
Numerische Mathematik 3, 398--412 (1961) 

Alternating Direction and Semi-Explicit Difference 
Methods for Parabolic Partial Differential Equations 

By 

MILTON LEES 

1. Introduction 

In previous papers [12], [13], [14] the author developed a difference analogue 
of the energy method for determining the stability of difference approximations 
to partial differential equations with variable coefficients. The purpose of this 
paper is to apply this method to establish the unconditional stability of two 
types of difference approximations to parabolic differential equations, the (im- 
plicit) alternating direction methods of DOUGLAS, PEACEMAN, and RACHFORD [3], 
[5], [15], and a new semi-explicit method. 

For the model problem, the first boundary value problem for the heat con- 
duction equation in a rectangular domain, the unconditional stability of the 
alternating direction methods was proved in [3] and [3]. The proof consists in 
showing, with the aid of Fourier analysis, that the yon Neumann stability con- 
dition [4], [11] is always satisfied. It  can be shown [1], however, that this 
method of proof cannot be extended beyond the model problem. 

With the aid of the energy method we prove that  the results in E3] and [6] 
can be extended beyond the model problem. We first treat, as a typical case, 
the heat conduction equation in a cylindrical domain with an essentially arbitrary, 
bounded base. Then we indicate briefly the extension to parabolic equations 
with variable coefficients. 

The second type of difference method we term the semi-explicit method, 
because it is an explicit method only for certain orderings of the net points. 
The idea for this difference method comes from the observation that there is 
a formal correspondence between parabolic difference equations and iterative 
methods for solving elliptic difference equations; the semi-explicit method cor- 
responds to the well known method of successive displacements [7]. 

The only other known example of an unconditionally stable explicit difference 
method is due to Do FORT and FRANKEL [6]. Their method, however, requires 
two lines of initial data to start the solution, while the semi-explicit method is 
self-starting. On the other hand, both of these methods involve a similar local 
truncation error, and they must be subjected to a mild mesh ratio condition in 
order to be consistent [11] with the differential equation being approximated. 

For other applications of the energy method to the stability problem for 
partial difference equations, see FRIEDRICHS [8], KREISS [9], LAX [10] and LEES 
[12], [13], [14]. 

In a paper to follow, the energy method will be applied to the problem of 
determining the rate of convergence of iterative methods for solving elliptic 
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difference equations. I t  will include, in particular, a solution to this problem 
for the alternating direction methods relative to an arbitrary domain. 

2. Notation and Definitions 

In this section we describe certain preliminary concepts, necessary for our 
formulation of the difference schemes. We denote by  {2 a bounded, open subset 

of Ew, with boundary g). The Euclidean length of a point x =  (x 1, x 2 . . . . .  Xu) C EN 
will be denoted by Ixl. Let h = ( h l ,  h 2 . . . . .  hx) C E  N have positive coordinates, 
and define Gh to be the set of all (net) points (i 1 hi, i 2 h 2 . . . . .  iN hN)C Ew the i s 
being integers, positive, negative, or zero. Two points x, y C Gh are called neigh- 
bors if I x - - y ]  = h i ,  for some i, i-----t, 2 . . . . .  N. The points x~Gh~X2 all of whose 
neighbors belong to ~ ,  the closure of f2, we denote by Q~. The points x C G~ --g?h 

with the property that  at least one neighbor belongs to Qh we denote by ~h. 

Finally, we put ~ h = Q h ~ h .  

If M is any subset of E N, we define ~(M) to be the collection of all real- 
valued functions defined on E N whose support* is contained in M. Clearly, 
~(M) is a real linear space for the usual operations. In particular, ~(Qh) is a 
real finite-dimensional linear space, with dimension equal to the number of 
points in .Qh. 

Let S =  [0, ~ )  and S~  For each positive number k, the time 
step, we put 

and S~ = Sk~ S ~ 

We shall approximate the solutions of differential equations by functions 
t--~u (t), defined on Sk, taking their values in ~(.Qh). 

If u C~(EN)  we define the linear translation operators E • as follows: 

E • (x) = u ( x ~  . . . . .  x i  • h~ . . . . .  XN).  

In terms of these we define the first order forward and backward difference 
operators: 

Vi u = h ;  ~ [E i u - -  u] 

and 
~ u = h71[u --  E - i  u] . 

Evidently, we have the relation 

(2.1) E - i I V i  u] = ~ u .  

The first order centered difference operator ~ is defined by 

(2.2) #~ u = ~- 2~. ~ [E i -  E -i] u. 

Difference operators of higher order are defined in the obvious way, by  repeated 
application of these formulas. 

* The support of a function ] is the closure of the set {xl](x)4=0}. 
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For a function t - + u ( t ) C W ( E N ) ,  defined in Sk(resp. S~), we use the notat ion 

u t (t) = k -~ [u (t + k) --  u (t)~ 
and 

u?(t) = k -~ Eu (t) - -  u (t - -  k)]. 

w h e r e  h N =  h 1 h e . . .  h N .  

1/~, .). 
The formula 

3. The Linear Space ~ ( ~ h )  
We provide ~(~h) with an inner product  defined as follows: if u, v ~ ( ~ h ) ,  

(u, v) - -  h N ~, u (x) v (x) ,  
xCGn 

Associated with this inner product  is the norm It"[I-- 

N 1 

defines another  norm for cg(Dh). 

Since ~(g?h) is finite-dimensional, these norms are equivalent;  tha t  is, there 
exist two constants  m and m 1 such tha t  

m[iup_<_ Ilu[l~ < m~llull e, 

for every u C ~(f2h). Of course, m and m 1 depend on the dimension of ~(Qh) and 
therefore on the (net spacings) h i . 

We m a y  assume tha t  ~'~h is contained in the rectangle 

R :  ar x i ~  bi, 

where a i and b i a r e  integral multiples of h i .  

L e m m a  1. / / u  ~cg(SQh) then 

mll~P < I[ull~, 

where m is the m i n i m a l  eigenvalue o] the Laplace di]]erence operator 

N 

(3.t) G ( u )  = Y, vi v~ u 
i = 1  

relative to the net region Qh, and 
N 

m=> 4 ~ ,hTes in~[  ~h, 

P r o @  The minimal  eigenvalue m can be characterized (CoURANT, FRIED- 
RICHS, and LEWY [2~) as follows: 

m = inf ~uJ]~ 
0 . . ~  ~/o,,) I luP  ' 

and therefore 

m < Ilu II; 

for any  u Ec~(Dh), not  identically zero. This proves the first par t  of the lemma. 
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Now let Rh=R~ where R ~ is the interior of the rectangle R. Denot ing 
by m(Rh) the minimal eigenvalue of z] h relative to Rh, we have 

m (Rh) = inf ]]u 11~ 
o , . ~  *r Ilu II ~ 

_< inf  I[~11~ 

~-- -m.  

Bu t  i t  is wel l  known ~7J tha t  
N 

m ( R h ) = 4 ~ , h ;  2sin 2[ ~hi ], 
i=1 L 2(bi--ar ] 

and this completes the proof of the lemma. 

L e m m a  2. I /  u C~(~2h) then 
N 

II,,I1~ ~ 4( Z h:2) Ilull 2. 
Pro@ We have tha t  

xEGh 

~< 2 h N ~  Eu2 (x) + E -~ Eu~ 1 (x)~ 
xGG~ 

=411ulP. 
From this we obtain 

N 

i = 1  

which is what  we set out  to prove. 

Remark. From lemma 1 we see tha t  m is bounded away from zero, inde- 
pendent ly  of h: 

N 

m >= 4 3'  (hi - -  a i ) -2 .  
i = l  

On the other hand, m 1 is singular at h =  0. This is to be expected since differen- 
tiation is an unbounded operator in L 2. 

4. Difference Methods 
In  this section we describe the difference methods for the first boundary 

value problem for the parabolic equation 

(4.1) OU ~ O~U (x~D, t > 0 ) .  
t = ox~ 

i = 1  

The function t->U(t)Cc~(~), for t>--0, is assumed to be sufficiently smooth and 
U(t) C CP(~) for a suitable integer P.  

A function t-+u(t) CW(.Qh), defined for t CSk will be called admissible if 

u (0) = U(O), and u = U on ~'2h • S o. In general, U is not known in ~h • S~ 
so that  we make the assumption:  there exists a null sequence {h a} of net spacings 

such tha t  ~ f i  C ~ .  We always assume tha t  h belongs to the sequence {he}. 
Nmner. Math. Bd. 3 28 
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With this assumption, an admissible function is uniquely specified in the com- 
plement of Dh • S~ (relative to Gh), in terms of the initial and boundary values 
of U. 

In the semi-explicit difference method for (4.1), one determines an admissible 
function t--->u(t) such that,  in X2h• the following difference equation is 
satisfied: 

N 

(4.2) u, = A~(u)  - -  k E h ;  1 ~ us,  
i = 1  

where/1 h is the Laplace difference operator defined in (3.1). 

The classical explicit difference equation 

(4.3) Us = Ai, (u) 

is known to be conditionally stable [7J, the condition being that  the mesh ratio 

N 

2 = k Y, h ;  ~ 
i = 1  

satisfy 22=< t. We shall prove in section 5 that, by adding the "stabilizing" term 

N 

- k Y, I*; 1 ~ Us 
i = 1  

to (4.t), we obtain an unconditionally stable difference equation. 

I t  is not difficult to verify that (4.2) is an explicit difference equation when 
the net points in s h are suitably ordered, for example, lexicographically. 

A straightforward application of Taylor's theorem shows that U satisfies 
N 

the difference equation (4.2) to within a term of order k + [ h l 2 + k  Y, h71. There- 
fore, Ell~ (4.2) is consistent with (4.1) if i=1 

N , - 1  

k = o ( l ) ( X h ;  1) , 
\ i ~ l  / 

as h-+0.  

We now turn to the alternating direction methods. In the first alternating 
direction method for (4.t), one determines an admissible function t-+u(t) such 
that 

N 

k -~[ .~ ( t )  - u( t  - k)l -- ~ ~ u")(t) + Y, ~ ~ u(t  - k), 
i - - 2  

k -1 [u (i+11 (t) - -  u (it (t)~ = Vi+l ~ - 1  u(i+ll (t) - -  ~. ~1 ~ 1  u (t - -  k ) ,  

for i = t ,  2, . . . ,  N - - 2 ,  and 

k -1 [u (t) - -  u (N-l )  (t)l = VN Vs. u(t) - -  Vs. VN u (t - -  k ) ,  

where the auxiliary functions t - + u  (i) (t) C~(~h) , defined for t 6 S~, are such that  

u (0=u  on ~h • SO. We assume, of course, that N=> 2, otherwise the method is 
undefined. 
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This difference scheme, for N<=3, was investigated in [5], where it was 
shown that  the operation taking u (t - -  K) into u (t) involves the inversion of N V p  
tridiagonal matrices, where p is the dimension of ~(~Qh). 

Following DOUGLAS and RACttFORD, we eliminate from these equations tile 
auxiliary functions u (i). Adding the equations, we obtain 

N 
(4.4) ur = V,~- VN u + ~, Vi Vi u (i). 

i=1 
From the last equation 

(4.~) U (N-l) = U - -  k VN VN ~t-" 

Similarly, solving the next to last equation for u (N-~), we find tha t  

U(N-2)(t) = u(t) - -  k PN-1VN l U(N-1)(t) + k V ~ - I  Vs, j u( t  --  k), 

which, in view of (4.5), becomes 

U (N-2) = Z{ - -  K 2 ~N VN/4~" @ K S VN VN V N - I  ~TN-1 U~-. 

I t  is clear that ,  by  continuing this process of elimination, we can determine 
the functions u (~) as a linear combination of u and certain of its difference quotients. 
When the resulting expressions for the u (i) are inserted into (4.4), we find that  
u is a solution of a single difference equation of order 2 N +  1 : 

N 
(4.6) ur = ~]h (") @- ~ ( - -  1)/'+1 kiDJ(ur) ' 

i=2 

where the difference operators D i are defined by  

Dr(u) = E* ~, V,. ff~ V~ ... ff~, K.~u, 

and the sum ~ *  is extended over the (IN.) different j'-tuples (il, i2 . . . . .  ii) formed 
from the first N positive integers. 

The usual argument  involving Taylor 's  theorem shows that  U satisfies (4.6) 
to within a term of order k +  I hi Hence (4.6)is  consistent with (4.t). 

For the second alternating direction method we restrict ourselves to the 
case N =  2. The method consists in determining an admissible function t-~-u(t) 
such that ,  in D h x S ~  

2 k  1 ~7) (X) - -  u ( t  - -  k)] = V1 ~lTJ(t) / L V2 ~72 q/g (t - -  k) 

and 

2k-~[u(t)  --  v(t)] = ~ Vl V(t) + ~ V2u(t) ,  

the auxiliary function t - ~ v ( t ) C ~ ( ~ h ) ,  defined for t C S  ~ being such tha t  u = v  

on Dh • S~. 
Following PEACEMAN and RACHFORD, we eliminate the function v between 

these equations and find that  u satisfies the fourth order difference equation 

k h ~ 
(4.7) u r = Ah(u) - -  ~ A h ( u r )  - -  g -  ~ 171 V2 V2ur. 

As before, we see tha t  U satisfies (4.7) to within a term of order k2+[hl2.  
Num'r. Math. Bd. 3 28a 
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In the following sections we shall prove that these difference equations are 
unconditionally stable in the following sense: if t-~u(l)C~(f2h), tCSk, is a 
solution of (4.2), (4.6), or (4.7), then 

[I-(t)[I ~ cl[~(0)l[,  
�9 N 

where C depends only on N and the mesh ratio 2 : k (  ~hi~ -i).  
i = l  / 

5. Stability of the Semi-Explic i t  Method 

Before stating the main theorem of this section, we prove several lemmas. 
These will be seen to be difference analogous of the usual quadratic differential 
identities and inequalities which are basic to the energy method. 

Lamina 3. The operators [7. and - - ~  are adioints /or [unctions in ~(Qh); 
that is, /or any v and w in g(Oh) 

(v, ~ w) = - (F, ~, ~) 

Proo/. 'We have the identity 

(5.1) v ~ w = ~ [ E - i ( v )  wl  - -  E - i ( ~  v) ~.  

By (2.t), E - i ( ~ v ) :  i~v. Since v, wC .~(Qh), 

Z 17,-[E -~(v) ~] = 0, 
xEGh 

and we conclude from (5.t) that 

hN Z v [7i W = --  hN Z (Vi v) W, 
xEGh xEGh 

which is equivalent to the conclusion of the lemma. 

Lemma 4. I / u  C~(Qh) then 

(u, ~h (u)) - -  - Ilu II~. 

Proo/. Taking v----- u and w :  l~u in lemma 3, we find that 

(u, ~ ~ u )  : --  tl~ul[ 2, 

from which the desired result follows, by summation with respect to i. 

Lemma 5. For any /unction t-+u(t) Ccff(~2h), tC SK, we have 

2 (u, ut) = (11 u II"), - -  k II u, I1' 
and 

2 (u, ur) -- (llu II")r § k Ilur ?- 

Proo/. These identities are immediate consequences of 

2 u  u, = ( u ~ ) , -  k (u,)~ 
and 

2 u u r - - ( u % +  k ( @ .  
(See [14].) 
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L e m m a  6. I /uE~(Qh)  then 
N 

Proo/. From lemma 3, with v = w = u ,  we obtain the relation 

(~, ~ ~) = - (6  u, u). 

Since ~ --  I~ = h, 17,. 6 ,  we conclude from this tha t  

2 (., 6 u) = - h, (u, V~ 6 u). 
Consequently,  

N 

Ilulll ~, 
b y  lemma 4. 

L e m m a  7. For any /unction t--->u(t)CT(Oh), tC Sk, we have 

2 (u,, & (~)) = - ([[u fl~), + k llu, 11,2 

Proo/. From lemma 3 

2(u,, 17i ~ u )  = - -  2 (17/ut, I~u) 

- ([16 ullg,  + k ll6,,,ll=, 

by  lemma 5. The result follows by  summat ion  over  i. 
N 

L e m m a  8. Let /z= ( ~,h72) . Then /or any /unction t-+u(t)~c~(Oh), t~ &,  
~i=l / we have 

N 

where e>O is arbitrary. 

Proo/. From lemma 3 
N N 

(U, Z hi-1Vi u,,) = (.,, ,~ hi117i u) �9 
�9 i=1  ' i = l  

Applying Schwarz '  inequali ty to the right side of this, we obtain 

N N 
.(U'i=IZ h i l  V / u ' ) S  ]lUlll i~ lh i -1  17i u 

N 

s Y llu, llh;'li6 ull, 
i = l  

by the triangle inequality and the fact that II ~ "  I1 = l[ ~ u [i 
Using Schwarz '  inequal i ty  again, we find t ha t  

N 

(u, Z h; ~ ~ u 0 S Ilu, lf~ Ilu I1~ 
' i=1  



406 MILTON LEES : 

To the right side of this inequality we apply the generalized arithmetic-geometric 
mean inequality: 

(5.2) 2abe<=a2+ J-b ~ (e > 0), 

to obtain the desired inequality. 

Theorem 1. Let the/unction t-->u(t) C~(f2h), t C Sk, be a solution o/ the semi- 
explicit di//erence equation (4.2). Then 

t--k 
ll- (t)It s + k E II u (~)II, ~ < (1 + 2 ~ (i + ~)) Ir- (o)?, 

tl=O 

which implies that (4.2) is unconditionally stable. 

Pro@ The difference equation (4.2) is satisfied only in Qk• Sk. But since 

u(t) C~(s u vanishes on ~2 h • and hence we may form the inner product 
of (4.2) with u to get 

N 

i=1 

valid for t C Sk. From this and lemmas 4, 5 and 8, we obtain, after multiplication 
by 2, the inequality 

(5 3 )  (llu ?), - k flu, tl 2 + 2 If-I1~ < ~ k ~  [1", II ~ + 

+ ' k~rrull~. 

If we choose e so that  k / z =  s, then (5.3) becomes 

(5.4) (llull~),- k 0 + / ~  ~,~)llu, ll~ + IlUlll ~ < o. 

Similarly, we may form the inner product of (4.2) with u t to obtain 

N 
]{~t [I 2 =  (Ut, ~h(U)) -- k (ut,i~=lh~l ~i ~'t)" 

In view of lemmas 6 and 7, this becomes 

2 II.,lt ~ = - (llull~),. 

When this result is combined with (5.4), we obtain the inequality 

k (1+ k e  ~) (Hul[~),+ [[u[t~ < O. 

Since 
t--k 

k E (llu?), = I lu(t) l?-Ilu(o)l? 
~1=0 

we have from this that  

' -~ k 0 +  ~)[lu(o)ll~, tlu (t)!l ~ + k ~ ,  Ilu(~)ll~ --< Ilu(o)? + 
~/~0 

since k/~2= 2. The desired result follows by applying lemma 2 to the last term. 
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If  we denote by  e the error U - - u  for the semi-explicit  method,  then e (0 )=  0, 
and e(t) C~(~2h) for tC Sk. Also, e satisfies, in f2h• k, the difference equat ion 

N 
e t = s h (e) - -  k ~. h? 1 V/et + T ,  

i=1 

where the function t-+T(t)C~(Qh) is the local t runcat ion error. I t  satisfies 

t--K r N 
(h ~011Z (i])112)~= = O ( k  @ [ h l 2 - ~ k , = l  s h;1)' 

where the constant  implied in this relation is independent  of h, h and  2. 

The following result can be proved along the lines of theorem 1. 

T h e o r e m  2. The error e= U - - u  /or the semi-explicit method/or (4.1) satisfies 
the inequality 

t--k t k 
lie(t)? + k y, I[e(~)Ill < M k  Y, IIr(~)?,  

t/--O ~/--0 

Pro@ 

where 

(5.5) 

N 
M =  2 + k + 2 k  s~,h? ~. 

m i=1 
As in the proof of theorem 1, we obtain  

(1[ e ?) ,  - k II e, I? + 2 II e [1~ -<- ~ h , .  It e, II 2 + ~ h ~ II e [l~ 

+ 2 (e, r ) .  

In  view of Schwarz '  inequal i ty  and (5.2), with e replaced by e', we have 

' liT[?. 2 (e, T) _< ~' Jle[? + ,  

According to l emma 1, m ]lel] 2 ~ llell~, s o  tha t  

2(e, T)=> m- Ilel[~ -t- ~ [[TII 2, 

and when this is combined with (5.5), we obtain 

(l ld)~ - k(t + ~ h~)ll e ,?  + (2 - k 

< ! 
= ~ t I z l [  ~ �9 c 

We now choose e and e' so tha t  2 k / , = s  and 2e '=m.  Then 

(5,6) ( l le l t2)t-  k(t + 22)[let[p+ [lell~ ~ 2 ilyll,,. ' m 
As before, we have  

lie, 113 = - ~ (tlell~), + (et, r )  

which, after  invoking Schwarz'  inequality,  becomes 

Ire~ll 2 __< _ (llell~)t + Ilrlt ~ 
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This combined with (5.6) gives 

(ll~llg, + k0 + 2~)({l~ll~), + II~ll, ~ < [ ~ + k0 + 2~)] Ilrll~. 

from which the desired result follows, since ll~(o)l[ = 11~(o)1[~= o. 

6. Generalizations 
We now indicate briefly how the results of the preceding section can be 

extended to parabolic equations of the form 

N 
i~ = 0 (ai i (x , t )OU) (6.1) OU __ i, "= 

for x C Q  and 0< t=< t  o. We assume that  ai i=ai i  and that,  for xCsQ, O<=t<=t o, 

N 

q,l~l,__> ~, ~';(x, t)~,~; = el#I*, 
i , j = l  

where ~ is any real N-vector and ~, ~ >  0. 

We approximate (6.t) by the semi-explicit difference equation (see (2.2)) 

N N 

-,  = X P, (a'; p , . )  + y:, ~ (~ i~  ~. ,,) _ 
(6.2) i=1 j#i 

N 

- k y (o~ + ~ hr ~) ~ u,, 
i = l  

where 

and 

a " ( x , t ) - - a " ( x l , . . . ,  x~+ hi2 ' " "  XN,t) 

(6.4) 

where 

~ai i  
Q2=sup_ Oxi " 

xEQ 
O<t<t o 

Denote by Lh(u ) the sum of the first two terms on the right side of (6.2). 
I t  can be shown that  

(6.3) (u, g~ (.)) _>_ -- [5 +0( I  hl)l Ifull~. 
for all u C@(X2~). 

Similarly, for any function t---~u (t)Cfg(Qh), 

(u. L~(u)) <__ (A,,) + o3l[-II~ + 
k 

+ ~ M +  Ih151)Ilu,?. 

Qs = sup_ , 
xEf2 

O~t<to 

and A u is bounded, both above and below, by  a constant multiple of 

Et + o ( k  + I hl)l II- IL~. 
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With the aid of the inequalities (6.3) and (6.4) the arguments employed in 
theorems I and 2 can be carried over to prove that the semi-explicit difference 
equation (6.2) is unconditionally stable, provided k and ] h/ are sufficiently small. 

7. Stability of the First Alternating Direction Method 

For ~'> 1 put 

II~)tJ = (Z* l[~ v , .  ~,ul!2)~, 
for u @g(SQh). Then we have 

Lemma 9. I /  u C~(Dh) then 
N N 

(u y. ( - a )  J§ kJ D; (u)) = -- E kS Ilu II~. 
' ] = 2  i = 2  

Pro@ From the adjointness of the operators ~ and -- ~ we have, for 1 _<= r < i ,  

(u, ~,p,~ . . .  ~ ,p, ,u)  = - ( ~ ,  v,1P,,.., v , . . .  v,, ~ ,u) .  

From this we obtain the relation 

(,, F,P,, ... ~, ~ ; u ) =  ( -  1)J [I ~,, ... ~,u15 

Summing both sides of this relation over the (N) i-tuples, we find that 

(u, D;(u)) = (-- t/JI~ilL 
The desired result follows from this by multiplication by ( - - t ) i+lk  ~ and sum- 
mation over i. 

The arguments of lemmas 7 and 10 can be employed to prove the 

Lemma 10. For any /unction t--~u(t)C~(~h), tC S.~, we have 
N 

2(u ( -  x h;(Itutl )  
'j=2 ' i=2 

N 

- )2 k ~+I Iiu~ll~- 
j=2 

Theorem 3. / ]  the /unction t-+u(t)~W(f2h), tC Sk, is a solution o/ the di/- 
/erence equation (4.6), then 

t 
llu (t)l[ ~ + 2 k E llu (~)ll, ~ < c II-(0)[5 

where 
c =  (1 +4X) ~ -  4X. 

Hence, the first alternating direction method is unconditionally stable. 
Pro@ Since u(t)CW(~2h) for each tC S~, we have 

N 

(U, UT) = (U, Z~h U) + (~,j~=2(-- t)J+l kJDJ uT ) , 

valid for t~ S ~ Using lemmas 4, 5, and t0, this becomes 
N N 

(1[~' [1~)~ + k Ilur? + 2 l[u Jl~ + E k; 01u II~)r = - Y~ h;*l II~*r II~. 
i=2 i=2 
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Dropping the second term on the left and the negative term on the right, we 
find that  

t N 

(7.2) Ilu (t)[l= + 2k s Ilu (~)11~ < Ilu(o)ll = + ~ k;llu (o)ll~. 
n = k  i=2 

But,  from lemma 2, we find tha t  

h; it u (o) lt~ = k; 2 "  IIP,, �9 �9 �9 P,; u (o)II ~ 
h72 < 4; h~ llu (o) l? 2* h~. . .  , ,  

< 4 ' l l u ( o ) l ? ~ ( ~ ) ,  

where 
zJ = max  k hi  ~. 

i 

Therefore, 
N 

kJllu(o)llN ~ E(I + 4~)  N -  4NA --  1~ Ilu (O)IP 
j = 2  

-<- [(1 + 42) N --  I - -  4211[u (o)FI ~, 
and this, together with (7.2), completes the proof of the theorem. 

As before, we can prove the 

T h e o r e m  4. I[ e = U -- u is the error/or the/ irst  alternating direction method, 
then 

t l 
1 

tl e (t)l[ ~ + k ~ ,  Ite (~)ll~ ----< -m- k F,  I11"(~)11 ~, 

where t---> r(t) C ~'(~)  is the local truncation error, and T = 0 (h~ + l  hp). 
Similar results can be proved for parabolic equations of the form 

:r o .. oU~ 
au _ V {a"~x t ) e x ;  (7-3) 0t i z l a x i \  ' ' )" 

8. Stabili ty of the Second Al t e rna t ing  Direct ion Method 

L e m m a  11. For any [unction t-->u(t) C~(Qh), tC Sk, we have 

2 (ur, ~h u) = - (lluI[,~)r- k Ilu~ll~. 
The proof is similar to tha t  of lemma 7 and therefore will be omitted. 

T h e o r e m  5. / /  the /unction t--->u(t) C~(Dh), tC Sk, is a solution o/ the di/- 
[erence equation (4.7), then 

t 

flu (t)? + 2k ~ Ilu (~)11~ < [4r - 82 + (1 + 42)21 Hu(o)lt ~, 

where ~ = ~  i/ 42<=1 and r  i! 4 2 ~ 1 .  Hence, the second alternating 
direction method is unconditionally stable. 

Pro@ From (4.7) we have, as before, that  

(u, ur) = (u, A~ u) - s  (u, Ah ur) 

k~ (u, ~ ~ V~ g~ur)" 4 
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In view of lemmas 4, 5, and t0, this becomes 

(llu [12)r + k llur l[ 2 + 2 [lu rl~ --  k (llu11~)r + 

k 2 k2 k 3 
+ 2 l l~l l~-  r (l!ullN)r- ~-tlurllN. 

T a k i n g  the inner product  of (4.7) with ur, we find that  

1 k s 
(8.2) I l u r ? = - 2  (ll"[[~)r- 4 Jt-~ll~. 

W e  now multiply (8.2) through by  2~k  and add the result to (8.t) to obtain 

(8.)) ([lu [12)r § k(2~ + a)Ilur II .~ + 2 Ilull~ + (r -- I) k(llu[l~)r 
< ks u ~ kS 
= 2-11 ~l l , -  ~-(llu[l~)r. 

According to lemma 2, 

k~ Ilur I/~ < 4x t1~'~17, 
so that  (8.3) implies tha t  

k2 
(l[ulP)r + (2r + 1 --  42) k [lur[t' + 2 I[utl~ + (~ --  ; )  k (llu[l~)r + - 4  (![ull~)r =< o. 

In  view of the definition of ~, we have from this tha t  

t 

ii,,(t)ll2 z II ,(0)ll + '2)kll,,(0 ll: + II.(0)ll. 

and this, with the aid of lemma 2, gives the desired result. 

Similarly, we have the 

T h e o r e m  6. I / e  = U --  u is the error/or the second alternating direction mahod, 

then 
t t 

V(t)ll~ + k ~ Ile(~)ll~ < (; ,  +~)k ~ IIr(~)ll 2, 
tl=k tI=k 

where ~ is defined in theorem 5, and t--~ T(t) C~(Dh) is the local truncation error: 

r = O ( k ~ §  

Similar results can be proved for the parabolic equation (7.3). 

The work of this paper was done at the AEC Computing and Applied Mathe- 
matics Center, Institute of Mathematical Sciences, under Contract AT (30--1)--1480 
with the U.S. Atomic Energie Commission. 
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