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A b s o l u t e  and m o n o t o n i c  n o r m s  

By 

F. L. BAUER, J. STOER and C. WITZGALL 

Studying the mechanism used to derive certain inclusion theorems [2] and 
exclusion theorems [1~, one observes tha t  the following proper ty  of certain bound 
norms is essential: the least upper  bound of a diagonal matr ix  is the maximum 
of the moduli  of the diagonal elements. In  this paper, we characterize the class 
of these least upper bound norms and the class of vector norms to which they 
are subordinate, and show some of its properties. We complete some results 
given already in ~1~ and prepare the basis for the following paper I3j. Some 
of the concepts used in this paper have been considered in the general context  
of partially and lattice-ordered vector spaces (KANTOROVIC [9], FREUDENTHAL [7], 
BIRK.O~F [5~). 

1. 

Let norm(x) denote a norm I in an n-dimensional complex coordinate space. 
Let  I xl denote the vector the  components  of which are the moduli  of the com- 
ponents of x. Inequalities between vectors are understood to hold component-  
wise. We then call norm (x) 

(1.t) monotonic 2 

if 
[ xl --<-- l Yl implies norm(x) ~ norm(y) .  

Further,  a norm is called 

(1.2) absolute 

if it depends only on the moduli  of its components,  tha t  is, if 

norm(x) = n o r m ( l x l )  for all x. 

I t  is well known (~10~, [81) tha t  every  norm in the space of column vectors x 
induces a dual norm 

(I .3) norm D (y~) : = max Re (yH z) 
**0 n o r m ( x )  

in the dual  space of row vectors yH. 

Theorem 1. The dual o/ an absolute norm is again absolute. 

1 We require only weak homogenity, that is, norm (ex)=c~norm(x) for e ~ 0 .  
2 FIEDLER and PTAK [6] u se  a slightly different notion of monotonicity. Compare 

also (3.t). 
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Pro@ F o r  e v e r y  yn a n d  x the re  ex i s t s  a v e c t o r  ~ = ~ ( x ,  y) wi th  I~] = I xl  
such  t h a t  yH~=lylH I x I. W e  h a v e  

n o r m  D (yH) = m a x  Re (-yH-x) > m a x  R e ( y n ~ )  
x*o norm(x)  = x+o norm(~) ' 

b y  r e s t r i c t i n g  the  set .  T h e n  Re (yH2) m a y  be  r e p l a c e d  b y  [yH[ ] x I, a n d  n o r m  (2) 
b y  n o r m ( x ) ,  s ince th i s  is a n  abso lu t e  n o r m .  T h u s  

normD(y n) > m a x  IyHI [xl 
= x*0 norm(x)  " 

On the  o t h e r  h a n d ,  

a n d  there fore ,  

(t .4) 

Re (YH x) ly H ] Ix[ m a x  < m a x  
~ . a  norm(x)  = x . o  norm(x)  ' 

normU(y H) = m a x  ]yH[ ]x[ 
x4:o norm(x)  " 

Thus ,  normU(y H) d e p e n d s  on ly  on  ]yH], q.e .d .  

A f t e r  th i s  p r e p a r a t i o n ,  we p r o v e  

T h e o r e m  2. An absolute norm is monotonic and vice versa. 
Pro@ Le t  n o r m ( x )  be  abso lu te .  T h e n  i t s  d u a l  is a b s o l u t e  t oo  ( theo rem 1), 

a n d  f o r m u l a  (1.4) a p p l i e d  to  n o r m  D (u H) gives  

(t .5) n o r m ( x )  = m a x  luHI txl - -  !uHI Ixl 
u*o norm D(u n) -- norm D(~H) 

for  some m a x i m i z i n g  gH. N o w  if]xl__--<[yl, we h a v e  

n o r m ( x ) <  lunl[Y[ < m a x  lunllyl = n o r m ( y ) .  
= normD (7~u) - -  ~ , o  norm ~ (u tt) 

A s s u m e  t h a t  n o r m  (x) is m o n o t o n i c .  P u t  y :  = I xl .  T h e n  I x] = [y], which  impl i e s  
n o r m  (x) ~ n o r m  (y) = n o r m  ([ x I), b u t  also n o r m  (y) = n o r m  ([ x [) ~< n o r m  (x). The re -  

fore, n o r m  (x) = n o r m  (I x I)" 
In  p a r t i c u l a r ,  a m o n o t o n i c  n o r m  is a l w a y s  s t r i c t l y  h o m o g e n e o u s  ~. 

2. 

L e t  n o r m i ( x )  be a n o r m  in t he  n -d imens iona l ,  a n d  n o r m n  (y) a n o r m  in t he  
m - d i m e n s i o n a l  c o m p l e x  c o o r d i n a t e  space.  T h e n  

normi i  (A x) 
(2.1) lubn ,  I (A) : = m a x  

x . o  norm I (x) 

def ines  a n o r m  in the  l i nea r  space  of m • n - m a t r i c e s  A,  which  is ca l led  the  

(2.2) l eas t  u p p e r  b o u n d  n o r m  

s u b o r d i n a t e  to  n o r m i ( x )  a n d  n o r m n ( y ) .  B o t h  n o r m s  m a y  be  iden t i ca l .  The  
fo l lowing  t h e o r e m  refers  to  th is  case.  

T h e o r e m  3. n o r m  (x) is absolute/monotonic i/ and only i] ]or the subordinate 
bound norm, 
(2.3) lub  (D) = m a x  ]du[ 

holds/or any diagonal matrix D = d i a g  (dii). 

a Tha t  is, norm (cr = ] 0~] norm (x) is t rue  for every  ~. 
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Bound norms with  p rope r ty  (2.3) have  been called axis or ien ted  in a previous  
paper  [1]. 

Pro@ IDx[ <= (max  Id,,I)lx] is t rue  for any  x. If n o r m ( x ) i s  monotonic ,  

then  norm (D x) =< (max  ]d, i t ) n o r m ( x  ) for every  x, i.e., 

lub (D) ~ m a x  I d . I .  

But ,  since 4 lub (D) -->ld.I for all  i, 

lub (D) => m a x  I diil 
$ 

and  therefore (2.3) holds. 

For  each x there  exists  a d iagonal  m a t r i x  D x such tha t  

x = D.[x[ and [Dxl = I .  

Now, if (2.3) holds for every diagonal  ma t r ix ,  we have  

norm (x) =< lub (D.) norm (] x I) = norm ([ x I) 

norm(Ix[) < lub (D]*) norm (x) : norm (x), 

and  therefore,  norm ( x ) = n o r m  (Ixl). 
3. 

The bound  norm lubli, i (A)  of two monotonic  norms is not  necessar i ly  a 
monotonic  norm. Indeed,  the  eucl idean norm is a monotonic  norm, bu t  the  
eucl idean bound  norm is not.  However ,  mono ton ic i ty  holds in a weaker  sense. 

We call  norm (x) 

(3.t) monotonic  in the  posi t ive o r than t  

if 
0 --< x ~< y implies  norm (x) _< norm (y). 

T h e o r e m  4. The bound norm lubn,  i (A) o/ two absolute norms is monotonic 
in the positive orthant. 

Pro@ We have  for 0 < A  

norm n(Ax)  __ normlI ( ldx l )  < norm n (A]x l )  
normi (x) normi (]xl) - -  normi (Ixl) 

Therefore,  an x0>=0, x 0 4=0 exis ts  such tha t  

lubn, i (A) = m a x  n~ (Ax) _ normli (A Xo) 
x . o  norm I (x) norm I (x0) 

If  n o w  o_< A _< B, then  I A x o [ ~ I B x 0 ], and  therefore,  nor ton (A x0) =< norton (B xo), 
o r  

normn(B x) lubn, I (A) < n~ (B xo) < m a x  - -  lubn,  i (B). 
= normi(xo) - -  x . o  normi(x) 

A n y  norm tha t  is monotonic  in the posi t ive  o r than t  coincides in tha t  o r t ha n t  
wi th  an absolute  norm.  Indeed,  para l le l  to theorem 2, we have 

4 In general, let A x =  ,~x, x 4=0. Then norm (x)> 0, and for a strictly homogeneous 
norm, [ A I norm (x) =< lub (A) norm (x), tha t  is, I A I ~ lub (A). 

19" 
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Theorem 5. norm (x) is monotonic in the positive orthant i / a n d  only i/ 

/ (x )  : =  norm(Ixl) 
is a norm again. 

Proo/. Obviously,  [ (x) is definite and (strictly) homogeneous for any  norm (x). 
Moreover, if n o r m ( x ) i s  monotonic  in the posit ive or thant ,  I x + y ]  __< [ x [ + ] y  l 
implies l ( x+y )=norm([x+y l )<=norm( l x ]+ ly l )  , and from the convexi ty  of 
norm (x) it follows tha t  

l (x  + y) < norm (ix I + lyl) < norm (Ix[) + norm (]y[) = / ( x )  + / ( y ) .  

This proves  5 one half of the theorem. The other  half is an immedia te  con- 
sequence of theorem 2 since ] (x), if it is a norm, is an absolute norm and coincides 
with norm (x) in the posit ive or thant .  

Since lubli , I(A),  subordinate  to  two monotonic  norms,  is monotonic  in the 
posit ive or thant ,  lubli, i (]A[) is a norm, too. Moreover 

(3.2) lubli, i (A) =< lubli, i ([A[) 

holds, since IA x[ =< [A[ ]x[ gives 

normli  (A x) ~ no rmn  ([A[ Ix [) =< lubli, i (IA[) normi (x). 

, 

E v e r y  norm satisfies together  with its dual  norm the H61der inequal i ty  

(4.1) norm (x) norm D (yn) ~ Re (yn X). 

We call (x, yn) a dual  pair  if equal i ty  holds in (4.t). For  every vector  x there 
exists a dual vector  yn such tha t  (x, yH) are a dual  pair. 

I f  norm (x) is s tr ict ly homogeneous we have  

(4.2) norm (x) norm D (yU) >= ]yH X 1. 

But,  the following even stronger  version of the H61der inequal i ty  is val id for 
absolute norms, 

(4.3) norm (x) norm D (yU) >= l yHi i xl.  

T h e o r e m  6. norm(x)  is absolute~monotonic i/ and only i] the strong version 
(4.3) o[ the H6lder inequality holds/or every pair o[ vectors x, yH. 

Pro@ Obviously,  

norm(x)  = m a x  Re(yHx) ~<~ m a x  ]yH] ]x] 
y*0 normO(yU) --y4:0 normO(yn)" 

Now the strong H61der inequal i ty  (4.3) implies 

norm(x)_> m a x  [yU] Ix] 
- -  y4:0 normD(y n) 

and therefore, 

norm(x)  ----max lYH[ IX] 
yaeO normD(yIt) " 

5 This proof is essentially the same as given by OSTROWSKI [11] in the more 
general case of compound norms. 
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Hence, norm(x) depends only on ]x]. On the other hand, if norm(x)  is absolute 
then by  theorem t its dual is absolute, too. Therefore 

n o r m  (x) n o r m  D (y") = n o r m  (I x I) n o r m ' ( L y " l )  _--> l Y"l Ix1 

holds for arbi t rary  vectors x, yn, q.e.d. 

I t  is plain tha t  versions (4.2) and (4.3) of the HSlder inequali ty are both-  
sided sharp. Indeed, for dual pairs (x, yH) we have in case of strictly homo- 
geneous norms 

(4.4) norm (x) norm D (yH) = yH X =- [yn X I' 

and in case of absolute norms 

(4.5) norm (x) norm D (yH) __ yH X = [y/~[ IX l" 

Note, tha t  equali ty in (4.3) or (4.2) does not  imply equali ty in (4.1). Thus it 
must  be remembered tha t  we define duali ty of vectors with respect to (4.t), 
i.e., a dual pair  of vectors is required to realize equali ty in (4.t). 

5~ 

In  this par t  we shall s tudy  properties of vectors which are a dual pair with 
respect to an absolute norm. Then the strong HSlder inequali ty (4.3) holds 
and implies (4.5). This leads at  once to 

Theorem 7. I!  norm (x) is absolute/monotonic, then /or every dual pair (x, yH), 
X> 0 implies yH>= 0 6. 

If  some components  of a nonnegative vector x vanish, then the corresponding 
components  of some dual yH m a y  be negative or not even real. But  if so, then 
lyHI, too, is dual to x since 

norm (x) norm h (] yHI) = norm (x) norm D (yH) ~ l yHI IX] = Re (1 yHIx ) . 

We m a y  sharpen this result. 

Theorem 8. I] norm(x) is absolute~monotonic, then /or each nonvanishing 
x>=O exists a dual ~H>=o such that x i = 0  implies y i = 0 .  (xi and ~ denote com- 
ponents o/ x and ~n.) 

Proof. Choose any  dual yH. Consider the vector  ~H the components  of which 
vanish if the corresponding components  of x vanish, and which equals {yn I 
otherwise. We shall show tha t  ~n is dual  to x. This will complete the proof. 

We note 

(5.1) Re (yH x) = Re (yn X) = norm (x) norm D (yn). 

The last product  of norms does not vanish, since x ~ 0 by  hypothesis, and yH ~ 0 
by  definition of a dual vector. Hence 

yn4= 0. 

I t  remains to verify tha t  ~H and x satisfy the equali ty sign in the HSlder 
inequality. 

">" between vectors is understood to hold componentwise. 
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(SA), the monotonic i ty  of norm o, and finally the HSlder inequali ty (4.1) imply 

Re (~H x) = norm (x) norm D (yU) >= norm (x) norm D (~H) ~ Re (~u x). 

Therefore, 
norm (x) norm D (~n) = Re (~n x), q.e.d. 

The geometric significance of theorem 8 can be seen more clearly in the case 
of a real coordinate space. Consider a dual pair (x, yU) which is scaled such that  

norm (x) = norm D (yU) = t .  

Then yU characterizes a hyperplane support ing the norm-convex 

K : ~- {U : norm (U) =< l } 

at  the boundary  point x of K. Now, if an x with n o r m ( x ) = 1  belongs to a 
proper coordinate subspace S, then theorem 8 shows the existence of a supporting 
hyperplane H through x such tha t  the angle <~ (S, H) is a right one. 

Moreover, from theorem 8 it follows immediately  

Theorem 9. For  absolute~monotonic norms,  ax i s  vectors e i are sel/-dual, i.e., 

norm (e') norm n ( (#)H) ~_ (e,)H e' = i . 

A consequence of theorem 9 has been used in Eli to  derive lower bounds for the 
condition of a matr ix  of eigenvectors. Another  consequence is the inequality 

(5.2) max  (1 x, ] norm (#)) ~ norm (x) 

for absolute norms. Indeed, using theorem 6 we get 

norm (x) > max  [e~[H Ix] --  max  (] x i [ norm (ei)). 
= i norm o((ei) H) 

6. 

An elegant direct proof of theorem 9 m a y  be based on theorem 3 and the useful 

L e m m a  I. I]  norm (x) is strictly homogeneous, then 

lub (x yn)  = norm (x) norm D (yn) .  
We then have 

norm (e') norm D ((ei) H) z lub (e' (e*) H) = (#)H e' = i 

since e i (e~)His a diagonal matr ix  with the only nonvanishing element dii = (ei) He ~ = l. 
This a rgument  justifies the denotat ion "axis  oriented" Eli for the bound norm 
in theorem 3. 

Proo] o~ l emma I .  By (4.4) we have 

n o r m ( x y  t tu) . . . . . .  
l u b ( x y  H) z max - - n o r m ( x ) .  max  b 'nu l  

u .0  norm(u) u . o  norm(u) 

~- norm (x) norm D (yn) .  

A lemma similar to lemma I holds for the duals of str ict ly homogeneous 
bound norms. 
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L e m m a  II .  I [  norm (x) is strictly homogeneous then 

norm (x) norm D (yH) > lub D (x yH) >= [yg x 12 
norm(x) normO(yg) 

holds/or x :t: 0 and yH =4= O. 
Proo[. The bound  norm satisfies version (4.2) of the H6tder  inequa l i ty  

lub (A) lub D (B H) ~ ] t race  (BHA)[. 
This yields 

lub (x yn) lub o (x yn) > I t race  (x yH X yH)[ = ]yn x I [ t race (x yH) l = [yH X ]2, 

and  b y  l emma I 
norm (x) norm D (y) lub o (x yH) >= [yH x ]2. 

This yields a lower bound  of lub v (xyn). 
On the other  hand,  choose a m a t r i x  A ~ 0  which is lub-dua l  to xy  H. We 

then  have 

lub (A) lub v (x yn) : t race  (x yH A) : yH A x <~ norm D (yH) lub (A) norm (x). 

This  establ ishes an upper  bound  of lubD(xyn). 
As an immedia t e  consequence of l emma I I  we have 

L e m m a  I I I .  I/norm (x) is strictly homogeneous then !or every dual pair (x, yU) 

lub D (x yU) ~ norm (x) norm D (yn) : yH X 

holds, and (xy H, yx  H) are a dual pair with respect to the bound norm, i.e. 

lub (x yH) lub D (x yH) = trace (x yn x yU) = (yn x)2. 

7. 

The  following theorem m a y  be regarded  as the  dual  of theorem 3. 

T h e o r e m  10. I! norm(x)  is absolute!monotonic then 

lubD(D H) : Z ldi ,  I 
i 

holds !or any diagonal matrix D = diag (dii). 

Proo[. For  each d iagonal  m a t r i x  D = diag (di~) there  exists  a diagonal  ma t r ix  
T = diag (tii) such t h a t  

(7.1) D n T : I D ]  and I r l  = I .  

Theorem 3 implies  lub (T) : 1. Therefore,  

lub D (P H) = lub (T) lub v (D H) ~ t race  (D H T) = ~. I d,:i l" 
i 

Denot ing  axis vectors  b y  e i we have D =  ~. diiei(ei) H, and therefore 
i 

lub D (D H) <= ~.[dii [ lub  D (e ~ (#)H). 
i 
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Now if norm(x)  is absolute then  theorem 9 shows tha t  axis-vectors e ~ are self- 
dual. Hence by  lemma I I [  

lub ~ (e' (e') ~) = (e')H e' = 

holds for every i. This completes the proof. 

For  the euclidean bound  norm 

lub (A) = max o9 i (A) and  lub D (A H) = ~ e~ i (A), 

where eoi (A) are the singular values of A. This is a special case of a more general 
result of y o n  NEUMANN ~1@. I t  follows from theorem 3 and  theorem 10 by  
vir tue of the invar iance proper ty  of the euclidean bound  norm, 

l u b ( U A  V) = lub(A) ,  U, V uni tary ,  

and the immedia te  consequence of this 

lub D (UA V) = lub D (AH), 

since UA V = d i a g  (o)i) for suitable U, V. 

8~ 

From theorem t0  we may  conclude tha i  every nonnegat ive  real diagonal 
mat r ix  D @0 is lub-dual  to the iden t i ty  mat r ix  I .  Hence, for absolute norms, 
the surface of the lub-convex {A: l u b ( A ) ~ l )  is not  smooth at  the point  I .  
Actually,  this m a y  be shown for a rb i t ra ry  bound  norms [41 . 

The set of all matrices being dual  to the iden t i ty  mat r ix  I with respect to 
the euclidean bound  norm is the convex cone of all positive semidefinite matrices. 
This follows from yon  NEUMANN'S results EIO]. 
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