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B y  
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1. I n t r o d u c t i o n  

Consider the heat conduction equation 

~2u ~2u ~u 
(t) ax  ~ +  ay~ - -  at 

for u ~ u ( x ,  y, t) where x, y are space co-ordinates, and t is the time, subject 
to the boundary conditions u(x, y, O)~--[(x, y) over the unit square O<_x<_t, 
0<__ y_<__ t, and u(x, y, t) given for all 
t > 0  where x, y is a point on the 
boundary of the unit square. 

The two implicit difference meth- 
ods for solving (t) which have re- 
ceived most attention are the Peace- 
man Rachford (P.R.) method [3] 
and the Douglas Rachford (D.R.) 
method [lJ. In order to describe 
these methods, a network of nodal 
points is illustrated in Fig. 1. For 
ease of reference the points are 

'2 ,~, x I 

/ I ~  19 

I~ Z~ 
Fig. I 

numbered and as seen from the diagram the mesh sizes are d x, ,By, and A t 
in the x, y, and t directions respectively. 

The P.R.  method is given by  

where 6~, 6y are the usual central difference operators in the x and y co-ordinates 
respectively, r----At/h 2 where d x ~ d y = h ,  and u I~), uIm+~l, u(~*+l) are the values 
of u at the nodes 2, 5, and 8 respectively. Elimination of u(~+~l leads to 

(2) 

where §  )are both oine poin, oper 
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ators. Similarly the D.R. method, which is given by 

where u *(re+l) denotes an approximation to u at the node 8, leads to 

(3) ( -  + ( - , : +  = ' 
r 2 ] 

after elimination of u *''~+x'. The operators ( - -6 :  + ~ ) ( - - d ~  + ~-)and (d: b: + ~ )  
are again nine-point operators. 

A generalised formula which involves nine-point operators at each of two 
neighboring levels of t is 

(4) k [(u s + a W + bX) + (cu 2 + d Y  + eZ)] = O, 

where 
W = U l r +  Uas+ ua9 + u21, 

X = u ,  + u  9 +UlT+U2o,  

Y = ua0 + u12 + ua3 + U l  5, 

Z = r  -ql-~f 3 + U l l - ~ - ' N 1 4  

and k, a, b, c, d, and e are functions of r. The problem described by (I) and 
its associated boundary conditions can be solved by using (4) in an alternating 
direction form because of the commutative nature of the matrices involved 
(VARGA E5, p. 246, Ex. 6]). Formulae (2) and (3) can both be expressed in the 
form of (4). In fact the coefficients are 

k -- (1 +r)* 
J $, 

(t - , ) *  
G - -  

(1 +r)~ , 

for the P.R.  method and 

k =  (t+2r)2 
Y 

1 + 4 r  * 
C~--- 

(t +2r)  2 ' 

for the D.R. method. 

~2 y 

4 ( l + r )  2 ' 2 ( l + r )  ' 

d = ~* e -  r ( l - r )  
4(1 + r )  2 ' 2(1 + r )  2 

~2 y 
a - -  b =  

(1 + 2 r )  2 ' . 1 + 2 r  ' 

d r2 2r~ 
- -  e - -  ( l+2r)  2 ' ( l+2r)* ' 

Also, by  expanding u s, W, X,  Y, and Z as Taylor series in terms of u and 
its derivatives at the node 2, and replacing derivatives with respect to t by  
using the relations 

3 u  a~u 8%~ 82u a4u  8~u ~4u 
a t  - -  a x  ~ + a y  ~ '  at  2 - -  8 x  4 + 2  a x ~ a y  ~ + a y  ~ ,  

etc. from (t), it is easily shown that  the principal parts of the truncation errors 
- -  h 4 ( a4u a4u / are ! hi ( a4u a*u ] for the P.R. method and t 12 ' a X  4 "-{- a y  4 ] 2 ( r + 6 )  ,ax 4 + ay'/+ 

r hi a4u for the D.R. method. 
a x  ~ a y *  
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I t  is the purpose of the first section of this paper to examine formulae of 
type  (4) and to determine values of a, b, c, d, and e which eliminate the terms 
of order h 4 in formula (4) and further to rewrite the formula obtained as a pair  
of P .R .  or D .R.  type  formulae. 

2. General ised P . R .  and  D . R .  fo rmulae  

Since a formula of type  (4) requires a solution of N 2 equations at  each t ime 
step, where N h =  t, it is only of use as a means of solving (t) if it can be re- 
wri t ten as a pair of P .R .  or D .R.  type  formulae i.e. a pair of formulae which 
utilises the same points as the P .R .  or D .R.  formulae. 

Considering first the points used by  the P .R .  formulae, we can write (4) as 

a (bc -- e) k 

where b2=a, and e2=cd. Next  using the same points as the D.R.  formulae, 
(4) can be writ ten as 

(--O~x t + 2 b ) u . ( , + l )  - be--d k(~2x+ (2d+e)--b(2e+c) ) U(m) 
b b d-- e b ) 

(6) 

- - a  ak 

where b2= a, and an asterisk again denotes an approximate  value of u at a node. 

Formulae (5) and (6) are the generalised P .R .  and D.R.  type  formulae re- 
spectively and formula (4) cannot  in general be represented by  (5) or (6). If  
however, b2= a, (4) can be wri t ten as the D.R.  type  formulae (6), and if in 
addit ion e2=cd, (4) can be wri t ten as the P .R .  type  formulae (5). 

3. The  O p t i m u m  F o r m u l a  

We now expand u s, W, X ,  Y,  and Z as Taylor  series in terms of u and its 
derivatives at the node 2. The derivatives with respect to t are replaced by  

0u 02u ~ u  02u ~4u 04u 04u 
- -  + - -  - -  + 2  + - -  Ot Ox ~ Oy ~ ' O/2 Ox 4 Ox ~Oy ~ Oy 4 

etc. from (t). 

The expansions up to and including terms involving h e are 

1 u s = u + r A  + { - # B  +r2C + ~r3D + ~r3E,  

W = 4 u  + (4r + 2) A + (2r' + 2r +-~) B + (4r~ + 4r + l) C + 
1 1 + + r'  + + D + (2r"+ 3r' + + e ,  

X = 4 u  + (4r + l ) A  -r + r + ~ ) B  + (4r~ + 2r)C + 
$ 

Y = 4 u + 2 A + ~ B + C + ~ I  D + ~ E ,  

Z = 4 u +  A +-x~ B a + ~ D ,  
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where 

A = h 2 ( ~*u ~*u / B = h* ( e4u e4u ~ C = h 4 O4u 
\OX 2 "]- Oy 21 '  k OX* -+- Oy 4 ] '  OX 2 0 y  2 " 

D = h  6(~6u ~'u~ and E = h  6 ~' (~*u ~*u/ 
k OX 6 + Oy 6 1 '  6qX 2 Cqy 2 k OX 2 -~- Oy2 ]" 

If  these expressions are subst i tuted into formula (4) with k = t, values of a, b, 
c, d, and e can be found which will eliminate u, A, B, C and either D or E. 
However,  a formula of type  (4) is only of use as a means of solving (I) if it 
can at least be wri t ten in the form (6). This will be possible only if b2= a. This 
condition on the coefficients can only be satisfied if values of a, b, c, d, and e 
are obtained which eliminate u, A, B, and C only and involve a parameter.  
This parameter  is then chosen to satisfy b2= a. The coefficients which eliminate 
u, A ,  B,  and C are 

3 r + t + p  a - -  
4p 

d _  

b =  3 r + t + 2 p  c - -  2 0 r + 4 p  
4p ' 4p ' 

2 r + t + p  e - -  7 r + { + 2 p  
4p ' 4p ' 

where p is a parameter .  I f  b2=a,  then p = - - { ( 3 r + { )  2, and so the coefficients 
become 

a -  ( r - b ) ~  b - -  ( r - b )  c - -  ( r - t ) ~  
4 ( r + t )  2 ' 2 ( r + t )  ' ( r + t )  2 ' 

d - -  (~+b)* e - -  ( r - t ) ( r + ~ )  
4(r+t )2  ' 2( r+t )2  

The formula of type  (4) with k = t and min imum truncat ion error which 
can be wri t ten in the  form (6) is thus 

us-+ ( r - b ) ~  W ( r - b )  X 
(7) 4( r+t )*  2 ( r + t )  ( r - t )~  u2 ( r+ t )  ~ 

(r+b) 2 y + ( r - t )  (r+b) Z = 0. 
4( r+})  ~ 2 ( r + t )  2 

The principal par t  of the t runcat ion error is in fact  --  r (r 2 -  ~0-) h6 ( e6u ~6u / 
1 2 ( r + t )  2 ~ x  B + a y e / '  

which is an order h 2 bet ter  than  the original D .R .  or P .R .  formulae. I t  follows 

1 the t runcat ion error m a y  even be of also tha t  if r is approximate ly  2(5)4 '  

order h 8. When  r = { ,  (7) degenerates into the well known explicit formula 

_ _ ~  1 1 us---~u2 + ~g- Y'J-- f fZ , 

and so the  method  of al ternat ing directions is inapplicable. 

Formula  (7) can now be wri t ten as the D .R .  type  formulae 

(r+t)2 ( r - { )  r + { ]  ' 
(s) 

( r - b )  ~ ( r - b )  ~ 
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and  since the  o p t i m u m  coefficients sa t isfy  # = c d  as well as b2=a, (7) can also 
be wr i t t en  as the  P .R .  formulae 

(9) 
+ 

(r+~)~ (r-~) 

r ( r -  ~) 

4. Stability 

The s t ab i l i t y  of the  scheme (4) is ana lyzed  b y  the  normal  procedure  of as- 
suming t ha t  there  exists  an error  ei,i, ~ at  each mesh poin t  iAx, iAy, n a t  
(i = t ,  2 . . . . .  N - -  1 ; ?' = 1, 2 . . . . .  N - -  1 ; n = 0 ,  1, 2 . . . .  ) where A x = z t y =  t/N. F o r  
a l inear  p rob lem wi th  cons tan t  coefficients, these errors  grow according to equa-  
t ion (4) wi th  u rep laced  b y  e. I f  the  error  is now e x p a n d e d  in the  form 

% j, ~ = ~ sin ~ p x i sin ~ q Yi (p, q = 1, 2 . . . . .  N - -  1) 

and  subs t i t u t ed  into  equa t ion  (4) wi th  u rep laced  b y  e, i t  follows t h a t  

(10) Qn+l_  I cd+2ed(cos~pAx+cosz~qAy)+4d~cosz~pAxcosz~qAy 
~n d (I + 2 b  cos ~ p dx) (I + 2 b  cos z~ q zly) 

if a=b 2, the  condi t ion  necessary  for (4) to  be wr i t t en  in D .R .  form. If  in 
addi t ion ,  e2=cd, (4) can be wr i t t en  in P .R .  form and  the  numera t e r  of (t0) 
factorizes to give 

(11) Qn+l __ I (e+2dcos~tpAx) (e+2dcos~tqAy) 
On d ( l+2bcos~pAx) (l+2bcos~tqAy)" 

For  the  o p t i m u m  formula  (7), equa t ion  (11) becomes 

2 r +  sin~ ~p/lx  --t 2 r + ~  sm 1 
~On-]- 1 - -  2 2 

Dn 2 r - -  s in2  ~PAx2 -t-1 2 r - - ~ -  s i l l  2 + 1  

from which i t  follows t h a t  fo rmula  (7) is s tab le  for all  values of the  mesh ra t io  r. 

5. E l l ip t i c  E q u a t i o n s  

I t  is an old idea  t h a t  p rov ided  u(x, y, t )=u(x ,  y, 0) for all  t>O, where x, y 
is a po in t  on the  b o u n d a r y  of the  uni t  square,  the  s t e a d y  s ta te  solut ion of 
equa t ion  (t) is the  solut ion of the  el l ipt ic  equa t ion  

~2~t ~ 2 u  
(t2) ~ - ~  + ~y~  = 0, 

sub jec t  to  the  b o u n d a r y  condi t ion  of u(x, y )=f (x ,  y) for x, y a po in t  on the  
b o u n d a r y  of the  uni t  square.  

There  is no cer ta in ty ,  however ,  t h a t  the  difference equa t ion  which gives 
the  mos t  accura te  solut ion of (t) will also p rov ide  ind i rec t ly  the  bes t  i t e ra t ion  
techn ique  for solving (12) using the  t ime  s tep  as a pa rame te r .  I n  o rder  to  
examine  this  point ,  we r e tu rn  to  difference formulae  of t y p e  (4). As shown 
previous ly ,  such formulae  can be  wr i t t en  in P . R .  form if b2=a and  e~-=cd. 
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In addition, these formulae represent (t) with a principal t runcat ion error of 
order h 4 if the additional conditions 

4a+4b+c +4d +4e=--  l, 

( 4 r + 2 ) a + ( 4 r + l ) b + 2 d + e = - - r  

are satisfied. These four relations between the five coefficients enable us, af ter  
some simple manipulation,  to  obtain the values 

a = b  2, b = b ,  

c = - - [ 4 ( b + { ) r - - t ]  2, d = - - [ 2 ( b + { ) r + b ]  2, 

e = [2 (b + �89 r + b] [4 (b + �89 r - -  t ]. 

If these values of the coefficients are subst i tu ted into (5), we obtain the 
P .R .  type  formulae 

b b ( ~ +  (l+2b)r+b] 
(t3) 

( _ ~  1+2b (l+2b)r+b b ) u(m+l) - (0~+ 1+2b-lu(m+[' 
b(t  (l+2b) r+b] " +2b)2rk 

We now determine the value (or values) of the parameter  b which will make  
(13) the best  i terat ion scheme for solving (t2). 

Following VARGA [5, pp. 214, 2t 5], the spectral  radius of the i terat ion mat r ix  
implicit in (t3) is 

m a x  sin 
q(T,) " l< l<N- -1  b l ~  

1 - -4  2 ~ s i n ~  2 N  

If we pu t  

(t4) b = r+/ 
2 ( , + / + t )  ' 

where / is a parameter ,  the spectral radius becomes 

= max  t ~(Tr) II<l< N-l + ([.~ ~N- 
"2 loz -) 2 sin ~ -  

This is now minimized as a function of the mesh rat io r ( > 0 )  and the result  

l +fsin2~---sin--~ (t + 2[+f2sin~-~) ~ 
(/5) Min ~ (T~) = 

,>o 1+ / s i n ,  at ~ ( ~_~) ~ -  + sin ~ -  1 + 2 / + / 2 s i n  2 

is obtained. For  each value of [, (t 5) gives the op t imum convergence rate, and 
the  value of r necessary to  give this op t imum convergence is 

(16) r * - -  I n  ( l + 2 / + / ~ s i n ~ _ ) � 8 9  
sin - ~  
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It  should be emphasized that the above analysis depends on r being kept con- 
stant during the iterations. When r is allowed to vary, and take the value r i 
(t <=i~m), for each of m successive iterations, the situation is much more com- 
plicated, and references to methods for selecting the best acceleration parameters 
r~ can be found in VARGA [~1, TODD [4, Ch. 1~ and WACHSPRESS ~6]. 

Returning to formula (16) it can be seen that  r* is real if 

(17) -- (2 cos' 2--~)-1_~ / < + oo. 

This is also the condition for (13), with b replaced by [ using (14), to be stable 
for all r. The convergence rate given by (15) takes the value unity when 1= 

- -  (2 c~ and tends to zero, as [ tends to infinity. For N = 3 0 ,  100, and 

1000, the convergence rates for various values of [ within the permissible range 
given by (t7), are shown in 
the Table. I t  appears that  
the best convergence rate for 
a given value of N is obtained 
when [ is positive and as large 
as possible. It  can also be seen 
from the Table, that  the origi- 
nal P.R.  formula ( /=0)  has a 
better  convergence rate than 

Table 

N 

3o [ ~ I 0.811 I o.696 0.386 
iO0 I 0"950 I 0.939 I 0.897 I 0.750 

I000 I 0.995 I 0.994 I o.990 I 0.970 

t 0 0  

0.0639 
0.4t3 
0.915 

the optimum P.R.  type formula ( [ = - - ~ )  derived previously to solve (1). 
However the substational improvement in convergence implicit in (t 5) which 

arises from the choice of large positive values of the parameter [ may be ac- 
companied by a certain loss of accuracy. In terms of [, using (t4), equations 
(13) become 

(r*+[+l)2(r*+[) r*-[  I 
(t8) 

( 

where r* is given by (16) and k is arbi trary.  Formulae (18) of course reduce 

to the original P.R. formulae (2) if [ =  0 and k = (I +r )  2 and to the opt imum 

P.R.  type formulae (9) if [ = ---~ and k = t. The principal part of the truncation 

error for (t8) is ([+{)r*k h4(O4u O4u~ If, u (m+~l is now eliminated 
2(r*+1+t)* \~x 4 + Oy4/" 

from (18), the formula 

+ 2 (_~,.  2 u(~+ll 

(~* + I )  3 

is obtained. The iteration procedure described by (19) converges if u(~+l)= 
u(~)=u, for m sufficiently large, and so (19) reduces to 

(20) E(O~ + t~y) - l ( t~  a~)] u --- o. 
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However,  equation (t2) can be replaced by  

1 2 2 _ +-,(a, ay)]u-o 
correct to four th  differences, and so it follows from (20) tha t  equations (18) 
are most  accurate when ] = -  {,  a result  obtained previously, and tha t  there 
is a loss in accuracy when [ is large. In  fact as [ tends to infinity, equat ion (20) 
degenerates to 

6 y =  O, 

which is no longer a difference approximat ion to Laplace 's  equation. According- 
ly a balance is required between the rate of convergence (an op t imum when 
[ is infinite) and the accuracy of the process (an op t imum when [ = -  ~). 

Finally, the convergence rates for various vMues of N and [ given by  (15) 
will almost  certainly be reduced when the region under  consideration departs  
from the rectangular  (cf. DOUGLAS and PEARCY [2]). 
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