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Summary. We consider the solution of the algebraic system of equations which
result from the discretization of second order elliptic equations. A class of multi-
level algorithms are studied using the additive Schwarz framework. We establish
that the condition number of the iteration operators are bounded independent of
mesh sizes and the number of levels. This is an improvement on Dryja and
Widlund’s result on a multilevel additive Schwarz algorithm, as well as Bramble,
Pasciak and Xu’s result on the BPX algorithm. Some multiplicative variants of the
multilevel methods are also considered. We establish that the energy norms of the
corresponding iteration operators are bounded by a constant less than one, which
is independent of the number of levels. For a proper ordering, the iteration
operators correspond to the error propagation operators of certain V-cycle multi-
grid methods, using Gauss-Seidel and damped Jacobi methods as smoothers,
respectively.

Mathematics Subject Classification (1991): 65F10, 65N30

1. Introduction

Multilevel methods, such as multigrid methods, are some of the most efficient
methods of solving large systems of linear equations arising from the finite element
or finite difference discretization of elliptic PDES; cf. Hackbusch [12],
McCormick [13] and the references therein. Recently, with the increasing interest
in parallel computation, several new multilevel methods have been developed and
analyzed, e¢.g. Yserentant’s hierarchical basis method [21], the hierarchical basis
multigrid method of Bank et al. [1], the parallel multilevel preconditioners de-
veloped in Bramble, Pasciak and Xu [7] and Xu [19], and the multilevel additive
Schwarz methods of Dryja and Widlund [10].

*This work was supported in part by the National Science Foundation under Grants
NSF-CCR-8903003 at Courant Institute of Mathematical Sciences, New York University and
NSF-ASC-8958544 at Department of Computer Science, University of Maryland.
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We consider second order, self-adjoint, uniformly elliptic differential equations
on two or three-dimensional polygonal domains, approximated by continuous,
piecewise linear finite elements. We use multilevel Schwarz algorithms to solve the
resulting linear system and estimate the condition number of the additive algo-
rithms and the energy norm of the error propagation operator of the multiplicative
algorithms. When the additive algorithms are used, an equivalent equation is
solved by an iterative method such as the conjugate gradient method. In each
iteration, a number of independent problems corresponding to the subdomains are
solved. The size of all the subproblems can be very small. Dryja and Widlund have
shown that the condition number of a multilevel additive Schwarz (MAS) operator
grows at most quadratically with the number of levels; cf. [107]. Similar results for
the BPX algorithm were established in Bramble et al. [7]. In this paper, we improve
the results for a class of multilevel methods. We show that the condition number of
the MAS operator is bounded by a constant independent of mesh sizes and the
number of levels. We note that Peter Oswald [16] has obtained a similar result for
the BPX algorithm using Besov space theory. For alternative proofs of Oswald’s
result, see Bramble and Pasciak [5], Xu [20] and Bornemann and Yserentant [4].

The rest of the paper is organized as follows. In Sect. 2, we describe a class of
multilevel additive Schwarz algorithms. In Sect. 3, we establish a bound for the
condition number of the iteration operator of the algorithm. In Sect. 4, we describe
a variant of the algorithm. We construct a very special decomposition of the space,
and show that it can also be regarded as a multilevel diagonal scaling algorithm. In
the case of constant coefficients and uniform triangulation, this algorithm is
identical, up to a constant multiple, to the main algorithm developed in Bramble et
al. [7]. As a consequence, we also obtain an improved result for the BPX algorithm.
In Sect. 5, we consider some multilevel multiplicative Schwarz schemes and
establish that the energy norms of the iterative operators are bounded by a con-
stant less than one, independent of the mesh size and the number of levels. In Sect.
6, we report on some numerical results for the multilevel additive Schwarz method.
For a discussion of implementations of the algorithms on parallel computers, see
Bjorstad et al. [2] and Bjerstad and Skogen [3], who implemented multilevel
additive Schwarz algorithms on a MasPar MP-1, a massively parallel, SIMD
machine. The use of approximate solvers for the subproblems are also discussed in
those papers.

The present paper is based in part on chapter 3 of the author’s thesis [23], see
also [22]. The result for the upper bound of the eigenvalues of the additive operator
was obtained in early 1991 and announced by Widlund [18] at the 5th domain
decomposition conference in early May, 1991, held at Norfolk, VA.

2. Multilevel additive Schwarz methods

Consider the following second order elliptic problem

4 9 i)
- Z a__xiaijgj

ij=1

u=f inQ,

u=0 on Q2 .
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Here Q is a bounded polygonal region in R, d =2 or 3. The matrix {a;;} is
symmetric and positive definite, i.e. its eigenvalues A,(x) > 0, Vx € Q. The varia-
tional form is: Find u € H}(Q) such that

a(u,v) =f(v), Yve H{(Q),

where

d
aw,v)=1{ aljaau a@vd and f(v)=}[lfvdx.

2i,j=1

We describe the method and carry out the analysis for Poisson’s equation. How-
ever there is no difficulty in carrying out the analysis for more general second order
problems. In particular, we can obtain a good upper bound as long as 4,4(x)/4,(x)
is uniformly bounded in @ and the coefficients {a;;} do not change very much
inside individual subdomains.

We define a sequence of nested triangulations {7 '} [ ;. We start with a coarse
triangulation .7 ' = {t}},, where 1! represents an individual triangle. The
successively finer triangulations 7' = {t{} M, are defined by dividing individual
triangles in the set 7 '~ ! into several triangles. We make a similar construction for
three dimensional problems. We assume that all the triangulations are shape
regular. Let h! = diameter(r}), h; = max;h! and h = h,. We also assume that there
exists a constant y < 1 and a constant C, such that if an element ! ** of level | + kis
contained in an element 1 of level [, then

diam(t!**)

diam(z")

k

< Cy*.

For a uniform refinement, with each triangle divided into k? equal triangles,
y = 1/k and C = 1. We denote by 4" and &' the sets of nodes and edges induced
by the triangulations ', and by &'(S) the edges of the subset S.

Let V', I=1,...,L, be the space of continuous piecewise linear elements
associated with the triangulation ', The finite element solution u,e V* satisfies

(M aluy, ¢n) =f(dn), Vo,e Ve,

We assume that there are L —1 sets of overlapping subdomains
QN 1=2, 3,..., L. Thus, on each level, there is an overlapping decomposi-
tion @ = (J}*, Q!. We make the following assumption about the sets {Q!}.

Assumption 2.1. On each level, the decomposition Q =  J¥., Q! satisfies:

(a) 0Q! aligns with the boundaries of level | elements, i.e. Q} is the union of level
| elements. The diameter(Q}) = O(h,_,).

(b) The subdomains {Q WY, form a finite covering of Q, with a covering constant
N., i.e. we can color {Q’}, 1, using at most N. colors in such a way that subdomains
of the same color are disjoint.

(¢) There exists a partition of unity {0}}, associated with {Q}) )2 |, which satisfies

Y 6i=1, with0leH§@Q}) nC°®),0<0; <1and |VO} £ Clhy_y .

The first condition simply means that the restriction of the triangulation 7' to
a subdomain Q! defines a triangulation for Q] and that the finite element problem
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on Q! is well defined. The second condition is used when establishing the upper
bound of the spectrum of the additive Schwarz operator. The last condition is used
for the lower bound of the spectrum.

One way of constructmg subdomains {Qf}f”l,l—Z , L, with the
above properties, is described in Dryja and Widlund [8, 9]. Each element it
is extended to a larger region %/°! in such a way that chi™! <

dist(0t{™", t{™') < Ch{™'. We align 0t;™" with the boundaries of level [ triangles
and cut off the part of £/ 11 that i is outside 2 and use i~ ' as the subdomains Q!.
Another way of constructing {Q!} is given in Sect. 4.

LetN, =1L, Vi=V'and V= V' n H§Q!)fori=1,...,N,I1=2,...,L
The finite element space V" = V'* is represented as a sum

L L N
N I )
1=1

I=1i=1

Operators A: VE — V- and 4,.: Vi - V!, are defined by
(Au, §) = a(u, ), VoeV',  (Apw, ¢) =alu ¢), YeVi.

Let Pyi: VE— Vi Qi V2 — Vi, be projections defined by
a(PVl.us d)) = a(“? ¢)’ V¢€ Vf s
(QV:”: d)) = (us d))7 V¢E V{ .

The preconditioner Byas and the L-level additive Schwarz operator Pyas are
defined by

Byas = Z Z AV‘QV'
=1 i= L M

Puas = Buds4d = Y, ch/{-

i=1i=1

Algorithm 2.1 (MAS). Find the solution u, of the finite element equation (1) by
solving iteratively the equation

(2 Pyastn = fuas & BMAS

Note that fyas = Buds /= .,>.:/+ where f{ = A,'Q ;f are the solutions for
the finite element problems S

3) a(fh, ¢n) = aPypiu, ¢u) =f(@4), VoueVi.

It is easy to see that for f% given by (3), equations (1) and (2) are equivalent. To
find u,,, we first compute the right hand side fyas by solving (3), and we then use the
conjugate gradient (CG) algorithm to solve the system (2). In each iteration, we
need to compute Py:v, for a given v, € V* by solving the equation

a(Py1vy, ¢u) = alvw, $1), VeueVi.

This is a finite element equation on Q! with mesh size h;, and dim(V}) =
c(h,_1/h;)". Thus the size of all such problems can be very small.
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3. Condition number estimate

When analyzing the CG algorithm for a linear system, the crucial issue is the
condition number of the iteration operator. Dryja and Widlund [10] have estab-
lished the following estimates for the spectrum of Py,g:

(4) C.L 'a(u,u) € a(Pyasth u) < CoLa(u,u), YueVel.

Thus x{(Puas) < C,C1 L2, ie. the condition number of Py,s grows at most
quadratically with the number of levels. In this section, we improve the bounds in
(4) by eliminating the dependence on L.

Theorem 3.1. The multilevel additive Schwarz operator Pyas satisfies
Cia,u) < a(Pyasth ) £ Cyalu, u), Vue vt

All the constants are independent of {h;} and L.

Lemma 3.1. Let V be a Hilbert space, V; be subspaces of Vand V =Y V. Let Py, be
the projections from V onto V;, and P =Y ;Py,. Then

. alu,u) : afu, u)
Amin(P) = — = ——
min(P) e a(P ™ u, u) T min Y alu;, u;)
Yu,=u i
and
au, u) a(u, u)
Amax(P) = I’Il:lX a(P_lu, u) = m“ax

min Y a(u;, u;)
Sup=u i

Proof. Foru =Y ;u;, u;e V;, we have

a(P *u,u) =Y a(P 'u,u;) =) a(Py,P " u,u;)

i 1

1/2
<a(P 'u, u)”z(Za(u,-, ui)> .

1

Thus,

(5) a(P~'u,u) = min Y a(u;, u;),

Yui=u i
since the minimum is achieved for u; = P,, P~ 'u. The lemma follows from
(5. O

Remark 3.1. If we can find constants C | and C, such that there exists a decompo-
sition of u = ) ;u; satisfying

Clza(ui’ ui) éa(uau)’ quV,

and Yue V and for any decomposition of u = Z,-ui, we have

a(u,u) £ C,Y alu;, u;),
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then, it follows from Lemma 3.1 that C; < 1,;0(P) £ Amax(P) = C;. The first part,
known as Lions’ lemma, is very important in estimating the minimum eigenvalue of
P; cf. Dryja and Widlund [8-10] and Nepomnyaschikh {14] for different variants
of this result.

For u,veV, let cos(u, v) = a(u, v)/|ull.l|vl.. For Vy, V,, two nontrivial sub-
spaces of V, we define the cosine of the angle between 'y and V', by

def
6) cos(V,V,) = sup  cos(uq, us) .

u eV, u eV,
Let 6;; = cos(V;, V;), ® = {0;}, and let u = Y ;u;, u;€V;, be any decomposi-
tion of u. Then,

u u) Za(uuu ) <20u|u | 'u Ia = ” sza(unu

It follows from Lemma 3.1 that
Amax(P) £ O]l .

Thus, to establish an upper bound for P, it suffices to estimate || @], for the
corresponding space decomposition.

It is obvious that we always have cos(V, V,) < 1, however, stronger results
often hold.

Lemma 3.2, Let l <k, i=1,2,...,N,,j=1,2,...,N;. Then
cos(V4, Vi) < cylk—i-thaz

Proof. For uteVi, uteV*, we have

a(ui, uf) < ag? (@l uba(, uf) .

On an element t' < Q!, |Vu!l| = const.; thus,

d

h
a:whu)sC 2 a.(ul, ul)
1

mes(Q% N t')
mes(t')

aﬁ’;nt’ (ug, uf) =

SO Vaa(ui, ul) .
Summing over t/ C Q}, we obtain
agul ul) £ Oy Vagi(ul,ul) = O Vaul, ul) |
The lemma follows from the above inequalities. O
Let 0% = cos(V}, V'*). The matrix,

— Ik
0 = {Gij PN, JEN LKL >

characterize relations between the subspaces V:. We note that @ can be partitioned
into a L by L block matrix:

0= {@lk}1§l,k§L )
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where ©% = {0%},.y <y, are N, by N, submatrices. If we replace the sub-
matrices @ by their [,-norms, | @”‘|| 2, we obtain a L by L matrix

@~ = {“@lkllz}lgukgL-

The proof of the following lemma is elementary.

Lemma 3.3. Let A = {A;} 1 <i<m 1xj<n Where the A;; are m; by n; submatrices. Let
A {”Au”2}1<z<m 1<jsn: Then

1Al < 4],

The following lemma provides an estimate of | @*| ,.

Lemma 3.4. For 1 <1,k £ L, we have
" 1% (15 < CNJfy =11

Proof It is clear that |@"]|, < ||@"||, £ N.. Assume ! < k. We first note that
ute V' is zero outside Q! and plecew1se harmomc inside Q}. If Q% n £'(Q}) = &,
then Q% is contained either in Q\Q!, where u! = 0, orin an element of level [, where
ulisa harmomc function; therefore cos (V}, V%) = 0. This implies that OZ‘ +0 only
if Q" ~ &1(Q}) + . Thus most elements of matrix @' are zeros and the number of
nonzero 0}% per row ( fixed i)is O{(h,/h,— )¢~ ') £ Cy ~*~1=D@=1D ‘the number of

nonzero 0{1 per column ( fixed j) is bounded by CN .. Therefore,
Ny N;
Y. sign(8¥%) < ¢y~ *kTtmh@=bh and Y. sign(6%) < CN..
i=1 i=1
The first inequality implies that
N, 1/2 Ny 1/2
rowi©)1: = { 3 07} < {erm o 3 oty |
i=1 j=1
< {C,yd(k—l~1)y~(k—l—1)(d~1)}1/2 < C\/;k«l—l )

The second inequality implies that

le*j, = CN.max | row (O@")|l, .

Inequality (7) follows from these estimates. [

Lemma 3.5. |®| , can be estimated by

1
1 —

10l,<161,<6|, £CN,

5

Proof. The first inequality follows from Lemma 3.3 with 4 = @, 4;; = ©* and

A =@. Since @ is symmetric, the second inequality holds. The last inequality
follows from Lemma 3.4 and the definition of the I;-norm. O
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Remark 3.2. The assumption that V! are linear, bilinear or trilinear elements is not
crucial, Lemma 3.5 also holds for general conforming elements.

The upper bound in Theorem 3.1 now follows easily from Lemma 3.5 and
Remark 3.1.

Remark 3.3. Although the proof of the upper bound is given for the model
problem, it is easy to see that it works for any uniform elliptic operator. Since we
can confine our study to one subdomain at a time, we also see that the upper bound
is independent of jumps in the coefficients between the subdomains.

To establish the lower bound, we first assume that Q is convex. We can then use
Nitsche’s trick to show that the H'-projection Py.:HY(Q) — V!, satisfies the
approximation property

(8) 1Py — ull 200 = Ch,|u|31(m, Yue HY(Q) .
Let Pyo =0, u' = (Py: — Pyi-)u = (I — Ppi-1)u'. It follows from (8) that
©) Nul”Lz(Q) SChy-y lul]HI(m .

We use the H!-orthogonal decomposition

u', ueVt

=

(10) u=Pyru=

1

It

1
and further decompose u' as
N
u' =Y ul, withu} = I1'0u')eV;.
i=1

Here IT' = I1* is the standard nodal value interpolation operator from C(Q) onto
V' and {6}} a partition of unity as in assumption 2.1. It can be shown that (cf. [8])

lulihqu(ﬁ}) = IHI(Hiul)ﬁil(?z}-)
< C(10:1i-co |uli%11(§§) + |9i|%w,w(:z)”u“|lz,2(?z§))
< CQu' iy + U/hE- DllublE @) -
Summing over i, using the finite covering property of {Q!}, and inequality (9), we

obtain

Z |“H12-11(Q) = Z |u“1211(?2£) < CZ{W”%II(?){) + 1/h12—1 ”ul“ 1%2(:35)}
i

3 13
S C{lu oy + Vhi- ! F200 ) £ Clut e -
Summing over [, 1 £1 < L, and using the orthogonality of u!, we get
L
Z Ziuglfmm = C|u|%1‘(!2) .
=1 i

The lower bound for Pyas now follows from Lemma 3.1.
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In the general case, we consider a larger convex region ¢ that contains Q. We

extend the triangulations 7' to @ and denote by P! the corresponding finite
element space defined on Q with zero trace on 0€.
For ue V', we define ie V'L by

. {u xeQ
u= ~ -
0 xe\Q
Let ii' = (Pj: — Py 1)iie V', Then

L
i=Yd', n@ and Ya'=0 ondQ.
1=1 1
Since Q is convex, we have H 2-regularity, which implies (cf. inequality (9))
(11) Z hl_—zl ||'Zl|| 1%%?2) < CZ |ﬁl|%11(§) = CWI?P(?}) = Clu] %11(9) .
1 4

Let Q' =), :.00=g7 be the union of the interior elements of ' and
ANQ' =), .72 004 o7 be the union of the boundary elements of 7 ‘. We note
that

Qlc - cQl QML =@q .
We decompose @' as

dt=ul +ul, uleV', uhel',
where

it xe /@Y 0 xe QY
ul = . d =g —uj = .
0 xeaHA\QYH it xe A HQY
Using the discrete norm, it is easy to show that

(12) luflifo S Ch{ 3, luilx)|? =Chi 3, [#'(x)[? = Cli'[f2) »

xed 1) xe 1 H{R)

(13) Jullliz S Chi 3, lup)|? =Chi Y |@'x)|? < Cla'| iz, -

xe.t L{(2) xe.t 1(08)
Lemma 3.6. Let ug = Y jup. Then up =0 on 0Q U 02 and
(14) lupl i) < Clulfo -

Proof. We note that u and u} vanish on €, thus uy =u — Y ,uj =0 on 0Q. In
addition, ul = 0 on 0Q", thus ug = Y ;up = 0 on Q'. We decompose u} further
as uh =Y ;vi, vieVi. By using Lemma 3.1 and the upper bound of Py,s, we
obtain

12 - _
lugldi SCY Y oilfg SCY.Y 2ol lg € Y h 2 ubl iz -
7 T3 1

Inequality (14) now follows from (13) and (11). O
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Fig. 1. Composite grid

We decompose the strip Q\Q! = Q**\Q! into a number of thinner strips
(cf. Fig. 1).

Q\Q' =@\QM)u@N\QFHu - u@N\QY) = @Y.

The restrictions of 7! to Q\Q%,1=1,..., L, define a composite grid on the
strip region Q\Q'. Note that

uB'lezwiEVl, l=2,,L
i=1

Thus, ug is piecewise linear with respect to this composite grid. This special
structure of u implies that restricted to region Q\Q?, there is a unique decomposi-
tion of ug

ug =y w, whelt.
Furthermore, w' = (IT' — IT'~!)uz. We now show that this unique decomposition
is a good decomposition of ug. We observe that
Mug =0, and Hug =uy, xeQ'.
This implies that
wi=(T'"-T" Yug=0 inQ'n Q"1 =071,

and thus

||Wl“12,2(m = “Wl” %.Z(Q\Ql‘l) = Z(llnl~1u8|li2(9\9“1) + “HI“B” %Z(Q\QH))-
Since II' ‘up|om-1 = up and IT' " tug| .0 = 0, we have
(15) IIH"luBllfz(n\nH) =C Z h;i—1|Hl¢1uB(X)|2

xeA1"1(80QI71)

=C Z h?—l]”B(x)Iz

xeN - (a0 1)

< Cllugll 12,2(9'"1\9"2) .
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Similarly,
(16) [T'upli?: 00 < Clluglizna-1) -

Since A\Q'"! = (@\Q") L (QN\Q'"') and T'ug| g -1+ = ug, we obtain, using
(16),

(17) HHIuB”lz,Z(Q\Q"‘) = ||Hl”B||12,2({z\Q') + ||UB||12_2<91\9171) < CH”BH[%Z(Q’\Q“) .
Combining the inequalities (15) and (17) , we obtain
“W{HIZ,Z(Q) = “Wilffz_lm\m-l) = C““B“IZJ(QHQ'"Z) .

Multiplying by h; ?, summing over [, using Hardy’s inequality (see e.g. [11] or
[15]) and inequality (14), we obtain

th‘2|IW’lliz<g> < Cthzlluall 12.2(91\91-2) =< Czht‘2””8||%2(m\nﬂ)
1 1 1

ci up(x)

mdx < Cl”Bl%I‘(Q) = C|“‘1211(9) .

Let u' = ul + w'. Then

u=Yya=Yu+yup=Yu+yw=>u, uel,

and
th_—?l flu'l 12,2(9) = zzhl_—zl flutl 12}(9) + ZZh,‘_Zl wi] 12,2(9) = Clu| %1!(9) -
i 1 1

The rest of the proof is identical to that in the case of a convex domain.

Combining our arguments with the extension theorem for finite element fun-
ctions (cf. Widlund [17]), our approach can be applied to other types of boundary
conditions as well.

Remark 3.4. Define a discrete norm || ||, by

(18) luld = inf A % fu'f., w'eV'.

Using Besov space theory, Oswald [16] has established the following norm equiv-
alency: There exist two constants C; and C, such that

(19) Coluld = lulfn < Cyllull.

Using (19), Oswald proved that the condition number of the BPX operator is O(1).

In [5], Bramble and Pasciak give a different proof of Oswald’s result using
the properties of L? and H' projections, see also Xu [20]. Bornemann and
Yserentant [4] give another proof using Peetre’s K-method.

4. A multilevel diagonal scaling

We begin this section by constructing a special decomposition of the domain Q. We
show that this decomposition, and the corresponding decomposition of the finite
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element subspaces, satisfies Assumption 2.1. We then demonstrate that the algo-
rithm is a multilevel diagonal scaling, i.e. a natural generalization of the regular
diagonal scaling. For problems with constant coefficients and uniform triangula-
tions, the multilevel diagonal scaling algorithm is identical, up to a constant
multiple, to the BPX algorithm of Bramble et al. [7]. In the general case, BPX with
diagonal scaling results in an MAS algorithm.

Let {7'}1_, be a nested sequence of triangulations, with 7 !*1 obtained from
J ! by dividing the triangles (rectangles) of 7! into four triangles (rectangles) . In
three dimensions, we make a similar construction. We consider piecewise linear,
bilinear or trilinear elements, respectively. As in the previous section, the finite
element space associated with 7' is denoted by V'. Let ¢! be a nodal basis
function of V', and associate with each ¢! a subdomain Q! = supp{¢!}. We choose
Vi = span{¢! } = V' n H{(Q!) and obtain the decomposition

The corresponding projections are QVI:VLLV’ and Pyi: VIR ! Since

dlm(V') =1, we have, 4y = A} = a(o] q&%)/( Léh. Using the preconditioner
Buks =YL 12 L 1/A1Q and the MAS Operator Puyas = 3 1o 3o Py, we define
an additive Schwarz algorrthm

i M_z

Algorithm 4.1 (MAS). Find the finite element solution u, € ¥* by solving iterative-
ly the equation

def
Pyasty = fuas = BMAsf

In this spec1a1 case, we note that Pyyu = a(u, ¢})/a(@}, p})¢! and fi=1/
AQuf=fd})/a@}, d})¢l. Thus the additive Schwarz equation can be
given explicitly by

L N, a(u, L N
=11 al ,¢) 11;1(¢u¢)
Recall that the BPX precondltroner 18 glven byB lv= Z = 12 dl)di, there-
fore B1Av =YY a(, ¢})¢!. It is clear that if we drop the terms a(d;,, ol
from the additive Schwarz equation, we obtain the BPX algorithm.

Define the degree of a vertex x; as the number of edges incident to it, and the
degree of a triangulation Z " as the maximum of the degrees of its vertices. It is easy
to see that the overlapping subdomains {Q } , form a finite covering of Q with
a covering constant less than or equal to degree (9" ) + 1. We also see that on each
level {Q’} provides relatively generous overlap. The nodal basis { ¢!} can also be
used as a partition of unity. The optimal convergence properties of the algorithm
follow from Theorem 3.1.

Let K, be the stiffness matrix associated with V' and D, = diag(K,). Let
I,: V' > VL (I £ L) be the standard interpolation (prolongation) operator, and
I: VE — V' be the adjoint operator of IT,. Algorithm 4.1 can then be written as:
Find the solution of K; x = b by solving the preconditioned system

Bri'K;x=B;'b,
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where
Bi'=m,K;'ny, +0,D;'0% + - + 0, DT _, + DL,

We note that K ;! can be replaced by any good preconditioner B, of K ;.

If we replace the matrices D, by identity matrices, we obtain the BPX algo-
rithm. However, since the diagonal elements contain information on the shapes of
the triangles and the coefficients of the problems, we expect that the multilevel
diagonal preconditioner will work better in practice for non-model probiems, since
it more closely reflects the properties of the problem.

5. Multiplicative variants

In this section, we discuss some multiplicative variant of the multilevel Schwarz
methods, which correspond to certain multigrid methods. In particular, we want to
estimate the norm of the following operators

L def L Ny
= n -7 = H(I—WZP”),
= 1= i=1
where 7 is a damping factor such that |7, £ w < 2.
The algorithms can, in matrix form, be regarded as the error propagation
operator of the following schemes:

U =uyj— +’7HZDI_1H§(f—KLul)’ lzl)"'aLa
or
uy=u-y + (D, — L) "Oi(f— Kruy), I=1,...,L,

where u, is the current approximation, D;,, —L; and L] are the diagonal, lower
and upper triangular parts of K, respectively. IT, and IT} are defined as in Sect. 4.

The product in the above expression can be arranged in any order; different
orders result in different schemes. When the product is arranged in the natural
order, the operators E; and E; correspond to the error propagation operators of
V-cycle multigrid methods using Gauss-Seidel and damped Jacobi method as
smoothers, respectively. We will show that the energy norm of |Eg | and | E,| is
bounded by a constant less than one, independent of the number of levels and the
order of the product. We refer to [5, 6, 20] for general techniques for analyzing
multiplicative schemes.

Let T;,i=1,...,N, be symmetric, semi-positive definite ?Vperators with
respect to a(-,-) and let |Ti|£w<2 Let T=Y,_,T, Eou=
u,E;u=(—T,)E; juand E = Ey. We first establish bounds for || E|| in terms of
T;. Then, we apply these estimates to E; and Ej.

The proof of the following lemma can be found in [6]; the case T; = P; is
trivial, and equality holds with w = 1.

Lemma 5.1. For any ueV,
Y 1
Z a(TEi- u, E;—qu) < 2

i=1

P {a(u, u) — a(Eu, Eu)} .
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Let @7 = {08}, where 6% = 1 and 04, i=j are given by

- a(Tu, T;v)
20 0y = J .
(20) T S.}l? a(Tu, u)'?a(T v, v) 12

We note that when the T'; are projections, definitions (20) and (6) are identical. As
a result of the definition (20), we have

(1) a(Tu, Tjv) < 0a(Tiu, u) ?a(Tiv,0) "2, i%j.

and

(22)  a(Twu,v) £ a(Tu,u)*a(Tv, v)'? = 0%a(Tu, u) ?a(T v, v) V2.
Lemma 5.2. For @ 1 defined by (20), we have

N
a(Tu,u) < |O+]|3 Z a(T;E;-u, E;_yu), Vuel.

=1
Proof. u can be written as:

i—-1
(23) U= T1u+(1— Tl)u——_ T1E0u+E1u= e = Z TjEj_1u+E,'_1u.
i=1

J

By using (23), (21) and (22), we obtain,

i—-1
a(T,-u, u) = a(T,-u, Ei—lu) + Z a(Tiu, TjEj_lu)

i=1
< 0%a(Tu, u)'?a(TE;-qu, E;—1u)'?

i-1
+ Y 0%a(Tiu,u)?a(T;E;—yu, E;_ u)'"?
i=1

= a(Tu, u) ”2{ Y 05a(TE;_ u, E;_1u) ”2}.
j=1

Thus, for 1 £i £ N, we have

N
a(Tiu, u) 12 é { Z Gi%a(TjEj_lu, Ej‘lu) 1/2} é Z 0?0(TjEj_1u, Ej_lu) 1/2} .
j=1

i=1

The lemma follows by taking the /,-norm. O

As a consequence of Lemma 5.1 and Lemma 5.2, we have

1 Or]3
<l
o(Tu,u) = 2— @ Agin(T)

a(u,u) = (lul 2 — HEulZ) -

1
j'min(T‘)
Solving for ||Eul, we obtain

Lemma 5.3.

2 _ . 'lmin(T) 2
IEullg é(l Q—-w ENE )IIulla -

The next lemma gives a lower bound of | E||.
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Lemma 54.

2Amin(T)

| L A
2—w+/1mi,,(T)

= IE] -

Proof. Using identity (23) and the Cauchy-Schwarz inequality, we obtain

N
lul|2 = a(u,u) = a<u, Eu + Z T,-E,»_lu>

=1
N
< lull [ Eull, + Z a(Tiu, u) ' ?a(TE;—u, E;_ju)'?
i=1

N

1/2
< jlullaEull s + a(Tuy, u)“zl: Z afTE; - u, Ei—1“)]

i=1

lulld — 1| Eull2 ]”2

< lullallEulls + a(Tu, u) ”2[
2—w

Dividing both sides by ||u| 2 results in

. I Eull, +[ 1 ]”2[0(”, u)]m[l _ lEu|a ]1/2
”u”a 2-w a(“? ?1} ”55”3 '

Simple algebra gives

A

~|Eul,
1 —JE| llull o a(Tu, u)
GO e 2T R, = e
full o
which shows that
\ 1 — ||E|
(24) AminlT) 2 2 — w) T+ 1B
Solving for ||E|, we obtain
20— din(T) 2 inT)
(25) I1ET =z 2— o+ (D) - 22—+ A7)’

The lemma follows from (25). [
Combining Lemma 5.3 and Lemma 5.4, we obtain

Theorem 5.1.

Yn(T) D)
b= 3ot 2 = EI = /1 BTN

Theorem 5.1 implies that if 4,,,,(7) — 0 then [E| = 1 — O pin(T)) — 1. If we
can show that |E|| £ dp < 1, independently of the number of refinement levels,
then, it follows from (24) that A,,;,(T) is bounded from below by a constant
independent of the number of levels.
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To apply Theorem 5.1 to operators E; and Eg, we need to estimate the
corresponding A .. (7) and |@ 1] ;.

We first estimate Eg =[]/~ J[2, (I ~ Py1). In this case, T. = Py for some
subspace V. Thus, T = Py,s and @T = @ = {cos(V!, ¥'%)). By Lemma 3.5, we
know that I|@|f2 < C, and that A,,,(T) = C,. Thus, ||EG|! <dg <1, e the
V-cycle muitigrid method using Gauss- Seidel as a smoother has a rate of
convergence independent of the number of levels.

We now estimate E; = [/, (I — Y, Pyi). We note that T; = 5y, Py:. Thus,

T=)T;=nPyas and 4,,,(T) = r,/lmm(PMAs) = C. To estimate || O 1| ,, we note
that

a(Tu, Tyv) = WZZZa(nyu, PV?”)
ij

é nZZZHZFIPVfl”a'PV';U'a

! 1/2 1/2
= nll@’kllz<ﬂZ|Pv5u|§> <UZ|PW;U|§>

=n|O* | ya(Tyu, u) *a(Tyv, v) 11> .
By the definition of 8% and Lemma 3.4, we have

0% <l @™, < CN/y
Therefore,

h 1+
10712 < 10+ = max Y.0% < CN. f
Thus, |E;|| £, < 1, ie. the V-cycle multigrid method using damped Jacobi as
a smoother, has a rate of convergence independent of the number of levels.

Remark 5.1. Similar techniques can be used to study the hierarchical basis multi-
grid method. Let Eypye be the error propagation operator of the hierarchical basis
multigrid method, using Gauss-Seidel or damped Jacobi method as smoothers.
Then

)“min(KHB)
leri3

Here, K 5 is the hierarchical basis stiffness matrix.

|Eupmclli S1—C <1-CL*.

6. Numerical experiments

In this section, we report on some numerical experiments with multilevel additive
Schwarz methods. These experiments were carried out for Poisson’s equation on
a unit square with homogeneous Dirichlet boundary conditions

{—Au = f(x) in €,
u = 0 on 0Q .

We divide the domain Q into k x k square elements t},i=1,...,k?, and
obtain a triangulation 7 ' = {t}}. We then divide each 1} into k x k squares to
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Table 1. Properties of the multilevel additive Schwarz scheme, using bilinear

elements

Level  Unknowns h_/h ovip ratio K(Pyas) Iter. no.
2 (417 2 12 4.5 5
3 (8 — 1) 2 1/2 72 11
4 (16 — 1) 2 1/2 9.3 17
5 (32 -1y 2 1/2 10-9 20
6 (64 — 1) 2 12 11.8 21
7 {128 — 1)? 2 1/2 12.6 23
2 (9—1)? 3 1/3 4.7 9
3 (27 - 1) 3 1/3 7.1 16
4 (81 — 1) 3 1/3 8.5 19
5 (243 — 1)? 3 1/3 9.5 21
2 (16 — 1)? 4 1/4 5.1 13
3 (64 — 1) 4 1/4 73 17
4 (256 — 1) 4 1/4 8.5 20
2 (25 — 1)? 5 1/5 5.7 14
3 (125 — 1) 5 /5 78 17

obtain the triangulation 7 2 = {t?}, etc. The length of an edge of 1} is denoted by
hyand h; = (1/k)". For I =2,..., L, we extend v\~ to a larger square ¢!~ . The
overlap ratio

dist{6¢!~1, ort 1)

overlap ratio =
hl— 1

measures the width of £i7!\z!~! in terms of h,_ ,, the side of the square 7:7 !, We
1 q

use Q as our domain for / = 1, and 2} = ! ! as our subdomains for [ =2,. .., L.

In these experiments, we take k = 2, 3,4 or 5,and 7!~ \z!~! is one element (h;)
wide, i.e. the overlap ratio is 1/k. Therefore, we only need to solve very small linear
systems of order 9, 16, 25 or 36, respectively. We use the conjugate gradient method
to solve the system Pyasty, = fuas iteratively. The last column of the table gives the
number of iterations required to decrease the {,-norm of the residual by a factor of
g=107°,

In the next set of experiment, we report some numerical resuits for
Algorithm 4.1; see also [7]. In Table 2, we report results for the linear elements

Table 2. BPX, using linear elements

Level  Unknowns Amin(Pras)  Amae(Puiag) K(Pyas) Iter. no.
2 “4-1? 0.61 1.75 29 4
3 @-17 051 2.66 53 13
4 (16 — 1)? 0.47 3.29 7.0 17
5 (32-1) 0.46 381 8.2 19
6 64— 1 046 423 9.2 20
7 (128 — 1)? 046 4.58 9.9 20
8 (256 — 1) 0.46 4.88 10.6 21
9 (512 — 1)? 0.46 5.13 11.2 21
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Table 3. BPX, using bilinear elements

Level ~ Unknowns Anin(Pumas)  Zmax(Pumas) K(Pyag) Iter. no.
2 4—1y7 0.82 1.7 21 3
3 (8~ 1) 0.77 23 3.0 8
4 (16 — 1) 0.76 27 36 11
5 (32 — 1)? 0.76 31 4.0 11
6 (64 — 1) 0.76 33 44 13
7 (128 — 12 0.75 36 4.7 14
8 256 — 1) 0.75 38 5.0 14
9 (512 —1)? 0.75 39 5.3 14
10 (1024 — 1)? 0.75 4.1 5.5 14
11 (2048 — 1)* 0.75 4.2 5.6 14

discretization. In Table 3, we summarize the result for the bilinear clements
discretization.
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