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Partitioning procedures for solving mixed-variables 
programming problems* 

By 

J. F. BENDERS** 

I. Introduction 

In this paper two slightly different procedures are presented for solving 
mixed-variables programming problems of the type 

max {c r x + [ (y) I A x + F(y) ~ b, x C Rp, y ~ S}, (t .I) 

where x C Rp (the p-dimensional Euclidean space), y ~Rq, and S is an arbitrary 
subset of Rq. Furthermore, A is an (m, p) matrix, /(y) is a scalar function and 
F(y) an m-component vector function both defined on S, and b and c are fixed 
vectors in R~ and Rp, respectively. 

An example is the mixed-integer programming problem in which certain 
variables may assume any value on a given interval, whereas others are re- 
stricted to integral values only. In this case S is a set of vectors in Rq with 
integral-valued components. Various methods for solving this problem have 
been proposed by  BEALE [I], GOMORY [9] and LAND and DOIG [11]. The use 
of integer variables, in particular for incorporating in the programming problem 
a choice from a set of alternative discrete decisions, has been discussed by 
DANTZIG [43 . 

Other examples are those in which certain variables occur in a linear and 
others in a non-linear fashion in the formulation of the problem (see e.g. GRIFFITH 
and STEWART [7~). In such cases /(y) or some of the components of F(y) are 
non-linear functions defined on a suitable subset S of Rq. 

Obviously, after an arbitrary partitioning of the variables into two mutually 
exclusive subsets, any linear programming problem can be considered as being 
of type (t .t). This may be advantageous if the structure of the problem indicates 
a natural partitioning of the variables. This happens, for instance, if the problem 
is actually a combination of a general linear program:ruing and a transportation 
problem. Or, if the matrix shows a block structure, the blocks being linked only 
by  some columns, to which also many other block structures can easily be 
reduced. A method of solution for linear programming problems efficiently 
utilizing such block structures, has been designed by DANTZlG and WOLFE [5~. 

The basic idea behind the procedures to be described in this report is a 
partitioning of the given problem (t.t) into two sub problems; a programming 
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problem (which may be linear, non-linear, discrete, etc.) defined on S, and a 
linear programming problem defined in Rp. Then, in order to avoid the very 
laborious calculation of a complete set of constraints for the feasible region in 
the first problem, two multi-step procedures have been designed both leading, 
in a finite number of steps, to a set of constraints determining an optimum 
solution of problem (t.t).  Each step involves the solution of a general program- 
ming problem. The two procedures differ only in the way the linear programming 
problem is solved. 

Earlier versions of these procedures constitute part of the author's doctoral 
dissertation [2]. This paper, however, contains a more detailed description of 
the computational aspects. 

II. Preliminaries 
We assume the reader to be familiar with the theory of convex polyhedral 

sets and with the computational aspects of solving a linear programming problem 
by the simplex method; see e.g. TUCKER [13], GOLDMAN [8] and GASS [6]. 

Throughout this paper u, v and z denote vectors in Rm; u0, x o and z o are 
scalars. 

For typographical convenience the partitioned column vectors 

(i~ (:t /lxl (:t , , (z ox , and 0 

are written in the form (x o, x, y), (x, y), (x, z0), (x, z) and (u0, u), respectively. 

The letter e will always stand for a vector of appropriate dimension with 
all components equal to one. 

If A is the (m, p) matrix and c the vector in Rp both occurring in the for- 
mulation of problem (IA), we will define 

(a) the convex polyhedral cone C in Rm+ 1 by 

C = {(Uo, u) l A r u  - -  c Uo >= O, u >= O, Uo >= 0}, (2.1) 

(b) the convex polyhedral cone C o in R m by 

Co=(u]ATu>=O, u~O), (2.2) 

(c) the convex polyhedron P (which may be empty) in R~ by 

p=(.IA~u_->c, .>o ) .  (2.3) 

III. A partitioning theorem 
Introducing a scalar variable Xo, we write problem (1.t) first in the equi- 

valent form 

max{xo]Xo--cTx--/(y)<=O, Ax+F(y)<~b, x>--O, yCS}, (3.t) 

i.e. (Xo, 2, ~) is an optimum solution of problem (3.t) if and only if ~,o=CTTc+](~) 
and (~, :~) is an optimum solution of problem (t.t). 



240 J . F .  BENDERS: 

To any point (u o, u) CC we adjoin the region in Rq+ 1, defined by 

((Xo, y)[~0 x0 + : F ( y )  -- ~0 /(Y) ----< : b, y ~ S}. (3.2) 

G will denote the intersection (which may be empty) of all these regions: 

G =c,~ y)I ~o Xo + ~ ( y ) -  u 0 / ( y ) = < :  ~, y e s } .  (3-3) 

Since C is a pointed convex polyhedral cone, it is the convex hull of finitely 
many extreme hairlines. I t  follows that  there are H points (u ~, uh), h = 1 . . . . .  H 
in C so that  

G = O .{(x0, Y)lU~o Xo+ (uh)TF(y) -- U~/(Y)----< (uh:  b, yES) .  (3-4) k<H 

Theorem 3.1. (Partitioning theorem for mixed-variables programming 
problems). 

(1) Problem (1.t) is not feasible if and only if the programming problem 

max(xol (Xo, y)C G} (3.5) 
is not feasible, i.e if and only if the set G is empty. 

(2) Problem (1.t) is feasible without having an optimum solution, if and 
only if problem (3.5) is feasible without having an optimum solution. 

(3) If (~,~) is an optimum solution of problem (t.t) and ~0----cr~:+/(~), 
then (Xo, Y) is an optimum solution of problem (3.5) and ~ is an optimum solution 
of the linear programming problem 

max{c T x I A x <= b - -  F ( y ) ,  x ~ 0). (3.6) 

(4) If (~0,Y) is an optimum solution of problem (3-5), then problem (3.6) 
is feasible and the optimum value of the objective function in this problem is 
equal to Xo--/(Y)" If ~ is an optimum solution of problem (3.6), then (~,y) 
is an optimum solution of problem (1 .t), with optimum value Xo for the objective 
function. 

Proo/.  If x~' is an arbitrary number and y* is an arbitrary point in S, it 
follows from the theorem of FARKAS (see TUCKER [13]) that  the linear system 

A x <= b - -  F (y* )  

- : x < _ _ -  x*+/(y*), x>=o 
is feasible if and only if 

u o x~ + u r F ( y  *) - -  u o / (y*) ~ u T b 

for any point (u o, u) C C. 
Hence if (x*, x*, y*) is a feasible solution of problem (3./), (x*, y*) is a feasible 

solution of problem (3-5)- Conversely, if (x*, y*) is a feasible solution of problem 
(3-5), there is a vector x* ERp so that  (x*, x*, y*) is a feasible solution of problem 
(3A). Since the problems (tA) and (3.t) are equivalent, this proves items (t) 
and (2) of theorem 3.1. Moreover it follows that  if (~, ~) is an optimum solution 
of problem (t.1) and ~ o = c T ~ + / ( ~ ) ,  then (xo,y) is an optimum solution of 
problem (3.5). Finally, if (xo, Y) is an optimum solution of problem (3.5), there 
is a vector ~CRp, so that  (Xo, x,Y) is an optimum solution of problem (3A)- 
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Then 2 0-- c rY+ / (~) and since c T x -k [ (y) ~ "~0 for any feasible solution (x, 37) of 
problem (1.I) (~ fixed!) it follows that  ~ is an optimum solution of problem 
(3.6). This completes the proof of theorem 3.t. 

The partitioning theorem does not require any further specification of the 
subset S and of the functions /(y) and F(y) defined on S. In actual practice, 
however, S, [(y) and F(y) must have such properties that  problem (3.5) can 
be solved by existing methods, in other words, we must be able to detect whether 
this problem is not feasible or feasible without having an optimum solution, 
or we must be able to find an optimum solution if one exists (for special cases, 
see section 6). If these assumptions are satisfied, theorem 3.t asserts that  problem 
(t.1) can be solved by a two-step procedure. The first step involves the solution 
of problem (3.5), leading to the conclusion that  problem (1.1) is not feasible, 
or that  it is feasible without having an opt imum solution, or to the optimum 
value of the objective function in problem (1.1) and to an optimum vector 
in S. In the latter case a second step is required for calculating an optimum 
vector ~ in Rp, which is obtained by  solving the linear programming problem (3.6). 

The solution of problem (3.5) must be considered in more detail. For, even 
if a procedure is available for solving problems of this type, a direct solution 
of problem (3.5) would require the calculation in advance of a complete set of 
constraints, determining the set G. According to (3.4) this could be done by  
calculating all extreme half lines of the convex polyhedral cone C, but this is 
practically impossible because of the enormous calculating effort required. How- 
ever, since we are interested in an opt imum solution of problem (3.5) rather 
than in the set G itself, it would suffice to calculate only those constraints of 
G which determine an optimum solution. In the next section we will derive 
an efficient procedure for calculating such constraints. 

IV. A computa t ional  procedure for solving mixed-variables  
p rog ramming  problems 

In this section we assume that  the set S is closed and bounded, and that  
](y) and the components of F(y) are continuous functions on a subset S of Rq 
containing S. These assumptions are satisfied in most applications and they 
rule out complications caused by  feasible programming problems which have 
no solution. I t  may  happen that  S is not bounded explicitly in the formulation 
of problem (1.1). In that  case we can add bounds for the components of the 
vector y which are so large that  either it is known beforehand that  there is an 
opt imum solution satisfying these bounds or that  components of y exceeding 
these bounds have no realistic interpretation. 

L e m m a  4.1. If problem (3.5) is feasible and S is bounded, then x 0 has no 
upper bound on G if and only if the polyhedron P is empty. 

Proo/. By assumption, there is at least one point (z0*, y*)CG. However, 
if P is empty,  then u 0 = 0  for any point (u o, u) C C. Hence G assumes the form 

= Nc0((x0, y) lurF(y) <--_ u ~ b, y C S), (4.1) 

and it follows that  (x o, y*)C G for any v~tlue of x o. 
Numer. Math. Bd. 4 1 7 
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If P is not empty, there is at least one point (t, ~7) ~ C. Hence, for any feasible 
solution (x0, y) of problem (3.5) we have, by the assumptions imposed on the 
set S and on the functions F(y) and / (y) : 

x 0 __< max {gr b -- ~rF(y)  + 1 (y)} < o~. (4.2) 
yES 

Let Q be a non-empty subset of C and let the subset G (Q) of R~+I be defined by: 

G(Q) =l,,o,Qeo{(Xo, y)]UoXo+ urF(y) -- uo/(y ) <= urb, yES}.  (4.3) 

We consider the programming problem 

max{xo] (Xo, Y)C G (Q)}. (4.4) 

If problem (2 g) is not feasible, then, since G(G(Q), problem (3.5) is not 
feasible. On the other hand, if (x0, Y) is an optimum solution of problem (4.4) 
we have to answer the question whether (x0, Y) is also an optimum solution 
of problem (3.5) and, if not, how a "better" subset Q of C can be obtained. 

Lemma 4.2. If (~o, Y) is an optimum solution of problem (4.4), it is also 
an optimum solution of problem (3.5) if and only if 

min {(b -- F(y)) r u I u C P} = ~o -- / (9). (4.5) 

Pro@ Since the maximum value of x 0 on the set G(Q) is assumed to be 
finite, if follows from lemma 4.t that Q contains at least one point (u o, u) for 
which Uo> O. Hence the polyhedron P is not empty, i.e. the linear programming 
problem 

min {(b -- F(y)) r u l u C P} (4.6) 
is feasible. 

Now we observe first that an optimum solution (xo, Y) of problem (4.4.) is 
also an optimum solution of problem (3.5) if and only if (Xo, Y) C G. The necessity 
of this condition is obvious. Moreover, since Q (C ,  we have 

max {Xo[ (x o, y) < G (Q)} -> max {Xol (x o, y) <G}, (4..7) 

hence the condition is also sufficient. 

By the definition of G, the point (Xo, Y)C G if and only if 

(b -- F(p))r u + (-- ~o + 1 (9)) u0 => 0 (4.8) 

for any point (uo, u) C C. This happens if and only if 

(b - - F ( p ) ) r u > 0  for any uCC o 
and 

(b --F(~))ru__>~0--/(~) for any uEP,  
i.e. if and only if 

min{(b -- F(~)) T r [~g ~ p} => ~0 -- / (9). (4.9) 

By the duality theorem for linear programming problems, it follows that 
the linear programming problem 

max{c T x[ A x =< b -- F(y), x > 0} (4.t0) 
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has a finite optimum solution ~ for which 

c r~  = min{(b -- F(~)) T u I u ~ P } .  (4.t 1) 

Since (~,~) is a feasible solution of problem (1.1) it follows from theorem 3.t 
and GCG(Q)  that 

cr ~ + ] (~) ~ max {x o I (x0, Y) ~ G} =< max {x 0 ] (x0, y) C G (Q)} = 20. (4.12) 

Finally, it follows from a combination of the relations (4.9), (4.tt) and (4.12) 
that the inequality (4.9) can be replaced by the equality (4.5). This completes 
the proof of lemma 4.2. 

If the linear programming problem (4.6) has a finite optimum solution, at 
least one of the vertices of the polyhedron P is contained in the set of optimum 
solutions. It  is well-known that, in this case, the simplex method leads to an 
optimum vertex ~ of P. 

According to lemma 4.2, if ( b - - F ( ~ ) ) T ~ = ~ o - - / ( ~ ) ,  we have found an opti- 
mum solution (Xo, :Y) of problem (3.5). Furthermore, the simplex method provides 
us, at the same time, with an optimum solution ~ of the dual linear programming 
problem (4.10) and it follows from theorem 3.1 that (~, ~) is an optimum solution 
of problem (1.1). 

If 
(b -- F(~))r  u < x o --  I (Y) ,  (4.t3) 

the point (I,~) of C does not belong to Q. In this case we form a new subset 
Q* of C by adding the point (l ,g) to Q. 

If the linear programming problem (4.6) has no finite optimum solution, 
the simplex method leads to a vertex ~ of P and to a direction vector ~ of one 
of the extreme halflines of Co so that the value of the objective function (b -- F(~)) r u 
tends to infinity along the halfline 

Moreover we have the inequality 

(b - -  F(~) )T~  < O, (4A4) 

from which it follows that the point (0, ~) of C does not belong to Q. In this 
case we form a new subset Q* of C by adding the point (o, ~) to Q. 

In any case, let (x*, y*) be an optimum solution of the programming problem 

max {x o ] (Xo, y) C G (Q*)}. (4.t 5) 

Then, in the first case we have 

(b - -  F (y*) ) r ~ >= x* - - / ( y * ) ,  (4.t6) 
and in the second case 

(b - -  F(y*) )  r V ~ O. (4.t 7) 

From this in combination with (4.13) and (4.t4) it follows that  

(xo*, y*) =4= (-~o,Y). (4.t8) 
t7" 
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Furthermore, since Q*)Q, we have G (Q*) (G (Q), hence 

x* G T 0. (4.t9) 

In case the linear programming problem (4.6) has no finite solution, it may 
be that the above-mentioned vertex ~ satisfies the inequality (4.13). Then, 
both the point (I, ~) and (o, ~) do not belong to Q and the new subset Q* of 
C may be obtained by adding both points to O. It is also important to note 
that the constrained set G(Q*) is obtained from G(Q) by adding the constraint 

Xo+ ~T F(y) -- ](y) ~ ~T b 
and/or the constraint 

~r F(y  ) <= ~T b 

to the set of constraints determining this set G (Q). 
We are now prepared for the derivation of a finite multi-step procedure for 

solving mixed-variables programming problems of type (1.t). 
Procedure 4.1. The procedure starts from a given finite subset Q0(C. 

Initial step. If u0> 0 for at least one point (Uo, u) E Q0, go to the first part 
of the iterative step. 

If % = 0  for any point (Uo, u )CQ ~ put Xo~ take for y0 an arbitrary 
point of G(Q~ and go to the second part of the iterative step. 

If G(Q ~ is empty, the procedure terminates: problem (t.1) is not feasible. 

Iterative step, first part. If the v-th step has to be performed, solve the 
programming problem 

max {Xo] (x0, y)C G (Q~)}. (4.20) 

If problem (4.20) is not feasible, the procedure terminates: problem (iA) 
is not feasible. 

If (x~, y') is found to be an optimum solution of problem (4.20), go to the 
second part of the iterative step. 

Iterative step, second part. Solve the linear programming problem 

min{(b - - F ( S ) ) r u l A r u >  c, u--> 0}. (4.21) 

If problem (4.21) is not feasible, problem (1.t) is either not feasible, or it 
has no finite optimum solution. (This situation can only be encountered in the 
first iterative step l) 

If problem (4.21) has a finite optimum solution u" and 

(b -- F(y")) T u" = x~ --  /(y"), (4.22) 

the procedure terminates. In this case, if x" is the optimum solution for the 
dual problem of problem (4.21), then (x', y') is an optimum solution of problem 
(1.t) and x~ is the optimum value of the objective function in this problem. 
Then if 

(b -- F(y'))T U" < X~o -- /(Y"), (4.23) 
form the set 

Q,+I = Q, ~ {(1, u')}, (4.24) 

replace the step counter v by vq- 1 and repeat the first part of the iterative step. 
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If the value of the objective function in problem (4.2t) tends to infinity 
along the halfline 

{ u l u = u ~ + ~ v  ~, ~_-->0}, 

u ~ being a vertex of P and v ~ the direction of an extreme halfline of Co, while 

(b - - / ( y ' ) ) T u v ~  X~O - [(y ') ,  (4.25) 
form the set 

Q'+~ = Q~ ~ {(0, v~)}. (4.26) 

However, if (4.25) is not satisfied, i.e. if 

(b -- F(yV)) T u ~ < x~ - - / (y~) ,  (4.27) 
form the set 

Q'+~ = Q" ~ {(1, u'), (0, v')}. (4.28) 

In either case replace the step counter v by v+  I and repeat the first part of the 
iterative step. 

This procedure terminates, within a finite number of steps, either with the 
conclusion that  problem (1.1) is not feasible, or that this problem is feasible 
without a finite optimum solution, or because an optimum solution of problem 
(t.t) has been obtained. 

This procedure is finite, since at each step where it does not terminate the 
preceding subset Q~ is extended by the direction vector of at least one extreme 
halfline of the polyhedral cone C, which does not belong already to Q'. Hence, 
within a finite number of steps either the procedure would terminate or a complete 
set of constraints determining the set G would have been obtained and by 
theorem 3.1 the procedure would stop after the next step. 

The termination rules are justified by: 
(t) G(Q~)CG in combination with theorem (3.t), item (1): problem (t.t) is 

not feasible. 
(2) Lemma (4.1) and theorem (3.1), item (2): problem (t.1) has no finite 

optimum solution. 
(3) Lemma (4.2) and theorem (3.t), item (4): optimum solution for problem 

(i .t). 
Since 

G(Q v) ) G ( Q  v+x) ) G ,  

the sequence {x~} is non-decreasing and 

max{xo](Xo, y) C G ) ~ x  ~ fo rany  v>=O. 

If problem (4.2t) has an optimum solution u ~, then its dual problem 

max {c T x I A x <= b --  F(yV), x >-- O} 

has an optimum solution xL while 

(b - viy'/)  = d x 

(4.29) 

(4.30) 

(4.3t) 

Since (x', y~) is a feasible solution of problem (1.1), it follows from theorem (3.t), 
item (3) that  

(b -- F ( y ' ) ) r u ' + / ( y ' )  --_ max{xol (x o, y) C G}. (4.32) 
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Hence, at the end of each step, we have upper and lower bounds for the maximum 
value of x o on the set G, or what is the same, for the maximum value of the 
objective function in problem (t . t ) :  

max~(b -- F(yk))r u k + /(y~)} < max {x 0 ](Xo, y) C G} ~ x~. (4.33) 
k < v  " 

Here, (b--F(yk))Tuk=--oo if problem (4.2t) in the k-th iterative step has no 
finite optimum solution; otherwise it is the optimum value of the objective 
function in this problem. 

The determination of an initial set Q0 will depend much on the actual problem 
to be solved. In any case one may start from the set Q0 containing only the 
origin of R,~+I, which always belongs to the cone C. The procedure then starts 
with the second part of the iterative step from an arbitrary point y~ C S, while 
xo ~ is put  equal to + oo. 

V. An alternative version of procedure 4.1 

In actual practice it is often more convenient to solve the dual problem 

max{cT x lA  x<= b --F(y"), x>_ 0} (5.1) 

of problem (4.21), rather than this problem itself. In this section an efficient 
way is described of obtaining all information for the performance of procedure 
4.1 by solving problem (5.t) instead of problem (4.2t) 

First we observe that  problem (5.1) may not be feasible since problem (4.21) 
may have an infinite optimum solution. In order to avoid infeasibility, we 
replace the convex polyhedron P by the bounded convex polyhedron 

P(M) = {ulATu>= c, e T u ~ M ,  u~= 0}, (5.2) 

the number M being so large that all vertices of the polyhedron P (if not empty) 
are contained in the region 

{uleTu>=M, u>--0}. (5.3) 

Problem (5.t) is then replaced by the problem 

m a x { c T x - - M z o l A x - - z o e < = b - - F ( y ~ ) ,  xo>-->_O, Zo>=0}, (5.4) 

which is always feasible. 

If M is sufficiently large (see below), then: 

(1) Problem (4.2t) is not feasible if and only if problem (5.4) has an infinite 
optimum solution. 

(2) If (x', z~) is an optimum solution found for problem (5.4), and z~=0, 
then (x', y') is a feasible solution of problem (t.t). For the optimum solution 
u ~ (M) found at the same time for the dual problem 

min{(b -- F(yV))r u[ AT u ~> c, eT u <~_ M, u ~ 0} (5.5) 

we have the relation 
(b -- F(y'))T u'(M) = c r xL (5.6) 

Since u~(M) is also a feasible solution of problem (4.2i), it follows from 
(5.6) and the duality theorem for linear programming problems that it is also 
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an o p t i m u m  solut ion of p roblem (4.21). Then,  apply ing  l emma 4.2 and  theorem 
3.1 we find tha t  (x ~, y~) is an op t imum solut ion of p rob lem (1.1) if and  only if 

cr  x~ + /(y~) = X~o �9 (5.7) 

If  z~ = 0, bu t  re la t ion (5.6) is not  satisfied, or if z~ > 0, we consider  the  o p t i m u m  
solution u ~ (M) in more detai l .  

I t  is wel l -known tha t  the  components  of u ~(M) are  equal  to the  components  
of the  "d-row" (known also as the  "z i -  c i row",  see GASS [61) in the  o p t i m u m  
simplex tableau,  corresponding to the  ini t ia l  slack variables.  I t  follows from 
the defini t ion of the  "d-row" t ha t  i t  is a l inear  form in M, i.e. 

d r (M) = d 1,~ + M d 2,~ (5.8) 

with d ~ , ~ 0  (otherwise the  number  M would be too small ,  see below). 

I t  follows t ha t  u ~ is also a l inear  form in M :  

u" (M) ---- u 1' ~ + M u 2' ~. (5.9) 

The vectors  d 1'~ and d 2'~, hence also the  vectors  u 1'~ and u 2'~ are  ob ta ined  
by  replacing the  objec t ive  funct ion CTX--Mz o in the  op t imum simplex t ab leau  
by  cTx and - - z  o, respect ively  and recalcula t ing then  the  "d-row".  We will 
refer to d 1'~ and  d 2'~ as to  the  "M-components" of the  d-row; s imilar ly  u 1'~ 
and u ~'~ are the  "M-components" of the  op t imum solut ion of the  dual  problem.  
For  any  given op t imum simplex t ab leau  the  M-componen t s  are independen t  
of M. 

B y  v i r tue  of the  const ruct ion of the  po lyhedron  P(M), any  ve r tex  of P is 
a ve r t ex  of P(M). Fur the rmore ,  as p roved  b y  GOLDMAN ([8], corol lary  I A) 
we have  t ha t  any  ve r t ex  of P(M) is of the  form 

u(M) = ~+ ~ ,  ( 5 . 1 o )  

where ~ is a ve r t ex  of P ,  ~ is ei ther  zero or i t  is the  direct ion vector  of an ex t reme  
halfl ine of C o and  ;t is some non-nega t ive  number .  Conversely, if ~ is such a 
direct ion vector,  the re  is a t  least  one ve r tex  ~ of P so tha t  

u (M)  = ~ - ~  M - - e T u -  
e r r  v ( S t l )  

is a ve r t ex  of P(M). 

Hence,  the  ve r tex  (5.9) of P(M) can be wr i t t en  in the  form 

u"(M) = u"+ 2~v ~ (5.12) 

where u ~ is a ve r t ex  of P and v ~ is the  direct ion of an ex t reme  half l ine of C 0. 
The only  problem is to calculate  u ~ and  v ~ from the  M -c ompone n t s  u 1'~ and  
u ~'~ of u ~(M). 

Obvious ly  
v ~ = u 2'~. ( 5 . 1 3 )  

I f  

u 2 ' ~ = 0 ,  then  u ~ - : u  1'~, (5.14) 
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and, if u2'rq= O, u ~ is that point on the halfline 

{ u [ u = u X " +  M u  ~'~, M>=0} (5.t5) 

which also belongs to P and corresponds to the smallest value of M for which 
this happens. 

I t  is a well-known property of the "d-row" of the optimum simplex tableau 
of problem (5.4) that  this is the minimum value Mini ~ of M for which d r (M)=  
d1'r+ Md2'~>=O. Hence 

d~,~> o~. (5.16)  o,o= max{-- 
By the duality theorem we have also the relation 

(b - -  F ( y V ) ) T u  ~' ~-~ c T x "  - -  Mmin za.  

Now we get the following modification of procedure 4.t. 

Procedure 5.1. This procedure starts again from a given finite subset Q0 (C.  
Moreover a suitable value of M must be known (see below). 

Initial step. The same as in procedure 4.1. 
Iterative step,/irst part. The same as in procedure 4.t. 
Iterative step, second part. Solve the linear programming problem 

m a x { c T x - - M z o { A x - - z o e < = b - - F ( y r ) ,  x>=O, z0>=0 }. (5.t7) 

If problem (5.17) has an infinite optimum solution, problem (t.1) is either not 
feasible or it has no finite solution. (This situation can only be encountered 
during the first iterative step.) If problem (5.17) has a finite optimum solution 
(x r, z~) then if z~=0  and cTx~+/(y~)=X~, (X r, y~) is an optimum solution of 
problem (t.1) with x~ equal to the optimum value of the objective function; 
if z~--0 but  cTx'+](y~)<X~, or if z~>0,  determine the M-components d l'r 
and d ~'r of the "d-row" in the optimum simplex tableau and the M-components 
u 1'' and u 2'~ of the optimum solution of the dual problem. 

If 
u ~ '~=0,  put u ~ = u  l'r and v ~ = 0 .  (5.18) 

If 
u 2,~ q= o, calculate 

d~, ~ 
Mmt~ = max {--  di~7,~ I d~'r> 0 } 

and put 
Uv = ul ,  v _~_ Mmin u s, ,, 

vv ~ ~2, v. 

Then, if cr x" -- MminZ~ < x~ -- / (y~), form the set 

O r+l = 0 r ~ {( t ,  r  (o, vr)} 

and if crxr--Mmi, Z~&X~--/(yr), form the set 

(5.19) 

(5.20) 

(5.2t) 

(5.22) 

Q~+I = Q, ~ {(0, v~/}. (5.23) 
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Finally, replace the step counter v by v +  1 and repeat the first part  of the 
iterative step. 

This procedure terminates in a finite number of steps, with the conclusion 
that  problem (1 .t) is not feasible or that  it is feasible without a finite opt imum 
solution, or because an optimum solution of problem (!,1) has been obtained. 

The inequalities (4.33), expressing upper and lower bounds for the ultimate 
opt imum value of x 0, now assume the form: 

m a x { c r  x~+/ (yk ) lZko=O}<=max{xo l (Xo ,  y) qG}<=x; .  (5.24) 
k < v  - 

I t  has been assumed that  a suitable value of M, i.e. a value of M so large 
that  all vertices of P are contained in the region 

( . l  . -_< M, .__>o}, 

is known in advance. Such a value certainly exists, but  need not to be known 
in actual applications. In  any case one can start  the second part  of the iterative 
step with M = + oo, which actually means that  this part  is done in two phases. 
In the first phase one maximizes the objective function - - z  0. Then, in the 
second phase, the objective function c r x  is maximized under the side conditions 
that  - - z  o retains the maximum value it reached during the first phase. 

The procedure may be expected to be more efficient, however, if M is not 
too large. One can start  with any positive value of M. If, for fixed M,  an 
optimum solution of problem (5.4) is obtained, but some components of d 2'" are 
still negative, the value of M must be increased until at least one of the corres- 
ponding components of d " becomes negative. Then the simplex calculations are 
continued with this new value of M. If  one attains an infinite solution, the 
components of d ~'~, corresponding to columns with no positive elements in the 
actual simplex tableau, must  be checked. If all these components are positive, 
the value of M must be increased until the corresponding components of d" (M) 
become positive and then the simplex calculations are continued. If  at least 
one of these components of d ~' ~ is negative, or equal to zero but the correspond- 
ing component of d 1'" is negative, an increase in the value of M does not change 
this situation and the conclusion that  problem (4.2/) is not feasible is justified. 
In this way, in a finite number of simplex iterations a sufficiently large value 
of M is obtained. 

An important  modification of procedure 5.t is obtained if we replace the 
upper bound inequality eru<= M in (5.2) by  the vector inequality u <--<_ M e .  Then 
problem (5.4) assumes the form 

m a x  {cr x --  M er zl A x --  z <= b --  F(y~), x >= O, z >= O}, (5.25 

i.e. the single variable z o in (5.4) is replaced by the vector z. The justification 
of this modification is slightly more complicated than for procedure 5.1 but  
easily accomplished. From a computational point of view problem (5.25) is 
somewhat more flexible than problem (5.4). 

In many  applications the system of inequalities 

A x + F(y )  <= b (5.26) 
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assumes the form 
A 1 x ~ b 1 (5.27) 

A S x +  F2(y ) ~ b 2, 

i.e. the vector y does not occur explicitly in some of the constraints determining 
the feasible region in problem (1.t). In this case problem (5.25) may be replaced 
conveniently by 

max{cT x - -  M eT z]Al x~bl ,  A~x--  z<=b2-- F2(y~), x>=O, z~>0}. (5.28) 

This means that an auxiliary variable z i has to be introduced only if the 
vector y occurs explicitly in the corresponding inequality of the system (5.26). 

Problem (5.28) may be not feasible because the system of inequalities A 1 x ~  b 1, 
x ~ 0  may be not feasible. This will be detected however during the first step 
of procedure (5.1). The procedure can then be terminated, since this means 
that the original problem (t.1) is not feasible. 

VI. Applications 

The crucial point in the application of the procedures 4.t and 5.1 to the 
solution of actual problems is the existence of efficient procedures for solving 
the programming problem (4.20). We will consider in this section several special 
cases where this requirement is fulfiled. 

(a) If S=Rq (or a convex polyhedron in Rq), F(y)=By, B being an (m, q) 
matrix and /(y)=rTy, r=Rq, problem (4.20) becomes a linear programming 
problem which can be solved by  the simplex method. Since in each step new 
constraints are added to the feasible region of problem (4.20) in the preceding 
step, the dual simplex procedure seems to be most suitable. Another possibility 
is to apply the primal simplex method to its dual problem. The procedures 4.t 
and 5.1 are now special versions of the well-known decomposition procedure 
for linear programming problems, developed by DANTZIG and WOLFE [5]. 

(b) If S=Rq a nd / ( y )  and the components of F(y) are convex and differen- 
tiable functions defined on S, problem (4.20) becomes a convex programming 
problem that can be solved by well-known methods e.g. by KELLEY'S cutting 
plane technique [101, by ROSEN'S gradient projection [12] or by ZOUTENDIJK'S 
methods of feasible directions [141 . 

(c) If S is the set of all vectors in R e with non-negative integral-valued 
components, F(y)= B y, B being an (m, q) matrix and / (y )  =rTy, r C Rq, problem 
(1.t) is the well-known mixed-integer linear programming problem. Problem 
(4.20) now becomes an integer programming problem of a special type. Since 
the feasible region in problem (4.20) in the (v+ I)-th step is obtained by  adding 
cutting planes to the feasible region in this problem in the v-th step the cutting 
plane technique of GOMORY [9J seems to be very suitable for solving the integer 
sub-problems. 

Of particular importance for applications is the case where S constitutes 
the set of vertices of the unit cube, i.e. where the components of the vector y 
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may assume the values zero and one only. For these problems a slight modi- 
fication of the combinatorial procedure for solving pure "zero-one" problems, 
developed by  BENDERS, CATCHPOLE and I~UIKEN [3] can be applied for solving 
problem (4.20). The computational effort for solving pure "zero-one" problems 
in this way depends exponentially on the number of integer variables involved, 
so that  this procedure is only of limited use. From a number of experiments 
on a Ferranti  Mark I* computer, it has been found that  the calculating time 
is within reasonable bounds provided the number of "zero-one" variables does 
not exceed 30 to 40, for present day computing equipment available. This 
requirement is satisfied, however, in many applications. 

When evaluating the procedures 4.1 and 5.t for practical purposes one is 
interested also in the number of steps required for reaching an optimum solution 
and in the calculating time for each separate step. Since useful theoretical 
estimates do not yet exist, experiments with actual problems are necessary for 
getting pertinent information. 

Our experimental work is mainly restricted to the mixed-integer linear 
programming problem with all integer variables of the "zero-one" type. In 
the small number of test cases considered up to now we have used procedure 5. t, 
with problem (5.17) replaced by the more flexible problem (5.25). The integer 
sub-problems have been solved exclusively by the above mentioned combina- 
torial procedure. 

A typical test case involved 29 "continuous" variables, 27 integer variables 
and 34 linear constraints. The total number of steps required for reaching an 
opt imum solution was eleven. The Table shows the upper and lower bounds 
for the ultimate opt imum value of x 0 obtained in each step. In all our experi- 
ments these bounds were very instructive for estimating the "rate of convergence". 

The number of steps 
required for reaching an 
opt imum solution was en- 
couragingly small in all test 
cases. The calculating time 
per step was mainly used 
for solving the linear program- 
ming sub-problem. 

A reduction of the total 
number of steps and hence 
of the total calculating time 

Table. Successive upper and lower bounds for the 
ultimate optimum value o/ x o 

Cycle 

0 +oo 
1 233.37 
2 191.37 
3 190.45 
4 185.75 
5 t84.15 

U p p e r  b o u n d  L o w e r  b o u n d  
fo r  X o for  X o 

- - O O  

1 5 2 . 5 8  

t 52.58 
176.19 
176.19 
t76.19 

C cle U p p e r  b o u n d  L o w e r  b o u n d  
Y for  x o for  x o 

6 183.5o 176.t9 
7 182 .95  179.45 
8 t8o.53 179.45 
9 t8o.47 t79.45 

1o 18o.25 179.45 
11 t79.75 t79.75 

may be obtained by adding more than one or two new constraints per 
step to the integer sub-problem (4.20). Procedure 4.t Eor application of the 
dual simplex method for solving the problem (5.17) or (5.25) in procedure 5.1] 
seems to be most suitable for doing this since, when solving the linear programming 
problem (4.2t), at the end of each simplex iteration a basic feasible solution is 
available corresponding to an extreme half line of the polyhedral cone C. Hence 
at the end of each simplex iteration a constraint for the region G can be calcu- 
lated. An efficient way of doing this, while avoiding the addition of redundant 
constraints for determining the set G as much as possible, has not yet  been 
worked out completely. 
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