Numerische Mathematik 6, 285—292 {1964)

Improved Forms of the Alternating Direction Methods
of Douglas, Peaceman, and Rachford
for Solving Parabolic and Elliptic Equations

By
A. R. MITCHELL and G. FAIRWEATHER

1, Introduction
Consider the heat conduction equation

%y 0*u __ ou
(1) o0x? oy? ot

for u=wu(x, v, ) where x, y are space co-ordinates, and ¢ is the time, subject

to the boundary conditions #(x, y, 0)=/(x, ¥) over the unit square 0= x=<1,

0=y=1, and #(x, v, #) given for all

t>0 where %, ¥ is a point on the 4

boundary of the unit square. 7
The two implicit difference meth- o

ods for solving (1) which have re- [¥ dy| 44

ceived most attention are the Peace- B T

man Rachford (P.R.) method [3] 13

and the Douglas Rachford (D.R))

method [I]. In order to describe “ 20

these methods, a network of nodal 75 %

points is illustrated in Fig.1. For Fig. 1

ease of reference the points are

numbered and as seen from the diagram the mesh sizes are Ax, Ay, and At

in the %, y, and ¢ directions respectively.

The P.R. method is given by

0 /5

R e A

( 0 4 )u(’”“’ (554_%)“(%;),

where §,, 6, are the usual central difference operators in the x and y co-ordinates

respectively, #=A#h? where Ax=Ay=nh, and 4™, 4"+8 4m"+1) are the values
of # at the nodes 2, 5, and 8 respectively. Elimination of umtd) leads to

O B e e 2t e

where (- &+ %) ( 02+ ) and (62 + %) (63, + %) are both nine-point oper-
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ators. Similarly the D.R. method, which is given by
(A st 4]
(_ 6§+—1—)u("'+1) (— &) um 4 L u*("‘“)
where u*™+? denotes an approximation to # at the node 8, leads to
O A e L

after elimination of »* "+, The operators (—— %+ 7) ( 02+ m> and (52 02+ )
are again nine-point operators.

A generalised formula which involves nine-point operators at each of two
neighboring levels of ¢ is

(4) k[(ug+aW 4+ bX) + (cu,+dY +eZ)]=
where
W =1ty 6+ 105+ th1g + sy,
X =ty +thy + th7+ thg,
Y =10+ 2+ thy5 + 15,
Z=uy +uy +ty;+ 1,

and k,4,b,¢,d, and e are functions of ». The problem described by (1) and
its associated boundary conditions can be solved by using (4) in an alternating
direction form because of the commutative nature of the matrices involved
(Varca [9, p. 246, Ex. 6]). Formulae (2) and (3) can both be expressed in the
form of (4). In fact the coefficients are

e T =

=T AT T e
for the P.R. method and

e a0

for the D.R. method.

Also, by expanding s, W, X, Y, and Z as Taylor series in terms of # and
its derivatives at the node 2, and replacing derivatives with respect to ¢ by
using the relations

ou __ 0*u a*u oiu _ tu tu otu
8t oa? + oy2 ’ 12~ oAt +2 ox2 0yt + oyt
etc. from (1), it is easily shown that the principal parts of the truncation errors

are _-h4( O 34“ ) for the P.R. method and %(r—l— —é_) (—— + ) +

oxt 22t

7 ht W for the D.R. method.
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It is the purpose of the first section of this paper to examine formulae of
type (4) and to determine values of a, b, ¢, d, and ¢ which eliminate the terms
of order A* in formula (4) and further to rewrite the formula obtained as a pair
of P.R. or D.R. type formulae.

2. Generalised P.R. and D.R. formulae
Since a formula of type (4) requires a solution of N? equations at each time
step, where Nh =1, it is only of use as a means of solving (1) if it can be re-
written as a pair of P.R. or D.R. type formulae i.e. a pair of formulae which
utilises the same points as the P.R. or D.R. formulae.

Considering first the points used by the P.R. formulae, we can write (4) as

82 1420 (m+d) d{bc—e) 2 e+2d (m)
) ( O b )“ bo k(6’+ d )“

AT b+ 2a (m+1) _ __ be 2 c-42e (m+3)
( 9% a )u - a(bc-ﬁe)k(éy_*— e )u

where 5?=a, and e¢?=cd. Next using the same points as the D.R. formulae,
(4) can be written as

o 142D\ wimsny_ be—d o (s (2d+e)—b(2¢40)\ o
( & b )“ % k(6”+ d—eb )“

s bt2a) min 4 (52 e+2d) m 1 xmi))
( 0 a )u a(a"+ d )u ak ¥

6)

where ¥2=g, and an asterisk again denotes an approximate value of # at a node.

Formulae (5) and (6) are the generalised P.R. and D.R. type formulae re-
spectively and formula (4) cannot in general be represented by (5) or (6). If
however, b%2=a, (4) can be written as the D.R. type formulae (6), and if in
addition e?=cd, (4) can be written as the P.R. type formulae (5).

3. The Optimum Formula
We now expand ug, W, X, Y, and Z as Taylor series in terms of # and its
derivatives at the node 2. The derivatives with respect to f are replaced by
du __ *u ?u Py Pu + ot u + fu
ot oa? oy2’ FYE dxt 2x20y? oyt
etc. from (1).

The expansions up to and including terms involving /## are

ug=u+rA+3rB+r2C+ D+ ;PE,
W=4u+ (4r+2)A+ (272 +2r+ 2 B+ (@4 +4r+1)C +

+EP+r L5+ ) D+ 28432+ S+ ) E,
X=4u+@r+10)A+ @272 +r+4) B+ @4 +21)C+

+EP PGt D @P i+ RN E,
Y=4u+424+§B+C+ 4D+ HE,
Z=4u+A+ 4B+ 55D,
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where
2 tu 4 0tu 74 O'u
4= h(8x2+6y2)’ B= h(@x“ +6y4)’ C=h ox2oy?
6 Bu 18 o 0%u o%u
D=k (W +_6ye), and E=M— 2 (W + 6y2>'

If these expressions are substituted into formula (4) with 2 =1, values of a, b,
¢,d, and e can be found which will eliminate w, A, B, C and either D or E.
However, a formula of type (4) is only of use as a means of solving (1) if it
can at least be written in the form (6). This will be possible only if 42=a. This
condition on the coefficients can only be satisfied if values of 4, b, ¢, d, and ¢
are obtained which eliminate #, 4, B, and C only and involve a parameter.
This parameter is then chosen to satisfy 4*=a. The coefficients which eliminate
u, A, B, and C are

g 37H1tP b 37t3+2p c— _ 207+4p
4 4P ’ 4
Qe _ 2rH1+p _ 7rE2p
ap ap
where p is a parameter. If b2=aqa, then p=—1(37+$£)2, and so the coefficients
become
__{r—%? I et ) _ (=92
T T I 2
de_ 9 (r—%) (r+3)
4(r+38)*° 2(r+%)*
The formula of type (4) with 2=1 and minimum truncation error which
can be written in the form (6) is thus
T v R e
(7) T T 2(+%) IR
__(r+%)? (r—8) (r+8) 5 _
A T =

. (72 70—) 6 O%u o8 u
The principal part of the truncation error is in fact 12 T3 # ( Py + 78 ) ,
which is an order 42 better than the original D.R. or P.R. formulae. It follows
also that if » is approximately —é_(%)T’ the truncation error may even be of

order h%. When r=1%, (7) degenerates into the well known explicit formula
ug=4tty+55 Y +3Z,

and so the method of alternating directions is inapplicable.
Formula (7) can now be written as the D.R. type formulae

— 2 .L * (m+1) —_ 7(7+%‘) 2 2 (m)
(8) ( o+ ’—%)u r+8)2(r—%) (6"+ r+%)“ '
(— o+ —-:2_—%) um D — E:ig: (5i+ yi%) um _ ((r %%))2 W D)
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and since the optimum coefficients satisfy e2=cd as well as b2=gq, (7) can also
be written as the P.R. formulae

I e LI
R & LA

4. Stability

The stability of the scheme (4) is analyzed by the normal procedure of as-
suming that there exists an error ¢, , at each mesh point ¢4x, 74y, n4t
¢t=1,2,....,.N—1;7=1,2,..., N—1;7n=0,1, 2, ...) where Ax=A4y=1/N. For
a linear problem with constant coefficients, these errors grow according to equa-
tion (4) with # replaced by e. If the error is now expanded in the form

& i n=0,8Innpx;sinTq Yy, p,q=12,...., N—1)
and substituted into equation (4) with » replaced by ¢, it follows that
(10) Onty _ 1 cd+-2ed(cosmp Ax-+cosng Ay)+4d2cosnp Axcosmq Ay

On d (14+2bcosmp Ax) (1+2bcosmg Ay)

if a="5?, the condition necessary for (4) to be written in D.R. form. If in
addition, e?=cd, (4) can be written in P.R. form and the numerater of (10)
factorizes to give

(11) Ongs _ _ 1 (et2dcosmp Ax) (e+2d cosmq Ay)
o d (1+2bcosmp Ax) (1+2bcosmq Ay)~

(
For the optimum formula (7), equation (11) becomes

)sm2 zpAx —1 2(7+%)sin2—%—1

npr

9n4+1 (
b 2 (7— L ) sin? ————
6

>

1\ . g Ay
I 2_~ 1777
—_—+1 2(7 6)5111 > +1

from which it follows that formula (7) is stable for all values of the mesh ratio 7.

5. Elliptic Equations

It is an old idea that provided u(x, v, {)=u(x, ¥, 0) for all £>0, where x, y
is a point on the boundary of the unit square, the steady state solution of
equation (1) is the solution of the elliptic equation
0%

o x®

(12)

_(),

subject to the boundary condition of u(x, v)=f{x, ) for x, ¥ a point on the
boundary of the unit square.

There is no certainty, however, that the difference equation which gives
the most accurate solution of (1) will also provide indirectly the best iteration
technique for solving (12) using the time step as a parameter. In order to
examine this point, we return to difference formulae of type (4). As shown
previously, such formulae can be written in P.R. form if 4*=a and e*=cd.
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In addition, these formulae represent (1) with a principal truncation error of
order #* if the additional conditions

4a+4b+ct4d+4e=—1,
(4r+2)a+{(4r+1)b0+2d+e=—7

are satisfied. These four relations between the five coefficients enable us, after
some simple manipulation, to obtain the values

a=>b?, b=0b,
e=—[E+Hr 1 d=—[20+Hr+ o
e=[2(6+3)7+0][40+ 37 —1].
If these values of the coefficients are substituted into (5), we obtain the
P.R. type formulae
a2 42D\ ey (14282 [(1420) r+blrk (s 1+2b ()
( % b )“ = b (6*+ (1+2b)r+b)u ’
. 14-2b (m+1) __ (1+2b)7+b 2 1+2b (m+3)
( O b )“ = (T 20k (6y+ (1+2b)r+b)u :
We now determine the value (or values) of the parameter b which will make
(13) the best iteration scheme for solving (12).
Following VARGA [5, pp. 214, 215], the spectral radius of the iteration matrix
implicit in (13) is

(13)

b - In 2
(T)=! max 1_4(’+ 2b+1)sm 2N
e\, 1<I<N-1 b . in
B ey '
If we put
(14) b=—_ Tl

2(r+i+1)°
where f is a parameter, the spectral radius becomes

1
"(*“—f“ﬁrj :
2 sin?

2N
o(;) ={ _max
1£I<N~1 H—(H— 11 )
2 sin? i
2N

This is now minimized as a function of the mesh ratio » {>0) and the result

1+fsin2—g——sin%(1+2f+fzsin2 —;—)*

(15) Min o(T,) =

1 +fsin2—]—7\t]~ -+ sin 77\? (1 +2f+4f2sin? —%)g
is obtained. For each value of f, (15) gives the optimum convergence rate, and
the value of » necessary to give this optimum convergence is
1 2 ginz 7\
(16) r¥ = - (1+2/+f sin N)'

sin —
N
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It should be emphasized that the above analysis depends on 7 being kept con-
stant during the iterations. When r is allowed to vary, and take the value 7#;
(1=1=<m), for each of m successive iterations, the situation is much more com-
plicated, and references to methods for selecting the best acceleration parameters
7, can be found in VArca [4], Topp [4, Ch. 1] and WACHSPRESS [6].

Returning to formula (16} it can be seen that #* is real if
(17) (Zcos2 2” ) <f<+ oo

This is also the condition for (13), with & replaced by f using (14), to be stable

for all ». The convergence rate given by (15) takes the value unity when f=
— (2 cos? T?\T—r’ and tends to zero, as f tends to infinity. For N =30, 100, and
1000, the convergence rates for various values of f within the permissible range
given by (17), are shown in

the Table. It appears that Table

the best convergence rate for 7

a given value of N is obtained N i ' o l . ‘ o o
when f is positive and as large

as possible. It can also be seen 30 | 0.842 | 0.811 | 0.696 | 0.386 | 0.0639
from the Table, that the origi- 100 | 0.950 | 0.939 | 0.897 | 0.750 | 0.413
nal P.R. formula (f=0) has a 1000 | 0.995 | 0.994 | 0.990 | 0.970 | 0.915

better convergence rate than

the optimum P.R. type formula (f=—%) derived previously to solve (1).
However the substational improvement in convergence implicit in (15) which

arises from the choice of large positive values of the parameter f may be ac-

companied by a certain loss of accuracy. In terms of f, using (14), equations

(13) become

(m+§):_ (1’*-—f)7*k 2 2 (m)
(18) ( %+ *-H‘)u (r*+f+1)2(*+)) (6"+ 7*—f)u
2 ymt — _ (=D )2 (s 2 (m+d)
(= 8+ i) = LR (8 4 2w,
where #* is given by (16) and % is arbitrary. Formulae (18) of course reduce
to the original P.R. formulae (2) if f=0 and k= — ii—tﬁ and to the optimum

P.R. type formulae (9) if f=—% and £ =1. The principal part of the truncation

(f+3)r*k h4(9414 u

2(r*4-f+1)2 oxt oyt
from (18), the formula

(= 8+ 5oy (= B4 o)

- e

error for (18) is —

). If, #™tY is now eliminated

(19)

is obtained. The iteration procedure described by (19) converges if ™tV
™ =y, for m sufficiently large, and so (19) reduces to

(20) [(8% +85) — (83 05) ] w =
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However, equation (12) can be replaced by
[(0%+83) + 5 (63 8)]w=0

correct to fourth differences, and so it follows from (20) that equations (18)
are most accurate when f=—3%, a result obtained previously, and that there
is a loss in accuracy when f is large. In fact as f tends to infinity, equation (20)
degenerates to

0;8=0,

which is no longer a difference approximation to Laplace’s equation. According-
ly a balance is required between the rate of convergence (an optimum when
f is infinite) and the accuracy of the process (an optimum when f= —3).

Finally, the convergence rates for various values of N and f given by (15)
will almost certainly be reduced when the region under consideration departs
from the rectangular (cf. DouGLas and PEarcy [2]).
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