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Absolute and monotonic norms
By
F. L. BAUER, J. STOER and C. WITZGALL

Studying the mechanism used to derive certain inclusion theorems [2] and
exclusion theorems [ 1], one observes that the following property of certain bound
norms is essential: the least upper bound of a diagonal matrix is the maximum
of the moduli of the diagonal elements. In this paper, we characterize the class
of these least upper bound norms and the class of vector norms to which they
are subordinate, and show some of its properties. We complete some results
given already in [1] and prepare the basis for the following paper [3]. Some
of the concepts used in this paper have been considered in the general context
of partially and lattice-ordered vector spaces (KANTOROVIC [9], FREUDENTHAL [7],
BIRKHOFF [4]).

1.

Let norm(x) denote a norm?! in an #-dimensional complex coordinate space.
Let {x| denote the vector the components of which are the moduli of the com-
ponents of x. Inequalities between vectors are understood to hold component-
wise. We then call norm (x)

(1.1) monotonic?

if
[x| <|y| implies norm(x) = norm(y).

Further, a norm 1s called

(1.2) absolute
if it depends only on the moduli of its components, that is, if
norm (x) = norm (|x|) for all «.

It is well known ([10], [8]) that every norm in the space of column vectors x
induces a dual norm

2:4
- = max e #)

D
( x£0 normx)

(1.3) norm? (%)

in the dual space of row vectors y&.

Theorem 1. The dual of an absolute norm is again absolute.

1 We require only weak homogenity, that is, norm (x#*)=anorm(x) for «=0.

2 FrepLER and PTak [6] use a slightly different notion of monotonicity. Compare
also (3.1).
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Proof. For every y¥ and x there exists a vector x=x(x, y) with | %|=|x|
such that y#z=|y|¥|x|. We have
Re (vH %)

H
norm? (yH) - maXx .,R.e.gy___x)_ T max o T

x40 norm{y) ~ y+0 norm(zx) ’

by restricting the set. Then Re(y”%) may be replaced by |y"| ||, and norm (%)

by norm (%), since this is an absolute norm. Thus

H
norm? (y¥) = max 7H#L
= x40 norm(x)

On the other hand,

Re(y#x) . 1VPx]
x40 normi{x) ~ z+o0 normf{x)’
and therefore,
H
(1.4) norm? (y¥) = max MEGANEAN

x40 norm (x)
Thus, norm? (y¥) depends only on |y#|, q.e.d.
After this preparation, we prove
Theorem 2. Awn absolute norm is monotonic and vice versa.
Proof. Let norm(x} be absolute. Then its dual is absolute too (theorem 1),
and formula (1.4) applied to norm? (s") gives
[l | |x] _ |wH]|x]

(1:5) norm (x) :Tfff norm® (xH) ~ ‘normD (uH)

for some maximizing #”. Now if |x| =|y|, we have
[eH | |y]

< 1#l o 1eFlvl
norm (x) = normD (H) = Ti';( normD (yuH) norm(y).
Assume that norm (x) is monotonic. Put y:=|x|. Then |x]=|y|, which implies

norm (x) < norm (y) =norm (| #|), but also norm (y) =norm (| ¥|) = norm (x). There-

fore, norm (x) =norm (}x|).
In particular, a monotonic norm is always strictly homogeneous?.

2.

Let norm;{x) be a norm in the n-dimensional, and normy (y) a norm in the
m-dimensional complex coordinate space. Then

L normyy (A4 x)
(2.1) luby, ((4) : = r?i‘z( “normy (#)

defines a norm in the linear space of m X #-matrices 4, which is called the
(2.2) least upper bound norm

subordinate to norm;(x) and normy(y). Both norms may be identical. The
following theorem refers to this case.

Theorem 3. norm (x) s absolute/monotonic if and only if for the subordinate
bound norm,
(2.3) lub (D) = max |di;

holds for any diagonal matrizx D=diag(d;,).

3 That is, norm (x #) =| | norm (%) is true for every a.
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Bound norms with property (2.3) have been called axis oriented in a previous
paper [1].
Proof. |Dx| < (max|d;|)|x| is true for any x. If norm(x) is monotonic,

d;;[)norm(x) for every x, ie.,

lub (D) = max |d;]|.

then norm (D x) < (max

But, since? lub (D) =|d;,| for all 7,
lub (D) = max | ;]
and therefore (2.3) holds.
For each x there exists a diagonal matrix D, such that
x=D,x| and |D,|=1I.

Now, if (2.3) holds for every diagonal matrix, we have

norm (#) < lub(D,) norm(|x|) = norm (| x|)

norm(|x|) < lub (D;') norm (x) = norm (x),

and therefore, norm (x) =norm (|x|).

3.

The bound norm luby ;(4) of two monotonic norms is not necessarily a
monotonic norm. Indeed, the euclidean norm is a monotonic norm, but the
euclidean bound norm is not. However, monotonicity holds in a weaker sense.

We call norm (x)
(3.1) monotonic in the positive orthant
if
0= x<+y implies norm (x) = norm (y).
Theorem 4. The bound norm luby 1(A) of two absolute norms is monotonic

in the positive orthant.
Proof. We have for 0= 4

normy (4 x)  normy (|4 x]) - Dormy (4%
normy(¥)  normy(|x]) = normg(|x[)
Therefore, an x,=0, x,==0 exists such that
normyr (Ax)  normy (4 x,)

1ubH’I(A):T=S())( normy(¥) ~ normy (%)

If now 0= 4 < B, then |4 xy| = | B x|, and therefore, normyy (4 x,) < normy; (B %),
or

luby 1 (4) < normyy (B %) . normy(By) luby 1 (B).

normy(%,) ~ x+0 normy(x)

Any norm that is monotonic in the positive orthant coincides in that orthant
with an absolute norm. Indeed, parallel to theorem 2, we have

¢ In general, let A x= ix, ¥<0. Then norm (x)>0, and for a strictly homogeneous
norm, || norm (x) <lub(4)norm (%), that is, | 1| =lub(4).
19*
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Theorem 5. norm (x) ¢s monotonic in the positive orthant if and only if
f(x) :=norm (| x|)
1S a norm again.

Proof. Obviously, f(x) is definite and (strictly) homogeneous for any norm (x).
Moreover, if norm(x) is monotonic in the positive orthant, [x+y| < |x|+|y]
implies f(x+-y)=norm (|x+y|)<norm(|x|+]|y|), and from the convexity of
norm (x) it follows that

f(x+ y) < norm(|x| + |y|) < norm (|x|) + norm (|y|) = f(x) + f(9).

This proves® one half of the theorem. The other half is an immediate con-
sequence of theorem 2 since f(#), if it is a norm, is an absolute norm and coincides
with norm (x) in the positive orthant.

Since lubyy, 1(4), subordinate to two monotonic norms, is monotonic in the
positive orthant, luby; 1(]4]) is a norm, too. Moreover
(3.2) lubyy, 1 (4) < luby ((]4])
holds, since |4 x| < |4| |x| gives

normy; (4 ) = normy (|4 |#]) < luby 1 (|4]) normy ().

4.
Every norm satisfies together with its dual norm the Hélder inequality

(4.1) norm (x) norm? (y¥) = Re (y x).

We call (%, ¥¥) a dual pair if equality holds in (4.1). For every vector x there
exists a dual vector y¥ such that (x, y¥) are a dual pair.

If norm (x) is strictly homogeneous we have
(4.2) norm (x) norm” (y#) = |y# x|.
But, the following even stronger version of the Holder inequality is valid for
absolute norms,
(4.3) norm (x) norm® (y#) = |y#| [x|.

Theorem 6. norm (x) is absolutefmonotonic if and only if the strong version
(4.3) of the Hilder inequality holds for every pair of vectors x, y7.

Proof. Obviously,
[yH] |¥]

norm (x) = max _Re(y®x)
y+0 normD(yH)

IA

max .
y+0 normDP(yH)

Now the strong Hoélder inequality (4.3) implies

H| ||
rm (x) = ax-ly (il N
mOMn (%) 2 X b (]

and therefore,
H
norm(x) = max _AEx] .
J&0 normD(yA)
% This proof is essentially the same as given by OstrowskKI [11] in the more
general case of compound norms.
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Hence, norm (x) depends only on |%|. On the other hand, if norm (x) is absolute
then by theorem 1 its dual is absolute, too. Therefore

norm (x) norm? (y*) = norm (| #|) norm”(|y#]) = | y#| | #|

holds for arbitrary vectors x, y¥, q.e.d.

It is plain that versions (4.2) and (4.3) of the Holder inequality are both-
sided sharp. Indeed, for dual pairs (¥, ¥) we have in case of strictly homo-
geneous norms

(4.4) norm (x) norm® (y¥) = y"¥ x = |y# x|,

and in case of absolute norms

(4.5) norm (%) norm” (y) = y* x = |y¥] |x|.

Note, that equality in (4.3) or (4.2) does not imply equality in (4.1). Thus it
must be remembered that we define duality of vectors with respect to (4.1),
i.e., a dual pair of vectors is required to realize equality in (4.1).

5.

In this part we shall study properties of vectors which are a dual pair with
respect to an absolute norm. Then the strong Holder inequality (4.3) holds
and implies (4.5). This leads at once to

Theorem 7. If norm () ¢s absolute/monotonic, then for every dual pair (%, y¥),
x>0 tmplies y7 =08,

If some components of a nonnegative vector x vanish, then the corresponding
components of some dual y? may be negative or not even real. But if so, then
|y#], too, is dual to x since

norm (x) norm? (|y#|) = norm (x) norm® (y#) = |y¥| |¥| = Re (|y"|#).

We may sharpen this result.

Theorem 8. If norm(x) s absolute[monotonic, then for each nonvanishing
x=0 exists a dual Y7 =0 such that x;=0 implies y;=0. (x; and y; denote com-
ponents of x and y*.)

Proof. Choose any dual y#. Consider the vector §# the components of which
vanish if the corresponding components of x vanish, and which equals |y¥|
otherwise. We shall show that ¥ is dual to x. This will complete the proof.

We note
(5.1) Re (¥ x) = Re (y¥ x) = norm (x) norm? (y7).

The last product of norms does not vanish, since x =0 by hypothesis, and yH =0
by definition of a dual vector. Hence

yH 0.

It remains to verify that ¥ and x satisfy the equality sign in the Holder
inequality.

¢ “>"” between vectors is understood to hold componentwise.
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(5.1), the monotonicity of norm?, and finally the Holder inequality (4.1) imply
Re (¥ x) = norm (x) norm? (y¥) = norm (x) norm? (y#) = Re (37 ).
Therefore,
norm (¥) norm” (57) = Re (3 x), q.e.d.

The geometric significance of theorem 8 can be seen more clearly in the case
of a real coordinate space. Consider a dual pair (x, y¥) which is scaled such that
norm (x) = norm? (y#) =1.

Then y¥ characterizes a hyperplane supporting the norm-convex
K:={u:norm (u) <1}

at the boundary point » of K. Now, if an x with norm(x)=1 belongs to a
proper coordinate subspace S, then theorem 8 shows the existence of a supporting
hyperplane H through x such that the angle < (S, H) is a right one.

Moreover, from theorem 8 it follows immediately

Theorem 9. For absolute/monotonic norms, axis vectors ¢ ave self-dual, i.e.,
i\ H

norm (¢') norm® ((¢)¥) = (¢)7 ¢ =1.

A consequence of theorem 9 has been used in [I] to derive lower bounds for the
condition of a matrix of eigenvectors. Another consequence is the inequality

(5.2) max (|«;| norm (¢)) < norm (x)
for absolute norms. Indeed, using theorem 6 we get

> B Ul o .1 I _ i
norm (x) = max D () = TMax (|x;] norm (¢)).

6.
An elegant direct proof of theorem 9 may be based on theorem 3 and the useful
Lemma I. If norm(x) is strictly homogeneous, then
lub (x y¥) = norm (x) norm? (y#).
We then have
norm (¢) norm? ((¢*)) = lub (¢’ (¢)#) = (&) ' =1

since ¢’ (¢)¥ is a diagonal matrix with the only nonvanishing element d;, = (¢")7¢' =1.
This argument justifies the denotation ‘“‘axis oriented”” [1] for the bound norm
in theorem 3.

Proof of lemma I. By (4.4) we have

lub (x yH) = maX Il,orm(x yHﬂ — norm (x) . max _ﬁlﬁ’{l )
%0 norm(x) w0 norm(u)
= norm (x) norm? (y¥).

A lemma similar to lemma I holds for the duals of strictly homogeneous
bound norms.
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Lemma II. If norm (x) s strictly homogeneous then

|vH 2|2
norm(x) normD(yH)

norm (x) norm? (y¥) = lub? (x y¥) =
holds for x==0 and y7==0.
Proof. The bound norm satisfies version {4.2) of the Holder inequality
lub (4) Tub® (BY) = | trace (B¥ 4)|.
This yields
lub (x y7) lub® (x y¥) = | trace (x y¥ x y#)| = |y# x| | trace (x y7)| = |y¥ x]?,

and by lemma I
norm (x) norm® (y) lub® (x y¥) = |y¥ x|2.

This yields a lower bound of lub? (xy¥).

On the other hand, choose a matrix 4 ==0 which is lub-dual to xy%. We
then have

lub (4) lub? (x y¥) = trace (x y¥ 4) = y? A x < norm? (y#) lub (4) norm (x) .
This establishes an upper bound of lub® (xy#).

As an immediate consequence of lemma II we have
Lemma III. If norm (x) is strictly homogeneous then for every dual pair (x, y¥)

1lub? (x y*) = norm (¥) norm?® (y¥) = y¥ »

holds, and (xy", vx™) are a dual pair with respect o the bound norm, i.e.
lub (% y¥) lub® (x y¥) = trace (x y# x y*) = (y¥ x)2.
7.

The following theorem may be regarded as the dual of theorem 3.
Theorem 10. If norm (x) zs absolute/monotonic then

lub? (D¥) = Z [y

holds for any diagonal matrix D =diag(d;,).
Proof. For each diagonal matrix D=diag(d;;) there exists a diagonal matrix
T ==diag(f;;) such that

(7.1) DET =|D| and |T|=1I.
Theorem 3 implies lub (7)=1. Therefore,
lub? (D) = lub (T) lub” (D¥) = trace (D* T) = X, | d;;| -

Denoting axis vectors by ¢ we have D=} d;;¢'(¢'), and therefore
5

ub® (D¥) < 27| dy;| lub® (¢ () ") -
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Now if norm (x) is absolute then theorem 9 shows that axis-vectors ¢’ are self-
dual. Hence by lemma III
lub® (& (¢)H) = () e’ =1
holds for every 7. This completes the proof.
For the euclidean bound norm

lub(4) —maxe;(4) and lub?(4¥) = S (4),

where w; (4) are the singular values of A. This is a special case of a more general
result of voN NeumaNN [10]. It follows from theorem 3 and theorem 10 by
virtue of the invariance property of the euclidean bound norm,

lub(UAV)=1ub(4), U,V unitary,
and the immediate consequence of this
Wb?(UA V) =1ub? (4H),
since UAV =diag{e;) for suitable U, V.

8.

From theorem 10 we may conclude that every nonnegative real diagonal
matrix D=0 is lub-dual to the identity matrix I. Hence, for absolute norms,
the surface of the lub-convex {4: lub(4)=<1} is not smooth at the point I.
Actually, this may be shown for arbitrary bound norms [4].

The set of all matrices being dual to the identity matrix I with respect to
the euclidean bound norm is the convex cone of all positive semidefinite matrices.
This follows from voN NEUMANN’S results [10].
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