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An Error Formula for Numerical Differentiation

By
H. C. KRANZER

1. Introduction

Suppose the function f(x} is approximated by the Lagrange interpolating
polynomial P, {x} of degree n relative to the tabular points xg, %, ..., %, (ar-
ranged in increasing order). Assuming that f(x) is 41 times continuously
differentiable, it is well known that the error

(1.1) e(x)=f(x) — B, (%)
may be written in the form
(12) () = 1t w(x),

where & is some point (varying with x) which belongs to the smallest interval I
containing x and all the tabular points x;, while

n

(13) w(®) =[] (%~ %)

is a polynomial of degree # -1 with roots at the tabular points. Since B (x)

is often used as an approximation to the k-th derivative (1< k=) of {, it would

be useful to have an equally simple formula for the corresponding error e® (x).
The earliest, and perhaps the closest, approach to this goal is found in

STEFFENSEN [1], who shows that

(1.4 &P (%) = j%:)1()i) w® (x)

provided x lies outside the open interval (%o, x,). For x in (%, x,), HiLDE-
BRAND [2] gives an expression for ¢® (%) involving derivatives of f up to the
order #+1-+ k. An alternative derivation of this expression was recently in-
dicated by Rarston [3].

Bropskii [4] produced a formula containing only (% + 1)-th derivatives and
from it obtained sharp bounds on |¢®] in terms of the maximum value M of
[/**9(x)| in I. However, his formula is far from simple. It involves a sum
of -1 integrals whose integrands and intervals of integration all vary with x.
Bropskii also showed that Steffensen’s formula (1.4) cannot hold for arbitrary
x and f, and, more generally, that no formula can exist of the type

(1.5) P (%) ="V (£) o (%),

where @ (x) is for fixed %, ..., %, a well-determined function of x.
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It is the purpose of this paper to present a simple formula for ¢® (x) which
is “‘almost”’ of the forbidden type (1.5). The formula (Equation (2.1)) is stated
and proved in section 2, while section 3 contains a discussion of some possible
applications. In most cases, our formula leads to upper estimates on | ¢ | which
are somewhat weaker, but far easier to obtain, than those derivable from
Brobskil’'s paper [4]. On the other hand, it provides better insight into the
functional dependence of ¢¥ on x, and can in certain special situations produce
smaller upper bounds than [4].

2. The Error Formula

Theorem. There exist n+1— k& constants y,, ¥,.4, ..., ¥, depending on the
function f but not on x such that

Fort1) (&

) 00,
where &=2§(x) belongs to I and ((x) denotes the polynomial

(2.1) e® (%) =

(2.2) I (x—w).

The constants y; satisfy the inequalities
(2.3) X <Y< X

Proof. From (1.1) and the definition of the Lagrange interpolation poly-
nomial, we have e¢(x)=0 at the # -+ 1 points x,, ..., x,. Applying Rolle’s theorem
k times, we find that ¢® (x) must have at least #+1— £ roots in (¥,, #,), and
specifically one root y, in each subinterval (x,_,, x;), ¢==%, ..., n, with the y;
all distinct. Defining Q (%) by (2.2), we now set

(2.4) g(x)=e® () — 10 (#),

with 4 a constant to be determined. For x=1y,, (2.1) is trivially satisfied: both
sides are zero. Suppose ¥=Z% is not equal to any of the v;; we wish to establish
(21) for . Since Q(%)==0, we can find a 1 such that g(*%)=0. But also g(y,)=0
for ¢=k, ..., n. Hence g(x) has n- 2 — k distinct zeros in the interval I. Again
by Rolle’s theorem, g*+1~# (x) has a zero in I, say at &. But from (2.4) and (1.1),

0=g"+1=R (&)= e+ (g) — (n+-1— k)1 4.

Solving for A and substituting its value in the relation g (%) =0, we find ¥ (%) =
(&) Q®)/(n+1—k)!, which is relation (2.1) for . Since % is arbitrary,
this concludes the proof.

3. Remarks and Applications
At first sight, formula (2.1) seems to belong to the class (1.5) with @(x)=
Q(x)/(n+1—Fk)!. This does not contradict Brodskii’s conclusion that (1.5) is
impossible, since the function Q(x) depends on the partially undetermined con-
stants y;. Despite this indeterminacy, the bounds (2.3} on the y; permit the
convenient use of (2.1) in obtaining upper bounds on the absolute error |e®].
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To begin with the crudest estimation procedure, note that x and all the y,
belong to the interval I. Hence |Q(x)| <L"*'~* where L denotes the length
of I. [In the usual situation x¢(a,, a,), we have L=a, —a,.] Denoting by M
the maximum value of | /¥ (x)| in I, we obtain from (2.1) the uniform estimate

(3.1) |e® ()] < M L (41— F)1.

This is exactly the same estimate that would be obtained by a similarly crude
treatment of the Steffensen formula (1.4) if the latter were valid for x¢{a,, 4,).
The derivation of (3.1) is the shortest means known to the author of proving
that ¢ =0 (M L***~%); its crudity lies only in the unnecessarily large constant
factor.

We can considerably improve this constant by making more explicit use of
inequality (2.3). We find

|%—v;| Smax(|x—x,_,], [x— x])

and therefore | Q (x)| = R(x), where

(3-2) R(x) = (x—z) ... (x—2zp)

Here w(x} is defined by (1.3), while 2, ..., z, dencte those 2 among the » 41
tabular points x,, ..., %, which are nearest to . (Note that R(x) is “‘piecewise”
a polynomial.) Hence

(3-3) | ¥ (x)] =<

w(x)

(m+-1—k)1"

We illustrate this formula by two examples involving the first derivative
(k =1). For example 4, we take n =1, xy=—L/2, and »,=+ L/2. Then R(x)=
L2+ |x| <L for xe(xy, x,) and we find the uniform estimate |¢/| <ML, co-
inciding with (3.1), and the particular estimates |¢'(0)] < (1/2) M L and |¢'(+L/4)|
< (3/4)M L. For example B, we choose n=2, xy=—L/[2, x,=0, and x,=L/2.
Then
L4 —x2 for |[x|=L/4

R = {Ll 2422 for Li4<|x|<LJ2

leading to the uniform estimate |e’| < (1/4) M L2, half the size of (3.1), and the
particular estimate |e’'(+ L/4)| = ( 3/32)M L2, Though these estimates are not
sharp, they are surprisingly close to the sharp bounds of BRoDskii [4], who
gives the bound |e'(x)] <M(L/4+ x*/L) in example 4 and whose estimate leads
in example B to the uniform bound |¢'| <(1/4)M L% and the point estimate
|€/(£ LJ4)| = (1/96) M L.

In addition to upper estimates, formula (2.1) yields useful information on
the form of ¢® (x) as a function of x. For example, the error must be precisely
zero at some #-+1—k points of I, and, if f** does not change sign, the
error will have exactly #-+1—#% changes of sign. If somehow, perhaps by a
previous calculation or a fortuitous special circumstance, the points of zero error
can be determined, (2.1) becomes almost an exact formula for ¢®. Even if
just one point x of small error (small compared to mL"'~* where m is the
minimum of |f**1|} is known, (2.1) can be used to pinpoint more closely the
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position of a neighboring y;. Several separated points of small error will, of
course, result in close fixes on several y;, which in turn will allow a more accurate
determination of ¢ (x) throughout x,<x<x,.

Finally, (2.1) yields bounds sharper than any previously known on the mini-
mum of |¢® (x)| over two or more suitably chosen points x. We give two illu-
strations.

In example A4, described above, consider x= -1 L/4. For each of these two
points x separately, we can only conclude |Q(x)| =|4+L/4—y,| <3L[4 and
therefore, as above, |¢'| <(3/4)M L. But |Q(x)| cannot be as great as 3L/4 at
both points, since y,, being a definite point for a fixed f, cannot be simultaneous-
ly both positive and negative. In particular, we must have | Q(x)| <L/4 for
at least one of the points, whence (2.1) yields |¢'(x)| =(1/4) M L at that point.
This is smaller than Brodskii’s bound for |e¢’(+ L/4)|, which is (5/16) M L.

A similar procedure can be used in example B for the points x=1/4, 3/4
(where we have fixed L=2 for simplicity of notation). Here a division is made
into the cases 0<y,=1/2 and 1/2<y,<1. In the first case, we find [¢'(1/4)] =
(5/32) M, while in the second case |¢'(3/4)] <(7/32) M. The corresponding Brod-
skii bounds are 69/256 at x=1/4 and 143/256 at x==3/4. Naturally, an even
smaller error value can be obtained by including the points —1/4 and -—3/4
and distinguishing in addition the cases y,= —1/2.
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