
Numerische Mathematik 4, 24-- 40 (I 962) 

Bounds for iterates, inverses, spectral variation and fields 
of  values of non-normal matrices* 

By 

PETER HENRICI 

Introduction 
A matrix in this paper  always means a square matr ix of order n with complex 

elements; a vectdr means a column vector  with n complex components.  A matrix 
norm is a real-valued function v defined on the space of matrices and satisfying 
the following relations for arbi t rary  matrices A and B and arbi t rary  complex 
scalars c : 

(a) v(A) >~ 0; v(A) ---- 0 if and only if A----0. 
(b) v(cA)=]c[v (A) .  
(c) v(A + B) g v(A) + v(B). 
(d) v(A B) g v ( A )  v(B) .  

A vector norm is a real-valued function defined on the space of vectors and 
satisfying relations analogous to (a), (b), and (c) above. By  the spectrum of 
a matr ix  A we mean the to ta l i ty  of its eigenvalues, considered as a point set 
in the complex plane. The largest of the moduli of the eigenvalues of A is called 
the spectral radius of A and will be denoted b y  ~t A . 

The following problems of computat ional  linear algebra will be considered 
in this paper :  

(i) To estimate the norms of the matrices A ~, n =  1, 2, 3 . . . . .  in terms of ~A. 
(ii) To est imate the error ~ - - A - 1  b of an approximate  solution ~ of the equa- 

tion A x =  b in terms of the residual r = A  ~ - -  b and the spectral radius 2A-I. 
(iii) To estimate the distance of the spectrum of a matr ix  B from the spectrum 

of a mat r ix  A in terms of a norm of B - - A .  
(iv) To find bounds  for the field of values of a matr ix A in terms of the 

spectrum of A. Here the field of values, F(A), is defined as the set of complex 
numbers  

x * A x  

where x runs through all non-zero vectors. (The * denotes the conjugate trans- 
pose of a vector  or matrix.)  

Solutions to the above problems are classical (and indeed trivial in some 
cases) if A is normal, i e., A A * = A * A .  Solutions have also been constructed 
for non-normal  A, but  with less sat isfactory results. Some of the bounds given 
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depend on a knowledge of a matrix S in the representation A =  S J S  -1, where 
J is the jordan  canonical form. Other bounds do not approach the classical 
bounds if A approaches a normal matrix. Contrary to this, the bounds given 
in the present paper depend --  at most --  on the eigenvalues of A. A knowledge 
of the Jordan canonical form is not required. Furthermore, our estimates ap- 
proach the classical estimates for A normal. Our insistence on not using the 
Jordan form is motivated part ly by reasons of computational convenience, and 
part ly by the fact that  the Jordan form is a discontinuous function on the space 
of matrices and is therefore ill suited for purposes of computation (see [61 for 
related remarks). 

The principal tool in our investigation is a numerical-valued function on the 
space of matrices that serves as a measure of the departure from normality of 
the matrix. After some preliminary remarks on matrix norms (w t .1) this function 
will be defined in w 1.2. We shall then derive a bound for this function in terms 
of a rational function of the elements of the matrix (Theorem t). In the sub- 
sequent sections the measure of non-normality will be applied to the solution 
of the four problems stated above. 

The author is indebted to G. E. FORSYTHE, E. SALLIN, O. TAUSSKY TODD, 
H. WIELANDT and, in particular, to B .J .  STONE for a number of stimulating 
comments on the subject of this paper. I t  should be mentioned that  WIELANDT 
in [28~ already has defined a measure of non-normality of a matrix. However, 
his measure is applicable only to matrices which are similar to a diagonal matrix,  
and to find an explicit bound for it again requires the knowledge of a matrix S 
effecting the diagonalization. 

1. A measure  of non-normal i ty  

1.1. Some preliminaries on norms. We shall frequently use the following 
special examples of matrix norms (see [12~, [20~) and shall refer to them with 
special symbols (A =(ai i))  : 

a ( A ) = m a x [ X * A * A x ]  ----x* x (spectralnorm) 

n 

q(A) = m a x  la . I  
X~i~n /=1' 

7(A) = m a x  ~ aij I 

e(A)---- [ X la, j] 2 ~ (euclidean norm) 

Y, I .1 
1 < i ,  i<n 

Furthermore, if 9 is a vector norm, then the function v~ defined by 

(A) = sup 
, , o  ~(x) 

always defines a matrix norm. Matrix norms defined in this manner are called 
lub norms in [41. The norms a, e, and Y defined above can be derived in this 
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manner  from suitable vector  norms (see also [231, chapter  t5),  On the other  
hand,  some mat r ix  norms,  such as the norms e and 0~ above,  cannot  be thus  
derived. 

We shall use the following definitions: 
A mat r ix  norm v is called compatible with a vec tor  norm E~, if/a (A x) < v  (A)/~ (x) 

for all matr ices  A and vectors  x. A lub norm is a lways compat ible  with the 
vector  norm defining it. 

A ma t r ix  norm v will be called unitarily invariant, if v (UA U*)=v (A )  for 
all A and all un i t a ry  U. The  norms a and e are uni tar i ly invar iant ,  while the 
norms ~), 7, and o~ are not. 

A lub norm v is called axis-oriented (I4], p. 138), if v ( D ) =  ma~x [dii t =~D 

for any  diagonal  mat r ix  D ~-- (dii). Clearly, the lub norms a, ~), and 7 are axis- 
oriented. 

A norm v is said to maforize another  norm/~ if v (A) ~/~ (A) for all matr ices  A. 
Clearly, a majorizes the four other norms  considered above.  The norm e major-  
izes a. 

We shall require the following consequences of the defining propert ies (a), 
(b), (c), (d) of a norm (see [20] for proofs):  

(I) I /  hA denotes the spectral radius o /A ,  then 

(IA) v(A) >= ,~A 

/or any matrix norm v ([20], p. 3). 

(II) [] # and v are any two matrix norms, then there exists a constant p , , ,  
depending only on these two norms, such that 

(1.2) /~(A) --< p,,, v (A) 

t.or all matrices A (see I20I, p. 4). 

This last  p rope r ty  is useful  because it f requent ly  permits  one to reduce the 
investigation of a general p rope r ty  of norms to  the s tudy  of a special norm.  
For  the special norms introduced above  and a few other  norms,  values of the 
constants  p , ,  are given in the  following article b y  STONE [25]. 

1.2. The v-departure /tom normality. If  A is any  matr ix ,  then a classical 
result due to SCHUR ([17], Theorem t0.4.1) s ta tes  t h a t  there exist a un i t a ry  
mat r ix  U and a t r iangular  ma t r ix  T =  (tii) with t i j = 0  f o r / ' < i  such tha t  

A : U T U * .  

The mat r ix  T is called a Schur triangular/orm o /A .  In  general, T is not  uni- 
quely determined for a given A (see MCRAE [161.). We put  

T : D + M ,  

where D denotes the diagonal  ma t r ix  whose main  diagonal coincides with t ha t  
of T (and thus is made  up of the eigenvalues of A). I t  follows tha t  M =  (mq) 
has non-zero elements  only to the r ight  of the  main diagonal and  thns tha t  

(1.3) M ' = 0 ,  r>=n. 

* The author is indebted to G. E. FORSY'rHE for this reference. 
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If v is a norm, we define the v-departure/rom normality o / A  by 

(1.4) Av (A) = inf v (M), 

where the inf is taken with respect to all M that can appear in a Schur triangular 
form. Since e is unitarily invariant, Ee(A)]2= Ie(T)]2= ~e(D)]~+ Ee(M)~ 2. It  
follows that  

i = l  

is independent of the special choice of the Schur triangular form. Since A is 
normal if and only if e (M)=  0 (see E173, Theorem 10.3.8), it follows that zL(A) 
is zero if and only if A is normal. By property (II) above this statement is true 
for Z1~(A) where v is any norm, 

1.3. A bound/or A~(A). In this section we shall derive a bound for A~(A) 
which can be computed in an elementary way from the elements of A and 
which reduces to zero for A normal. By fact (II) above this makes it possible 
to construct bounds for A,(A) for any norm v. 

Theorem 1. For an arbitrary matrix A, 
~ - -  'H, / . . . . .  

(,1.6) < 1/ (A*A - S A * )  

Equality holds in (t .6) i /and  only i / A  is unitarily similar to a matrix o~ the [orm 

t 2 ~1 0 t '  
2 

i 
o 

where ~ is a complex constant, and where [o~kl2=ak(n--k), k = l ,  2 . . . . .  n - - l ,  
/or some a >= O. 

Proo/. Let T = D + M  be a Schur triangular form of A, A = U T U * ,  and 
d e f i n e / ' =  (Yii) by 

F = T * T - -  TT*.  
We first show that 

(t.7) [e (M)] 2 _--< ~'2~ + 27aa + " '  + (n -- t) y~,~. 

For the proof we observe that,  setting M =  (mii), 

2 (1.8) r,,=Zl,n ,l --Ztm, l =, i = l , 2  . . . . .  n 
k < ~  k > i  

(empty sums are to be replaced by zero). We now proceed by induction with 
respect to n. Obviously the inequality (t.7) is true for matrices of order I. We 
assume its validity for matrices of order n and use primes to refer to quantities 
corresponding to a matrix of order n +  I which has M as an upper lefthand sub- 
matrix of order n. In view of 

' I Is, i = 1 2 ,  , n ,  ~ i i  = ~ i i  - -  # ~ i , n ~ - i  ' " " "  
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we have 
[e(M')] 2=  [e (M)j2+ l~ l , .~ l12+ l~2 ,~112~  . . . .  + l ~ . , ~ l l  2 

722 + 2~'aa + " "  + (n - -  l )  7 ~  + ~]tn+l, n + l  

+ (~ - ~) r'~. + (~ - ~)]*.~,.§ + r'~§ ~§ 
t t 

by (t.8), proving (1.7) with n increased by one. We remark that equality holds 
in (1.7) if and only if mi i=O for / ' > i + l ,  i.e., if the triangular matrix T is 
"almost diagonal". 

Subtracting from (1.7) n - I  times the identity 
2 

711 + 722 + "'" + 7. , ,  = 0 

l - - n  3 - - n  (which is a consequence of (t.8)), we find ~ e ( i ) ~ 2 ~ = - ~ - - 7 1 ~ +  ~ 2 ~ 2 2 - ~  . . . .  

+ ~ 2 - - ~ ' "  and, using the Cauchy inequality, 

An elementary computation shows that  

( ~ - ~ / ~ =  , ~ - ~  

The result (t.6) now follows by virtue of the fact that A * A - - A A * =  U F U *  
and hence 

(IA0) 7 ~ + 7 ~ 2 + . . . + ? ~ < = [ e ( F ) ~ 2 = ~ e ( A * A  - - A A * ) J  2. 

Equality holds in (1.6) if and only if equality holds simultaneously in (1.7), 
(t.9) and (l.10). Equality in (IA0) requires F =  T* T - -  T T *  to be diagonal. 
For an almost diagonal matrix T (as required by  equality in (t .7)), F is diagonal 
if and only if all diagonal elements of T are identical. The diagonal elements 
of F then satisfy 

(t.11) ] mk, k+1]2---~ ~'11 + y22 -[- �9 �9 �9 ~-  ~'kk, k = a , 2  . . . . .  n - - t .  

Equality in (1.9) finally requires that YI, t~ = a (t + n -- 2k), k---- t,  2 . . . . .  n, where 
a is a real constant. In view of ( l . t i )  this is the case if and only if for some 
real a=> 0 

1 ~ , ~ §  k), k = l , 2 , . . . , n - l ,  

i.e., if T has the form indicated in the theorem. 

2. Iterated matrices 

2.1. Introduction. I t  is a simple consequence of the Schur triangular form 
that  for a normal matrix A 

(2.t) a (A') = ,~.  
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(2.2) 

i/ hA = O, then 

Bounds for norms of powers of certain non-normal matrices (arising in finite 
difference schemes for solving hyperbolic and parabolic differential equations) 
have been given by LAX and RICHTMYER [15~ and KATO [13J. For arbi trary 
matrices the problem has been treated by GAUTSCHI ET, 81 and OSTROWSKI I23J. 
Denoting by  ~ the norm defined at the beginning of w 1.1, OSTROWSKI shows 
that  for every e > 0  

~) (A') ~< C(e) (~A + e)', r = l, 2 . . . . .  

Here the function C(e) is determined as follows: If J is a Jordan canonical form 
of 2e 1A, and if 2e-lA = SJ  S -1, then C(e)=~ (S) ~ (S 1), the ~-condition number 
of S [2~. GAUTSCHI'S bound similarly requires some knowledge of the Jordan 
canonical form. 

2.2. A new bound. In contrast to the above, Theorem 2 below gives an estimate 
for if (A') which depends only on hA and A, (A), and reduces to (2.1) for A normal. 

T h e o r e m  2. I/ m= A, (A), and i/ ~A > O, then 

i f (Mr)  ~ I~rA -~- ( l ) '~rA-- l m @ " " " ~- \ - -  ! (n  ir 1 ) hrt- n + l m n  - 1 ;  

{ i f (Ar)~m r, r = O , t , . . . , n - -  l ,  

(2.3) if (A r) = 0, r => n. 

Remark. The expression on the right of (2.2) can be estimated further in 
various ways; for r large it is asymptotically equal to 

Z~ -~+1 (m r) ~-1 
( n - l ) !  

Pro@ Again let A =  UTU*, where T = D + M  is a Schur triangular form. 
We then have 

A" = U(D + M)" U*. 

Since D and M do not, in general, commute, (D+M)" cannot be expanded 
according to the binomial theorem. However, since D is diagonal, it is still 
true that,  if we expand without commuting, any term which contains more 

than n - -  t M ' s  is zero. There are exactly (;) terms involving q M's  and r - -q  D's  

for q = 0 ,  1, 2, . . . ,  n - - t .  Taking the if-norm and using if(D)----hA, (2.2) and (2.3) 
follow with m replaced by if (M). Since the result is true for every M, and since 
the expressions on the right of (2.2) and (2.3) depend continuously on m, the 
conclusion of the theorem follows immediately. 

3. A p p r o x i m a t e  so lut ions  of l inear sy s t ems  

3.1. Introduction. Let A be a non-singular matrix, let b be a given vector, 
and let ~ be an alleged solution of A x = b .  If we define the residual of ~ by 
r = A ~ - - b ,  and if 9 is a vector norm, the error ~- -A - l b= A - l r  of ~ can be 
estimated as follows: 

~o (~ --  A-1 b)  = ~ (A -1  r) g ,, (A-~) ~ (r). 
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Here v denotes a ma t r ix  norm compat ible  with ~0. Similarly, if 3~ is an alleged 

inverse of A, and  if v is any  mat r ix  norm, we can calculate a bound  for v (J~--  A 1) 

in te rms  of the norm of the residual ma t r ix  R =  A ~ 7 - - I  as follows: 

v (-Y --  A-l) = v (A- '  R) =< v (A-l) v (R). 

Thus, for both  problems we require a bound for v(A-1). Such a bound  is, in 
principle, easily constructed if we assume tha t  A is similar  to a diagonal ma t r ix  D : 

A = S D S  1. 

Assuming tha t  the norm v is axis-oriented, we readily find from A 1 = SD- 1 S-1 tha t  

(3.1) ,,(A-~) = c~(S) ,~A , ,  

where 

(3.2) c~ (s )  = ~ (s )  ~ (s  ~,) 

denotes the v-condition number  of S introduced by  BAUER [2]. If  A is normal,  
then S m a y  be t aken  uni tary ,  and the spectral  condition n u m b e r  of S is t .  Thus 

(A-l) ~ ~A-', 
and in view of (IA),  

(3.3) a (A -1) = /~A_ x 

for normal  matr ices  A. For non-normal  matr ices ,  the bound  (3.1), if at  all 
applicable,  requires the complete diagonalization of the  mat r ix  A, a ra the r  high 
price for the desired result.  

3.2. A new bound /or the norm o/ the inverse. F o r  a real variable x_>=0, let 
the function / be defined by  

(3.4) / (x)  = x +  x2 + . . .  + x". 

We note  tha t  bo th  / and  x- l /  are monotonical ly  increasing for  x > 0 ,  and  tha t  

(3.5) lira x -1 / (x) = 1. 
x--*0+ 

We can now s ta te  the following Theorem:  

T h e o r e m  3. ] / A  is non-singular and non-normal, and i/ x=2A-1Aa (A), then 

(3.6) a(A_I) < /(x) ).A 1. 
x 

Remark. For  2A-, fixed, as A,(A)--->O the  bound (3.6) approaches  (3.3), in 
view of (3.5). Bounds  for v(A -1) where v is a rb i t r a ry  can be found f rom (1.2). 

Pro@ Let D + M  be a Schur t r iangular  form of A. Then, for some uni tary  
mat r ix  U, 

A 1 = U(D + M) -1 U* 

= U(I A c- D -1 M) -1 D-1 U*. 
In view of (1.3), 

(I + D -1M)-I = I -- D -1 M + . . .  + (-- l )"-1 (D_I M)n-1. 

The result  (3.6) now follows by  taking no rms  in v iew of a (D 1)= 2a-, and  the 
fact t ha t  a is uni tar i ly invariant .  
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4. S p e c t r a l  v a r i a t i o n  a n d  e i g e n v a l u e  v a r i a t i o n  

4.1. Classical results. Let the mat r ix  A =-(aij ) have  eigenvalues ),i, and let 
B =  (b~j) have eigenvalues/*i  ( i =  1, 2 . . . . .  n). The quan t i ty  

(4.1) s = s A ( B ) =  max~  min I /~ i -  ;t/l} 
l ~ i < ~ n ' l ~ j < n ' -  

is called the spectral variation of B with respect to A. No one-to-one correspond- 
ence between the eigenvalues of A and those of B is implied. I t  can be seen from 
simple examples  tha t  s A (B)4-s~  (A) in general. 

We shall also consider the quant i ty  

(4.2) v = v (A, B) = min ~ m a x  ]'~i -- P,~ (or) 
7r " l < i < n  " ' "  

called the eigenvalue variation of A and B. Here the min imum is t aken  with 
respect to all permuta t ions  ~r of the set (1, 2 . . . . .  n). Clearly, v(A, B)=v(B ,  A), 
and 

(4.'3) s~(B) < v(A, B) 
for all matr ices  A and B. 

The best available bounds for s and v, due to OSTROWSKI E21] (see also [23], 
p. t92), are as follows. If  11r m a x  ([ai:l, [bq]), and if the norm ~ is defined 

l ~ L j ~ n  
as in section 1. I ,  then 

(4.4) sA(B) <= (n + 2 ) M [  e(A--B)M l 1/n 

and 

(4.5) v(A B ) < 2 n ( n + 2 ) M [  =(A-B)  I */" ' = a " 

I t  is easily seen by considering an example due to G. E. FORSYTHE (see [277, 
p. 405) tha t  the exponent  l/n in these bounds cannot be improved  in general. 
In special cases, however,  improvements  are possible. If  A is similar to a diagonal 
mat r ix  D, 

A = S D S  -1, 

and if v is any  axis-oriented lub norm, then BAUER and FIRE ~4~ showed tha t  

(4.6) sA (B) < c~ (S) ,, (A - -  B). 

In part icular ,  if A is normal ,  we find for any  norm v majorizing the spectral  norm 

(4,7) s a (B) ~ v (A --  B).  

For  v=e  and  both A and B normal  it follows from a result  of HOFFMANN" 
and WIELANDT [11] tha t  (4.7) is even valid for the eigenvalue var ia t ion:  

(4.8) v (A, B) ~ e (A - -  B).  

For A and B real symmetr ic  or hermit ian this result has been used frequently [1~. 

4.2. A new result on s A(B). For a rb i t ra ry  (diagonalizable) A the result (4.6) 
suffers from the fact t ha t  no sufficiently explicit es t imate  for the condition 
number  c~(S) is given. The  following theorem contains (in view of Theorem t) 
an explicit es t imate  as general  as (4.4) (and thus more general than (4.6)), which 
reduces to (4.7) for d normal ,  
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I t  is convenient  to define, for  a real variable y>~O, the function g = g ( y )  
as the  (unique) non-negat ive  solution of the equat ion 

g + g 2 + . . . + g n = y .  

The function g is the inverse of the function / defined in section 3.2. For  la ter  
use we note the relat ions 

l im (4.9) ,_~o§ = i ,  

(4.10) n - l y < g ( y ) < = y ,  O~y<=n,  

(4.11) g(n) = 1, 

(4.12) (n-~ y)l/n ~ g (y) <__ yl/~, y __> n, 

(4.t3) lira y-~/~ g(y) = 1. 
y--+ Oo 

T h e o r e m  4. Let A be a non-normal matrix, and let B -  A :~ O. I /  v is any 
norm maiorizing the spectral norm, and i/  

A, (A) 
Y--  v(B--A) ' 

then 

(4. t4) SA(B) < - - ~  v ( B - -  A).  = g ( y )  

Remarks. The relat ions (4.t0), (4.1]), (4.t2) m a y  serve to render the  bound 
(4.14) more explicit. Relat ion (4.9) shows tha t  for A~(A)--~O, and v ( B - - A )  
bounded  a w a y  from zero the es t imate  (4.]4) approaches  (4.7). (However,  we 
canno t  ob ta in  (4.8) in this manner . )  Relat ion (4.13) shows t h a t  for a f ixed non- 
n o r m a l  A and  for B--~A the bound (4.14) is of the same order  as (4.4)" the 
numerical  coefficient m a y  be larger  or smaller  than  the coefficient in (4.4), de- 
pending on the depar ture  from normal i ty  of A. 

Proo/o/ Theorem 4. Le t  A = U T U*, where T = D +  M is a Schur t r iangular  
fo rm of A. Sett ing E :  B - - A ,  

U * B U = B  1, U * E U = F  
we have 

B 1 = D + M + F .  

Let  l* be an eigenvalue of B (or B1) which is not an eigenvalue of A. The  mat r ix  
D +  M - - I , I  is then non-singular,  and we have  

0 = det (B 1 --/~ I)  = det (D + M - -  l* I + F)  

= det (O + M - -  ,u I) det EI + (D + M -- /~ I) ~ E l . 

Since d e t ( D + M - - # I ) : ~ O ,  it follows t h a t  - -1  is an eigenvalue of the  ma t r ix  
( D + M - - I , I )  1F. B y  the fundamenta l  inequal i ty  (I . t )  it follows t h a t  

r  M - - I , I ) - ~ F )  >= 1 

or, b y  (d), since a (F) = a (E), 

(4A5) ~((D-I- M - - . 1 )  1 ) ~  0"(Ei " 
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We shall now estimate a ( ( D + M - - , u l )  '~) from above. Since l ) - - f f I  is 
non-singular, 

(4A6) (D + M - -  ,u I )  -~ = LI ~- (D --  # I )  ' M-J-' (I) - -  it I )  -1. 

Since (D - - t t l )  ~ is diagonal, the matrix (D - - # I )  ~M shares with M the property 
that the elements on and below the main diagonal are zero, and hence that 

~ ( D - - / , I ) q M ] ' = O  for r>=n .  
Hence 

[[ .q- (D - - / '  I) : M] 1 = I - -  ( D  - -  [l I) ' M + . - .  
(4A7) 

@- ( - -  t )  n - 1  [ (D - -  [, I )  1 M ? n - 1 .  

We set for brevity 

a ( ( D - - / t l )  1 )=15 , a ( M ) = m ( @ O ) ,  a ( E ) = e  

and have from (4.t6) and (4A7) that 

((D + M -- ff I)-1) < p + p2 m + - . .  + ;/," m"- :  = m-' [ (m p) 

where / is defined by (3.4). 
Combining the last result with (4.t 5) we f ind/(rap)  ~ m e  -I and thus, by the 

definition of g, m p > g ( m e - : )  or 

(4.18) p = g(m e::) " 

Since a is an axis-oriented lub norm, 

p = a ( ( D - - ,  I) ~) = m a x  I R j - # 1 %  
l<]<_n 

and 

Thus, from (4.18), 

I = m i n t 2 , j _ / , l .  

(4.19) min t4 - - t t  [ < m 
1 ~ i ~ .  ' = 7 ( ; ~ e - 6  ' 

This relation has been proved for an arbitrary eigenvalue p=,u~ of B which is 
not also an eigenvalue of A. It  also holds trivially for i~i's which are eigenvalues 
of A. Thus we get 

s A (B) = max(  min t~t~-- lq I} 
l<__i<=n-l<]<=.n . 

,~(M) 
...... m .__  : Yo a ( B - -  A ) ,  3I~ a ( B - - A )  

--< g ( m e - ' )  g(y0) 

This is true for any choice of the Schur triangular form D + M .  Since the 
function g is continuous, the statement of Theorem 4 follows for the special 
nor lYl  ~' = (7. 

Let now v be a norm majorizing a. Since the function g is non-negative 
and monotonically increasing, we also have 

(M) ~ (M) < _ _  - - v ( B - -  A) Y' - -  (4.20) SA(B)= ( a ( M )  '/ g ( Y O '  3'1 v ( B - - A )  " 

Numer. Math. Bd. 4 3 
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Let 0 <  y~< y.,, and define xi=g(y~) ,  i =  t, 2. From the monotonicity of x 1](x) 
it follows that 

Yl = / (X!) < [ (X2) __ Y2 
g (Yl) X1 X2 g (Y2) " 

Thus also the function Y Eg(Y)I 1 is monotonicallv increasing, and we get from 
(4.20), replacing a ( M )  by v(M), 

s ~ ( B ) <  Y~ ~ ( R - - A )  Y~--  ~(M) 
= g(y2) ' . ( B - - A )  " 

The complete statement of Theorem 4 now follows as above by the continuity of g. 
4.3. Numerical  example. We illustrate the numerical performance of the several 

bounds discussed above by estimating the spectral variation of the two matrices 

A ~ = ( ;  t : - ' ) ,  A s = ( ;  : _ t 0 _ a  ) 

under the condition that 

(4.21) e ( B  i -- A~) < l0 -2, i = I, 2. 

We set 
s i = sup sA, (B3, i = t, 2, 

where the supremum is taken with respect to all matrices B i satisfying (4.21). 
The examples 

show that 

B 1 - - A I =  (~ -~t0-2 0 ) 
_ 2 - � 8 9  2, 

s~ >= .00707, s 2 > .10000. 

Using M = I . 0 2 ,  p~,~-=2, the bound (4.4) yields si<=.57t32 , i = t ,  2 in both 
cases. 

The bound (4.6) is not applicable to A1, since this matrix has a non-linear 
elementary divisor. The relation A2= S D  S -1 is satisfied for 

where ~ and ~ are arbitrary non-zero constants. Choosing ~ and ~ such that 
the condition c~ (S) is mimimized, (4.6) yields 

s 2 ~ 20.00001. 

Turning to (4.14), we find A~ (A1) = 10 -4, y---- t 0 -2, g (y) = .009902, and hence 

s~ =< .010099. 

For the diagonalizable matrix A 2, A , ( A 2 ) = t ,  y = t 0  ~, g(y )=9 .5125 ,  and hence 

s2 <= .t05125 �9 
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I t  is seen that,  in the example discussed above, the bounds given by (4.t4) 
compare favorably with the other bounds. Incidentally, the example also shows 
that the fact that  a matrix has a non-linear elementary divisor does not in itself 
mean that  it will have a large spectral variation. 

4.4. Relate1 results on v (A, B). For given matrices A, B satisfying the hypo- 
theses of Theorem 4, let b denote the quantity on the right of (4.14). The 
statement of the theorem then may be interpreted geometrically by saying that  
the spectrum of B is contained in the union La of the discs 

D i = { , ~ 1 1 2  - A,l < ~}, i - ~ , 2  . . . . .  n. 

Since d--~0 monotonically as B -+A, we may conclude by a well-known continuity 
argument (see e.g. [21]) that  each component of L~ contains as many eigenvalues 
of B as of A. From this fact we can obtain, again using a well-known argument 
(see especially the translator 's  note in Ee2]), the following result: 

Theorem 5. Let A, B, and v satis/y the hypotheses o~ Theorem 4, and let y be 
defined as be/ore. Then 

Y v ( B - -  A) (4.22j v(A, B) < ( 2 n  - -  1) g ( y )  . 

I t  should be noted that  this result does not imply the Hoffmann-Wielandt for- 
mula (4.8). 

4.5. A result on approximate eigenvalues. The following question is frequently 
considered in matrix computation: Let ~0 be a vector norm, let x be a vector 
such that  q) (x) = l, and let 2 be a number such that  ~ (A x --  ~ x) is small. How 
close is 2 to an eigenvalue of A ? (This question was the starting point of WIE- 
LANDT'S study [28] of inclusion domains.) In their paper V3], HOUSEHOLDER 
and BAUER prove a result which as an important special case contains the follow- 
ing: If A is similar to a diagonal matrix D, A = S D S  -1, and if v, denotes the 
matrix norm induced by ~0, then 

(4.23) 1 2 i -  21 ~ c~o(S) 9 (A  x -- 2 x) 

for at least one eigenvalue 2i. Here c,~ denotes the %-condition number as 
defined in section 3.t. Again the above result suffers from the disadvantages 
that  it holds only for diagonalizable matrices, and that  no explicit estimate 
for the condition number is given. 

In this direction MORRISON [18], by using a method not unlike that  used 
in the proof of Theorem 4, obtained the following result. 

Theorem 6 (D. D. MORRISON). Let A be a non-normal matrix, let ~o be a vector 
norm, and let v be the matrix norm induced by q). I /  x is a vector and 2 is a 
complex number such that q) (x) = 1, q) (A x -- 2 x) ~ O, and i/ 

J~(A) 
Y - -  ~o(A x--2x)  ' 

then there exists an eigenvalue 2i o/ A such that 

(4.24} [ ~ i - - 2 1 <  Y qo(A x - -  ~x ) .  = ~(~,) 

3* 
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5. Field of values 

5.1. Classical results. The field of values F(A) of a matrix A was defined 
in the introduction. A classical result due to TOEPLITZ E26] states that for A 
normal, F(A) :H(A) ,  where H(A) denotes the convex hull of the eigenvalues 
of A. It  is known that the field of values of a non-normal matrix is still convex 
(HAuSDORFF [10]), although it may extend beyond H(A) ([9J, [26~). Crude 
bounds for the field of values of non-normal matrices have been given by 
FARNELL I5] and PARKER [24]. These bounds do not reduce to the convex hull 
of the eigenvalues if the matrix approaches a normal matrix. 

The precise equation of the boundary of the field of values of a non-normal 
matrix has been given by MURNAGHAN ~19J and, in more explicit form, by 
KIPPENHAHN [14]. KIPPENHAHN ~14J also gives bounds for diameter and area of 
the field of values. 

5.2. The distance o] the boundary o/ the field o/ values /rom H(A). In this 
section we shall prove two results showing that for certain norms there is a 
simple connection between the maximum distance of the boundary of F(A) from 
H(A) and the departure from normality. 

Theorem 7. I / ~  is a point o/the/ield o] values o] a matrix A, then there exists 
a point ~ in the convex hull o/the eigenvalues o/A such that 

(5.1) ]~ --~l  = < V ~-n~1-2 A,(A). 

The constant [(1--n-1)/2~ ~ cannot be replaced by any smaller constant*. 
Proo/. Let A =  UTU*, where T = D + M  is a Schur triangular form of A. 

Let ~ = x* A x, where x* x =  t. Setting U* x =  y, we have y* y =  1 and 

(5.2) ~ = ~ +  y ' M y ,  

when ~ = y * D y  is a point in H(A). Hence for this number ~, 

I ~ - ~ [  = ] y * M y l  �9 

Setting M = (mi:), y =  (yi), we find by the Cauchy inequality 

[y* M y]~ i~<: - = mi j Yi Yj 

_< [A~ (A)]~ Y. [y, yj[,. 
i<j 

Using Cauchy again, we find for the last factor the estimate 

Y, ly,?lyjl ~= ly, I ) - 
~<j 

_ ,  (,_ :). 
�9 The bound (5.1) has been found independently by P. J. EBERLEIN (oral com- 

munication), 
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We thus find 

proving (5A). 

In order to show that  the equality is attained, consider any matrix of the 
form A = 2 I + M ,  where 2 is a scalar and m i j - - - - c  , i<]', where c > 0 .  Here 
A~(a)=e(M)--rX-n(n--t)~ " c - L ~ .  . The convex hull H(A) reduces to the point 2. 
Choosing yi=n-~ ( i=1 ,  . . . ,n) we find that  the point y*Ay of F(A) has the 
distance 

- y * M y =  ~ n - -  c (n 

from H(A), as desired. 

A similar result also holds for the norm ~. 

Theorem 8. With the notation o I Theorem 7 the/ollowing inequality also holds." 

(5.3) I t  - ~1 < I & ( A )  �9 

The constant ~ cannot be replaced by any smaller constant. 
Pro@ We again represent 8 in the form (5.2), but  now estimate y ' M y  as 

follows: 

ly* M yl -- ,Z m,:~, Yj 

~, (MI .  max  ].9~ y, I- 

Since ~ ]y i l2=l ,  may lYi Y~I becomes largest, if the vector y has exactly two 
i = 1  ~ < 1  

non-zero components. By the inequality between the arithmetic and the geo- 
metric mean, the value of the maximum then is 1. Thus we get 

(5.4) ]y* M y] <= �89 

The inequality (5.3) now follows in view of the fact that  (5.4) is true for all M 
that can appear in a Schur triangular form at A. 

In order to show tha t  equality is attained in (5.3) for non-zero As(A), let 
A be any matrix of the special form A =,~I+M, where ;t is a scalar, m i 2 = m > 0 ,  
and all other mii=O. As above, H(A) reduces to the point ;t. The unit vector 
y defined By Yl= Y== 2-1, Yi= O, i =  3 . . . . .  n yields a point y* A y of F(A) for 
which the distance from H(A) is 

(5.5) y ' M y  = ~m = ~o~(M). 

! t Let now M =(mii)  the off-diagonal part of any other Schur triangular form 
of A. In view of 

(M')  ~ e (M')  = e (M)  = m ,  

we have A~(A)=m, and (5.5) can be replaced by 

y*My=�89 

showing that equality can hold in (5.3). 
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5.3. An improved bound /or the field o/ values. An elementary computation 
(see also [14~, ~19~) shows that for a 2 •  matrix with Schur triangular form 

the field of values is given by the interior and boundary of the ellipse with foci 
,tl and ,12 and minor semiaxis ~[m12[. Only two points of the field of values 
(namely, the end points of the minor axis) attain the maximum distance ~1 m~21 
from H(A) given by the Theorems 7 and 8. All other points have a smaller 
distance. 

The above fact is generalized to matrices of arbitrary order by Theorem 9. 
Here we denote, for complex ,1 and ~ and real c>=0, by E(,1,#; c) the compact 
point set in the complex plane bounded by the ellipse with foci ,1, # and minor 
semiaxis c. 

Theorem 9. Let ,1i, i = 4 ,  2 . . . . .  n be n complex numbers, and let a>=O. Then 
the field o/values o /any  matrix A with eigenvalues ,1i and A~ (A)= a is contained 
in the convex hull Ha o/the n ( n - -  I)/2 sets 

E(,1 i, ,1:, �89 , 4 ~ i < / ~ n. 

Proo/. For a matrix A satisfying the hypothesis, let ~, y,, D, and M =  (mi:) 
be defined as in the proof of Theorem 7. We set 

m : a ( M )  : E [ m i : [ .  
i<j 

If m = 0 ,  the theorem reduces to the theorem by Toeplitz mentioned in w 5.1. 
We may therefore suppose m > 0 .  Setting ~gq:m~i/]m~j [ for m~:40,  ~gq:0  for 
mii----O, we obtain the representation 

$$ 

/~=1 i< j  
n 

i< j  

='- 2 ), 2 1  ,:1 ,1 ly l 2 m . . 
*<1 k=l 

showing that ~ belongs to the convex hull of the points 

k = l  

We shall show next  that the points 2/i i 

E(,1 k, ,1~; �89 

This is obvious if ]yilZ§ If 
Bii belongs to E(,1i, ,1:; �89 and thus 
the variables 

yk 
z k = V ~ : ; l ~ ,  

yk 

Zk : V l -  ]Yil ~ - - l Y j ]  ~ '  

belong to Arm, the convex hull of the sets 

4 < = k < l = n .  

ly, l § then y~=O, k=~i, /, and 
to Hm. If 0<ly,12+Iy,12<4, we define 

k = i ,  i, 

k4=i , i  
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and can write 
n 

= (ly, + + -Iy t -fy l ) 2 
k = l  

k4=i,j 

The last relation shows that  ~,i belongs to the convex hull of the set E(2i, 2i; ~m) 
and the points  2~ (k=~i,j), which all belong to H m. Thus again ~ii belongs to 
H~. I t  follows that  also 8 belongs to H~. 

The above is t rue for any  matr ix  M that  can appear in a Sehur t r iangular  
form of A. Thus  ~ is in the intersection of aI1 possible sets H~. Since the sets 
H~ are closed, and since they depend cont inuously on m, it follows tha t  8 belongs 
to Hi~m, t ha t  is, to H~. 

A considerat ion similar to tha t  used in proving that  equal i ty  can hold in 
1 m (5.3) shows tha t  for every point  8 contained in a set E(2~, 2l; ~ ), a mat r ix  A 

with eigendiagonal D and  A~,(A)=m can be constructed such tha t  8CF(A). 
(It  suffices to make mkz=m, m ~ j = 0  for l i - k  I + Ii-z[ > 0  in the off-diagonal 
par t  of the Schur t r iangular  form.) However, an example suggested to the 
author  by  W. G. STRAYG* shows tha t  the union of the fields of values of all 
matrices A with given eigenvalues 2i ( i =  1, 2, . . . ,  n) and given A~,(A)~m does 
not  always fill out the set H,,. 
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