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Summary. In the present paper we give a convergence theory for multi-grid 
methods with transforming smoothers as introduced in [31] applied to a 
general system of partial differential equations. The theory follows Hack- 
busch's approach for scalar pde and allows a convergence proof for some 
well-known multi-grid methods for Stokes- and Navier-Stokes equations 
as DGS by Brandt-Dinar, [5], TILU from [,31] and the SIMPLE-methods 
by Patankar-Spalding, [23]. 

Subject Classifications: AMS(MOS): 65N20; CR: G1.8. 

1 Introduction 

In the present paper we give a general convergence theory for multi-grid methods 
with transforming smoothing as introduced in [31], applying to linear and quasi- 
linear saddle-point problems as the Stokes and Navier-Stokes equations. The 
theory allows a convergence proof for some well-known multi-grid methods 
for those equations such as the so-called distributive Gaul3-Seidel by Brandt 
and Dinar, [-5], transforming ILU, introduced in [-30, 31], and the SIMPLE- 
methods originally due to Patankar and Spalding, [23]. Recently the importance 
of these methods is growing more and more as illustrated by a number of 
papers on that topic (see [3, 9, 21, 24, 25, 26, 31] and the references there). 
The results given here are extensions of the ones in [-30]. 

Sections 1.1 and 1.2 contain a short discussion of multi-grid technique and 
convergence theory as well as a brief description of the incompressible, steady- 
state Navier-Stokes equations, serving as model problem. After a short outline 
of r-transforming smoothing in paragraph 2.1, we give a criterion for the conver- 
gence of a multi-grid method with r-transforming smoother applied to a general 
system of partial differential equations. Based on this criterion the smoothing 
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property and consequently two-grid convergence for a general block triangular 
system is discussed in section 2.3, providing advice for the construction of suit- 
able transformations. In sections 3.1 and 3.2 the theory from chapter 2 is applied 
to the Stokes and Navier-Stokes equations. 

1.1 Multi-Grid Technique 

1.1.1 Notations and Preliminaries. Multi-grid methods are iterative solvers of 
optimal efficiency, gained by a skilful combination of two parts, smoothing 
and coarse-grid correction. 

Let the linear boundary-value problem 

(1.1.1a) K u = f  in O 

(1.1.1 b) U=UR on 0 0  

with a differential operator K: U ~ F between some Sobolev-spaces be given 
on a domain OcR a. Let (1.1.1) be discretized on lmax grids 

(1.1.2a) Ol, l=  1, . . . ,  /max 

with stepsizes 

(1.1.2b) 0<hz+ 1 <hz, l = l ,  ..., /max-- 1. 

Let further 

(1.1.3) K~: Ut --* Ft 

be the discretization of K on Ol, Ul and Fl some spaces of grid-functions, being 
discrete analogues of the Sobolev-spaces U and F. Let the discrete problem 

(1.1.4a) Kt ut =f l  in O b l=  1, ..., Im~x 

(1.1.4b) ut=uR, t on dot ,  1= 1, . . . , /max 

be well-posed. Now, classical iterations can be used as smoothers, as they primar- 
ily reduce the high frequency components of the error. We denote one step 
of such an iteration (" smoothing step") by S. Furthermore, let some prolongation 
and restriction 

(1.t.5) p: Ut_ l~Ui ,  r: F t~F/_a ,  l = 2  . . . .  ,/max 

between the spaces of grid-functions be given. Then the iteration matrix of 
a two-grid method on the grids Og and Or-1 with v 1 pre- and v2 post-smoothing 
steps is given by 

(1.1.6) T2,t(vl, v2)=SV2(It-pt(Kt- 1)- 1 rt Kt ) S,,1. 

For a detailed introduction into multi-grid technique and algorithms see [13]. 

1.1.2 Convergence Theory. Our theory is a generalization of Hackbusch's one 
given in [13]. For  a detailed introduction see there. 
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Let  Ul be the space of grid-functions ut f rom (1.1.4a) with the n o r m  ll-Ilv, 
and  F~ the space of gr id-funct ions fi f rom (1.1.4a) with the n o r m  l[.Ilv,- F o r  
a scalar  differential ope ra to r  K it is sufficient to choose [[.llv,= II.TIF, = [I-[10, 
where 

(1.1.7) Ilu, tfo=(C 2 ~, lu,(x)lZ) m 
x~..01 

is the Euclidean n o r m  with a suitable scaling factor  c, say c = h. 
The  si tuat ion becomes  more  complicated,  if K represents  a system of  par t ia l  

differential equat ions  

(1.1.8a) 

with 

ii' K,~ 

( l . l .8b)  Kij=Kij(D)= ~ c~D ~ 
lal =< kij 

where ~ is a mult i- index,  D=O/dx. Let m I . . . .  , m.,  m'l . . . .  , m'. be number s  with 

(1.1.9a) 2m= ~ (m/+m'i) 
i=1 

so tha t  

(1.1.9 b) ki; < mi + m) 

(cf. [-1]). By virtue of  these number s  we in t roduce the following no rms  for the 
discrete spaces:  

(1.1.10a) ][utllg,= ~ hi -2"' tlUl,,ll 2 
i=1 

and 

(1.1.lOb) llf~ 112~ = ~ h~ 2~z IIf~,,ll~ 
i=1 

where ui refers to the i-th b lock of u cor responding  to (1.1.8a). 
The  discrete spaces can be wri t ten as 

(1.1.10c) U~= X? . . . . . . . . .  XT" x...xXT'" 

and 

(1.1.10d) Fz= Yz -"~ ..... - . , i  = y - , q  x ... xY~ -"% 
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with spaces of grid-functions X~' and Y~", p denoting the order of differentiability 
of the corresponding continuous spaces (cf. [12] ). 

For  a positive-definite and symmetric operator Kz of order 2m 

(1.1.11) lulls = llg~/z" utll0 

defines a norm which is independently of h equivalent to the discrete Sobolev 
norms for spaces of grid functions as introduced in [15], provided -m<_s<<_m 
and the region (2 t satisfies "property C" from [14]. 

The following theorem providing sufficient conditions for the convergence 
of the two-grid method T2,t is due to Hackbusch (cf. [13]). 

Theorem 1.1.1. Let St satisfy the smoothing property for Kt, i.e. there exist q(v) 
and v'(h) so that 

lIKtS~]lF~v<q(v) Vv: l<v<<-v'(hl), l>2, 

(1.1.12) q(v)--*O for v ~ m ,  v ' ( h ) = ~  or v ' (h )~m for h~O, 

and let Kt fulfill the approximation-property: 

(1.1.13) 

3 CA --*0, independent of h so that 

IIKll--p(KI_I)-lrlIv,_FCA, VI>2, 

then there exist h and v6N : 

(1.1.14) II T2,t(v, O)l]v~v 5 CA q(v)< 1 

holds for v with v'(ht)>v>v_(hl) and h2 Nh and the two-grid method T2,t from 
(1.1.6) converges monotonically, independently of h. 

Proof Follows immediately by TE,l(V, 0 ) = ( K f  1 _ p(Kt - i)- 1 r) (Kl S~). 

Remark 1.1.2. The norm of T2,l(vl, v2) is estimated similarly (cf. [13]). Under 
the additional assumptions 

(1.1.15) ]]ST]lu,~v <Cs VI>=I,  O<v<v'(ht) 

and 

(1.1.16) C_;lllu~_lljv,_,~llpuz_lllu,<=Cpllut_lllv,_l Vu~_lEU~_l, l ~ l ,  

which are usually satisfied, the smoothing-property (1.1.12) and the approxima- 
tion-property (1.1.13) yield the h-independent convergence of the corresponding 
multi-grid method with W-cycle too. 

Proof See [13], Theorem 7.1.2. 

Remark 1.1.3. The smoothing-property allows a stability argument, i.e. it carries 
over to problems perturbed by lower order terms (cf. [13], crit. 6.2.8). 
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1.2 Model Problems 

We consider the following saddle-point problem: 

(1.2.1) A ' u t + C l P l = f l l  in t21cR d 
B~ us =f2 J 

Ul=UR on 0f21 

with 

'+~ Y,'-~ bounded, (1.2.2a) At: Xz, 1 --* z.l , 

(1.2.2b) Bl: Xl, i ~ q  2 , bounded, 

(1.2.2c) Ci: Xtz, 2 a Y ~ Yltl 7, bounded, 

for some t~R and X~' and y u from (1.1.10). Let further At be invertible with 
bounded inverse and by means of A{ a we define 

(1.2.3) El = Bi A {  1 Cz: Xl?2 'B-ct/2 --~ Yit-~+et/2 1,2 

and require Et to be bounded and to have a bounded inverse. Then Ki -~ exists 
and is bounded. For  a precise discussion of regularity cf. [ t2]  and [6]. Such 
a problem is given by the Stokes and linearized incompressible Navier-Stokes 
equations in primitive variables as described below, or by the mixed formulation 
of the biharmonic equation (cf. [12]). 

The incompressible Navier-Stokes equations describing the motion of a 
viscous, incompressible fluid with the Reynolds-number Re, the velocity u 
=(U 1 . . . .  , bid) T ,  the pressure p, under the outer force f = ( f l  . . . .  ,fa) T, inside a 
region f2 c R d are given by 

(1.2.4a) - A u + R e ( u ' g ) u + V p = f l  in f2 
(1.2.4b) div u = 0  J 

and the usual Dirichlet boundary conditions for fixed walls 

(1.2.4c) U=UR on c~t2. 

For  strongly viscous flows the Reynolds-number is very low. Thus we can neglect 
the nonlinear convective term Re(u- V) u, and get the linear Stokes equations 

(1.2.5 a) - A u+ V p = f  
in ~, 

(1.2.5 b) div u = 0  

(1.2.5c) u=uR on dO. 

To get a discrete problem of form (1.2.1), we have to apply a suitable discretiza- 
tion process yielding stable discrete operators. That is, we replace the continuous 
Sobolev-spaces, on which the operators from (1.2.4) and (1.2.5) are defined, by 
discrete spaces. This can be done by finite difference techniques as well as by 
finite element ones. Especially we have to take care that Brezzi's condition 
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(cf. [6, 12]) is fulfilled, in order to achieve stability of the discretisation. Examples 
of such discretizations can be found in [2, 11, 16, 18, 27]. 

Of course, linearizing (1.2.4) in the usual way also yields a problem of form 
(1.2.1). These two problems are the main applications for our theory. 

2 General Theory 

2.1 Transforming Smoothers 

If Kt from (1.1.3) is regular, but indefinite, the construction of appropriate 
smoothers is not obvious. To st?lit K~ in the sense of Varga, [28], we construct 
nonsingular matrices K" t and Kz, called r- or l-transformation respectively, so 
that a splitting of 

(2.1.1) -KI Kt KI= M -  N 

is reasonable. As /s and -Kt are nonsingular, (2.1.1) gives rise to a splitting 
of Kt 

(2.1.2) K t  = g F  1 M K F  1 _ K;-  1 N K F  1. 

The corresponding iteration, called "transforming iteration", is given by: 
Let an arbitrary starting guess u~ ~ be given. Then the i+  I st iterate is calculat- 

ed from the i th o n e  via 

(2.1.3) ul '+ ~= u[ ~  Kz M ' Rt(K, ul ~ -  f3. 

If / ~ =  I, we speak of r-transforming iteration. R-transforming iterations are 
a generalization of the squared methods by Kaczmarz, [19], and Cimmino, 
[7], and of the distributive relaxations by Brandt and Dinar, I-4, 5]. They are 
of special interest to construct smoothers for indefinite systems, as the Navier- 
Stokes equations (cf. [31]) and the shallow-water equations (cf. [22] ). So, widely 
used iteration-schemes, such as the SIMPLE-family, e.g. SIMPLE (see [23]), 
SIMPLER,  SIMPLEST, PCS, PISO, etc. (see [21, 24]), and distributive relaxa- 
tions like DGS (see [5]) and PGA (see [9, 10]) are classified in [30] and [31] 
as r-transforming iterations, thus providing a platform for theoretical investiga- 
tions about  the properties of those methods. 

In practical applications they are mostly applied as perturbed transforming 
smoothers, leaving out some inconvenient terms in the product system. I.e. for 
splitting (2.1.1) a simplified system R, Kt K~ is used, while the transformations 
are replaced by/s  and R, resp., resulting in the iteration: 

Let an arbitrary starting guess u~ ~ be given. Then the i + 1 st iterate is calculat- 
ed from the i th o n e  via 

(2.1.4) ' +  1 '  = M -  ' u l  o - 

Remark 2.1.1. The r-transformation is a mapping 

(2.1.5) Kl: Ul--* Ut 
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with 

(2.1.6) Ut=X~"' x ... x ST". 

The operator of the transforming method (2.1.3) is given by 

(2.1.7 a) S,.t = Kt St/~l- 1 

with the "product-iteration" operator 

(2.1.7 b) St = M -  l N 

which acts directly on the product system. The one of the perturbed r-transform- 
ing method reads 

(2.1.8) S,, t = It - /~ l  M -  1 Ks. 

Proof. Follows immediately from (2.1.3) and (2.1.4). qed 

Concerning the convergence of perturbed methods, we quote from [31]. 

Remark 2.1.2. If iteration (2.1.4) converges, its fixed point is the solution of the 
original system (1.1.4). This is not possible with the so-called product iteration 
(2.1.7 b) which is applied directly to the product system. 

Proof. Immediate, as the defect in (2.1.4) is taken w.r.t, the original equa- 
tion. qed 

In the present paper we concentrate on the analysis of r-transforming smoothers. 

2.2 The Convergence of a Two-Grid Method Using R-Transforming Smoothers 

Let Ks: Us--* F, be the discretization of a system of partial differential equations 
as given in (1.1.8 a) and denote the discrete problem by 

(2.2.1) Kt xt = bt, I = 1, . . . , /max"  

Let further the r-transformation Ks: Ut ~ U~ also be a stable discretization of 
a system of partial differential equations of form (1.1.8a). Using the coefficients 
mi, ml, m'i from (1.1.9) and (2.1.6) we define 

(2.2.2a) 

(2.2.2b) 

and 

(2.2.2c) 

H, = blockdiag {h~' It, ..., h~ ~ It}, 

H z = blockdiag {h~ '1 I t , . . . ,  h7 '" It}, 

Hi = blockdiag {h7 'i Ii . . . .  , hT';' Ii}. 
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By virtue of (2.2.2a-c) we introduce the norms 

(2.2.3 a) Illuzlllu, = 1/7{ 1 K71  u,lo 

(2.2.3 b) 11 f~l[ v, = [ n', f~lo 
(2.2.3 c) Ilut{]o,=[H71 Ut[o 

on the corresponding spaces. 

Theorem 2.2.1. Let Kz and I~ t of form (1.1.8a) be stable. Suppose for 1>2 and 
l < i , j , k < n  

(2.2.4) I(/({ 1),klo~,, ~_~, = C, 
(2.2.5) I(K~- ~ - pKT-I~ r)kjl,~ o = C h~') +"k -, ,  

with t=mk--rh~, for all x =  1 . . . . .  n for which (K.E1)~k ~O, 

and 

(2.2.6) I]KtKtS~l[v,~o,<Cq(v), for O<v<v'(h),  l>2, 

with q(v) and v'(h) according to (1.1.12). Then the two-grid method converges 
and 

(2.2.7) Ill T2. ,(v, 0)lllv,~ ~, ~ < Cq(v) 

holds. 

Proof With St.t =/<, St/~{1 being the operator of the r-transforming smoother, 
we have 

IIITz, t(v,O)ll lv ,~u~<llT; -~ K t l ( K i - X - p K [ - X  1 r) , - - 1  , v Ht [o.-o[HtKlSt, lKlHl[o~o. 

By virtue of (2.2.4) and (2.2.5) 

[(/(; a (Ki- ~ - p Ki-_~ r))~j]o~o 

.< ~'~ - - - 1  = I(K, )iulo~,,,-,n, 
/a=l  

"I(Kt- 1 _ pKi-ll r)jm,- ,~,~o 
<Ch?,+% 

holds, yielding [fi{ 1 K f  I(K[- 1 _ p Ki-~a r) H'~- 1[o ~ o < C. 
The second factor is estimated by 

[H~ K~ S ~ Kt Hz[o~o = IH'~ Kz K~ S~ Ht]o~ o < Cq(v). qed t, l 

Theorem 2.2.1 is a generalization of Hackbusch's splitting approach, theorem 
1.1.t. Instead of a smoothing property of the r-transforming smoother itself, 
we require only smoothing property (2.2.6) of the product iteration. (2.2.4) is 
the discrete regularity as investigated by Hackbusch in [14, 15]. (2.2.5) is the 
approximation property in weak norms. To satisfy (2.2.5), the interpolations 
and the consistency of the discretization have to meet the order of the product 
system, which is usually higher than the one needed by the original system. 
This problem can be avoided by 
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Remark 2.2.2. Let the coarse-grid matrix K~_ 1 be computed by 

(2.2.8) Kt-  1 = rKz p, 

the so-called Galerkin-ansatz. Then only the order of p and r=p* have to 
fit for the product-system. No additional consistency assumption is needed. 

Proof. see [13], Chapter 6.3. qed 

Concerning perturbed r-transforming smoothers as mentioned above, we give 
the following results 

Lemma 2.2.3. Consider the perturbed r-transforming smoother from (2.1.8). Let 

(2.2.9a) P z = K t / ( t - K t / ( t ,  

(2.2.9b) S , t = I _ M f  1 Kl Kt, 

(2.2.9c) S'[= M 71 Pz, 

(2.2.9 d) St = S't + S'[, 

and 

(2.2.9e) Kt: Ut~ Uz. 

Let the simplified problem Kt Kt satisfy the smoothing property in the norm induced 
by (2.2.3b, c) 

(2.2.10) II Kt/( t  s't~llr,~o, < CG ~'(v) 

f o r  1 <-- v <_ v' (hi) , with rf (v) and v' (hi) according to (1.1.12). Let further 

IlS'tllo,~o < C ,  1>2, (2.2.11) 

and 

(2.2.12) 

(2.2.13) 

lim ItP~ll~,~o,=0, 
/ ~ o O  

lim IIS'/llo,~o~=0, 
t ~ o o  

provided ht --, 0 as l ~ oo. I f  additionally 

(2.2.14) IIKllllu,~_o,~c, 1>2, 

holds, then the smoothing property for the perturbed product system 

(2.2.15) I[Kz Kl SrllFl~o, ~ CG ~(v), 
for O<ht<ho(e) and r/(v)=(l+e)r/ '(v), 

for 1 <_ v <_ v' (h), e > O, arbitrary, 

is satisfied. 
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Proof According to the definition of S~. l in (2.1.8) we have 

St, l = I - - / ~ l  Mr-  x Kz = / ~ t  (I  - M 7  ~ K l / ~ t ) / ~ t -  1 

= ~ l ( I - - M i  - 1 K , ~ . l + M i  -I Pl) K.f 1 

= g , ( s l  + s'/) Ki-  ' 

and 

G. Wittum 

ItKz ~ v g z  S~ II e, ~ o, - tl (gl g t  - -  Pl) (S; + S't') v II F, ~ o, < C~ '7(v) 

follows from [13], criterion 6.2.8. qed 

Theorem 2.2.4. Let K t and Kl: Ul--* U l be of form (1.1.8a). Further let for 1>2 
and l < i , j < n  

1 < (2.2.16) I(Ki- ),jl0~r,j-,~, = C. 

In addition, let (2.2.5) and (2.2.15) hold. Then the two-grid method converges and 

(2.2.17) M T2,,(v, 0)Mv,,-v, < Ctl(V) 

with tl(V ) from(2.2.15), 

where 

(2.2.18) Mu,M ,= Il F gT' u, II 

Proof. Similar to the one of Theorem 2.2.1. qed 

Theorem 2.2.4 and Lemma 2.2.3 apply to perturbations of lower order (see 
[13, 30]). 

2.3 Product-Systems of Block-Triangular Form 

In order to give some advice how to construct an appropriate r-transformation 
for a given system of pde we discuss the properties of block-triangular systems. 
This form turns out to be favourabte for a product system. 

Lemma 2.3.1. Let R: Ut-*Ft be a discrete operator with Ut and Fl from (1.1.10). 
Let R be of  the form 

(2.3.1a) \RE1 

and assume with ct, fl > 0, 7_-> 0 in appropriate weak norms 

(2.3.1 b) 

(2.3.1c) 

and 

(2.3.1 d) 

tR2,l_s~_t<C2h-a+'+s, for t~[0, fl], s~EO, fl--t], 

1R221o,_o~C3 h-~. 
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Let R~ ~ satisfy the "discrete regularity" 

]R;lll~-,,~-,, < C4 (2.3.2) 

Further, split R into 

(2.3.3a) 

and 

(2.4.3b) 

with 

for K from (2.3.5a). 

R = M -  N, M regular, 

S = M - ~ N  

(2.3.3 c) \$21 

and a similar blocking of M and N. Suppose these blocks satisfy 

(2.3.4a) IM~11[o~o ~ Cs hL 
(2.3.4b) 1M22~]~ < C6 h r, s~{0, 2o}, 2o from (2.3.5b) 

and 

(2.3.4c) IME~lo~,<=CTh-a+', for t~[0, fl]. 

Let the smoothing properties 

(2.3.5a) [R11SVlll-r~o~C9rl~ll('C)h r-~t, for O<_v<_v'll(h), 

for some ~r e [0, ~) and 0 = 1 - x/~ and for K = O, 

[R22S~Ezlo~a<Cxoh~f22(v), for O<v<=V'EE(h), 

with suitable rhi(V ) and v'ii(h) according to (1.1.12), 

~s {0, ,~o}, 2o..={Oax {0, e- - f l -~} for y>O 
for 7=0 '  ~.-=2- y, 

2 
1 - - - -  

y for 7>0 
T ~  

1 for 7=0 

(2.3.5b) 

be satisfied. 
Let further l ' ] i i (Y) ,  i = 1, 2, from (2.3.5) satisfy 

.21 (v) ,= .~  1 (v) 
v - 1  

§ ~ q ~ 2 ( # ) ( q ~ ( v - # - l ) §  -~0 
# = 0  

for v -~ c~, ~, ~ f rom (2.3.5b). 

(2.3.6) 

25 
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for O<h<h-  

26 

Then there exists v'21 (h) according to (1.1.12) so that 

](RS~)zl[o~o<Clx h-aq21(v), for O<v<v'2a(h), 
with rl21 (v) from (2.3.6). 

holds. 

Proof We have 

(2.3.8) 

and 

(2.3.9a) 
(2.3.9b) 

(2.3.9c) 

M -  \ - ( M ~  M21 Mll l) 

Sll =M;11 Nil,  

$21 =M2-z 1 Nz2, 

$21 =ME -1 N2,-M2-2 ~ M21 M~-~' N,1. 

Thus we obtain for S ~, veN, 

(2.3.10a) 

with 

s o) 
=\S21(v) S~2 ' 

v - 1  

(2.3.10b) $21(v)= 
,u=O 

By virtue of (2.3.10) we have 

(2.3.11 a) (RS*)u = Ru S~, 

and 

(2.3.11 b) 

S~2 $21 S~ "-1. 

for ie{1, 2}, 

(RS')21 = R21 S'~ 1 + R22 $21 (v) 
V--1 

=R21S~l+R22 ~. S~2S2~ S~; "-1. 
/~=0 

With a = e - x  the estimates 

(2.3.12) JR21 S~ 1[o~o ~ IR211o~. I Ri-11[.~--~ IR11 S~ 11-r~o 
=<Ch-P rl~l( 

G. Wittur 
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and 

S 2 , ( v ) l o ~ o  = R22 ~ - '  0~0  (2.3.13) 1R22 ~ S~2S2, S~I u-' 
tt=O 

v - I  

_-< Y~ (IR22 s~2 MZ' R~, S ~ ; " - ~ l o ~ o  
p=O 

+]R22 S~2 M22 ~ M2, M~-I 1 R, ,  S~T"-'[o~o) 

are satisfied. The first term can be estimated as follows 

IR22 S~E M221 R21 S~T u- '10-0 

<tRz2 u - '  - '  S2zlo-zlMz2 la-xlRzda~a+alR,, Ix+a- ~[R,, sY"-'l-~o 
< Ch-~ q~2(~) ~ ,  ( v - ~ -  1). 

Analogously we obtain for the second term in (2.3.13) 

IR22 S~2 M;2 ~ M21 Mll ~ R~ S~T ~- '1o~o < Ch-a r/22 (/0 r/~ ( v - # -  1), 

and thus by virtue of (2.3.12) 

v--1 

[(RS~)z,lo~o<Ch -~ q~,(v)+ ~, q~z(p)(q~,(v-#-l) 
/t=O 

At- ?/12 z(]2 ) ill I (I, '-- ~ -- 1))) = C h  -a  tl2 , (v). 

Usually, common smoothers satisfy the assumptions on M and N. Smoothing 
properties (2.3.5) and assumption (2.3.6) are discussed below. 

Lemma 2.3.2. Let a system of form (2.3.1 a) and a corresponding smoother satisfy 
(2.3.1~J 0. Let further smoothing properties (2.3.5a, b) hold for the diagonal-blocks 
with 

(2.3.14) ~/ii(v) < C. qo (v)..= C 

Then (2.3.7) is valid with 

V v 

(v+l )  v+ ' '  
for V>VoeN. 

(<Cv q, /f ,9, z < l  
(2.3.15) rl2'(v)<[Cvq.lnv, / f 0  or z = l "  

q = m a x { 1 - 0 - z ,  -0 ,  - z }  

Proof Because of (2.3.14) we have 

v--1 
(2.3.16) r/2~(v)<C ~ q~o(#)(qg(v-#-l)+qg-~(#)~lo(V-p-1)) 

/~=0 

_-<C ~ (/t+l) ~ #+l),_~(v_#) 
g=O 
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By virtue of Euler's sum-formula (cf. [8]) we obtain 

v-I 1 __50(Vq), for 3, z < l  qed 
(2.3.17) ~ (kt+ly(v-I~)O-~.O(vq.lnv), if oa=l or z = l "  

# = 0  

Smoothing properties (2.3.5) in weak norms can be concluded using interpolation 
as given in the following lemma (see also [17] and [30]). 

Lemma 2.3.3. Let Ki be the discretization of a scalar differential operator of 
order 2m and let 

(2.3.18) lKt S~]0~0 < Ch- 2ra q(I, ') 

with rl(v ) according to (1.1.12) hold in the spectral norm. Suppose further 

(2.3.19) [mlo~o<Ch -2", 

(2.3.20) I m -  11ooo < Ch TM, 

(2.3.21) IS~lo~o__< c,  

(2.3.22) ]gllo~2m < C, 

and 

(2.3.22') [Krlo,_2m<=C. 

Then 
a + ' r  + _ 

(2.3.23) [K~S~l_~ <Crl(v)X ~ - h ~  2r,, 

for O<cr, z and a+z<2m.  

Proof The proof follows [17], crit. 4.3.*. Denote the spectral norm by It. II. 
We have 

IKz S~lo~ 2,, < l[ Kt S ~ KF 1N IK~[o~2 m < C II(K~ SKF lyll = C II(N M -  lYll 

< cond2(M). C. tlavlt __<C. 

Analogously Igl SV[-2,,oo < Igt[- 2~.-o [I S~tl < C as [K[Io~2,, = IKtl-2m~-O- Inter- 
polation (see [20, 13, 30]) according to [13], lemma 6.2.6, yields for a, z~[0, m) 

1 0 ~ 2 m l X ~ /  ~ I - 2 m ~ O  

and thus the proposition, qed 

Collecting the results of Lemmata 2.3.1, 2.3.2, and 2.3.3 we state 

Theorem 2.3.4. Consider a system of form (2.3.1 a) and a smoother satisfying (2.3.1)- 
(2.3.4) as well as the smoothing-property for the diagonal-blocks (2.3.5a, b) with 
qu(v)=O(1/v), i=1 ,2 ,  and x = 2 = 0 .  Let futher (2.3.19-22) be satisfied for the 
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diagonal blocks Kt, u, Mii, and Su, i= 1,2. Then the smoothing-property holds 
for the complete system in the norms (1.1.10a, b), with 

(2.3.24) ml =m'l = 5 '  m2 = f l - 2  ' m2 = Y + 2  - f l '  

provided y + e > 2 f l ,  as well as with 

(2.3.25) ml =m'l =~-, mz=fl - -~ ,  m2 = y +~---fl, 

and arbitrary ~, 3, and y > O. 

Proof. Follows immediately from Lemmata 2.3.1, 2.3.2 and 2.3.3. qed 

Hence we recommend to construct the r-transformation so that the product- 
system is of block-triangular form up to terms of lower order and has reasonable 
diagonal blocks. 

The above result was proven without assumptions on the order of the differ- 
ent blocks. If fl < Z.'=min {ct, 7} we can consider RE1 to be a term of lower order, 
however, consequently we have to require an uniform approximation-property 
of order X. Thus in connection with r-transforming smoothing the above 
approach is better adapted to our problem as can be seen from theorem 3.1.3. 

By virtue of theorem 2.3.4 we can easily give a convergence criterion for 
a two-grid method for a general block-triangular system. The corresponding 
approximation-property is discussed in the following proposition. 

Propos i t i on  2.3.5. Let Rt be of form (2.3.1 a). Denote R71 by 

(2.3.26) =z=(Z~, o ) 
Rt-1 \221 Z22 

and let p and r have block-diagonal form. Let further 

(2.3.27) 0 < fl < min {e, 7} 

and 

(2.3.28) 

(2.3.29a) 

(2.3.29b) 

(2.3.30) 

(2.3.31) 

(2.3.32) 

(2.3.33) 

(2.3.34a) 

(2.3.34b) 

Irllo,-o < C, 

Ip2lo,-o <C,  

IZx l l~o<C,  

IZ221o~-,<C, 
IRt,21ls,-t <C, 

IRt-l,21--r2 Ri, 21 pll-r,-,<Cha, 

IZt, a 1 - P l  Z t -  1, 11 rl [0.-o < Ch', 

]Z/,22 --P2 Zl- 1,22 r210,--o <Chr, 

for t6{~, fl}, 

for (s, t)e{(O,/~), (--~,, 0)}, 
for l>2, 

for I>2, 

for 1>2. 

l > l ,  
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Then the approximation-property for R21 holds: 

(2.3.35) IZl, 21--p2 Z/_ 1.21 rllo~o<Ch ~, VI=>2. 

Proof The proof is similar to [13], Prop. 11.2.7. We have Z~ -~ i = R / , l l ,  Z 2 1 =  
- 1  - 1  - 1  - 1  --Rl,22 Rl, 21 Rt, 11, and Z22 =Rz,22. Leaving out the subscript l and marking 

coarse-grid matrices by a prime, we obtain 

IZ21-P2 Z'21 rllo~o = ]P2 R~21 R~, R'11 1 r,--R~2' R2, Rl-~lo~o 

=< IP2 R~21 (R~I - r 2  R21 Pl) R'lq 1 rl]o~o 

+ ](p2 R ~ 2  ' r2--R2~)R2, P, n'l- 1 ' r1[o~ o 

+]R221 R21(Pl R'1-11 rx-R~ll) lo~o <=Ch ~, 

as by virtue of assumptions (2.3.27-34) 

];?t - 1 (IIW (-)IP2 --22 ~,-2t-r2 R21 Pl)R'I-11 rllo~o 
t - 1  t , - 1  IP21o~olg22 [o~-~lg21 --rE R21 = P l I - ~ ] R l a  [~olr1[o~o<Ch ~, 

(--)[(P2 R~21 rE --R221) R21 Pl R'~q' rl[o~o 
- 1  ~ -1  <IP2 R'221 r2-RE2 ]o~o[REIIo~B[Plla~aIR11 ]a~o]rllo~o < C h  ~, 

(-)[R221 REl(Pl g'1-11rl- R~11)to~o 
< -1 

1R22 [0,---e[Rzll-r~olP1 R'I-x 1 rl - R?lllo~o < C h% qed 

Now we are able to show two-grid convergence for a system of form (2.3.1). 

Theorem 2.3.6. Let the assumptions of  Theorem 2.3.4 and Proposition 2.3.5 hold. 
Choosing mi and m'i from (2.3.24), the two-grid method for (2.3.1 a) with smoother 
S from (2.3.3) is convergent and we have in the norms from (1.1.10a, b) 

(2.3.36a) IIT2,~(v,O)llu,~u~f~(v), for O<v<v'(h)  

with 

(2.3.36b) "v) (r/21(v) from(2.3.6), /f ct+7=2fl,  
r/t =~(1 +e) max{qll(v),qE2(V)}, /f 2fl<c~+7 

Proof Follows immediately from Proposition 2.3.5 and Theorem 2.3.4. qed 

3 Results for Stokes- and Navier-Stokes-Equations 

3.1 The Linear Case 

Consider the saddle-point problem (1.2.1). In [31] we construct r-transforma- 
tions for (1.2.1) yielding two well-known iterations for (1.2.4), the SIMPLE meth- 
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ods (cf. [3, 21, 23, 24, 25]) and the DGS/TILU method (cf. [5, 
transformation for (1.2.1) we take with the notations from (1.2). 

Kl=(I0 l K't 12 (3.1.1a) 

with 

(3.1.1 b) 

(3.1.1c) 

where 

(3.1.1d) 

~'~l, 12 = A 1  1 Cl E l  1Dl ' 

K / , 2 2  = - -  El- x Dz, 

DI : f t + y + ( e -  21~1/2 ~ yt+(eL-2fl)/2 
-,'x 2, / ~'x2,1 

has to be chosen properly, satisfying 

(3.1.1e) [Dl[o~_~< C. 

The corresponding product-system reads 

Kl- {A~ 0Dr). (3.1.2) Kt =\Bl 

Remark 3.1.1. K, z from (3.1.1 a) is regular with 

+~ +~ + -~-- 
x', x x', : x (3.1.3 a) 

and 

(3.1.3b) 
, _ [ l z  AT '  Cz '~ 

KF - \o  - D ~ '  E , ]  
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30]). As r- 

(3.1.4) ]I--p, r'~lt~<~Ch ~-t, for(s,t)e{(fl, O),(fl, fl-Y),(~,O),(cqfl-Y)}, 
l I - p2 r'z[,~, < C h ~- t, for (s, t) e {(fl, f l -  a), (fl, a - T)}, 

IPal,~,~C, t~{0, fl-~,, cq, 
Ipzl,~,~C, t~{a, fl, fl-~, ~-7}, 
Irll,._,<C, te{O, -c~,f l-~,f l-~-~},  
Ir21,~,<C, te{0,-f l , -y},  
Iril,~,< C, te{fl,~}, 
Ir'zl,~,<_C, te{a, fl}. 

To apply Theorem 2.2.1 we have to ensure approximation properties (2.2.5) 
for problem (1.2.1), as given in the following lemma 

Lemma 3.1.2. Let a saddle-point problem with K~ from (1.2.1) be given. Let further 
the restrictions and prolongations p and r have block-diagonal form. Additionally, 
suppose a block-diagonal restriction r' to exist, satisfying with a==2f l -  
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Let the blocks of Kz satisfy 

(3.1.5) IAzl,_~, <C, 

[Ai-ll,+=,-, <C, 

IBL a~, <C, 

I CL- a ~t < C, 

[Ei-llt+,,~t<-_C, 

te{O, f l - y } ,  

te{O, - -~ , f l - -~ - -7 ,  fl--o~}, 

tE{O, e, fl--y}, 

t~{cr, fl, --fl, ~r-~, fl--~}, 

t6{O, --fl, --g, 2a-- y, fl-- y,~--fl}. 

(3.1.6) 

The necessary consistency assumptions are 

]Al-1--rl A t p l ] t ~ s < C h  s-~-~, 

for (s, t)e {(fl, -- e), (fl, f l -  e - 7), (e, - e), (~, f l -  Y -- e)}, 

lBl- 1 --r2 Bl Pllt~s <= C hS-t-o, 

for (s, t) e {(cq - fl), (~, - 7), (fl, - fl), (/3, - 7)}, 

]CI - 1 --rl  Cl P21t~s<= C hS-t-a,  

for (s, t) e {(or, -- ct), (a, fl -- y -- 7), (fl, -- c 0, (fl, fl - c~ - y)}. 

Then 

(3.1.7) t(Kf1)ll-pl(K~_'l)tl rl[t~o<Ch ~-t, for te{0,  f l - y } ,  

I(KF 1)12-p l  (K/--11)12 r2lt.-o = Cha-t, for te{0,  fl--y}, 

[(K~l)21--p2(KT_ll)21rllt~o <=Ch a-t, for te{f l - -cq~r-7) ,  

I(Ki- 1)22-P2(KL1022 r2l,~o < Ch ~-', for te{ f l -~ ,  a-y) .  

G. Wittum 

Proof. The p roof  uses the same splittings as Hackbusch ' s  p roof  of the approxima-  
tion proper ty  for the Stokes-problem,  prop. 11.2.7 in [13], and is carried out  
entirely in parallel, qed 

N o w  we are ready to prove two-grid convergence for (1.2.1). 

Theorem 3.1.3. Let Al from (1.2.2) and D z from (3.1.1d, e) be symmetric and 
positive definite, let (2.3.1) and (2.3.2) be satisfied for (3.1.2). Let further (3.1.2) 
be decomposed according to (2.3.3), and suppose (2.3.4) and (2.3.5a, b) with qii(v) 
=O(1/v) to be satisfied. In addition, let (3.1.4)-(3.1.6) with f l > 0  hold for the 
original system (1.2.1). Then with 

c~ 
(3.1.8) rh l - -ml  =m'l =~-, 

m 2 = m ~ = f l - -  2 ,  

,~2---~ +~-fl, 



On the Convergence of Multi-Grid Methods with Transforming Smoothers 33 

the two-grid method with r-transforming smoother St corresponding to S via K.t 
from (3.1.1) converges independently of h. More precisely, we have in the norms 
from (2.2.3) 

(3.1.9) [[[ T2.,(v, 0)tllu,~ u, _-< c ~t (v), 

with r / (v)=max {r/a 1 (v), r/21 (v), q22(v)), 

and rlzl(v ) from (2.3.6). 

Proof. Because o f / 3 > 0  and assumptions (2.3.1)-(2.3.5) Theorem 2.3.4 yields 
smooth ing  proper ty  (2.2.6) in the norms from (2.2.3) based on (3.1.8). Lemma  
3.1.2 yields (3.1.7) corresponding to (2.2.5). It remains to prove (2.2.4). We have 

](g7 t)121o~a-, = [AT t Ctl0_a_~ < IA;- l l0 ,  -~ tCtl-=~a-= < C 

and by virtue of(3.1.1e) and (3.1.5) 

[(Kt- 1)z21o~ea_=- e = ID7 t Ezlo~2a-~-e<lDFllo,-elEtl-r~za-=-e 

< IDF 11o- -~lBt[-e-a-~lZ;- xla-e-a-y-=lDtla-~-=-2a-y-=< C. 

The  proposi t ion then follows by Theorem 2.2.1. qed 

Now consider Stokes-equat ions (1.2.5). There we have 

(3.1.10) At = - A n,, Bl = -- divh,, Ct = BT = gradh,, 

and c~ = 2/3 = 2. Suppose the discretization satisfies Brezzi's condi t ion (cf. [6, 12]), 
so that  K~ is regular according to Sect. 1.2. Then  K~ from (3.1.1 a) has the form 

(3.1.11) /('=(I0 d~l  -1 DtEi-I D') 

where E~ = diVh, A~, 1 gradh, and D~, regular, has to be chosen properly.  Setting 

Dl = Ez, (3.1.12) 

we obtain 

(3.1.13) K~ = . 
0 - I  

This r - t ransformat ion  yields the S I M P L E - m e t h o d  (cf. [30, 31]). Using theorem 
3.1.3 we prove 

Theorem 3.1.4. Let g2 ~ R 2 be bounded and convex. Let the Stokes-equations (1.2.5) 
be discretized on t2 using quadratic finite-elements for the velocities and linear 
ones for the pressure or linear elements for the velocities and linear ones on 
triangles with twice the size as described by Taylor and Hood (cf. [27]).  Suppose 
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some symmetric incomplete factorization of A t and Et exists with prescribed spar- 
sity pattern such that M = LL  r with 

(3.1.14) II M iilt < C" h -sti) 

with s(i),={20 for i = l  
for i=2  

and for smoothing use a modified ILU-scheme as introduced in [33] with modifica- 
tion parameter fl' in r-transforming manner with transformation K~ from (3.1.13). 
Then there exists flo > 0 such that for fl'> flo the corresponding two-grid method 
converges and with 

(3.1.15) rh I =m 1 =m' 1 = 1, 

rh2=m2=m~=O, 

we have 

(3.1.16) Ill T2.,(v, O)lllu,~u, ~ Cq(v) 
(In v'~ 

with q(v)=O ~ - ]  

in the norms from (2.2.3). 

Proof. Al, D 1 and E l are symmetric and positive definite. (2.3.1) and (2.3.2) are 
valid with 7--0, c~=2, and/~= 1. Since M~,=LLr+[ t  ' IINIt I, Mu,~,>c>O holds 
independently of h, yielding (2.3.4a, b). (2.3.4c) is satisfied as M21=(Kt/s 
(I+D[11 Ull) where Dll  and U ~  are blocks of the diagonal-matrix D and of 
the strictly upper triangular matrix U from the incomplete decomposition of 
Kt/s = (L + D) D- 1 (U + D ) -  N. According to Theorem 3.1.5 from [33] smooth- 
ing properties (2.3.5a, b) hold with ~:=2=0. Interpolation using Lemma 2.3.3 
yields (2.3.5a, b) with ~=1  and 2=0.  As scaling (3.1.15) is the same as the 
one used for Stokes-equations in t-13], Lemma 3.1.2 is equivalent to Proposi- 
tion 11.2.7 from [13]. (3.1.4) and (3.1.5) are immediate, (3.1.6) is satisfied accord- 
ing to the estimates given in [10] (cf. ex. 11.2.8 in [13]). Because of j?= 1 >0  
we can apply Theorem 3.1.3 yielding the proposition, qed 

Remark 3.I.5. Theorem 3.1.4 remains valid if the Taylor-Hood element is re- 
placed by the mini-element (see [2, 16]). 

Proof. By the same arguments as in the proof of Theorem 3.1.4 (2.3.1)-(2.3.5), 
(3.t.4) and (3.1.5) are still valid. According to [10] and [15] (3.1.6) is fulfilled 
too, yielding the proposition, qed 

Remark 3.1.6. The above results remain valid, if a r-transforming damped Jacobi- 
smoother with suitable damping parameter (see [13]) or a modified symmetric 
Gaul3-Seidel scheme with positive modification parameter is employed. 

Proof. For the damped Jacobi the assertion follows immediately by [13], Prop. 
6.2.14 and the above considerations. For the modified symmetric GauB-Seidel 
it follows from [32], Thm. 2.2.4. qed 



On the Convergence of Multi-Grid Methods with Transforming Smoothers 35 

/(l from (3.1.13) requires A/5,  which is not explicitly available. Hence for practi- 
cal purposes A~-~ is replaced by an "approximate inverse" Gt introducing pertur- 
bations into the product-system. 

The second choice of Dt from (3.1.1 e) is D~= AChP, ), (p) denoting that the opera- 
tor has to be taken w.r.t, the pressure. The resulting transformation yields the 
DGS/TILU methods as described in [5, 30, 31]./( t  then reads 

(3.1.17) /(t =(I0 A~I 1 Ef l  Ak~) 
v -  1 A<P~ ZJhl 

Now we have 7 = 2, implying that for Lemma 3.1.2 consistency and interpolation 
of third order are required. Using a Galerkin-ansatz, however, we obtain. 

Theorem 3.1.7. Let f2cR z be a convex and bounded domain. Let the Stokes- 
equations (1.2.5) be discretized on staggered grids with equidistant mesh-size as 
described by Harlow and Welch (see [18]) with lexicographical ordering of the 
grid-points and linear interpolation at the boundary (cf. [16]). Further let the 
prolongation p be a biquadratic interplation, the restriction r=p* and let the 
coarse-grid matrices be computed by Galerkin-ansatz (2.2.8). 

Then the two-grid method with r-transforming damped Jacobi with suitable 
damping factor, symmetric Gaufl-Seidel or 5-point ILUa,-smoothing, for fl' >= 0 (cf. 
[32]), resp. based on Kt from (3.1.17) converges. With 

(3.1.18) 

(3.1.19) 

holds. 

rhl = ml  =m'l = 1, m2=m~=0,  th2 =2, 

Iit T2, t(v, O)lllv,~ v, < Crl(v) 

Io( t  ampe,, ,aco,,i 
with tl(v)= lo[ln| \V V'v], 

[ \1/~] else, 

Proof Al and Dt are symmetric and positive definite. (2.3.1)-(2.3.3) hold with 
~ = 7 = 2 ,  fl= 1. At as well as D~ satisfy (3.1.16), implying (2.3.4a, b) with 2 = 0  
for the symmetric GauB-Seidel as well as the damped Jacobi smoother with 
suitable damping factor. For ILUo (2.3.4a, b) are readily veryfied for 2 = 0 using 
Lemma 2.1.4 from [32]. (2.3.4c) follows by the same argument as in the proof 
of Theorem 3.1.4. According to [13], Prop. 6.2.27 and [32], Prop. 2.1.6 (see also 
[30], Prop. 5.3.1), smoothing-properties (2.3.5a, b) hold for ~c=2=0.  By virtue 
of Lemma 2.3.3 they are easily established for 2 = K = 1/2 and ~c = 1. For Jacobi- 
type smoothers (2.3.4a, b) is evident for 2 = 1/2. By virtue of the Galerkin-ansatz 
(2.2.8) consistency assumptions (3.1.6) are satisfied automatically (see [13]). 
(3.1.4) and (3.1.5) hold too. Thus the proposition follows from Theor- 
em 3.1.3. qed 

Kz from (3.1.17) needs A~, 1 and E[ -1 which are both not available in practice. 
For practical purposes/(~ is replaced by 

(3.1.20) /(z = (I0 17h'_ At.,,/]' 
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introducing perturbations into the product system. Handling these perturbations 
will be the subject of a forthcoming paper. 

The asymptotic behaviour of tT(v ) from (3.1.19) for damped Jacohi is better 
than the one of SGS and ILUB,. However, this is only a matter of proof. To 
obtain O(1/v 1/2) instead of O(In v/vl/2), we need 

(3.1.21) IMz~[~�89 <C. 

This is straightforward for Jacobi, but not at all for the other smoothers. 
The asymptotic behaviour of r/(v) from (3.1.16) and (3.1.19) is worse than 

the usual O(1/v). Now, practical tests for TILU with both transformations show 
a behaviour of q(v)~O(1/v) (see [31]). Thus (3.1.19) is an overestimate caused 
by abandoning symmetry in our product-system. 

3.2 The Nonlinear Case 

Now consider the Navier-Stokes equations (1.2.4). We linearize it by 

Qt(u ~ u, = - Ah, ut + Re. Nl(u ~ ul (3.2.1) 

with 

o {u ~ Vh, ul + ut Vh, U ~ for Newton's method 
Nt(ut ) =_u  ~ Vh, UZ, for a simplified Newton-method 

and use one of these linerarizations within an outer Newton-like algorithm. 
The linear systems within each step can easily be solved by the linear multi-grid 
method used for (1.2.5). For details see [31]. 

Theorem 3.2.1. Let O c R  2 be a convex and bounded domain. Let the linearized 
N avier-Stokes equations with At = Qt from (3.2.1) be discretized by the Taylor-Hood 
element or the mini-element as mentioned above and assume the discretization 
to be stable w.r.t, the convective terms. Then there exists ho=ho(Re), such that 
the two-grid method with r-transforming ILU~,-smoothing, fl'> 1, using K,t from 
(3.1.13) satisfies smoothing-property (2.2.6) in the norms from Theorem 3.1.4, pro- 
vided ht < ho, 1>2. 

Proof Split Kt=K~+ K'~', where K'i contains the linearized convective terms 
while K~ contains the Stokes-operator. Correspondingly St can be split into 
St = S~ - S'{ with S'z = I - MI - 1 K~ and 

St = ~ ( -  Mt z M,;)i . . . .  , -  1 . . . . .  K t  ) + M l  Mz ( K t +  K t  . 1 ig 

i = I  

The sum converges for h sufficiently small, as M'( is of lower order. Further, 
we have t]S'zVlt<C.v as S'z.ii is convergent. Further lira h~llK~'ll=0, as K~' is 

of first order, and 

ll(S't ) ( ) " -~0, 'Vll<c 1 v .  - 1 M  t c2+c3 
i 
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for h~ ~ 0 and  fixed v. 
Based on the results from Sec. 3.1 we can apply cri terion 6.2.7 from [13], 

comple t ing  the proof, qed 

Remark 3.2.2. The same result holds for the staggered-grid discretization, r- 
t ransforming ILUa and  symmetr ic  Gaul3-Seidel smoothing,  based on /~t from 
(3.1.17). 

Proof Analogous ly  to the proof of Theorem 3.2.1. qed 

Acknowledgement. The author wants to thank W. Hackbusch for his advice and many fruitful 
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