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Summary. We consider the solution of the algebraic system of equations which 
result from the discretization of second order elliptic equations. A class of multi- 
level algorithms are studied using the additive Schwarz framework. We establish 
that the condition number of the iteration operators are bounded independent of 
mesh sizes and the number of levels. This is an improvement on Dryja and 
Widlund's result on a multilevel additive Schwarz algorithm, as well as Bramble, 
Pasciak and Xu's result on the BPX algorithm. Some multiplicative variants of the 
multilevel methods are also considered. We establish that the energy norms of the 
corresponding iteration operators are bounded by a constant less than one, which 
is independent of the number of levels. For a proper ordering, the iteration 
operators correspond to the error propagation operators of certain V-cycle multi- 
grid methods, using Gauss-Seidel and damped Jacobi methods as smoothers, 
respectively. 

Mathematics Subject Classification (1991): 65F10, 65N30 

1. Introduction 

Multilevel methods, such as multigrid methods, are some of the most efficient 
methods of solving large systems of linear equations arising from the finite element 
or finite difference discretization of elliptic PDES; cf. Hackbusch [12], 
McCormick [13] and the references therein. Recently, with the increasing interest 
in parallel computation, several new multilevel methods have been developed and 
analyzed, e.g. Yserentant's hierarchical basis method [-21], the hierarchical basis 
multigrid method of Bank et al. [1], the parallel multilevel preconditioners de- 
veloped in Bramble, Pasciak and Xu [7] and Xu [19], and the multilevel additive 
Schwarz methods of Dryja and Widlund [10]. 

*This work was supported in part by the National Science Foundation under Grants 
NSF-CCR-8903003 at Courant Institute of Mathematical Sciences, New York University and 
NSF-ASC-8958544 at Department of Computer Science, University of Maryland. 
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We consider second order, self-adjoint, uniformly elliptic differential equations 
on two or three-dimensional polygonal domains, approximated by continuous, 
piecewise linear finite elements. We use multilevel Schwarz algorithms to solve the 
resulting linear system and estimate the condition number of the additive algo- 
rithms and the energy norm of the error propagation operator of the multiplicative 
algorithms. When the additive algorithms are used, an equivalent equation is 
solved by an iterative method such as the conjugate gradient method. In each 
iteration, a number of independent problems corresponding to the subdomains are 
solved. The size of all the subproblems can be very small. Dryja and Widlund have 
shown that the condition number of a multilevel additive Schwarz (MAS) operator 
grows at most quadratically with the number of levels; cf. [101. Similar results for 
the BPX algorithm were established in Bramble et al. [71. In this paper, we improve 
the results for a class of multilevel methods. We show that the condition number of 
the MAS operator is bounded by a constant independent of mesh sizes and the 
number of levels. We note that Peter Oswald [161 has obtained a similar result for 
the BPX algorithm using Besov space theory. For alternative proofs of Oswald's 
result, see Bramble and Pasciak [51, Xu [20] and Bornemann and Yserentant [4]. 

The rest of the paper is organized as follows. In Sect. 2, we describe a class of 
multilevel additive Schwarz algorithms. In Sect. 3, we establish a bound for the 
condition number of the iteration operator of the algorithm. In Sect. 4, we describe 
a variant of the algorithm. We construct a very special decomposition of the space, 
and show that it can also be regarded as a multilevel diagonal scaling algorithm. In 
the case of constant coefficients and uniform triangulation, this algorithm is 
identical, up to a constant multiple, to the main algorithm developed in Bramble et 
al. [71. As a consequence, we also obtain an improved result for the BPX algorithm. 
In Sect. 5, we consider some multilevel multiplicative Schwarz schemes and 
establish that the energy norms of the iterative operators are bounded by a con- 
stant less than one, independent of the mesh size and the number of levels. In Sect. 
6, we report on some numerical results for the multilevel additive Schwarz method. 
For  a discussion of implementations of the algorithms on parallel computers, see 
Bjorstad et al. [2] and Bjorstad and Skogen [31, who implemented multilevel 
additive Schwarz algorithms on a MasPar MP-1, a massively parallel, SIMD 
machine. The use of approximate solvers for the subproblems are also discussed in 
those papers. 

The present paper is based in part on chapter 3 of the author's thesis [231, see 
also [22]. The result for the upper bound of the eigenvalues of the additive operator 
was obtained in early 1991 and announced by Widlund [181 at the 5th domain 
decomposition conference in early May, 1991, held at Norfolk, VA. 

2. Multilevel additive Schwarz methods 

Consider the following second order elliptic problem 

f O 

- ~ - - a i j  u = f  in f2 , 
i,j=l c~xi ~xj 

u = 0 on ~f2 . 
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Here f2 is a bounded polygonal region in R e, d = 2 or 3. The matrix {au} is 
symmetric and positive definite, i.e. its eigenvalues 2~(x) > 0, Vx e f2. The varia- 
tional form is: Find u eH~(f2) such that 

where 

a(u, v) =f (v ) ,  Vv E Hol(12), 

d ~u ~v 
a ( u , v ) =  ~ ~ a i j - - - - d x  and f (v )  = ~ f v d x .  

i , j=l  ~X i ~ X j  12 

We describe the method and carry out the analysis for Poisson's equation. How- 
ever there is no difficulty in carrying out the analysis for more general second order 
problems. In particular, we can obtain a good upper bound as long as 2d(X)/• I(X) 
is uniformly bounded in O and the coefficients {alj} do not change very much 
inside individual subdomains. 

We define a sequence of nested triangulations {.Y-t} ~=1. We start with a coarse 
triangulation 3--'= {T1}N~I, where r~ represents an individual triangle. The 
successively finer triangulations Y t  = {r~}~--', are defined by dividing individual 
triangles in the set ~ - ' -  1 into several triangles. We make a similar construction for 
three dimensional problems. We assume that all the triangulations are shape 
regular. Let hl = diameter(rl), h~ = maxihl and h = hL. We also assume that there 
exists a constant 7 < 1 and a constant C, such that if an element rl +k of level I + k is 

l of level l, then contained in an element zj 

diam(zl +k) 
< C7 k . 

diam(r}) 

For a uniform refinement, with each triangle divided into k 2 equal triangles, 
7 = l/k and C = 1. We denote by JV "~ and g~ the sets of nodes and edges induced 
by the triangulations y t ,  and by g~(S) the edges of the subset S. 

Let V ~, l =  1 . . . . .  L, be the space of continuous piecewise linear elements 
associated with the triangulation j-L. The finite element solution Uh ~ V e satisfies 

(1) a(Uh,r =f ( r  V49heV L. 

We assume that there are L -  1 sets of overlapping subdomains 
{o!~N' 1 = 2, 3, L. Thus, on each level, there is an overlapping decomposi- . . l i t= l ,  �9 �9 �9 

tion ~2 ~) i ~  1 ^ t = f2~. We make the following assumption about the sets {~} .  

Assumption 2.1. On each level, the decomposition f2 = U~=1(21 satisfies: 
(a) ~ I  aligns with the boundaries of level I elements, i.e. (2~ is the union of level 

l elements. The diameter((2~) = O(hl- 1). 
(b) The subdomains {(21} iN_-', form a finite covering off2, with a covering constant 

N~, i.e. we can color {(21}~=' 1, using at most Nr colors in such a way that subdomains 
of the same color are disjoint. 

(c) There exists a partition of unity {01}, associated with t--,j,=l,~O!~'u' which satisfies 

~01 = 1, with OleH~o(f21) c~ C~ 0 N Ol <--_ 1 and IV011 < C / h g _ x  . 

i 

The first condition simply means that the restriction of the triangulation ~--' to 
a subdomain (2~ defines a triangulation for (21 and that the finite element problem 
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on ~21 is well defined. The second condition is used when establishing the upper 
bound of the spectrum of the additive Schwarz operator. The last condition is used 
for the lower bound of the spectrum. 

One way of constructing subdomains ( O 1 } ~ 1 , / = 2  . . . . .  L, with the 
above properties, is described in Dryja and Widlund [8, 9]. Each element r~-I 
is extended to a larger region f1-1 in such a way that c h l - l <  
dist(8fl-  1, ~zl-  1 ) < Ch~- 1. We align t3fl- 1 with the boundaries of level l triangles 
and cut off the part of ~ -  1 that is outside f2 and use r ~ as the subdomains ~ .  
Another way of constructing {t)~} is given in Sect. 4. 

1 ^ l  Let N1 = 1, V~ = //1 and//~ = 1/t c~ Ho(f2~) for i = 1 . . . . .  Nt, l = 2 . . . . .  L. 
The finite element space V h = V z is represented as a sum 

L L Nz 

= Z v ' =  y Z vl. 
1=1 1 = 1 i = 1  

Operators A: V L ~ V L and A v': VI --* V~, are defined by 

(Au,(O)=a(u,(O),  V(O~V L, (Avlu , (O)=a(u,(O) ,  V(O~VI.  

Let Pv',: VL ~ V~, Q v',: VL ~ V~, be projections defined by 

a ( P v y ,  4') = a(u, (O), V(O ~ v~ , 

(Qv,U, 4') = (u, (O), V(O~ v~ . 

The preconditioner B ~ s  and the L-level additive Schwarz operator Ps~gs are 
defined by 

L N~ 

BM~S = ~ Z A v',~Qv ', 
1=1 i=1 

L Nt 

PMAS -~- B ~ s A  = ~ ~ Pv: .  
1=1 i=1 

Algorithm 2.1 (MAS). Find the solution Uh of the finite element equation (1) by 
solving iteratively the equation 

(2) PMAsUh = f M A S  deaf B~t~sf . 

Note that fMAS = B ~ s f =  ~ z ~ i f l  w h e r e f  ~ = A v,lQ v,lfare the solutions for 
the finite element problems 

(3) a( f l ,  (On) = a(Pv, u, (Oh) =f((On), V(Oh ~ V~. 

It is easy to see that fo r f l  given by (3), equations (1) and (2) are equivalent. To 
find uh, we first compute the right hand sidefMAS by solving (3), and we then use the 
conjugate gradient (CG) algorithm to solve the system (2). In each iteration, we 
need to compute Pv', Vh for a given Vh ~ V h by solving the equation 

a(PvlVh, (Oh) = a(Vh, (Oh), \/(Oh6VI �9 

This is a finite element equation on (2~ with mesh size hl, and dim(Vl) .~ 
c (h t_ l /h i )  d. Thus the size of all such problems can be very small. 
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3. Condition number estimate 

When analyzing the CG algorithm for a linear system, the crucial issue is the 
condit ion number  of  the iteration operator.  Dryja and Widlund [10] have estab- 
lished the following estimates for the spectrum of PMAS: 

(4) C 1 L - l a ( u , u )  ~ a(PMAsU, U) ~ C2La(u,u) ,  Vu~ V L �9 

Thus /r C2C1 1L2, i.e. the condition number  of PMAS grows at most  
quadratically with the number  of levels. In this section, we improve the bounds  in 
(4) by eliminating the dependence on L. 

Theorem 3.1. The multilevel additive Schwarz operator PMAS satisfies 

Cla(u ,u)  Na(PMgsU, u ) < C E a ( u , u ) ,  VuEV  L. 

All the constants are independent of{hi} and L. 

Lemma 3.1. Let V be a Hilbert space, Vi be subspaces of V and V = ~V~. Let Pv, be 
the projections from V onto Vi, and P = ~ P v ~ .  Then 

and 

Proof 

Thus, 

(5) 

since the 
(5). [] 

a(u, u) a(u, u) 
2rain(P) = min -- rain 

, a (P- lu ,  u) , min ~a(ui ,  ui) 
~U i = u i 

a(u, u) a(u, u) 
2 .... (P) = max - max 

, a(P-au,  u) u 
min ~a(ul ,  ui) 

~ u  i =u  i 

For  u = 2 i u i ,  u i ~  Vi, we have 

a(P- lu ,  u) = ~ , a ( P - l u ,  ui) = ~ a(Pv, P - l u ,  ui) 
i i 

<= a(P- lu ,  u) 1/2 a(ul, u i ) )  �9 

a ( p - l u ,  u) = min ~a(ul ,  ui ) ,  
~lt i =It i 

minimum is achieved for ui = Pv, P-~u.  The lemma follows from 

Remark 3.1. If we can find constants C 1 and C2 such that there exists a decompo-  
sition of u = ~ i u i  satisfying 

C ~ a ( u l ,  ui) < a(u, u), rue V,  
i 

and Vu~ V and for any decomposi t ion of u = ~ u i ,  we have 

a(u, u) < Cz~a(u i ,  u~), 
i 
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then, it follows from Lemma 3.1 that C 1 < 2rain(P) < 2m,dP) < C2. The first part, 
known as Lions' lemma, is very important in estimating the minimum eigenvalue of 
P; cf. Dryja and Widlund [8-10] and Nepomnyaschikh [14] for different variants 
of this result. 

For  u, v~ V, let cos(u, v) = a(u, v)/llull.llvlla. For V1, V2, two nontrivial sub- 
spaces of V, we define the cosine of the angle between Va and V2 by 

d e f  

(6) cos(V1, V2) = sup cos(u1, u2) �9 
It I ~ V  1 , w 2 ~ V  2 

Let 0 o = cos(Vi, Vj), �9 = {0o},  and let u = Y.iui ,  u i ~ V i ,  be any decomposi- 
tion of u. Then, 

a(u, u) = Za(u , ,  uj) <= Y~O,lU,lalUjla <= IlOll 2Za(u, ,  u , ) .  
i , j  i , j  i 

It follows from Lemma 3.1 that 

)-max(P) < 110112. 

Thus, to establish an upper bound for P, it suffices to estimate [I Ol[ 2 for the 
corresponding space decomposition. 

It is obvious that we always have cos(V1, V2) < l, however, stronger results 
often hold. 

Lemma 3.2. Let  l < k, i = 1,2 . . . . .  N z, j = 1,2 . . . . .  N k. Then 

cos(VI, V k) < C7 Ik-t-lld/2 . 

Proof. F o r  z ~ u~e  k uie  Vi, Vj ,  we have 

1 k _ 1 / 2  I l k k 1 / 2  = ul)a(uj ,  u j )  a(u. uj) < . ~  (u~, 

On an element rt c f2~, IVu~l = const.; thus, 

^ , , rnes((2~ ~ r ' )  _h~,-1 , l 
a ~ r ~ , ( U l ,  Ui) - -  mes(zl ) a~,(ul, ul) < c - ~ l  a~,(ui, ui) 

< C~n(k-l-1)a~,(Ul, u I ) .  

Summing over z t C(21, we obtain 

a~y(u~, ul) < CT"~-~- ~ a~l(ul, ul) = c T " ~ - ' -  ~) a(ul, ul) . 

The lemma follows from the above inequalities. [] 

Let 01~ = cos(V~, V~). The matrix, 

o = {o~},~,,,.~,,~,,,,~,., 
characterize relations between the subspaces VI. We note that O can be partitioned 
into a L by L block matrix: 

O = {O~}I_<~,L_<L, 
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where O lk ~ = {Oij}i<N,,j<Nk are Nl by Nk submatrices. If we replace the sub- 
matrices 0 tk by the i r / z -norms ,  [[ olk[[ 2, we obtain a L by L matrix 

0 = {llOtkll2}l~l,k<=L. 

The proof  of the following lemma is elementary. 

Lemma 3.3. Let  A = { A ij } 1 <= i <_,,, 1 < j <= n, where the A ij are ml by n j submatrices. Le t  
A =  {[[Aij[[2} l <=i<_,,,l <=j<_,. Then, 

IIAII2 ~ IIAII2 �9 

The following lemma provides an estimate of 11 oIk 112. 

Lemma 3.4. For 1 <= I, k <= L, we have 

(7) [lOtkll2 ~ C N c x ~ / I k - l - l l  

P r o o f  It is clear that t[ O u ]t 2 ----( [[ ~)ll [[ 1 ----< No. Assume 1 < k. We first note that  
u le  V z is zero outside ~21 and piecewise harmonic inside f2~. If f2 k c~ g~([21) = ~ ,  
then ~2~ is contained either in f2\f21, where ul = 0, or in an element of level l, where 
u l is a harmonic function; therefore cos (VI, V k) = 0. This implies that  oijlk 4 0  only 
if f2 k c~ 8t(~?~) + ~ .  Thus most  elements of matrix o 'k  are zeros and the number  of 
nonzero 01 k per row ( fixed i) is O((h~/hk_ 1 ) d- 1 ) < C7 - tk -~-  1)~d- 1), the number  of 

nonzero 0~ per column ( fixed j) is bounded by C N o  Therefore, 

Nk 
Z �9 lk - ( k - l - l ) ( d - l )  slgn(Oij ) <= C 7 

j = l  

The first inequality implies that 

[[rowi(Otk)[12 = 011 2 
J 

and 
N! 
Z " lk slgn(01j) =< C N c .  

i=1  

{ Nk } < C y d ( k - l - 1 ) ~  sign(01 k) ,/2 
j = l  

{ c ~ d ( k - l - 1 ) ~ - ( k - l - 1 ) ( d - 1 )  } 1/2 ~ C N ~  k - l - 1  . 

The second inequality implies that 

[[ o l k  [[ 2 ~ CNc  max [1 r o w i ( O  lk) ]t 2 �9 
i 

Inequality (7) follows from these estimates. [] 

Lemma 3.5. n OI1 z can be est imated by 

Iio112 ~ 110112 ~ 110111 ~ cx~  1 ,A 1 -  

Proof. T he  first inequality follows from Lemma 3.3 with A = O, A~j = 0 lk and 
A -- O. Since 0 is symmetric, the second inequality holds. The last inequality 
follows from Lemma 3.4 and the definition of the l l -norm.  [] 
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R e m a r k  3.2. The assumption that V ~ are linear, bilinear or trilinear elements is not 
crucial, Lemma 3.5 also holds for general conforming elements. 

The upper bound in Theorem 3.1 now follows easily from Lemma 3.5 and 
Remark 3.1. 

Remark  3.3. Although the proof of the upper bound is given for the model 
problem, it is easy to see that it works for any uniform elliptic operator. Since we 
can confine our study to one subdomain at a time, we also see that the upper bound 
is independent of jumps in the coefficients between the subdomains. 

To establish the lower bound, we first assume that f2 is convex. We can then use 
Nitsche's trick to show that the HI-project ion Pv , :HI (Y2) - - ,  V t, satisfies the 
approximation property 

(8) I l P v , u -  ullL2(m < C h l l u [ H , ( m ,  VueHX(~2) �9 

Let Pvo = 0, u z = (Pv, - Pv,  l )u  = (I - P v , - , ) u  I. It follows from (8) that 

(9) IlultlL=(m < C h t - 1  lu l lHl(m . 

We use the H X-orthogonal decomposition 

L 

(I0) u = P v L u =  ~ u l, u e V  L 
/ = 1  

and further decompose u * as 

N~ 

u I = ~ u~, with ul =- IIZ(Olut)~ V~. 
i = 1  

Here H z = H h' is the standard nodal value interpolation operator from C(f2) onto 
V l and {0~} a partition of unity as in assumption 2.1. It can be shown that (cf. [8]) 

l u l l 2  - 

< C(lOil 2 u t Iw~,~(mlluillgL~(~O 

< C ( l u t l 2  ^ tilL2 ~)) = H'(OI) + (1/h{-1)[lui �9 

Summing over i, using the finite covering property of {~I}, and inequality (9), we 
obtain 

i i i 

< C { l u t l ~ ( m  + 1/h2_111utll2L~(m} < C l u t l ~ ( ~ ) .  

Summing over l, 1 _< l < L, and using the orthogonality of u ~, we get 

L 

E E l u l [  2 < C l u l  2'  
/ = 1  i 

The lower bound for PMAS now follows from Lemma 3.1. 
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In the general case, we consider a larger convex region O that  contains ~2. We 
extend the tr iangulat ions oY-' to f2 and denote by  r the corresponding finite 
element space defined on O with zero trace on c?f2. 

For  ue V ~, we define ~ e ~7 ~ by 

= 
{~ xeO 

xeO\O " 

Let ~' = (Pp, - Pp, ,)~ e 17'. Then 

L 

= ~ ~ ,  i n ~  and ~ f i '  = 0  o n ~ .  
/ = 1  I 

Since ~ is convex, we have H2-regular i ty ,  which implies (cf. inequality (9)) 

(11) ~ h L 2 a l l ~ ' [ I  2 ~ < C ~ l a '  2 _ L~r 12,<~) = Cla l  = Clul 2 = H l ( ~ )  H I ( ~ )  �9 
I I 

Let ~ 2 ' =  ~ ) ~ ,  ~r be the union of the interior elements of ~-~ and 
~2\f2~ = [ - )~  ~*,~ ~ , ~ ,  e z be the union of the boundary  elements of ~q .  We note 
that  

We decompose  # as 

where 

~ 1  c . . .  c ~ L  C O  L + I  ~ Q .  

c,' = ul + u',,, ul~V',  u ' . eP ' ,  

{;z xe.A~' t(~ ' )  { 0  xE~U~(O ~) 
ul = x~ . /V"(O\O' )  and u~ = ~ - u~l = ~l x ~ . A / " ( ~ \ O ' )  " 

Using the discrete norm, it is easy to show that  

(12) , 2 _ = C h f  ~ {ff'(x)[2 <Cl[f i ,  l i2<a) ,  {[ul II L~(a) < Ch)' ~. [u~(x)[ 2 
x ~ . l  t (c2)  x e  ~ t ( ~ )  

(13) , 2 Ch~ ~ lu~B(x)l z Ilu~llg2~m < = Chd ~, ['~Z(x)12 < Cl[u'll 2 - : _ : L 2 ( Q )  - 

x E . I  z ( ~ )  a - ~ , l  q O ~ )  

L e m m a  3.6. Let u8 = ~',u~. Then uB = 0 on c?f2 w c?f21 and 

(14) lUBI2'<~) ~ Clul2'r 

Proof. We note that  u and u~ vanish on ~f2, thus UB = U -- ~/U~ = 0 on c?f2. In 
addition, u~ = 0 on ~f21, thus uB = }-'au~ = 0 on 9f21. We decompose  u~ further 

' ' e V l .  By using L e m m a  3.1 and the upper  bound  of PMAS, we as u~ = ~ v i ,  vl 
obtain  

121.,~ ,2 cY~y~h, I>,ll 2 < Y h ,  Ilu,,ll~.2.,) = ~--_ L 2  (f2) = �9 
l i 1 i l 

Inequal i ty  (14) now follows from (13) and (11). [] 
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f l  1 

u 

n2 \ ~ I I 

mmmm 

I - i -  

I I I I  
I I I  I 

i m l  

I f / l \ l f h l  I 1 I 1 I 1 1 I 
I ! , i ~  [!,~ I I ' 1 I I 

.~\~11 I I IH  

Fig. 1. Composite grid 

We decompose the strip f2\f21 = f2L+~\f21 into a number  of thinner strips 
(cf. Fig. 1). 

~\+?1 = (+?\t?~) u (+?~\1?~-l) ~ ...  u (~\+?1) = U~I(t?,+~\~,). 
The restrictions of j -z  to f / \ f / l ,  l = 1 . . . . .  L, define a composite grid on the 

strip region f2\Q 1. Note  that  

uBIa, = ~ w i s V  z, l = 2  . . . . .  L .  
i = 1  

Thus, uB is piecewise linear with respect to this composite grid. This special 
structure of us implies that  restricted to region g2\f21, there is a unique decomposi-  
t ion of us 

bl B ~- Z W l, w I E V  l . 

Furthermore,  w ~ = (//t _ / / z - 1  )u . .  We now show that this unique decomposi t ion 
is a good  decomposi t ion of  uR. We observe that  

/ / 1 u s  -- 0, and //~u~ = uB, x s t 2  ~ . 

This implies that 

w I = (/-/l _ / - p - 1 ) u  s = 0 in K21 c~ g2 t-1 = f21-1 , 

and thus 

Ilwlll~2<m II wl 2 = IN ~ 2 ~ , - ~  < 2(II/P- luB ~ 2 [[r~tr~'\a'-') + [[FltUBI[ ) 

Since I l l - l u s l o e , - ,  = us and I P - l u ,  loe = 0, we have 

(15) 2 < C ~ hal_ l lHt - luB(x) l  2 I I / / ' -  1UB IN L2(~\~, '7 = 
x a X i - l ( O f l z  1) 

= C Y~ M _ l l U . ( x ) l  2 
x e / r  t (O.Q l- t ) 

< C l lu .  II 2 ____ L 2 ( ~ 1 -  1 \~'~! - 2 ) �9 
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Similarly, 

(16) llFltu~ 2 

Since t2\t2 ~-1 = (f2\t? ~) w (O'\t2 ~-~) and //~uBI ~,,~,-, = uB, we obtain, using 
(16), 

(17) II/-/~uBll 2 iiHlu8 2 2 < ClluB][2 L2 (~\,~ t ) 

Combining the inequalities (15) and (17), we obtain 

l lwt l l~(~)  IIw ' 2 = 11 L ~ ( e , , e ,  ~)  �9 

Multiplying by ht -2, summing over 1, using Hardy's inequality (see e.g. [11] or 
[15]) and inequality (14), we obtain 

~hi-Zllw'll~=r < C~hi-Zllu,ll2~(~,,~,_=) < C~hi-211u~l122(~,,,~, ,) 
l l l 

< c I ui(x) = dist(x, 0f2) 2 dx <= Clu ,  12,(m =< Clul2,m). 

Le tu  t = u l + w  l .Then 

, = Y a ' =  Y . l  + 2u'. = + ' =  y u ' ,  

and 

~h [S t  Ilu' I122(m <= 2~h7-21 [lu{ II 2L2m) + 2~h[gl  IIw' [I ~(m =< C[ul ~t, (a) . 
l l l 

The rest of the proof is identical to that in the case of a convex domain. 

Combining our arguments with the extension theorem for finite element fun- 
ctions (cf. Widlund [17]), our approach can be applied to other types of boundary 
conditions as well. 

Remark 3.4. Define a discrete norm II" II o by 

(18) Jlull~= inf hTfllllu~l[~2, u ~ V  z. 
L l ~_,I=I U =re 

Using Besov space theory, Oswald [16] has established the following norm equiv- 
alency: There exist two constants C1 and C2 such that 

(19) C , I l u l l g  < l u l l 1  = c211ull 2 . 

Using (19), Oswald proved that the condition number of the B PX operator is O (1). 
In [5], Bramble and Pasciak give a different proof of Oswald's result using 

the properties of L 2 and H 1 projections, see also Xu [20]. Bornemann and 
Yserentant [4] give another proof using Peetre's K-method. 

4. A multilevel diagonal scaling 

We begin this section by constructing a special decomposition of the domain ~. We 
show that this decomposition, and the corresponding decomposition of the finite 
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element subspaces, satisfies Assumption 2.1. We then demonstrate that the algo- 
rithm is a multilevel diagonal scaling, i.e. a natural generalization of the regular 
diagonal scaling. For problems with constant coefficients and uniform triangula- 
tions, the multilevel diagonal scaling algorithm is identical, up to a constant 
multiple, to the BPX algorithm of Bramble et al. [7]. In the general case, BPX with 
diagonal scaling results in an MAS algorithm. 

Let {J-~}~= 1 be a nested sequence of triangulations, with ~-~+1 obtained from 
~--t by dividing the triangles (rectangles) of ~-z into four triangles (rectangles). In 
three dimensions, we make a similar construction. We consider piecewise linear, 
bilinear or trilinear elements, respectively. As in the previous section, the finite 
element space associated with ~--~ is denoted by V t. Let gbl be a nodal basis 
function of V l, and associate with each q51 a subdomain (21 = supp{ ~bl}. We choose 

1 ^ l  V~ = span{qSl} = V t c~ Ho(t2i) and obtain the decomposition 

L N t 

v =E Zvl. 
1 = 1  i = 1  

The corresponding projections are Q v l ' V  LL~vi''l and P v , ' V L ~ v I .  Since 

dim(Vl) = 1, we have, A v, = 2~ = a(qSl, 4~l)/(~bl, q~l). UsingLtlae preconditioner 
U - 1  __ v L  ~"~Nt 1 1 / ) ~ I Q v ,  and the MAS operator P M A S  ~--- ~ l - ~ i P v  ' ,we define LPMAS - -  / d = l / ~ i =  i - i 

an additive Schwarz algorithm 

Algorithm 4.1 (MAS). 
ly the equation 

Find the finite element solution Uh ~ V L by solving iterative- 

d e f  

P M A S U h  = f M A S  - 1 ~--- B M A S f  

In this special 
I l l l l 

) . iQv:f  = f ((al)/a(r r162  
given explicitly by 

= (ai)/a((ai, and = 4,)~i fl  1/ case, we note that Pvlu  a(u, z t z 
Thus the additive Schwarz equation can be 

~1~1 a(u, 4'I) 
, , a ( ~ l , r  ~1 ~1 f(gb~) qSl. 

l =  i =  

1 L N l I l Recall that the B PX preconditioner is given by B - v = ~ =  1 ~ =  1@, gbl)~bl, there- 
L N l l I l l fore B - l A y  = ~ l = l ~ i = l a ( v ,  49i)~i. It is clear that if we drop the terms a@i, $ i )  

from the additive Schwarz equation, we obtain the BPX algorithm. 
Define the degree of a vertex xl as the number of edges incident to it, and the 

degree of a triangulation 3- h as the maximum of the degrees of its vertices. It is easy 
to see that the overlapping subdomains {(21ji= 1 form a finite covering of t2 with 
a covering constant less than or equal to degree ( Y  t) + 1. We also see that on each 
level {O1 } provides relatively generous overlap. The nodal basis { qSl} can also be 
used as a partition of unity. The optimal convergence properties of the algorithm 
follow from Theorem 3.1. 

Let K~ be the stiffness matrix associated with V t and Dt = diag(K~). Let 
//~: V ~ ~ V L, (1 < L) be the standard interpolation (prolongation) operator, and 
/-/~: V L ~ V ~ be the adjoint operator of//~. Algorithm 4.1 can then be written as: 
Find the solution of KLX = b by solving the preconditioned system 

B L 1 K L X  = BLXb , 
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where 

B L  1 = H I K 1 1 H ~  + H2DzllFI~z + �9 �9 �9 + H L - 1 D [ ~ 2 1 H k - ~  + D L  1. 

We note that K ~-1 can be replaced by any good preconditioner B 1 of K 1. 
If we replace the matrices D~ by identity matrices, we obtain the BPX algo- 

rithm. However, since the diagonal elements contain information on the shapes of 
the triangles and the coefficients of the problems, we expect that the multilevel 
diagonal preconditioner will work better in practice for non-model problems, since 
it more closely reflects the properties of the problem. 

5. Muitiplicative variants 

In this section, we discuss some muttiplicative variant of the multilevel Schwarz 
methods, which correspond to certain multigrid methods. In particular, we want to 
estimate the norm of the following operators 

L Nt 

E~ = H ~ ( l - P v [ ) ,  
/ = 1  i = 1  

L d e f  L N l 

Es = I ] ( I - -  Tt)  = 1 - [ ( l - r l  Z Pv[ ) ,  
/ = 1  t = l  i = 1  

where r/is a damping factor such that II Tz II < 09 < 2. 
The algorithms can, in matrix form, be regarded as the error propagation 

operator of the following schemes: 

ut = u l -1  + r I H I D ? l H ~ ( f  - KLUt) ,  I = 1 . . . .  , L , 
o r  

u l = u t - 1  + H I ( D I - - L t ) - I H I ( f - - K L U l ) ,  l =  1 . . . . .  L ,  

where Uo is the current approximation, Dr, - Z t  and LJ are the diagonal, lower 
and upper triangular parts of K t ,  respectively. H l and H~ are defined as in Sect. 4. 

The product in the above expression can be arranged in any order; different 
orders result in different schemes. When the product is arranged in the natural 
order, the operators Eo and Es  correspond to the error propagation operators of 
V-cycle multigrid methods using Gauss-Seidel and damped Jacobi method as 
smoothers, respectively. We will show that the energy norm of IIEG IL and lies II is 
bounded by a constant less than one, independent of the number of levels and the 
order of the product. We refer to [5, 6, 20] for general techniques for analyzing 
multiplicative schemes. 

Let T~, i = 1 . . . .  N, be symmetric, semi-positive definite operators, with 
respect to a ( . , . i  and let I[Till < 09 < 2. Let T =  ZIN__ITi, E o u =  
u, E iu  = (I - T i ) E i - l u  and E = En.  We first establish bounds for IIEII in terms of 
T~. Then, we apply these estimates to Eo and Ej.  

The proof of the following lemma can be found in [6]; the case Ti = P~ is 
trivial, and equality holds with 09 = 1. 

Lemma 5.1. For any ue  V, 
N 1 

a ( T i E i - x U ,  E i - l u )  < {a(u, u) -- a(Eu, Eu)}  . 
i=1 = 2 - 0 9  
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Let O r  = {0~}, where 0~ = 1 and 0~, i , j  are given by 

a(Tiu, Tiv) 
(20) 0~ = sup,,v a(Tiu, u) 1/2 a(Tjv, v) 1/2 �9 

We note that  when the T~ are projections, definitions (20) and (6) are identical. As 
a result of the definition (20), we have 

(21) a(Tiu, Tjv) < O~a(Tiu, u) 1/2a(Tjv, v) 1/2, i+-j. 

and 

(22) a(Tiu, v) < a(Tiu, u) 1/2 a(Tiv, v) 1/2 = O~a(Tiu, u) 1/2 a ( T i v ,  V) l/2 

Lemma 5.2. For 0 r defined by (20), we have 
N 

a(Tu, u) <-_ l}OrIlZ~ ~ a(T, Ei_lu,  E,_lu) ,  u  
i = 1  

Proof. u can be written as: 

i - 1  

(23) u = Tau + ( I -  T1)u = T1Eou + E lu  = " " " = ~ TjEj_lU + Ei- lU �9 
j=l 

By using (23), (21) and (22), we obtain, 

i - 1  

a(Tiu, u) = a(Tiu, El-  t u) + ~ a(Tiu, TjE i_ 1 u) 
j=l 

< O~a(Tiu, u)t /2a(TiEi_lu,  Ei-lU)x/2 

i - 1  

+ ~ O~a(Tiu, u) 1/2a(TjEj_lu, Ej_lU ) i/2 
j = l  

t i t = a(Tiu, u) 1/z ~ O~a(TjEj_lu,  E j - l U )  1/2 �9 
k j = l  

Thus, for 1 <_ i < N, we have 

a(Tiu, u)l/2 < 0 a(TjEj_lu,  Ei_lu)  ~/2 <= 0 a(TjEi_lu,  Ei_lu)  1/2 . 
k j = l  

The  lemma follows by taking the 12-norm. [] 

As a consequence of Lemma 5.1 and Lemma 5.2, we have 

1 1 I I O r l I  2 
a(u,u) <= ~.min(T)a(Tu, u) < a - - I { E u l l 2 )  �9 - -  = 2 - co J . m i n ( T )  (IIu{I 2 

Solving for [[Eull, we obtain 

Lemma 5.3. 

][Eu]] 2 < (1  -- (2--  co) 2min(T) ) 
I I O r l [ 2  IlulI"Z " 

The next lemma gives a lower bound of Ilgll. 
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L e m m a  5.4. 

2)~min(T) 
1 - ~ ItEtl �9 

2 - ~o + )~r~i,(T) 

Proof. U s i n g  iden t i ty  (23) a n d  the C a u c h y - S c h w a r z  inequa l i ty ,  we o b t a i n  

,,u,lZ~ =a(u,u)=a(u, Eu+ ~=~ T~Ei-lu) 
N 

---< Ilull, ,llEulla + ~ a(Tiu, u) l/2a(TiEi _lu, E i_lu) 1/2 
i = l  

< llullollgulla + a(Tu, u) 1/2 a(TiEi-lU, Ei - lu )  i 
=< ,,UNa,IEuIIa + a(Tu, u) l/2[ ['u'] 2 - "Eul' ea ~ - 0  . 

D i v i d i n g  b o t h  sides by Hull 2 resul ts  in 

I 1 ll/2I~ ll/21 'tER]'211/2" i < II Eu [I ,, + 1 

= ]lull~ ~ - ~  a(u, u) I?u?l~ 

S imp le  a l g e b r a  gives 

1 - I I E I I  < ( 2 _ c o )  
(2 - ~o) 1 +-IIEtl = 

which  shows  tha t  

(24) ~min(T) > (2 - o9) - -  

So lv ing  for  HEll, we o b t a i n  

2 - (~ - 2min(T ) 
(25)  IIEII > - 

= 2 - ~o + )~min(T) - 1 - 

l i E < l .  
1 

Ilull~ a(Tu, u) 
[[Eu]la a(u, u) 

l + - -  
1lull a 

1 - I L E I I  

I + IIEll 

2 2 m i . ( T )  

2 - co + ,,~min(T) " 

T h e  l e m m a  fol lows f rom (25). []  

C o m b i n i n g  L e m m a  5.3 a n d  L e m m a  5.4, we o b t a i n  

T h e o r e m  5.1. 

_ 22mln(T)  / 
),min(T) < HEll < . / 1  - (2 - co) 

2 _ t~._k ,),min(Y) : = ~ }IOTl122 

T h e o r e m  5.1 impl ies  tha t  if 2m~,(T) ~ 0 then  ]lEll = 1 - O ( / ~ m i n ( T ) )  ~ 1. If  we 
can  show tha t  [[E[I < 6E < 1, i n d e p e n d e n t l y  of  the  n u m b e r  of  r e f inemen t  levels, 
then,  it fol lows f rom (24) t ha t  2mi, (T)  is b o u n d e d  f rom be low by  a c o n s t a n t  
i n d e p e n d e n t  of  the  n u m b e r  of levels. 
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To apply Theorem 5.1 to operators E j  and E~, we need to estimate the 
corresponding 2mi.(T) and [[O r [[ 2. 

L N t We first estimate EG = l ~ t = l ~ = l ( I  -- Pvl). In this case, T, = Pv, for some 
subspace V~. Thus, T =  PMAS and OT = O = {cos(Vl, V~)}. By Lem~qa 3.5, we 
know that 11Olt2 < c2  and that )~min(T) > C 1. Thus, IIEol[ < 6~ < 1, i.e. the 
V-cycle multigrid method using Gauss-Seidel as a smoother has a rate of 
convergence independent of the number of levels. 

We now estimate Es = F[L=I (I -- t /~ iP  v~ ). We note that T, = t /~ iP  vl- Thus, 
T = ~ T l  = tlPMAs and 2rain(T) = r/2mI,(PMAs) > C. To estimate II Orlt  Z, we note 
that 

a( Ttu, TkV) = rl2 ~ a(P vl u, P v~ v) 
i j 

t?2Z~OI~fPvfUlalPv~Vla 
i j 

<rtllO'~ll2 n ]Pv, u]. ~l~lPv~v] 2 
�9 / x j 

= q]I Osk l[ 2a(Tzu, u) 1/2a(TkV, v) 1/2 

By the definition of 0~ and Lemma 3.4, we have 

0~ 5,711q;kH2 < CNcx/7 jk- ' - l l  
Therefore, 

][OWl]2 ~ ]]OTI]I = max ~ 0 ~  =< CNc 1 + 
l k 1 - - X / ~  " 

Thus, I[Ejtl =< 6j < 1, i.e. the V-cycle multigrid method using damped Jacobi as 
a smoother, has a rate of convergence independent of the number of levels. 

Remark 5.1. Similar techniques can be used to study the hierarchical basis multi- 
grid method. Let En~MG be the error propagation operator of the hierarchical basis 
multigrid method, using Gauss-Seidel or damped Jacobi method as smoothers. 
Then 

IIEHBMGi[ 2 < 1 - -  C )~min(KHB)- _< 1 - CL -2 . 

IIOril~ - 

Here, KnB is the hierarchical basis stiffness matrix. 

6. N u m e r i c a l  exper iments  

In this section, we report on some numerical experiments with multilevel additive 
Schwarz methods. These experiments were carried out for Poisson's equation on 
a unit square with homogeneous Dirichlet boundary conditions 

- A n  = f ( x )  in Q ,  

u = 0 on ~f2 . 

We divide the domain f2 into k x k square elements r~, i =  1 . . . . .  k 2, and 
obtain a triangulation ~--x = {z]}. We then divide each z I into k x k squares to 
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Table 1. Properties of the 
elements 

multilevel additive Schwarz scheme, using bilinear 
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Level Unknowns hi- 1 ~hi ovlp ratio K(PMAs)  Iter. no. 

2 ( 4 -  1) z 2 1/2 4.5 5 
3 (8 - 1) 2 2 1/2 7.2 11 
4 ( 1 6 -  1) 2 2 1/2 9.3 17 
5 ( 3 2 -  1) 2 2 1/2 10"9 20 
6 ( 6 4 -  1) 2 2 1/2 11.8 21 
7 (128 -  I) 2 2 l/2 12.6 23 

2 (9 - 1) 2 3 1/3 4.7 9 
3 ( 2 7 -  1) 2 3 1/3 7.1 16 
4 (81 - -  1) 2 3 1/3 8.5 19 
5 (243 - 1) z 3 1/3 9.5 21 

2 ( 1 6 -  1) 2 4 1/4 5.1 13 
3 ( 6 4 -  1) z 4 1/4 7.3 17 
4 (256 - -  1) 2 4 1/4 8.5 20 

2 ( 2 5 -  1) / 5 1/5 5.7 14 
3 (125 -  1) z 5 l/5 7.8 17 

o b t a i n  the t r i a n g u l a t i o n  3 --2 = {z 2 }, etc. The  length  of a n  edge of z~ is deno t ed  by 
ht a n d  ht = ( l /k)  I. F o r  I = 2 , . . . ,  L, we ex tend  r~ -1 to a larger  square  i~-~ .  The  
ove r l ap  rat io 

GTi } over lap  ra t io  = d i s t ( ~ f ~ - I  ~ i 1 
hi-1 

measures  the width  of  f l - a \ r l  - ~ in terms of ht_ 1, the side of the square  r~-~.  W e  
use f2 as our  d o m a i n  for l = 1, a n d  f2~ = i1-1  as o u r  s u b d o m a i n s  for I = 2 . . . . .  L. 

In  these exper iments ,  we take k = 2, 3, 4 or  5, a n d  i~-  1 \ ~ I -  1 is one  e l emen t  (h t )  
wide, i.e. the over lap  ra t io  is t / k .  Therefore,  we on ly  need to solve very smal l  l inea r  
systems of order  9, 16, 25 or  36, respectively.  We  use the con juga t e  g rad ien t  m e t h o d  
to solve the system PMASUh =fMAS iteratively.  Th e  last  c o l u m n  of the table gives the  
n u m b e r  of  i t e ra t ions  requi red  to decrease t h e / 2 - n o r m  of the res idual  by  a factor  of  

= 1 0 - 6 .  

In  the next  set of  exper iment ,  we repor t  some num er i ca l  results  for 
A lgo r i t hm  4.1; see also [7]. In  Tab l e  2, we repor t  results  for the l inear  e lements  

Table 2. BPX, using linear elements 

Level Unknowns 2mln (PMAs)  2~a~(PMas) ~c(PMAs) Iter. no. 

2 ( 4 -  1) 2 0.61 1.75 2.9 4 
3 (8 - 1) 2 0.51 2.66 5.3 13 
4 ( 1 6 -  1) 2 0.47 3.29 7.0 17 
5 (32 - 1) 2 0.46 3.81 8.2 19 
6 ( 6 4 -  1) 2 0.46 4.23 9.2 20 
7 (128 - 1) 2 0.46 4.58 9.9 20 
8 (256-  1) 2 0.46 4.88 10.6 21 
9 (512-  1) z 0.46 5.13 11.2 21 
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Table 3. BPX, using bilinear elements 

Level Unknowns .~min (PMAs) .2max(PMAs) K(PMAs) Iter. no. 

2 ( 4 -  1) 2 0.82 1.7 2.1 3 
3 ( 8 -  1) 2 0.77 2.3 3.0 8 
4 ( 1 6 -  1) 2 0.76 2.7 3.6 11 
5 ( 3 2 -  1) z 0.76 3.1 4.0 11 
6 ( 6 4 -  1) 2 0.76 3.3 4.4 13 
7 (128 - 1) z 0.75 3.6 4.7 14 
8 (256 - 1) / 0.75 3.8 5.0 14 
9 (512 -  1) / 0.75 3.9 5.3 14 
10 (1024-  1) z 0.75 4.1 5.5 14 
11 (2048-  1) 2 0.75 4.2 5.6 14 

discre t iza t ion.  In  Tab le  3, we s u m m a r i z e  the resul t  for the b i l inear  e lements  
d iscre t iza t ion.  
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