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E. W. DIJKSTRA 

The Aim 

If every subroutine has its own private fixed working spaces, this has two 
consequences. In the first place the storage allocations for all the subroutines 
together will, in general, occupy much more memory space than they ever need 
simultaneously, and the available memory space is therefore used rather un- 
economically. Furthermore--and this is a mole serious objection--it is then 
impossible to call in a subroutine while one or more previous activations of the 
same subroutine have not yet come to an end, without losing the possibility of 
finishing them off properly later on. 

We intend to describe the principles of a program structure for which these 
two objections no longer hold. In the first place we sought a means of removing 
the second restriction, for this essentially restricts the admissable structure of 
the program; hence the name "Recursive Programming". More efficient use of 
the memory as regards the internal working spaces of subroutines is a secondary 
consequence not without significance. The solution can be applied under perfectly 
general conditions, e.g. in the structure of an object program to be delivered 
by an ALGOL 60 compiler. The fact that  the proposed methods tend to be 
rather time consuming on an average present day computer, may give a hint 
in which direction future design might go. 

The Stack 

The basic concept of the method is the so-called stack. One uses a stack 
for storing a sequence of information units that  increases and decreases at one 
end only, i.e. when a unit of information that is no longer of interest is removed 
from the stack, then this is always the most recently added unit still present 
in the stack. For example, one can construct a stack as follows: a number of 
successive storage locations are set aside for the stack and also an administrative 
quantity, the "stack pointer", that always points to the first free place in the 
stack (i.e. the value of the stack pointer may be defined as the address of the 
first free location in the stack; if the stack is empty to start off with, the stack 
pointer is equal to the start address of the poltion of the memory reserved for 
the stack). When an information unit is added to the stack the stack pointer 
indicates where this unit must be stored and when this has been done, the value 
of the stack pointer is accordingly increased. To remove one or more information 
units from the stack the value of the stack" pointer is suitably decreased. 
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If we mark  off, on a t ime axis, the moments  when a un i t  is added to or 
removed from the stack, by  using an opening bracket for the addi t ion of a un i t  
and  a closing bracket  for its removal,  then we obtain a correctly nested bracket  
structure,  in  which opening and  closing brackets form pairs in the same way 
as they do in a normal  algebraic expression involving brackets. This is closely 
related to the circumstance tha t  we can use a stack for storing the in termedia te  
results formed in the evaluat ion of an a rb i t ra ry  algebraic expression by  means 
of e lementary algebraic operations. In  this case our interest  is always restricted 
to the most  recent element  in tile stack. As the in termediate  results are used 
only once, use of an element implies its removal  from the stack. 

A simple example may  be given in i l lus t ra t ion;  the successive stack locations 
are indicated by  v o, vl, va, . . .  etc. The evaluat ion of 

A + (B --  C) • (DIE + F) 

can he split up in to :  v o : = A ;  v l : = B ;  v 2 : = C ;  v l : = v ~ - v  2; v 2 : = D ;  v 3 : = E ;  
v 2:=v2/va; v 3 : = F ;  v 2 : = v a + v 3 ;  v ~ : = v  1• v o : = v o + v ~ ;  the required result 
is formed in v o. The reader will be aware tha t  the operations used are of only 
two different types. If we denote the value of the stack pointer  by k, they are: 

t .  selecting a new (explicitly mentioned) number ,  say X, which process is 
described b y  v k : = X;  k : = k + t ; and 

2. performing an ar i thmetic  operation, say O P, which consists of 

k : = k - - t ;  Vk_~:=Vk_IOPv  ~. 

If we refer to type I by  the name of the selected variable and to type 2 by  the 
operator in  question, then we can also record the program by  means of the 
symbol  sequence : 

A , B , C , - - , D , E , / , F ,  +,  •  

In  this description the v's and, what  is more impor tant ,  specific values of the 
stack pointer  no longer appear. Here it is unnecessary to specify the values of 
the stack pointer  in the text,  as the computer  can keep track of its value during 
execution of the programm: the v's have become completely anonymous again, 
jus t  as anonymous  as they originally were. 

The above is well known (see for instance [1]) and so elegant that  we could 
not  refrain from t rying to extend this technique by consistent application of 
its principles 1. Let us consider for a moment  the operation for the selection of 
an argument ,  e.g. the thi rd  "v 2 : =  C". This operat ion can be executed wi thout  
fur ther  claim for memory  space, as we assume tha t  the numerical  value of C 

1 Without doubt, in view of the vivid interest in the construction of compilers, 
at least some of these extensions have been envisaged by others but  the author was 
unable to trace any publication that  went further than [11. The referee was so kind 
to send him a copy of the report ,,Gebrauchsanleitung fiir die ERMETH" of the 
Inst i tu t  fiir Angewandte Mathematik der ETH, Ziirich, a description by HEINZ 
~,VALDBURGER of a specific program organisation in which similar techniques as 
developed by Professor H. RUTISHAUSER in his lectures are actually incorporated. 
The author of the present paper thinks, however, that there the principle of recursive- 
hess has not been carried through to this ultimate consequences which leads to logi- 
cally unnecessary restrictions like the impossibility of nesting intermediate returns 
and the limitation of the order of the subroutine jump (cf. section F 44 of the report). 
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can a l ready  be found in the  memory .  If, ins tead  of C, a compound te rm had  
occured in the  expression,  e.g. C=(P/ (Q- -R+S•  then we would have 
used v 2 up  to v 5 for the  calculat ion of th is  subexpression,  bu t  the  ne t t  resul t  
of this  piece of p rogram would  st i l l  be v 2 : =  P/(Q--R+ S • T) or v 2 : =  C. In  
other  words,  it  is immate r i a l  to the  " su r round ings"  in which the value  C is 
used, whether  the  value  C can be found r eady -made  in the  memory ,  or whe ther  
i t  is necessary to make  t e m p o r a r y  use of a number  of the  next  s tack  locat ions 
for i ts  evaluat ion.  When  a funct ion occurs ins tead  of C and this  funct ion is to 
be eva lua ted  by  means  of a subrout ine ,  the  above  provides  a s t rong a rgumen t  
for a r ranging  the subrout ine  in such a w a y  t ha t  i t  opera tes  in the  first  free places 
of the  s tack,  in ju s t  the  same w a y  as a compound  te rm wr i t t en  out  in full. 

Stacked Reservat ions  

In  the  eva lua t ion  of an  algebraic express ion as descr ibed above,  we s tack  
numerical in]ormation: the  next  place in the  s tack  only becomes occupied when 
we ac tua l ly  fill in an in te rmedia te  result ,  i t  becomes vacan t  as soon as i ts  contents  
have  been used. We now consider  the  case t ha t  this  exp res s ion - -wh ich  occurs 
in wha t  we shall  refer to as the  (relative) ma in  p r o g r a m - - c o n t a i n s  a funct ion 
t ha t  is to be eva lua ted  b y  means  of a subrout ine .  As far as the  main  p rogram 
is concerned,  all var iab les  tha t  the  subrout ine  in t roduces  for i t s  own in te rna l  
use are anonymous ,  and  t h e y  should be placed in the  nex t  free places of the  
stack.  Wi th in  the  subrout ine ,  however,  we can make  d is t inc t ion  between three  
t y p e s  of quant i t ies .  

The  p a r a m e t e r s .  We use the name " p a r a m e t e r s "  for all  the informat ion  t ha t  
is p resented  to the  subrout ine  when it  is called in b y  the ma in  program ; funct ion 
a rguments ,  if any,  are therefore  pa ramete rs .  The da t a  grouped under  the  t e rm 
" l i nk"  are also considered as pa ramete r s ;  the  l ink comprises  all  the  da t a  necessary 
for the  con t inua t ion  of the  ma in  p rogram when the  subrout ine  has been completed.  
Should  one wish to  do so one can leave the  first  free place in the  s tack  open, 
so t h a t  the  subrout ine  can place i ts  " funct ion  va lue"  there.  Thereaf ter  the  nex t  
places in the  s tack  are used for the  parameters .  (In some respects  i t  is convenient  
if al l  pa rame te r s  occupy  the  same number  of places in the  s tack;  if, as in A L G O L  
60, a p a r a m e t e r  m a y  be given in the  form of an a rb i t r a r i ly  compl ica ted  expression,  
the  l imi ted  p a r a m e t e r  space in the  s t ack  can refer to a point  in the  m e m o r y  
where fur ther  specif icat ion of the  p a r a m e t e r  is given. The  amoun t  of in format ion  
for the  l ink can also be regarded  as being cons tant .  Hence the amoun t  of s tack  
space used for the  pa r ame te r s  is cons tan t  and  known for every  call.) 

The  loca l  va r i ab les .  I n  general  the  subrout ine  i tself  is a piece of p rogram 
in which expl ic i t  reference is made  to a number  of quant i t ies  in t roduced  b y  the 
subrout ine.  Their  values  are  no longer of in te res t  as soon as the  subrout ine  has  
been completed.  I n  the  course of the  execut ion of the  subrout ine  they  can t ake  
on a number  of different  values  in succession, and  their, values  can be used more 
t han  once (this is the  reason why  they  cannot  remain  anonymous  in the  sub- 
rout ine  itself). We  allow the  amoun t  of m e m o r y  space occupied b y  these  local 
var iables  to  be dependen t  on one or more  pa ramete r s ,  e.g. one of the  i npu t  
pa r am e te r s  can be the  length  of a local vector .  We res t r ic t  ourselves to the  
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case tha t  the amoun t  of s torage space occupied b y  the local var iables  becomes 
known as soon as the  inpu t  pa ramete r s  are given, and tha t  i t  remains  cons tan t  
dur ing  tha t  pa r t i cu la r  ac t iva t ion  of the  subrout ine.  (This res t r ic t ion is in ac- 
cordance with  A L G O L  60; from a logical po in t  of view the res t r ic t ion  is not  
essent ia l  bu t  it  s implifies ma t t e r s  considerably.)  We therefore know at  the  
beginning of the  subrout ine ,  how much m e m o r y  space the  local var iables  will 
require  this  t ime,  and can see to i t  t ha t  t hey  will be s tored in the  s tack  immed ia t e ly  
af ter  the  parameters .  

The  " m o s t  a n o n y m o u s "  i n t e r m e d i a t e  resul t s .  Dur ing  the  execution of the  
subrout ine  in t e rmed ia te  resul ts  t ha t  are anonymous  even in the  t ex t  of the  
subrout ine  also p l a y  a role: for, in general,  expressions will have  to be eva lua ted  
there  too, and the  subrout ine  will in i ts  t u rn  call  in one or more subrout ines  
itself. These " m o s t  anonymous"  in te rmedia te  results  are p laced  in the  s tack  
in the  same w a y  as those of the  ma in  p rogram,  bu t  we mus t  now begin at  the  
first free place following the  last  local var iable .  

Consequences 
The main  p rogram used the  s tack  exclus ively  for in te rmedia te  numer ica l  

resul ts  t ha t  were formed and added  to the  s t ack  once, and were la te r  used once 
and removed.  Unt i l  then  there  was no need to store the  s t ack  in a r a n d o m  
access memory ,  for our in teres t  was at  all  t imes  res t r ic ted  to the younges t  
e lement  in the  stack.  In  pr inciple  we could have used a smal l  magnet ic  t ape  
t ha t  would have  to move one place forward in wr i t t ing  and one place b a c k w a r d  
in reading.  The fact  t ha t  r andom access is not  necessary  there,  is a direct  con- 
sequence of the  fact  t ha t  these  s tack  places as such need not  be expl ic i t ly  men-  
t ioned in the  descr ipt ion of the  computa t ion .  

Ins ide  the subrout ine  we store the  most  anonymous  in t e rmed ia te  resul ts  in 
the  " t o p "  of the  s tack  in jus t  the  same way. E v e r y  reference to a local quan t i t y ,  
however,  implies  t ha t  one is in te res ted  in a place t ha t  is s i tua ted  deeper  wi th in  
the  s tack,  and  here one is in teres ted  in r andom access to the  s tack  places, in 
o ther  words,  we mus t  be able to give the  places  deeper  in the  s tack  some k ind  
of address.  The poin t  in the  s tack  from which the  l a t t e r  is avai lable  for a sub-  
routine,  is handed  over to the  subrout ine  at  the  moment  i t  is called in. W e  
assume a stat ic ,  i.e. cons tant  descr ipt ion of the  subrout ine  to be present  in the  
m em or y :  as a resul t ,  this  descr ip t ion  mus t  be  sensi t ive to the  dynamic  specifi- 
cation,  as descr ibed above,  of the  reference poin t  in the  stack.  The s ta t ic  re- 
ference (stat ic  addressing) of the  local var iables  can only  occur in t e rms  of a 
f ixed posi t ion wi th  respect  to the  reference point .  The value of this  reference 
poin t  is der ived from the  value of the  s tack  po in te r  a t  the  momen t  of the  call ,  
and  will therefore genera l ly  v a r y  from call  to  call. 

The  L ink  

We mus t  now inves t iga te  which da t a  are to  be s tored  in the  s tack  under  the  
heading  " l ink" .  Fo r  the sake of s impl ic i ty  we regard  our  compute r  as consist ing 
of two par ts .  We  refer to the  m e m o r y  space requi red  for the  s tor ing of the  
p rogram and  of the  s tack  as " t he  m e m o r y " ,  and  we will call  the res t  " t he  
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arithmetic unit". The following considerations--suitably interpreted--apply to 
both a built-in and a programmed arithmetic unit. 

We regard the operation "re : = C" of our example as an elementary operation 
of the arithmetic unit. As a result of this operation information in the memory 
has been modified, but other changes have oecured too. Before the execution 
of this operation, the state of the arithmetic unit was such that the order 
"v 2 : =  C" was the next to be obeyed, after its execution the state is such that 
the next order is to be obeyed. Part of the arithmetic unit therefore stores 
information specifying its state (it contains something equivalent to an order 
counter). If the text of the program does not specify explicitly the values of 
the stack pointer, and the arithmetic unit is therefore obliged to keep track of 
it, the value of the stack pointer is another aspect of the state of the arithmetic 
unit. One can say quite generally that every instruction is carried out correctly, 
provided that the arithmetic unit is initially in the appropriate state, and part 
of the execution of an order is the modification of the state of the arithmetic 
unit in such a way that the next order will, in its turn, be executed correctly. 
We now consider the case that the value of C cannot be found ready-made in 
the memory, but must be calculated by means of an function subroutine. As 
we are looking for an arrangement in which it is immaterial to the surroundings 
where C comes from as long as it arrives in the desired stack location, it is 
necessary that after completion of "v2:=C", the arithmetic unit is left behind 
in exactly the same state as if C had been transported from the memory by 
means of an elementary operation. This must hold regardless of the complexity 
of the subroutine used to calculate C. As the subroutine is in general a piece 
of program that takes full advantage of the flexibility of the arithmetic unit, 
its execution obviously implies a series of changes within the arithmetic unit, 
and we must therefore be willing to record sufficient data regarding the state 
of the arithmetic unit in order to be able to reconstruct it later. These are the 
data that must be stored in the stack under the name "link" when a subroutine 
is called in. (It may be possible that some of the disturbances will be annihilated 
automatically, e.g. the filling of the stack, which is, in principle at any rate, 
emptied again. For such "reversible" disturbances the reconstruction requires 
no extra measures.) 

It  is clear that  some form of "return address" is part of the link data. What 
the link data should furthermore include depends on the number of different 
aspects of the state of the arithmetic unit, and whether their changes are in- 
trinsically irreversible. Filling the stack is a reversible process, except when 
the language permits--as ALGOL 60 does-- that  a subroutine under execution 
remains unfinished on account of some criterion, and is left once for all via an 
exit other than its normal "return". A function subroutine will generally be 
called in during the evaluation of an expression, so that some stack places are 
filled with anonymous intermediate results that will never be used on account 
of the unusual exit from the function routine. In that case one must be able 
to reconstruct up to which point the stack contents are still of interest. This 
facility requires an additional record in the link. 

Furthermore there exists a certain hierarchy in the information specifying 
the state of the arithmetic unit. If we regard the state of the arithmetic unit 
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between two orders, there is certain information (order counter) that sees to 
the transition to the next order. During the execution of an order, however, 
we can distinguish between different "sub-states": the information specifying 
these substates is of no significance at the moment of transition from one order 
to the next, and there is therefore no need to record this information in the 
link, as long as the subroutine mechanism only operates between orders. The 
specification of the substates should be recorded in the link, however, as soon 
as one allows the subroutine mechanism to operate during the course of an 
elementary operation, i.e. when (for the execution of one of its sub-operations) 
a subroutine must be called in that may possibly make use of the full flexibility 
of the arithmetic unit. 

When a subroutine, say subroutine A, is activated, it must operate in the 
stack starting at a point that only becomes known at the moment of call. The 
parameters (including the link) and the local variables of A have a fixed position- 
ing with respect to each other, but their position as a whole is only determined 
at the call: the quantity specifying the position of the whole block, is called 
a parameter pointer. The program for subroutine A can only be executed correctly 
if the current value of the parameter pointer is at the disposal of the arithmetic 
unit, in other words, the parameter pointer can he regarded as one of the aspects 
of the state of the arithmetic unit, and it must therefore be recorded amongst 
the link data. Now consider the case that subroutine A calls in subroutine B. 
We call the value of the parameter pointer indicating the parameters and local 
variables of A and B respectively, P P A  and P P B  respectively. If subroutine B 
is called in by A, the value P P A  is recorded as part of the link formed at this 
call. The place in the stack where this link is recorded is deduced from the value 
of the stack pointer at that  moment and is, by definition, recorded in the para- 
meter pointer, which now assumes the value we called P P B. When we return 
from B to A the return address is found in the stack under control of P P B ,  
as well as the new value P P A  of the parameter pointer; finally, at the operation 
"return", the new value of the stack pointer, which suddenly decreases, can be 
deduced from the old value of the parameter pointer (in our case from P P B )  

In this process nothing forbids A from being identical with B. The sub- 
routine only has to appear in the memory once, but it may then have more 
than one simultaneous "incarnation" from a dynamic point of view: the "inner- 
most" activation causes the same piece of text to work in a higher part of the 
stack. Thus the subroutine has developed into a defining element that can be 
used completely recursively. 

Recursive Techniques and ALGOL 60 

Every procedure is regarded as a subroutine in the sense described above. 
For the sake of simplicity a block that is not a procedure can also be treated 
as a subroutine, be it that this subroutine is only called in at one point. 

One of the complications of ALGOL 60 is that not only local variables may 
be used in each block, but that explicit reference may be made in every block 
to variables that are local in a lexicographically enclosing block. When a sub- 
routine is called in, the link contains two parameter pointer values for this 
purpose. Firstly, the youngest parameter pointer value corresponding to the 
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block in which the  call occurs (as descr ibed in the previous  section), secondly, 
the  value  of the  p a r a m e t e r  po in te r  corresponding to  the  most  recent,  not  ye t  
completed,  ac t iva t ion  of the  first  block t h a t  lex icographica l ly  encloses the  
block of the  subrout ine  cal led in. As a l r eady  ment ioned,  the  first  pa r ame te r  
po in te r  value  p lays  a v i t a l  role in the  re tu rn  at  the  end of the  subrout ine ,  the  
second is indispensable  in localizing the g lobal  var iables  in the  stack. As the  
second p a r a m e t e r  pointer ,  b y  defini t ion,  po in ts  to a l ink in the  stack,  which 
in i ts  t u rn  conta ins  a second p a r a m e t e r  po in te r  va lue  corresponding to the  
next  enclosing block,  the  a r i thmet ic  uni t  can  t race  th is  " cha in"  and,  in doing 
so, will  f ind all  p a r a m e t e r  po in te r  values t ha t  m a y  be necessary for localizing 
any  g lobal  var iable  in which i t  m a y  be interes ted.  

One can assign a so-called block number to each block,  indica t ing  the number  
of blocks which enclose i t  lexicographical ly :  the  main  p rogram therefore has a 
b lock number  = 0 .  If  the  p rogram refers to a global  var iable  it  is obviously  
necessary  to specify the  block in which the  global  var iable  was declared;  the  
block number  serves th is  purpose  and,  under  control  of this  b lock  number ,  
the  a r i thmet ic  uni t  can find the  p a r a m e t e r  po in te r  value i t  now needs. Fur ther ,  
the  reference to  a global  var iable  will specify which var iable  of th is  block is 
requ i red :  i ts pos i t ion with  respect  to the  p a r a m e t e r  poin ter  value  jus t  found 
achieves this. The in t roduc t ion  of the  block numbers  also makes  i t  possible 
tha t  the  a r i thmet ic  unit  has  immedia te  access to all  the  pa r ame te r  po in te r  values 
i t  m a y  need. They  can be s tored in order  of increasing block number  in a so- 
called " d i s p l a y "  (e.g. a series of index registers,  numbered  0, t ,  2, 3 . . . .  etc.,  as 
m a n y  as the  m a x i m u m  value of the  block number) .  By t rac ing the second 
chain of p a r a m e t e r  poin ters  one can, when necessary (amongst  others  a t  the  
re turn,  in the  call  of a formal  procedure,  and  at  the  beginning of the  evalua t ion  
of a non- t r iv ia l  formal  parameter ) ,  br ing the  d i sp lay  up to date .  This needs 
- - a n d  can in g e n e r a l - - o n l y  be done for block numbers  not  exceeding the 
number  of the  block we are about  to enter.  I t  will not  surprise the  reader  tha t  
the  b lock  number  is to be regarded as specifying the  s ta te  of the  a r i thmet ic  
uni t ;  in consequence i t  has  to be s tored amongs t  the  l ink d a t a  in the  s tack.  
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