
Numerische Mathematik 2, 312--318 (1960)

Recursive Programming*
t3y

E. W. DIJKSTRA

The Aim

If every subroutine has its own private fixed working spaces, this has two
consequences. In the first place the storage allocations for all the subroutines
together will, in general, occupy much more memory space than they ever need
simultaneously, and the available memory space is therefore used rather un-
economically. Furthermore--and this is a mole serious objection--it is then
impossible to call in a subroutine while one or more previous activations of the
same subroutine have not yet come to an end, without losing the possibility of
finishing them off properly later on.

We intend to describe the principles of a program structure for which these
two objections no longer hold. In the first place we sought a means of removing
the second restriction, for this essentially restricts the admissable structure of
the program; hence the name "Recursive Programming". More efficient use of
the memory as regards the internal working spaces of subroutines is a secondary
consequence not without significance. The solution can be applied under perfectly
general conditions, e.g. in the structure of an object program to be delivered
by an ALGOL 60 compiler. The fact that the proposed methods tend to be
rather time consuming on an average present day computer, may give a hint
in which direction future design might go.

The Stack

The basic concept of the method is the so-called stack. One uses a stack
for storing a sequence of information units that increases and decreases at one
end only, i.e. when a unit of information that is no longer of interest is removed
from the stack, then this is always the most recently added unit still present
in the stack. For example, one can construct a stack as follows: a number of
successive storage locations are set aside for the stack and also an administrative
quantity, the "stack pointer", that always points to the first free place in the
stack (i.e. the value of the stack pointer may be defined as the address of the
first free location in the stack; if the stack is empty to start off with, the stack
pointer is equal to the start address of the poltion of the memory reserved for
the stack). When an information unit is added to the stack the stack pointer
indicates where this unit must be stored and when this has been done, the value
of the stack pointer is accordingly increased. To remove one or more information
units from the stack the value of the stack" pointer is suitably decreased.

* Report MR 33 of the Computation DepartmenL of the Mathematical Centre,
Amsterdam.

Recursive Programming 3 t 3

If we mark off, on a t ime axis, the moments when a un i t is added to or
removed from the stack, by using an opening bracket for the addi t ion of a un i t
and a closing bracket for its removal, then we obtain a correctly nested bracket
structure, in which opening and closing brackets form pairs in the same way
as they do in a normal algebraic expression involving brackets. This is closely
related to the circumstance tha t we can use a stack for storing the in termedia te
results formed in the evaluat ion of an a rb i t ra ry algebraic expression by means
of e lementary algebraic operations. In this case our interest is always restricted
to the most recent element in tile stack. As the in termediate results are used
only once, use of an element implies its removal from the stack.

A simple example may be given in i l lus t ra t ion; the successive stack locations
are indicated by v o, vl, va, . . . etc. The evaluat ion of

A + (B -- C) • (DIE + F)

can he split up in to : v o : = A ; v l : = B ; v 2 : = C ; v l : = v ~ - v 2; v 2 : = D ; v 3 : = E ;
v 2:=v2/va; v 3 : = F ; v 2 : = v a + v 3 ; v ~ : = v 1• v o : = v o + v ~ ; the required result
is formed in v o. The reader will be aware tha t the operations used are of only
two different types. If we denote the value of the stack pointer by k, they are:

t . selecting a new (explicitly mentioned) number , say X, which process is
described b y v k : = X; k : = k + t ; and

2. performing an ar i thmetic operation, say O P, which consists of

k : = k - - t ; Vk_~:=Vk_IOPv ~.

If we refer to type I by the name of the selected variable and to type 2 by the
operator in question, then we can also record the program by means of the
symbol sequence :

A , B , C , - - , D , E , / , F , +, •

In this description the v's and, what is more impor tant , specific values of the
stack pointer no longer appear. Here it is unnecessary to specify the values of
the stack pointer in the text, as the computer can keep track of its value during
execution of the programm: the v's have become completely anonymous again,
jus t as anonymous as they originally were.

The above is well known (see for instance [1]) and so elegant that we could
not refrain from t rying to extend this technique by consistent application of
its principles 1. Let us consider for a moment the operation for the selection of
an argument , e.g. the thi rd "v 2 : = C". This operat ion can be executed wi thout
fur ther claim for memory space, as we assume tha t the numerical value of C

1 Without doubt, in view of the vivid interest in the construction of compilers,
at least some of these extensions have been envisaged by others but the author was
unable to trace any publication that went further than [11. The referee was so kind
to send him a copy of the report ,,Gebrauchsanleitung fiir die ERMETH" of the
Inst i tu t fiir Angewandte Mathematik der ETH, Ziirich, a description by HEINZ
~,VALDBURGER of a specific program organisation in which similar techniques as
developed by Professor H. RUTISHAUSER in his lectures are actually incorporated.
The author of the present paper thinks, however, that there the principle of recursive-
hess has not been carried through to this ultimate consequences which leads to logi-
cally unnecessary restrictions like the impossibility of nesting intermediate returns
and the limitation of the order of the subroutine jump (cf. section F 44 of the report).

23*

314 E. ~V. DIJKSTRA :

can a l ready be found in the memory . If, ins tead of C, a compound te rm had
occured in the expression, e.g. C=(P/ (Q- -R+S• then we would have
used v 2 up to v 5 for the calculat ion of th is subexpression, bu t the ne t t resul t
of this piece of p rogram would st i l l be v 2 : = P/(Q--R+ S • T) or v 2 : = C. In
other words, it is immate r i a l to the " su r round ings" in which the value C is
used, whether the value C can be found r eady -made in the memory , or whe ther
i t is necessary to make t e m p o r a r y use of a number of the next s tack locat ions
for i ts evaluat ion. When a funct ion occurs ins tead of C and this funct ion is to
be eva lua ted by means of a subrout ine , the above provides a s t rong a rgumen t
for a r ranging the subrout ine in such a w a y t ha t i t opera tes in the first free places
of the s tack, in ju s t the same w a y as a compound te rm wr i t t en out in full.

Stacked Reservat ions

In the eva lua t ion of an algebraic express ion as descr ibed above, we s tack
numerical in]ormation: the next place in the s tack only becomes occupied when
we ac tua l ly fill in an in te rmedia te result , i t becomes vacan t as soon as i ts contents
have been used. We now consider the case t ha t this exp res s ion - -wh ich occurs
in wha t we shall refer to as the (relative) ma in p r o g r a m - - c o n t a i n s a funct ion
t ha t is to be eva lua ted b y means of a subrout ine . As far as the main p rogram
is concerned, all var iab les tha t the subrout ine in t roduces for i t s own in te rna l
use are anonymous , and t h e y should be placed in the nex t free places of the
stack. Wi th in the subrout ine , however, we can make d is t inc t ion between three
t y p e s of quant i t ies .

The p a r a m e t e r s . We use the name " p a r a m e t e r s " for all the informat ion t ha t
is p resented to the subrout ine when it is called in b y the ma in program ; funct ion
a rguments , if any, are therefore pa ramete rs . The da t a grouped under the t e rm
" l i nk" are also considered as pa ramete r s ; the l ink comprises all the da t a necessary
for the con t inua t ion of the ma in p rogram when the subrout ine has been completed.
Should one wish to do so one can leave the first free place in the s tack open,
so t h a t the subrout ine can place i ts " funct ion va lue" there. Thereaf ter the nex t
places in the s tack are used for the parameters . (In some respects i t is convenient
if al l pa rame te r s occupy the same number of places in the s tack; if, as in A L G O L
60, a p a r a m e t e r m a y be given in the form of an a rb i t r a r i ly compl ica ted expression,
the l imi ted p a r a m e t e r space in the s t ack can refer to a point in the m e m o r y
where fur ther specif icat ion of the p a r a m e t e r is given. The amoun t of in format ion
for the l ink can also be regarded as being cons tant . Hence the amoun t of s tack
space used for the pa r ame te r s is cons tan t and known for every call.)

The loca l va r i ab les . I n general the subrout ine i tself is a piece of p rogram
in which expl ic i t reference is made to a number of quant i t ies in t roduced b y the
subrout ine. Their values are no longer of in te res t as soon as the subrout ine has
been completed. I n the course of the execut ion of the subrout ine they can t ake
on a number of different values in succession, and their, values can be used more
t han once (this is the reason why they cannot remain anonymous in the sub-
rout ine itself). We allow the amoun t of m e m o r y space occupied b y these local
var iables to be dependen t on one or more pa ramete r s , e.g. one of the i npu t
pa r am e te r s can be the length of a local vector . We res t r ic t ourselves to the

Ilecursive Programming 3 t 5

case tha t the amoun t of s torage space occupied b y the local var iables becomes
known as soon as the inpu t pa ramete r s are given, and tha t i t remains cons tan t
dur ing tha t pa r t i cu la r ac t iva t ion of the subrout ine. (This res t r ic t ion is in ac-
cordance with A L G O L 60; from a logical po in t of view the res t r ic t ion is not
essent ia l bu t it s implifies ma t t e r s considerably.) We therefore know at the
beginning of the subrout ine , how much m e m o r y space the local var iables will
require this t ime, and can see to i t t ha t t hey will be s tored in the s tack immed ia t e ly
af ter the parameters .

The " m o s t a n o n y m o u s " i n t e r m e d i a t e resul t s . Dur ing the execution of the
subrout ine in t e rmed ia te resul ts t ha t are anonymous even in the t ex t of the
subrout ine also p l a y a role: for, in general, expressions will have to be eva lua ted
there too, and the subrout ine will in i ts t u rn call in one or more subrout ines
itself. These " m o s t anonymous" in te rmedia te results are p laced in the s tack
in the same w a y as those of the ma in p rogram, bu t we mus t now begin at the
first free place following the last local var iable .

Consequences
The main p rogram used the s tack exclus ively for in te rmedia te numer ica l

resul ts t ha t were formed and added to the s t ack once, and were la te r used once
and removed. Unt i l then there was no need to store the s t ack in a r a n d o m
access memory , for our in teres t was at all t imes res t r ic ted to the younges t
e lement in the stack. In pr inciple we could have used a smal l magnet ic t ape
t ha t would have to move one place forward in wr i t t ing and one place b a c k w a r d
in reading. The fact t ha t r andom access is not necessary there, is a direct con-
sequence of the fact t ha t these s tack places as such need not be expl ic i t ly men-
t ioned in the descr ipt ion of the computa t ion .

Ins ide the subrout ine we store the most anonymous in t e rmed ia te resul ts in
the " t o p " of the s tack in jus t the same way. E v e r y reference to a local quan t i t y ,
however, implies t ha t one is in te res ted in a place t ha t is s i tua ted deeper wi th in
the s tack, and here one is in teres ted in r andom access to the s tack places, in
o ther words, we mus t be able to give the places deeper in the s tack some k ind
of address. The poin t in the s tack from which the l a t t e r is avai lable for a sub-
routine, is handed over to the subrout ine at the moment i t is called in. W e
assume a stat ic , i.e. cons tant descr ipt ion of the subrout ine to be present in the
m em or y : as a resul t , this descr ip t ion mus t be sensi t ive to the dynamic specifi-
cation, as descr ibed above, of the reference poin t in the stack. The s ta t ic re-
ference (stat ic addressing) of the local var iables can only occur in t e rms of a
f ixed posi t ion wi th respect to the reference point . The value of this reference
poin t is der ived from the value of the s tack po in te r a t the momen t of the call ,
and will therefore genera l ly v a r y from call to call.

The L ink

We mus t now inves t iga te which da t a are to be s tored in the s tack under the
heading " l ink" . Fo r the sake of s impl ic i ty we regard our compute r as consist ing
of two par ts . We refer to the m e m o r y space requi red for the s tor ing of the
p rogram and of the s tack as " t he m e m o r y " , and we will call the res t " t he

3t6 E.W. DIJKSTRA:

arithmetic unit". The following considerations--suitably interpreted--apply to
both a built-in and a programmed arithmetic unit.

We regard the operation "re : = C" of our example as an elementary operation
of the arithmetic unit. As a result of this operation information in the memory
has been modified, but other changes have oecured too. Before the execution
of this operation, the state of the arithmetic unit was such that the order
"v 2 : = C" was the next to be obeyed, after its execution the state is such that
the next order is to be obeyed. Part of the arithmetic unit therefore stores
information specifying its state (it contains something equivalent to an order
counter). If the text of the program does not specify explicitly the values of
the stack pointer, and the arithmetic unit is therefore obliged to keep track of
it, the value of the stack pointer is another aspect of the state of the arithmetic
unit. One can say quite generally that every instruction is carried out correctly,
provided that the arithmetic unit is initially in the appropriate state, and part
of the execution of an order is the modification of the state of the arithmetic
unit in such a way that the next order will, in its turn, be executed correctly.
We now consider the case that the value of C cannot be found ready-made in
the memory, but must be calculated by means of an function subroutine. As
we are looking for an arrangement in which it is immaterial to the surroundings
where C comes from as long as it arrives in the desired stack location, it is
necessary that after completion of "v2:=C", the arithmetic unit is left behind
in exactly the same state as if C had been transported from the memory by
means of an elementary operation. This must hold regardless of the complexity
of the subroutine used to calculate C. As the subroutine is in general a piece
of program that takes full advantage of the flexibility of the arithmetic unit,
its execution obviously implies a series of changes within the arithmetic unit,
and we must therefore be willing to record sufficient data regarding the state
of the arithmetic unit in order to be able to reconstruct it later. These are the
data that must be stored in the stack under the name "link" when a subroutine
is called in. (It may be possible that some of the disturbances will be annihilated
automatically, e.g. the filling of the stack, which is, in principle at any rate,
emptied again. For such "reversible" disturbances the reconstruction requires
no extra measures.)

It is clear that some form of "return address" is part of the link data. What
the link data should furthermore include depends on the number of different
aspects of the state of the arithmetic unit, and whether their changes are in-
trinsically irreversible. Filling the stack is a reversible process, except when
the language permits--as ALGOL 60 does-- that a subroutine under execution
remains unfinished on account of some criterion, and is left once for all via an
exit other than its normal "return". A function subroutine will generally be
called in during the evaluation of an expression, so that some stack places are
filled with anonymous intermediate results that will never be used on account
of the unusual exit from the function routine. In that case one must be able
to reconstruct up to which point the stack contents are still of interest. This
facility requires an additional record in the link.

Furthermore there exists a certain hierarchy in the information specifying
the state of the arithmetic unit. If we regard the state of the arithmetic unit

Recursive Programming 3 | 7

between two orders, there is certain information (order counter) that sees to
the transition to the next order. During the execution of an order, however,
we can distinguish between different "sub-states": the information specifying
these substates is of no significance at the moment of transition from one order
to the next, and there is therefore no need to record this information in the
link, as long as the subroutine mechanism only operates between orders. The
specification of the substates should be recorded in the link, however, as soon
as one allows the subroutine mechanism to operate during the course of an
elementary operation, i.e. when (for the execution of one of its sub-operations)
a subroutine must be called in that may possibly make use of the full flexibility
of the arithmetic unit.

When a subroutine, say subroutine A, is activated, it must operate in the
stack starting at a point that only becomes known at the moment of call. The
parameters (including the link) and the local variables of A have a fixed position-
ing with respect to each other, but their position as a whole is only determined
at the call: the quantity specifying the position of the whole block, is called
a parameter pointer. The program for subroutine A can only be executed correctly
if the current value of the parameter pointer is at the disposal of the arithmetic
unit, in other words, the parameter pointer can he regarded as one of the aspects
of the state of the arithmetic unit, and it must therefore be recorded amongst
the link data. Now consider the case that subroutine A calls in subroutine B.
We call the value of the parameter pointer indicating the parameters and local
variables of A and B respectively, P P A and P P B respectively. If subroutine B
is called in by A, the value P P A is recorded as part of the link formed at this
call. The place in the stack where this link is recorded is deduced from the value
of the stack pointer at that moment and is, by definition, recorded in the para-
meter pointer, which now assumes the value we called P P B. When we return
from B to A the return address is found in the stack under control of P P B ,
as well as the new value P P A of the parameter pointer; finally, at the operation
"return", the new value of the stack pointer, which suddenly decreases, can be
deduced from the old value of the parameter pointer (in our case from P P B)

In this process nothing forbids A from being identical with B. The sub-
routine only has to appear in the memory once, but it may then have more
than one simultaneous "incarnation" from a dynamic point of view: the "inner-
most" activation causes the same piece of text to work in a higher part of the
stack. Thus the subroutine has developed into a defining element that can be
used completely recursively.

Recursive Techniques and ALGOL 60

Every procedure is regarded as a subroutine in the sense described above.
For the sake of simplicity a block that is not a procedure can also be treated
as a subroutine, be it that this subroutine is only called in at one point.

One of the complications of ALGOL 60 is that not only local variables may
be used in each block, but that explicit reference may be made in every block
to variables that are local in a lexicographically enclosing block. When a sub-
routine is called in, the link contains two parameter pointer values for this
purpose. Firstly, the youngest parameter pointer value corresponding to the

3t 8 E. V~r. DIj KSTRA : Recursive Programming

block in which the call occurs (as descr ibed in the previous section), secondly,
the value of the p a r a m e t e r po in te r corresponding to the most recent, not ye t
completed, ac t iva t ion of the first block t h a t lex icographica l ly encloses the
block of the subrout ine cal led in. As a l r eady ment ioned, the first pa r ame te r
po in te r value p lays a v i t a l role in the re tu rn at the end of the subrout ine , the
second is indispensable in localizing the g lobal var iables in the stack. As the
second p a r a m e t e r pointer , b y defini t ion, po in ts to a l ink in the stack, which
in i ts t u rn conta ins a second p a r a m e t e r po in te r va lue corresponding to the
next enclosing block, the a r i thmet ic uni t can t race th is " cha in" and, in doing
so, will f ind all p a r a m e t e r po in te r values t ha t m a y be necessary for localizing
any g lobal var iable in which i t m a y be interes ted.

One can assign a so-called block number to each block, indica t ing the number
of blocks which enclose i t lexicographical ly : the main p rogram therefore has a
b lock number = 0 . If the p rogram refers to a global var iable it is obviously
necessary to specify the block in which the global var iable was declared; the
block number serves th is purpose and, under control of this b lock number ,
the a r i thmet ic uni t can find the p a r a m e t e r po in te r value i t now needs. Fur ther ,
the reference to a global var iable will specify which var iable of th is block is
requ i red : i ts pos i t ion with respect to the p a r a m e t e r poin ter value jus t found
achieves this. The in t roduc t ion of the block numbers also makes i t possible
tha t the a r i thmet ic unit has immedia te access to all the pa r ame te r po in te r values
i t m a y need. They can be s tored in order of increasing block number in a so-
called " d i s p l a y " (e.g. a series of index registers, numbered 0, t , 2, 3 etc., as
m a n y as the m a x i m u m value of the block number) . By t rac ing the second
chain of p a r a m e t e r poin ters one can, when necessary (amongst others a t the
re turn, in the call of a formal procedure, and at the beginning of the evalua t ion
of a non- t r iv ia l formal parameter) , br ing the d i sp lay up to date . This needs
- - a n d can in g e n e r a l - - o n l y be done for block numbers not exceeding the
number of the block we are about to enter. I t will not surprise the reader tha t
the b lock number is to be regarded as specifying the s ta te of the a r i thmet ic
uni t ; in consequence i t has to be s tored amongs t the l ink d a t a in the s tack.

Acknowledgements. The author is especially indebted to Professor A. VAN ~vVlJN-
GAAROEN and J. A. ZONNEVELD, co-members of the team tha t is engaged in the
construction of a compiler for ALGOL 60 at the moment of writing. During the
course of this work many aspects, which he had tenta t ively wri t ten down at an
earlier stage, became clearer, and their consequences became apparent under the
pressure of the circumstances.

Furthermore, the author had the great privilege of having some inspiring con-
versations on this subject with Professor H. D. HUSKEY, when he was the guest of
the Mathematical Centre, Amsterdam, in the summer of 1959.

R e f e r e n c e s
I1] BAUER, F. L., and K. SAMELSON" Sequentielle Formelfibersetzung. Elektronische

Rechenanlagen 1, H. 4, 176--182 (1959).

Mathematical Centre
Amsterdam-O/Niederlande

2e Boerhaavestraat 49

(Received Mai 11, 1960)

