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A n  E r r o r  F o r m u l a  f o r  N u m e r i c a l  D i f f e r e n t i a t i o n  

]By 

H. C. KRANZER 

1. Introduction 

Suppose the function /(x) is approximated by the Lagrange interpolating 
polynomial P,(x) of degree n relative to the tabular points x o, x 1 . . . . .  x.  (ar- 
ranged in increasing order). Assuming that  /(x) is n + t  times continuously 
differentiable, it is well known that  the error 

(*..1) e ( x ) = / ( x ) -  P,,(x) 

may be written in the form 

(1.2) e(x) = /c~+1~(~) w(x)  (n:-l)! 

where ~ is some point (varying with x) which belongs to the smallest interval I 
containing x and all the tabular points xi, while 

n 

(t.3) w (x) = H ( x  - x~) 
i~O 

is a polynomial of degree ~r + t with roots at the tabular points. Since p=(kl (x) 
is often used as an approximation to the k-th derivative (1 ~ k =< n) o f / ,  it would 
be useful to have an equally simple formula for the corresponding error e Ck/(x). 

The earliest, and perhaps the closest, approach to this goal is found in 
STEWENSEN Ell, who shows that  

(1.4) e Ikl (x) - //~§ (~) wlk/(x) 
(n+l ) !  

provided x lies outside the open interval (x 0, x~). For x in (x 0, x~), HILDE- 
BRA:qD ~2] gives an expression for e c~I (x) involving derivatives of f up to the 
order n + 1 + k. An alternative derivation of this expression was recently in- 
dicated by RALSTON ~3]. 

BRODSKI~ ~4] produced a formula containing only (n + t)-th derivatives and 
from it obtained sharp bounds on [e~)[ in terms of the maximum value M of 
l/1~+1) (x)[ in I .  However, his formula is far from simple. I t  involves a sum 
of n + t integrals whose integrands and intervals of integration all va ry  with x. 
BRODSI:If also showed that  Steffensen's formula (1.4) cannot hold for arbi trary 
x and /, and, more generally, that  no formula can exist of the type 

(t.5) e Ikl (x )=  1~+~1 (~) ~ (x), 

where 9(x) is for fixed x 0 . . . . .  x~ a well-determined function of x. 
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I t  is the purpose of this paper to present a simple formula for e Ikl (x) which 
is "a lmos t "  of the forbidden type  (1.5). The formula (Equat ion (2.1)) is s tated 
and proved in section 2, while section 3 contains a discussion of some possible 
applicat.ions. In  most  cases, our formula leads to upper estimates on [ e/~)[ which 
are somewhat  weaker, but  far easier to obtain, than  those derivable from 
BgoI~sI~fi's paper  [4J. On the other hand, it provides bet ter  insight into the 
functional dependence of e (k) on x, and can in certain special situations produce 
smaller upper  bounds than [4j. 

2. The Error Formula  

Theorem. There exist n + t - - k  constants  Yk, Yk+: . . . . .  y~ depending on the 
function / but  not  on x such tha t  

( 2 . 1 )  e :kl ( x )  = t<"+:~ (~) (n+t-k)! Q(x), 

where ~ = ~ ( x )  belongs to I and Q(x) denotes the polynomial  

n 

(2.2) Q (x) = I I ( x -  y,).  
i = k  

The constants  Yi satisfy the inequalities 

(2.3) x~_k< Yi<  xi. 

Proo]. From (t.1) and the definition of the Lagrange interpolation poly- 
nomial, we have e (x) = 0 at the n + 1 points x 0 . . . . .  x , .  Applying Rolle's theorem 
k times, we find tha t  e Ikl (x) must  have at least n + 1 --  k roots in (x 0, x,3, and 
specifically one root Yi in each subinterval (xi_~, xi), i = k  . . . . .  n, with the Yi 
all distinct. Defining Q (x) by  (2.2), we now set 

(2.4) g (x) = e (k) (x) --  2 Q (x), 

with fl a constant  to be determined. For  x =  Yi, (2.1) is trivially satisfied: both 
sides are zero. Suppose x = s  is not  equal to any  of the Yi; we wish to establish 
(2.1) for s Since Q(~)@0, we can find a ;t such that  g(~)-----0. But  also g(Yi)=0 
for i = k  . . . . .  n. Hence g(x) has n + 2 - - k  distinct zeros in the interval I .  Again 
by  Rolle's theorem, gC,+l-k)(x) has a zero in I, say at ~. But  from (2.4) and (1.t), 

o = g : -+l -k l  (~) =/(-+~1 (~) _ (n + 1 - k)! ~. 

Solving for 2 and substi tut ing its value in the relation g (X)-----0, we find e I~l (~)----- 
/(,+I1(~) Q(~)/(n+ l - - k ) ! ,  which is relation (2.1) for ~. Since ~ is arbitrary,  
this concludes the proof. 

3. Remarks  and Applications 

At first sight, formula (2.1) seems to belong to the class (1.5) with ~(x)--- 
Q ( x ) / ( n + t - - k ) ! .  This does not  contradict  BrodskiFs conclusion tha t  ( t . 5 ) i s  
impossible, since the function Q (x) depends on the partially undetermined con- 
s tants  Yi. Despite this indeterminacy,  the bounds (2.3) on the Yi permit the 
convenient  use of (2.t) in obtaining upper  bounds on the absolute error [el*l]. 
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To begin with the crudest  es t imat ion procedure,  note  tha t  x and all the y~ 
belong to the interval  I .  Hence I Q(x)[ <=L '~+1-~, where L denotes  the length 
of I .  I In  the usual s i tuat ion x~ (a 0, a~), we have  L = a~- -ao .  ~ Denot ing b y  M 
the m a x i m u m  value of I] ~+1) (x)l in I ,  we obtain  from (2.t) the  uniform es t imate  

(3.t) ]e ~ (x) l ~ M L~+I-~/(n + 1 -- k)!. 

This is exac t ly  the same es t imate  tha t  would be obta ined b y  a similarly crude 
t r ea tmen t  of the Steffensen formula (t.4) if the la t ter  were valid for xE (a 0, an). 
The derivat ion of (3.1) is the shortest  means  known to the au thor  of proving 
tha t  e ~kl = 0  (ML"+I -k ) ;  its crudit.y lies ~only in the unnecessari ly large constant  
factor. 

We can considerably improve  this constant  by  making  more  explicit use of 
inequali ty (2.3). We find 

Ix --  y,] ~ max  (Ix --  x,_k], i x -  x,]) 

and therefore [Q(x)[ <=R(x), where 

w (.) l (3.2) R(x) = (x_zx).. .  (x_z~) . 

Here w(x) is defined by  (t.3), while z 1 . . . . .  z k denote  those k among the n + t  
tabular  points x o . . . . .  x~ which are nearest  to x. (Note tha t  R (x) is "piecewise" 
a polynomial .)  Hence 

(3.3) I e(k/(x)] ~ M:,'(~) 
= (n+  1 - k )  ! ' 

We il lustrate this formula  by  two examples  involving the first der ivat ive  
(k = 1). For  example  A, we take  n = 1, Xo= -- L/2, and x 1-- + L/2, Then R (x) 
L/2§ for x~(xo, x~) and we find the uniform es t imate  le'[ <=ML, co- 
inciding with (3A), and the par t icular  es t imates  ] e'(0)] ~ (1 /2)ML and]e'(• 
<= (3/4)ML. For  example  B, we choose n = 2 ,  Xo=--L/2 ,  xl=O, and x2=L/2. 
Then 

= J  L2/4-- x z for i x [ ~ L / 4  

R(x) [ L l x l / 2 §  2 for L/4"<I xl<=L/2 

leading to the uniform est imate  l e'[ ~ (I /4)ML 2, half the size of (3A), and the 
par t icular  es t imate  [e'(=kL/4)[ <:(3/32)ML 2. Though these es t imates  are not  
sharp, they  are surprisingly close to the sharp  bounds  of BRODSKIi ~4~, who 
gives the  bound I e'(x)I <= M(L/4 § x2/L) in example  A and whose es t imate  leads 
in example  B to the uniform bound ]e' I ~(I[4)ML* and the  point  es t imate  
[e'(:~ L/4)l <-_ (1/96) M L 2. 

In  addit ion to upper  est imates,  formula (2A) yields useful informat ion on 
the form of e (k) (x) as a function of x. For  example,  the  error mus t  be  precisely 
zero a t  some n + l - - k  points of I ,  and, if /(,§ does not  change sign, the 
error will have  exac t ly  n +  t -  k changes of sign. I f  somehow, perhaps  b y  a 
previous calculation or a for tui tous special c i rcumstance,  the  points  of zero error 
can be determined,  (2A) becomes almost  an exact  formula  for e Ck). Even  if 
just one point  x of small  error (small compared  to m L  ~+l-k, where m is the 
min imum of ]]l~+~)]) is known, (2A) can be used to pinpoint  more closely the 
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position of a neighboring Yi. Several separated points of small error will, of 
course, result in close fixes on several Yi, which in turn will allow a more accurate 
determinat ion of e Ikl (x) throughout  x0~< x<= xn. 

Finally, (2A) yields bounds sharper than any  previously known on the mini- 
m u m  of ]e (kl (x)] over two or more suitably chosen points x. We give two illu- 
strations. 

In  example A, described above, consider x-----• L/4. For each of these two 
points x separately, we can only conclude ] Q (x)l = ]4- L/4-- Yl I <---- 3 L/4 and 
therefore, as above, l e'] ~ (3/4)ML. But  I Q(x)[ cannot  be as great as 3L/4 at 
both  points, since yl, being a definite point for a fixed [, cannot  be simultaneous- 
ly both  positive and negative. In  particular, we must  have I Q(x)l <L/4 for 
at  least one of the points, whence (2.1) yields l e'(x)l ~ (I[4)ML at tha t  point. 
This is smaller than Brodskii 's  bound for ]e'(iL/4)t, which is (5/16)ML. 

A similar procedure can be used in example B for the points x-=t/4, 3/4 
(where we have fixed L = 2 for simplicity of notation).  Here a division is made 
into the cases 0 <  y,--< t/2 and t/2__< Y2< t. In  the first case, we find l e'(l/4)] 
(5/32) M, while in the second case I e'(3/4)] ~ (7/32) M. The corresponding Brod- 
skil bounds are 69/256 at x ~ t / 4  and t43/256 at x~3/4. Naturally,  an even 
smaller error value can be obtained by  including the points - -1 /4  and - -3 /4  
and distinguishing in addition the cases y~<>-  t/2. 
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