1.2.4a) —Au+Re(u'V)u+Vp=f} 0
m
(1.2.4b) divu=0

and the usual Dirichlet boundary conditions for fixed walls
(1.2.4¢) u=ug on dQ.

For strongly viscous flows the Reynolds-number is very low. Thus we can neglect
the nonlinear convective term Re(u- V) u, and get the linear Stokes equations

(1.2.5a) —du+Vp=f |

) in Q,
(1.2.5b) divu=0
(1.2.5¢) u=ur on 0%

To get a discrete problem of form (1.2.1), we have to apply a suitable discretiza-
tion process yielding stable discrete operators. That is, we replace the continuous
Sobolev-spaces, on which the operators from (1.2.4) and (1.2.5) are defined, by
discrete spaces. This can be done by finite difference techniques as well as by
finite element ones. Especially we have to take care that Brezzi’s condition
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(cf. [6, 12]) is fulfilled, in order to achieve stability of the discretisation. Examples
of such discretizations can be found in [2, 11, 16, 18, 27].

Of course, linearizing (1.2.4) in the usual way also yields a problem of form
(1.2.1). These two problems are the main applications for our theory.

2 General Theory
2.1 Transforming Smoothers

If K, from (1.1.3) is regular, but indefinite, the construction of appropriate
smoothers is not obvious. To split K; in the sense of Varga, [28], we construct
nonsingular matrices K, and K|, called r- or I-transformation respectively, so
that a splitting of

2.1.1) R K,K,=M—N

is reasonable. As K, and K, are nonsingular, (2.1.1) gives rise to a splitting
of K,

(2.1.2) K,=K;*MK;'—K;*NK; '

The corresponding iteration, called “transforming iteration”, is given by:
Let an arbitrary starting guess u{® be given. Then the i+ 1% iterate is calculat-
ed from the i'® one via

(2.1.3) uf U =uf — K, M~ KK, uf’— f,).

If K,=I, we speak of r-transforming iteration. R-transforming iterations are
a generalization of the squared methods by Kaczmarz, [19], and Cimmino,
{71, and of the distributive relaxations by Brandt and Dinar, [4, 5]. They are
of special interest to construct smoothers for indefinite systems, as the Navier-
Stokes equations (cf. [31]) and the shallow-water equations (cf. [22]). So, widely
used iteration-schemes, such as the SIMPLE-family, e.g. SIMPLE (see {23]),
SIMPLER, SIMPLEST, PCS, PISO, etc. (see [21, 24]), and distributive relaxa-
tions like DGS (see [5]) and PGA (see [9, 10]) are classified in [30] and [31]
as r-transforming iterations, thus providing a platform for theoretical investiga-
tions about the properties of those methods.

In practical applications they are mostly applied as perturbed transforming
smoothers, leaving out some inconvenient terms in the product system. Le. for
splitting (2.1.1) a simplified system K, K, K, is used, while the transformations
are replaced by K and K, resp., resulting in the iteration:

Let an arbitrary starting guess u{® be given. Then the i + 1*' iterate is calculat-
ed from the i'® one via

(2.1.4) uf*V=uf— K, M~ KK, ul’> — f).

Remark 2.1.1. The r-transformation is a mapping

(2.1.5) K;: -1
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with

(2.1.6) U=X" x...x X,

The operator of the transforming method (2.1.3) is given by

(2.1.7a) S, =K, S, K; !

with the “product-iteration” operator

(2.1.7b) S=M"'N

which acts directly on the product system. The one of the perturbed r-transform-
ing method reads

(2.1.8) S.,=1,—K,M 'K,

Proof. Follows immediately from (2.1.3) and (2.1.4). ged
Concerning the convergence of perturbed methods, we quote from {31].

Remark 2.1.2. If iteration (2.1.4) converges, its fixed point is the solution of the
original system (1.1.4). This is not possible with the so-called product iteration
(2.1.7b) which is applied directly to the product system.

Proof. Immediate, as the defect in (2.1.4) is taken w.r.t. the original equa-
tion. ged

In the present paper we concentrate on the analysis of r-transforming smoothers.

2.2 The Convergence of a Two-Grid Method Using R-Transforming Smoothers

Let K;: U,— F, be the discretization of a system of partial differential equations
as given in (1.1.8a) and denote the discrete problem by

2.2.1) Kyx=b, 1=1, ..., L.
Let further the r-transformation K;: U— U, also be a stable discretization of

a system of partial differential equations of form (1.1.8a). Using the coefficients
m;, m;, m; from (1.1.9) and (2.1.6) we define

(2.2.2a) H,=blockdiag {h[" I, ..., ki 1},
(22.2b) H,=blockdiag (k™ I, ..., K= I},
and

(222¢) H;=blockdiag {h[" I,, ..., h{= I }.
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By virtue of (2.2.2a—c) we introduce the norms

(2.23a) Mullly, =1H ' K P uglo
(2.2.3b) I fillr,=1Hi filo
(2.2.3¢) g, =1H " wlo

on the corresponding spaces.

Theorem 2.2.1. Let K, and K, of form (1.1.8a) be stable. Suppose for 1=2 and
1<i,j,k=n

(2.2.4) (K Dado« my—m, = C,
(2.2.5) (K ' —=pK Yy Mjleco=Chp ™,
with t=m,—m,, for all k=1, ..., n for which (K| ), %0,
and
(2.2.6) 1K, K Silipe0,Cn(v),  for O<v<v'(h), [22,

with n(v) and v'(h) according to (1.1.12). Then the two-grid method converges
and

227 72,100, O)llly, -0, = C (v)

holds.

Proof. With S, =K, S, K; ! being the operator of the r-transforming smoother,
we have

If T;,.(v, O)l”U;*‘Ul = |Hz_ ' Kf ! (K ! —PKI_—ll r)H;~ 1|0<—0 {H K, §;, Kz ﬁzio«o-
By virtue of (2.2.4) and (2.2.5)
I(Kl— ! (Ky ! —pKlﬂ—ll "))ij]o«o

é Z l(Kl' l)iuiokmu—rﬁi
u=1

K ! _PKI_—11 r)uj|m,4—m,-«—0
_S_ Ch;ﬁi+m_',~

holds, yielding |H; * K; Y(K; ' —pK; 4 r) Hi Yoo o <C.
The second factor is estimated by

|H;K,S{,K,ﬁl[ohole;K,K,S;’ﬁ,]o‘_()éCn(v). qed

Theorem 2.2.1 is a generalization of Hackbusch’s splitting approach, theorem
1.1.1. Instead of a smoothing property of the r-transforming smoother itself,
we require only smoothing property (2.2.6) of the product iteration. (2.2.4) is
the discrete regularity as investigated by Hackbusch in [14, 15]. (2.2.5) is the
approximation property in weak norms. To satisfy (2.2.5), the interpolations
and the consistency of the discretization have to meet the order of the product
system, which is usually higher than the one needed by the original system.
This problem can be avoided by
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Remark 2.2.2. Let the coarse-grid matrix K,_, be computed by
(22.8) Kl—l :rKI ps

the so-called Galerkin-ansatz. Then only the order of p and r=p* have to
fit for the product-system. No additional consistency assumption is needed.
Proof. see [13], Chapter 6.3. ged

Concerning perturbed r-transforming smoothers as mentioned above, we give
the following results

Lemma 2.2.3. Consider the perturbed r-transforming smoother from (2.1.8). Let

(2.2.92) B=K,K,-K, K,
(2.2.9b) S;=1-M; ' K,K,,
(2.2.9¢) S{=M; "B,
(22.9d) S=S8;+57,

and

(2.2.9¢) K;: U-U,.

Let the simplified problem K, K, satisfy the smoothing property in the norm induced
by (2.2.3b, ¢)

(2.2.10) IK K 87 llpe 0,2 Ca ' (V)

for 1Ev v (h), with /(v}y and v'(h}) according to (1.1.12). Let further

(22.11) ISilo 0. <Gy 122,
and

(2.2.12) lim | Rllg,-0,=0,
(2.2.13) lim [i87llg,-9,=0

provided h;— 0 as | - «o. If additionally
(2.2.14) IR Yye0,SC 122,
holds, then the smoothing property for the perturbed product system

(2.2.15) K, Kt Sl co, SConly),
for 0<h=<he(e) and n()=(1+e)n' (),
for 1Zv<v(h), >0, arbitrary,

is satisfied.
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Proof. According to the definition of §, ; in (2.1.8) we have
§1.1=I—IZ1 Ml_l K,=IZ,(I—M,_ ! K, Kt) IZI_ !
=R,(I-M; 'K, R,+M; ' B K
= KI(S; +5S7) Kx_ !
and
1K, K S}l ye-0,= (K, K, — B) (S;+ S Fc0,<Can(v)
follows from [13], criterion 6.2.8. ged

Theorem 2.2.4. Let K, and K,: U,— U, be of form (1.1.8a). Further let for 122
and 1 i, j<n

(2.2.16) (K iflom,-m < C.
In addition, let (2.2.5) and (2.2.15) hold. Then the two-grid method converges and

(22.17) MT2,.%, Oy, v, £ Cn(v)
withn(v) from(2.2.15),

where
(2.2.13) mulmv, ={H;! Kz_ Yugll.
Proof. Similar to the one of Theorem 2.2.1. ged

Theorem 2.2.4 and Lemma 2.2.3 apply to perturbations of lower order (see
[13, 307).

2.3 Product-Systems of Block-Triangular Form

In order to give some advice how to construct an appropriate r-transformation
for a given system of pde we discuss the properties of block-triangular systems.
This form turns out to be favourable for a product system.

Lemma 2.3.1. Let R: U,—F, be a discrete operator with U, and F, from (1.1.10).
Let R be of the form

R,, 0
23.1a R={_" )
(2-3.12) (Ru Ry,

and assume with o, B>0, y=0 in appropriate weak norms

(2.3.1b) [Ri1l-ac0=Cy,
(231(:) ‘R21|—s4—tsc2h_p+t+s, fOT t€[0, ﬁ]a SE[O, ﬁ_t],

and

(2.3.1d) [Rzloc0=C3h77
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Let R, satisfy the “‘discrete regularity
(2.3.2) IR Macke —«=C4 for x from(2.3.5a).

Further, split R into

(2.3.3a) R=M-—-N, M regular,
and

(24.3b) S=M"'N

with

2.3.3¢ S=

(2339 (sn S22

and a similar blocking of M and N. Suppose these blocks satisfy

(2.344) Moo =Cs b,

(2.3.4b) IM7 s SCoh?,  s€{0,4}, Ao from(2.3.5b)
and

(2.34¢) IMyiloe SCsh7P*, for te[0, B].

Let the smoothing properties

(2.3.53) IRy; STil-cco=Cont (M h 7% for 0<v<vy(h),
for somexe[0,0) and §=1-—k/a andfor k=0,
(2.3.5b) IR 8%2l0-2 = Cro Bon5,(v),  for 0<v=vy,(h),

with suitable n;;(v) and v};(h) according to (1.1.12),

_ fmax{0,a—f—x} for y>0 .
16{09 /10}7 2’0"‘“{0 for '}’:‘O, {'_A ?,
14
i y  for y>0
1 for y=0
be satisfied.
Let further n;;(v), i=1, 2, from (2.3.5) satisfy
(2.3.6) 121 (v):=n},(v)
v—1
+ ) M@0 (v—p— D+ (W i (v —-p—1) >0
u=0

for v—> 00,8, 1 from. (2.3.5b).

25
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Then there exists v, (h) according to (1.1.12) so that

(2.3.7) (RS )21loco=Ciih™f 0y (v),  for 0<v=vyy(h),
for 0<h<h with n,,(v) from (2.3.6).

holds.
Proof. We have

M} 0
2.3.8 M“:( D _>
@35) ~(M3} My, Mi) M
and
(2.39a) Si=Mi Ny,
(2.3.9b) Sa =M2_21 N;s,
(2.3.9¢) Sy =M3' Ny =My My M7 Ny,

Thus we obtain for S*, veN,

M 0
2.3.10a sv=( ! )
( ) (821(") $3,
with
v—1
(2.3.10b) 821(‘7): Z S‘%Z S21 Si;‘t_l.
w=0
By virtue of (2.3.10) we have
(2.3.113) (RSV)“:R“ S;i’ fOI‘ 16{1, 2},
and
(2.3.11b) (R8")21=R5; 871+ R, 8,1 (v)
v—1
=R, S1i+Rzz Y, $555, 8147 L
u=0
With o =a—x the estimates
(2.3.12) [R21 STiloco=IR oo | R Mo —lR11 STl -0

§Ch“ﬁrﬁ1(v)

G. Wittur
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and

v—1
(23.13) IR, S5, (Mlo—0=|R;, Z 852851 S11*T !
u=0 0<0
1

(IR22 8%, M3, Ry 817 Moo

v
=<
u

M

I

0
+|R55 8%, M3, Moy M Ry S11% 7 Howo)

are satisfied. The first term can be estimated as follows

IR22 852 M35 Ry S17% 7 Yoo
<IR3; 842002 1M lA<—A|R21IA~—A+ﬂIR11'l+/}‘— JR1 ST T o
<Ch~ ﬂ’lzz(#)"ln("_ —1).

Analogously we obtain for the second term in (2.3.13)
IR;; 85, M3, My, Mi{ Ry S17# oo SCh™ Py (v—p—1),
and thus by virtue of (2.3.12)

v—1

i(Rsv)ulokoéCh—ﬂ(nfl(vwr S s () (1 (v — i 1)

a=0

+n;;f<u)nn(v—w1))):Ch“"n21(v).

Usually, common smoothers satisfy the assumptions on M and N. Smoothing
properties (2.3.5) and assumption (2.3.6) are discussed below.

Lemma 2.3.2. Let a system of form (2.3.1a) and a corresponding smoother satisfy
(2.3.1-4). Let further smoothing properties (2.3.5a, b) hold for the diagonal-blocks
with

vv

(2.3.14) (V)= C-1o(v):= W’

for vZvaeN.
Then (2.3.7) is valid with
Cve, iy, <1
< .
(23.15) ”ZI(V):{CV"-Inv, if% or =1
g=max{l—9-—1, -9, —1}
Proof. Because of (2.3.14) we have

v—1

(2.3.16) N21MSC Y no(W S (v—pu—1+ns (wno(v—p—1)

u=0

1 1
=C Z (u+1)’((u+l)‘ () (v—u)“)'
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By virtue of Euler’s sum-formula (cf. [8]) we obtain

v—1 q
1 {O(V ), for 9,t1<1 qed

(2317) ﬂ;o—(m: O(Vq.lnv), if 3=1 or =1

Smoothing properties (2.3.5) in weak norms can be concluded using interpolation
as given in the following lemma (see also [17] and [30]).

Lemma 2.3.3. Let K, be the discretization of a scalar differential operator of
order 2m and let

(2.3.18) IK; S0 Ch™2™n(v)

with n(v) according to (1.1.12) hold in the spectral norm. Suppose further

(2.3.19) (Mg o<Ch™ 2™
(2.3.20) IM ™Yoo < Ch2™,
(2.3.21) 18”00 =G,
(2.322) 1Ko 2m<C,
and
(23.22) KT locom<C.
Then
~9tt i 2m
(2.3.23) IKi S| g SCh(v) 2m 7727,

for 0<0,7 and o+1t=2m.

Proof. The proof follows [17], crit. 4.3.*. Denote the spectral norm by |f.].
We have
[KiS"ocam< 1K 8" Ky HIKilow2m SC (K, SKy I =C{(NM ™|
scond,(M)-C-[|S"|=C.

Analogously |K;S"|_3mc 0 ZIKil - 2me oIS £C a8 [K{ o 2m=|Ki| - 2mc 0. Inter-
polation (see [20, 13, 30]) according to [13], lemma 6.2.6, yields for o, 7€[0, m)

1 _otrt g T
1K, 8" SIK; 80§ |K i ST 5l Ky 8" o
and thus the proposition. ged
Collecting the results of Lemmata 2.3.1, 2.3.2, and 2.3.3 we state

Theorem 2.3.4. Consider a system of form(2.3.1a) and a smoother satisfying (2.3.1)—
(2.3.4) as well as the smoothing-property for the diagonal-blocks (2.3.5a, b) with
n:(M=0()v), i=1,2, and k=1=0. Let futher (2.3.19-22) be satisfied for the



On the Convergence of Multi-Grid Methods with Transforming Smoothers 29

diagonal blocks K, ;;, M;;, and S;;,i=1,2. Then the smoothing-property holds
for the complete system in the norms (1.1.10a, b), with

. o , o
(2324) m1:m1=§9 mZZﬁAE’ m2:y+§_ﬁ’
provided y+ o =2, as well as with
, , b 0
(2.3.25) m1=m1=§, mzzﬂ—i, m2:V+§”ﬁ,
and arbitrary a, 8, and y=0.
Proof. Follows immediately from Lemmata 2.3.1, 2.3.2 and 2.3.3. ged

Hence we recommend to construct the r-transformation so that the product-
system is of block-triangular form up to terms of lower order and has reasonable
diagonal blocks.

The above result was proven without assumptions on the order of the differ-
ent blocks. If f < y:=min{a, y} we can consider R,, to be a term of lower order,
however, consequently we have to require an uniform approximation-property
of order y. Thus in connection with r-transforming smoothing the above
approach is better adapted to our problem as can be seen from theorem 3.1.3.

By virtue of theorem 2.3.4 we can easily give a convergence criterion for
a two-grid method for a general block-triangular system. The corresponding
approximation-property is discussed in the following proposition.

Proposition 2.3.5. Let R, be of form (2.3.1a). Denote R; ! by

Z.. 0
2.3.26 R—1=Z=< 1 )
(2326 ! Zay Za

and let p and r have block-diagonal form. Let further

2.3.27) 0< f<min{a,y}

and

(2.3.28) [7oco<C,

(2.3.29a) Ipilpep<C,

(2.3.29b) [P2loeo <C,

(2.3.30) |Z1lco<C, for te{o, B},

(2.3.31) 1Zy5loe -y <G,

(2332) IRl,21]s4—t<C’ for (S’ t)e{(()’ B)’(_ya O)}; 1219

(23.33)  |Ri-y,21—72 Ry 2 pll—y¢—<1<ChB> for 122,
(2334a) |Z,y1—p1Zi-1 11 Tiloco<Ch%,  for 122,
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Then the approximation-property for R,; holds:
(2.3.35) |Z1,21—P2 211,21 Moo <CHP,  VIZ2.

Proof. The proof is similar to [13], Prop. 11.2.7. We have Z,,=R; },, Z,, =
—R; ), R J; R {4, and Z,,=R; },. Leaving out the subscript ! and marking
coarse-grid matrices by a prime, we obtain

|Z21—P2Z%1 riloco=IP2 R32' Ry Ry ri—R3, Ry Ritlowo
<1p2 R52'(Ry1 =73 Ry p1) RYY Piloeo
+p2 Rz 12— RZ ) Ry py RYT rilowo
+|R37 Ryy(py Ry i —RiNloo SCH,

as by virtue of assumptions (2.3.27-34)

()2 Ry (R =13 Ry py) R riloco

S1p2locolR22 o —y|1R21 =72 Ryt Pil -y al Ry aw ol ilo o S CHP,
(P2 Rz r2— R )Ry py R rilowo

<lp; R:! "2_Rz_zlloko[R21|o~—ﬂ|P1!13<—ﬁ|R’1_1 11/3<—olr1]o«—o§ Ch,
(—)IRz5' Ray(py Ry ri—Rilowo

SR o~y Ra1l—yeolPy Rt 1y =R oo SCH qed

Now we are able to show two-grid convergence for a system of form (2.3.1).

Theorem 2.3.6. Let the assumptions of Theorem 2.3.4 and Proposition 2.3.5 hold.
Choosing m; and m; from (2.3.24), the two-grid method for (2.3.1a) with smoother
S from (2.3.3) is convergent and we have in the norms from (1.1.10a, b)

(2.3.36a) 1T, 0lly, 0, 2Cn(v),  for O<v<v'(h)
with
M21(v) from(2.3.6), if a+y=2p,
2.3.36b = )
23366 = o 7 2Bt
Proof. Follows immediately from Proposition 2.3.5 and Theorem 2.3.4. ged

3 Results for Stokes- and Navier-Stokes-Equations
3.1 The Linear Case

Consider the saddle-point problem (1.2.1). In [31] we construct r-transforma-
tions for (1.2.1) yielding two well-known iterations for (1.2.4), the SIMPLE meth-
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ods (cf. [3, 21, 23, 24, 25]) and the DGS/TILU method (cf. [5, 30]). As r-
transformation for (1.2.1) we take with the notations from (1.2).

_ (I, K
3' 1 K — 1 _1,12
(.112) o &7
with
(3.1.1b) K, ;=47 'C,E['D,,
(3.1.1¢) K ,,=—E ‘D,
where
(3.1.1d) Dy Xytyres2biz_, xitlam2pi2
has to be chosen properly, satisfying
(3.1.1¢) Do -,=C.

The corresponding product-system reads

(3.1.2) K, K,—<Bl D).

Remark 3.1.1. K, from (3.1.1a) is regular with

(3.1.32) [ OB EDS R B N
and

_ I, A7 C

—1: 1 1 1
(3.1.3b) K; (O _D; ! El>'

To apply Theorem 2.2.1 we have to ensure approximation properties (2.2.5)
for problem (1.2.1), as given in the following lemma

Lemma 3.1.2. Let a saddle-point problem with K, from (1.2.1) be given. Let further
the restrictions and prolongations p and r have block-diagonal form. Additionally,
suppose a block-diagonal restriction r’ to exist, satisfying with ¢:=2f—a

B4 |I—p,ri| o SCHT for (s,0)€{(8,0), (B, B—7),(2, 0), (0, f—7)},
H—p,roics SCHTY for (s, 0 {(B, B—o), (B, 0 —)},
Pl sC, te{0,f—7,9},
P2lie =G, tE{O', B, B*%O"Y},
[rileec=C, tE{Oa —a,f-a, ﬂ“d“?},
[ral . £C, IE{O, -, _)’}a
Ir’ll,._t§c, te{ﬂ’ a}’
72 =C,  te{o, B
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Let the blocks of K, satisfy

(3.1.5) |4fe-2ee =C,  tef{0,f—7},
A7 YNisaee SC, {0, —o, f—0—yp, B—a},
[Bil—pe<C, te{0,a,f—y},
|Cl]z—ﬂ‘—r§C, te{a,ﬁ, ——ﬂ,a—y,ﬂ—a},
|Ef Yivger=C,  t€{0, —B, —v,20—7, B—y,a—B}.

The necessary consistency assumptions are

3.1.6) |Ai_i—ri Aipi s SECHTTE
Jor (s, )e{(B, —~ ), (B, B—a—7), (o, —0), (o, B—y )},
[Bi—y =72 Bipilie s SCH 7',
for (s, he{(e, — B), (@, =), (B, —B) (B, =)},
[Cio1 =11 Cipalye s SCHTH,
Jor (s, )e{(o, —a), (0, B—y—a), (B, —a), (B, B—a—7)}.
Then

(3.1.7) (K D =P (K)o SCHTY for IE{O, ﬂ_V},
(Ki D12— 1 (Ki )12 oo SCHETY for te{0, B—7},
(K D21 — P2 (K )21 Mo SCHET, for te{f—a,0—7),
(K, 1)22 _Pz(K1~—11)22 oo SCh™Y,  for te{ﬁ— o, g —y).
Proof. The proof uses the same splittings as Hackbusch’s proof of the approxima-

tion property for the Stokes-problem, prop. 11.2.7 in [13], and is carried out
entirely in parallel. ged

Now we are ready to prove two-grid convergence for (1.2.1).

Theorem 3.1.3. Let A; from (1.2.2) and D, from (3.1.1d, e) be symmetric and
positive definite, let (2.3.1) and (2.3.2) be satisfied for (3.1.2). Let further (3.1.2)
be decomposed according to (2.3.3), and suppose (2.3.4) and (2.3.5a, b) with n;;(v)
=0(1/v) to be satisfied. In addition, let (3.1.4)(3.1.6) with >0 hold for the
original system (1.2.1). Then with

(3.1.8) iy =my = ==,
my=mly=f——
2— 2= 2’
fy=7+=—
2_y 2 b
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the two-grid method with r-transforming smoother S, corresponding to S via K,

from (3.1.1) converges independently of h. More precisely, we have in the norms
from (2.2.3)

(3.1.9) T2 Ollly, -0, 2 Cn ),

with n(v)=max {7, (v), 1 (v), 122V},
and n,,(v) from (2.3.6).

Proof. Because of >0 and assumptions (2.3.1)+2.3.5) Theorem 2.3.4 yields

smoothing property (2.2.6) in the norms from (2.2.3) based on (3.1.8). Lemma

3.1.2 yields (3.1.7) corresponding to (2.2.5). It remains to prove (2.2.4). We have
](Kl_l)IZ]O*—B—a:IAl_l CllO*—B—mélAl_llO*——alcll—a'—B~a§C

and by virtue of (3.1.1e) and (3.1.5)

I(Izl_1)22‘0‘—2[]—az~y—;|Dl_1 EllO*Zﬂ—a—yé‘DlﬁllO‘——7|El]~y<—2ﬂ—a~y
é[DI~IIO‘——y|Bll—y‘—ﬂ—y|Al_ 1lﬂ<by‘—[f—y—a|Dl]B—y—a<—2ﬂ*y—aéC-

The proposition then follows by Theorem 2.2.1. ged

Now consider Stokes-equations (1.2.5). There we have
(3.1.10) Aj=—4,, B=-div,, C=B=grad,,

and o =2 f=2. Suppose the discretization satisfies Brezzi’s condition (cf. [6, 121),
so that K, is regular according to Sect. 1.2. Then K, from (3.1.1a) has the form

~ (1 4. 'V, E'D,
(3.1.11) K,—<0 _E~'D,

where E,=div,, 4,,! grad,, and D,, regular, has to be chosen properly. Setting

(3.1.12) D,=E,
we obtain

72 I Ah—ll Vhl
(3.1.13) K,—(O _y )

This r-transformation yields the SIMPLE-method (cf. [30, 31]). Using theorem
3.1.3 we prove

Theorem 3.1.4. Let Q< R? be bounded and convex. Let the Stokes-equations (1.2.5)
be discretized on Q using quadratic finite-elements for the velocities and linear
ones for the pressure or linear elements for the velocities and linear ones on
triangles with twice the size as described by Taylor and Hood (cf. {27]}). Suppose
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some symmetric incomplete factorization of A, and E, exists with prescribed spar-
sity pattern such that M = LIT with

(3.1.149) IM | £C-h~s®

) ] 2 ri=1
with s(z)::{o {‘Zr ien

and for smoothing use a modified 1LU-scheme as introduced in [ 33] with modifica-
tion parameter B in r-transforming manner with transformation K, from (3.1.13).
Then there exists f3>0 such that for ' > f, the corresponding two-grid method
converges and with

(3.1.15) my=m;=m;=1,
rﬁz _m2 =m2:0,
we have
(3.1.16) 71,0, Ollly, -0, = Cn(y)

with n(v)=0 (l—“—v)

Vo
in the norms from (2.2.3).

Proof. A,, D; and E, are symmetric and positive definite. (2.3.1) and (2.3.2) are
valid with y=0, =2, and f=1. Since Mg =LLT+ ' |IN| I, M 5 2¢>0 holds
independently of h, yielding (2.3.4a, b). (2.3.4¢) is satisfied as M,, =(K; K});,
(I+D{{ U,) where D,, and U,, are blocks of the diagonal-matrix D and of
the strictly upper triangular matrix U from the incomplete decomposition of
K,K,=(L+D)D (U +D)—N. According to Theorem 3.1.5 from [33] smooth-
ing properties (2.3.5a, b) hold with k=4=0. Interpolation using Lemma 2.3.3
yields (2.3.5a, b) with k=1 and 1=0. As scaling (3.1.15) is the same as the
one used for Stokes-equations in [13], Lemma 3.1.2 is equivalent to Proposi-
tion 11.2.7 from [13]. (3.1.4) and (3.1.5) are immediate, (3.1.6) is satisfied accord-
ing to the estimates given in [10] (cf. ex. 11.2.8 in [13]). Because of f=1>0
we can apply Theorem 3.1.3 yielding the proposition. ged

Remark 3.1.5. Theorem 3.1.4 remains valid if the Taylor-Hood element is re-
placed by the mini-element (see [2, 16]).

Proof. By the same arguments as in the proof of Theorem 3.1.4 (2.3.1}H2.3.5),
(3.1.4) and (3.1.5) are still valid. According to [10] and [15] (3.1.6) is fulfilled
too, yielding the proposition. qed

Remark 3.1.6. The above results remain valid, if a r-transforming damped Jacobi-
smoother with suitable damping parameter (see [13]) or a modified symmetric
GauB-Seidel scheme with positive modification parameter is employed.

Proof. For the damped Jacobi the assertion follows immediately by [13], Prop.
6.2.14 and the above considerations. For the modified symmetric GauB-Seidel
it follows from [32], Thm. 2.2.4. ged
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K, from (3.1.13) requires 4, !, which is not explicitly available. Hence for practi-
cal purposes 4, ! is replaced by an “approximate inverse” G, introducing pertur-
bations into the product-system.

The second choice of D, from (3.1.1¢) is D;= 4, (p) denoting that the opera-
tor has to be taken w.r.t. the pressure. The resulting transformation yields the
DGS/TILU methods as described in [5, 30, 31]. K, then reads

(I ANV EC AP
(3.1.17) K,=(O et g

Now we have y=2, implying that for Lemma 3.1.2 consistency and interpolation
of third order are required. Using a Galerkin-ansatz, however, we obtain.

Theorem 3.1.7. Let Q<R? be a convex and bounded domain. Let the Stokes-
equations (1.2.5) be discretized on staggered grids with equidistant mesh-size as
described by Harlow and Welch (see [18]) with lexicographical ordering of the
grid-points and linear interpolation at the boundary (cf. [16]). Further let the
prolongation p be a biquadratic interplation, the restriction r=p* and let the
coarse-grid matrices be computed by Galerkin-ansatz (2.2.8).

Then the two-grid method with r-transforming damped Jacobi with suitable
damping factor, symmetric Gaup-Seidel or 5-point 1LUy-smoothing, for /=20 (cf.
[32]), resp. based on K, from (3.1.17) converges. With

(3.1.18) my=m =nm=1, my,=m)=0, my =2,
(3.1.19) T2, (v, Ollly, v, = C1 (V)

0(—1*), for damped Jacobi,

/o

O(In_v), else,

Vo

with n(v)=

holds.

Proof. A; and D, are symmetric and positive definite. (2.3.1)«2.3.3) hold with
a=y=2 B=1. A, as well as D, satisfy (3.1.16), implying (2.3.4a, b) with A=0
for the symmetric GauB-Seidel as well as the damped Jacobi smoother with
suitable damping factor. For ILU, (2.3.4a, b) are readily veryfied for A=0 using
Lemma 2.1.4 from [32]. (2.3.4¢) follows by the same argument as in the proof
of Theorem 3.1.4. According to [13], Prop. 6.2.27 and [32], Prop. 2.1.6 (see also
[30], Prop. 5.3.1), smoothing-properties (2.3.5a, b) hold for k=A=0. By virtue
of Lemma 2.3.3 they are easily established for A=x=1/2 and k=1. For Jacobi-
type smoothers (2.3.4a, b) is evident for A=1/2. By virtue of the Galerkin-ansatz
(2.2.8) consistency assumptions (3.1.6) are satisfied automatically (see [13]).
(3.1.4) and (3.1.5) hold too. Thus the proposition follows from Theor-
em 3.1.3. ged

K, from (3.1.17) needs 4;' and E; ! which are both not available in practice.
For practical purposes K is replaced by

(3.1.20) K,:(I b )
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introducing perturbations into the product system. Handling these perturbations
will be the subject of a forthcoming paper.

The asymptotic behaviour of #(v) from (3.1.19) for damped Jacobi is better
than the one of SGS and ILU,. However, this is only a matter of proof. To
obtain O(1/v!/?) instead of O(In v/v'/?), we need

(3.1.21) M5, <C.

This is straightforward for Jacobi, but not at all for the other smoothers.

The asymptotic behaviour of #(v) from (3.1.16) and (3.1.19) is worse than
the usual O(1/v). Now, practical tests for TILU with both transformations show
a behaviour of n(v)~O(1/v) (see [31]). Thus (3.1.19) is an overestimate caused
by abandoning symmetry in our product-system.

3.2 The Nonlinear Case

Now consider the Navier-Stokes equations (1.2.4). We linearize it by
(32.1) QuPyu,= — 4, u+Re-N(u) u,
with

N(u®) = u) Vo u+u, Vi, uf,  for Newton’s method

N P /AT for a simplified Newton-method
and use one of these linerarizations within an outer Newton-like algorithm.
The linear systems within each step can easily be solved by the linear multi-grid
method used for (1.2.5). For details see [31].

Theorem 3.2.1. Let Q<R? be a convex and bounded domain. Let the linearized
Navier-Stokes equations with A;=Q, from (3.2.1) be discretized by the Taylor-Hood
element or the mini-element as mentioned above and assume the discretization
to be stable w.r.t. the convective terms. Then there exists hy=hy(Re), such that
the two-grid method with r-transforming ILU g-smoothing, f'> 1, using K, from
(3.1.13) satisfies smoothing-property (2.2.6) in the norms from Theorem 3.1.4, pro-
vided hy<hg, 1>2.

Proof. Split K;=K;+ K}, where K; contains the linearized convective terms
while Kj contains the Stokes-operator. Correspondingly S; can be split into
S;=8,—S; with §j=I—-M; * K, and

Si= T (= M;™' MY My Ki+ K+ MUK
i=1

The sum converges for h sufficiently small, as M| is of lower order. Further,
we have ||S}"| £C-v as S} ;; is convergent. Further lim h?[K}| =0, as K} is
-0

of first order, and

M~ My

ISyl gcl(v)-h,v(z vc2+c3)—»o,
i=0
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for h;— 0 and fixed v.

Based on the results from Sec. 3.1 we can apply criterion 6.2.7 from [13],
completing the proof. ged

Remark 3.2.2. The same result holds for the staggered-grid discretization, r-
transforming ILU,; and symmetric GauB-Seidel smoothing, based on K, from
(3.1.17).

Proof. Analogously to the proof of Theorem 3.2.1. ged
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