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Summary. In this paper we apply a hybrid method to estimate a temporally and 
spatially varying diffusion coefficient in a parabolic system. This technique com- 
bines the output-least-squares- and the equation error method. The resulting 
optimization problem is solved by an augmented Lagrangian approach and con- 
vergence as well as rate of convergence proofs are provided. The stability of the 
estimated coefficient with respect to perturbations in the observation is guaranteed. 
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1 Introduction 

This paper is devoted to the development of an estimation procedure for the 
diffusion coefficient a in 

(1.1) ut= (a(t,x)u~). + f(t ,x),  (t,x)~(O, T]  • 1) , 

u(0, x) = ~0(x), xe (0 ,  1), 

u(t,O)=u(t, 1)=O, t~(O, T ] ,  

from knowledge of the state u in Q = (0, T]  • (0, 1). If only point observations of 
u in Q are available, then we assume that an interpolation of these pointwise data 
has been carried out to give an observation function z defined on Q. The problem 
consists in determining a coefficient a* from some set of admissible parameters 
d such that the solution u(a*) of(1.1) with a = a* best fits the data z. This problem 
has received a considerable amount of attention and we only mention selected 
contributions [BKL, BKM, BL, EL, LE, Y], which also describe applications in 
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biological modelling and fluid flow in porous media. In mathematical models for 
biological systems the identification and estimation of the diffusivity parameter 
and its dependence on spatial as well as temporal (e.g. seasonal) effects is of special 
importance. 

The most commonly studied approach to the inverse problem of determining 
the coefficient a from knowledge of z corresponding to the state u(d) at the "true 
coefficient" ~ is given by 

((9) min]u(a) - z[~ over ~r , 

where ].In denotes some appropriate norm and u(a) is the solution of (1.1) as 
a function of a. While this formulation is successful in some situations and has the 
advantage of being easily explained, flexible with respect to different types of 
observations and output norms H and fairly straightforward to program on 
a computer, it also has disadvantages which include the fact that ((9) may have 
a small residual at the minimizer a*, yet a* is still far from the '"true" parameter 4, 
and furthermore in any iterative solution of ((9), the value of u(a") is required for the 
sequence of approximating parameters a" converging to a*, so that (1.1) has to be 
solved frequently at each step of the iterative scheme. 

For these reasons some investigators have addressed the question of finding 
alternative approaches to the output least squares method ((_9). These include 
asymptotic embedding and adaptive control techniques developed in [AHS, BS, S] 
and, for only spatially varying coefficients a, a marching scheme [-EL] and a time 
series analysis approach [LE]. 

Before we describe the method that we propose, let us briefly recall 
the equation error technique to estimate a in (1.1). Proceeding formally, let 
~(a, v ) - - v t -  ( a v x ) x - f  The equation error technique then consists in solving 
~(a, z ) =  0 for a. This could alternatively be formulated as the optimization 
problem 

(~) min[~(a,z)[ z over a ~ d ,  

which, differently from ((9) has the convenient property of being quadratic in the 
unknown variable. However, it has the disadvantages of requiring differentiation of 
the data. 

In this paper we propose a hybrid method, combining the attractive features of 
the equation error and the output least squares approach. With a and u both 
treated as independent variables, the Eq. (1.1) is considered as an explicit constraint 
in a regularized least squares functional: 

(1.2) minlu - z[ 2 + flla]~ subject to 5e~(a, u) = 0, a ~ d  . 

Here fl is a small positive scalar, 5e denotes a linear smoothing operator and V is 
a norm on the parameter space. The choice of 6 e, H, V and the accommodation of 
the boundary- and initial conditions of (1.1) in (1.2) shall be explained below. 
Problem (1.2) will be solved by an augmented Lagrangian technique, i.e. by solving 

(1.3) min J ( a ,  u) over (a, u) with a ~ r  

where 
J ( a ,  u) = [u - z]~ + flla[~ + (2",  5~3(a, u ) )  + c[SV3(a, u)[ 2 , 

with c being an appropriately chosen fixed positive constant and 2* the Lagrange 
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multiplier associated with the equality constraint 5e~(a, u) = 0. Observe that J is 
quadratic in a for fixed u and similarly quadratic in u for fixed a. Since 2* is 
unknown, (1.3) can only be solved iteratively with respect to 2. Given a start-up 
value 20, 2, is obtained from 2,_ 1 via 

2, = 2,-1 + cSf~(a", u") , 

where (a", u") is the solution of (1.3) with 2* replaced by 2,_ 1, n = 1, 2 . . . . .  We 
shall show that this iterative process is convergent. In fact we shall also treat 
a norm constraint which is involved in defining ~1 by means of an augmented 
Lagrangian term. The essential technical tool for the convergence proof is a co- 
ercivity estimate for J ( a ,  u). It requires that the quadratic form determined by the 
second Fr6chet derivative of J at a solution (a*, u*) of (1.3) is uniformly positive. 
This coercivity estimate is quite similar to the one used in the stability analysis 
described in [CK] and guarantees that the solutions of (1.3) depend H61der 
continuously on z. 

A similar procedure as the one described above was developed for the estima- 
tion of the diffusion coefficient in an elliptic boundary value problem. The analyti- 
cal results are established in [IK1, IK2]. The resulting numerical algorithm proved 
to be very successful with many test examples. A discussion of the implementation 
and of the hybrid nature of the algorithm combining least squares and equation 
error features can be found in [-IKK]. 

The paper is organized as follows. In Sect. 2 we summarize some results 
concerning (1.1) and describe the set of admissible parameters. Section 3 is devoted 
to a description of the algorithm and the convergence results. In Sect. 4 we discuss 
the stability of the solution (a*, u*) of (1.3) with respect to perturbations in z. 
Sufficient conditions for the coercivity assumption that is required in Sects. 3 and 
4 are given in Sect. 5. The proofs of Sect. 3 are given in the Appendix. 

The notation that we employ is rather standard and we make only a few 
comments. We refer to [A, LM] for the theory of Sobolev spaces. For T > 0 and 
B a Banach space L2(0, T; B) denotes the (equivalence class) of square integrable 
functions in the sense of Bochner. At times we shall omit the domain (0, T) in the 
notation of LZ(O, T; B) and we always drop B if it is just IR. Generally we use an 
index with the notation of norms and inner products, but it can be dropped if it is 
L 2. For C([0, T]; B), the space of continuous functions from [0, T]  to B, we simply 
write C(0, T; B). In the estimates the dependence of constants on arguments that 
are determined by the problem statement is always a continuous one and it is such 
that the constant may go to infinity if any of its arguments tends to infinity in its 
natural norm; e.g. if z ~ LZ(H~), then K(z) depends continuously on z and possibly 
K(z)  ~ oo if IzlL2(n,) --, ~ .  For Hilbert spaces Xi, i = 1 , . . .  , r the product space 
| X~ is endowed with the natural Hilbert space topology. 

2. Preliminaries 

In this section we establish some preliminaries concerning the equation 

(2.1) u, = (au~)x + f in Q ,  

u(0, x) = ~o(x) for x ~ O ,  

u(t, O) = u(t, 1) = 0 for t~(0, T ] ,  



476 K. Kunisch and G. Peichl 

where f2=(0 ,  1), Q =(0,  T] •  tpEL 2 and f~L2(0, T;H-~).  The parameter 
space is chosen as 

W, = {a~L2(Q):ax, at, a,xr 

which is endowed with the natural scalar product 

<a, b>w. = (a, b)L~(o.) + (a~,, b~>L2(Q) + (a,, b,>L~r + <atx, b,x>L~(e), 

and the subordinate Hilbert space norm. We have the following 

Lemma 2.1. (i) W. is a (separable) Hilbert space, 
(ii) W. embeds continuously and compactly into C(O, T; C(~)). 
(iii) W. = {a:aeL2(O, T; H~(t2)), (d/dt)aeL2(O, T; H~(O))}. 

The proofs of this and the following lemmas are given in [KP],  where it is also 
shown that the embedding constant from Wa into C(0, T; C(O)) can be chosen to 
be kl = l x / i ~ ( T -  1 + a 9 T)~/2. The set of admissible parameters is defined as the 
subset of W~ given by: 

x~r = {a t  Wa:a(t, x) > v for (t, x)eQ, lalwo < 7} 

for constants v and 7 with 0 < v , , /~  < 7, so that ~r is not empty. Finally we denote 

d u  
W =  W(O, T) = {u:u~L2(O, T; Hi(f2)), -~ ~Z2(0, T; H -  I(,Q))} , 

which is a Hilbert space when endowed with the scalar product 

<u, V)w = <u(t), v(t))ugdt + dt u(t) ,~ v(t) dt ,  
0 0 H -1 

where 

<~0, ~ , > . - , ~  = <~0, ( - A ) - I ~ > L ~ ,  

and where A denotes the Laplace operator from H I  to H-1(f2). 
By standard existence theory (see [L, p. 102], I-W, p. 384]) there exists for 

any a ~ r  a unique solution u z W(0, T) which depends continuously on 
(f, q~) ~ L 2 (0, T; H -  1 (f2)) x L 2 (f2). Moreover u satisfies the following properties: 

Lemma 2.2. Let u denote the solution of (2.1) for any ae~r Then we have 

(2.2) ! lu(r)lb.~, + lul.b,.~, _-< _l I<:ib<,,, + ~ Iflb<,.-,>, 
V 

and 

2 2k~7 ~ { 2 k ~  ~ 
(2.3) [UtIL=tH-') < 1q~122(~) + + 2 If lL(u- ,)  I~ t V2 ) " 

Concerning the dependence of u on a we have the following result: 
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Lemma 2.3. Let aj be a weakly convergent sequence in ~r with limit a. Then the 
corresponding solutions u(ai) converge weakly in W(O, T)  and strongly in L2(H~) to 
the solution u(a) of(2.1). 

3 The augmented Lagrangian algorithm and its convergence 

In this section we describe and analyze an augmented Lagrangian algorithm for the 
estimation of a in (2.1) from data z. First let us fix some notation. We define a cost 
functional Ja: Wax W ~  IR by 

= - zlL2(u~) + -~ lalw~, J ( a ,  u) ~ [u 2 

where z ~ L 2 ( H ~ )  and fl > 0, and an operator e = (el, e2): W, x W ~  L2(Ho 1) x L 2 
by 

(3.1) e(a, u) = (el(a, u), ez(a, u)) = (( - m - 1 ) ( u ,  - -  (aUx) x - - f ) ,  u(O, ") -- ~p). 

Since Wembeds continuously into C(0, T; L2(~2)) [LM, p. 19], the second coordi- 
nate of (3.1) is a well defined element in L2(y2). With these operators defined, we 
consider the regularized least squares optimization problem 

(PP) minJP(a ,u )  subject to e(a,u) = 0  and a ~ d .  

We refer to a pair (a*, u*) as a local solution of (Pa) if there exists a neighbor- 
hood U(a*, u*) of (a*, u*) in Wax W such that JO(a*, u*) < JO(a, u) for every 
(a, u)~ U(a*, u*) satisfying the constraints of (PP), and we call (a*, u*) a (global) 
solution of (PP) if JP(a*, u*) < JO(a, u) for all a ~ '  and u such that e(a, u) = O. 

Let us make a few comments concerning the regularization term in (Pa). Except 
for special cases it will be necessary to require fl > 0 to establish convergence of the 
algorithm that we shall propose. Clearly, the solution (a*, u*) depends on fl, but 
since we shall concentrate on a fixed value of fl in our main results, we do not 
indicate this dependence. It can be seen from the proof of Lemma 3.1 below that 
(Pa) also has a solution if the norm constraint in d is omitted, provided only that 
fl > 0. Without the norm constraint in the definition of d ,  (PP) may have no 
solution if fl = 0 (see for an example [KW]). We shall not pause here to discuss the 
behaviour of the solutions (a*, u*) as ~ ~ 0 +, but refer instead to [CK, EKN] in 
this respect. Some results concerning this aspect will be summarized in Proposition 4.1. 

In the following lemma we shall establish existence of a solution to (Pa) and of 
an associated Lagrange multiplier. For (a, u)e W, x W and (2, #, 7) = (21,22,/.t, ~/) 
E(L2(H 1) x L2(I2)) x IR x W, we define the Lagrangian 

LP(a, u; 2,/~, t/) = Jt~(a, u) + (2, e(a, U) )L~(n~)• L~ + #9(a) + Q7, l(a) )w .  , 

where g: W~ ~ ~ and l: IV, ~ W, are given by 

g(a) = �89 ( l a l ~  - 72) and l(a) = v - a .  

Moreover, let W + = {at  Wa: a(t, x) > 0 on Q} denote the positive cone in Wa and 
let D(a,,)LP(a, u; 2, #, t/) stand for the Fr6chet derivative of L a with respect to (a, u). 
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Lemma 3.1. (a) For any fl > 0 there exists a (global) solution (a*, u*) of (PO). 
(b) If(a*, u*) is a local solution of (P p) then there exists a Layrange multiplier 
(2*, #*, r/*) ~ (L2(H~) • L2(Q)) x IR • W,,, i.e. 

(i) #* ~ 0, (r/*, a>wo >= 0 for a t  Wa +, 
(ii) D~a,.)La(a *, u*; 2",/~*, t/*) = 0, 

(iii) #*([a*12, - V 2 )  : 0, <~*, Y - -  a*>wo = O. 

As described in the Introduction our approach differs from a common output 
least squares technique in that both a and u are treated as independent variables 
which are related here through the constraint e(a, u) = 0. This constraint will be 
realized by an augmented Lagrangian formulation. This means that a Lagrangian- 
as well as a penalty term involving e(a, u) are added to the cost functional. Under 
appropriate conditions, a local solution (a*, u*) of (P')  will also be a local 
minimum of this augmented functional, without the necessity of imposing 
e(a, u) = 0 as an explicit constraint. This is achieved for all sufficiently large penalty 
parameters, without a requirement that this penalty parameter be increased to 
infinity. 

Since Lagrange multipliers associated with local solutions of (P')  are essential 
in our approach we next summarize some of their properties. 

Lemma 3.2. (a) The Lagrange multiplier (2", 2",#*, r/*) associated with a local 
solution (a*, u*) of (PO), B > O, is unique. 

(b) Moreover, 2, is the (unique) solution of the backwards parabolic equation 

vt = - (a*Vx)x - A(u* - z) on Q 

v(T , ' )=O,v( t ,O)=v( t ,  1)=O f o r t e [ O , T ) ,  

and therefore 2* ~ W. In addition 2* = 2*(0) holds. 

Remark 3.1. The proofs in the Appendix reveal two additional interesting facts 
concerning the Lagrange multiplier. 

(i) If fl > 0 and [a*lwo = ~', then u* cannot be equal to z in L2(H1). 
(ii) For fl sufficiently large, p* = 0. 

Henceforth it is assumed that (a*, u*) is a fixed local solution of(P~), fl __> 0, and 
that (2", #*, r/*) is the associated Lagrange multiplier. 

In the augmented Lagrangian algorithm that we propose not only the equality 
constraint e(a, u) = 0 but also the norm constraint [a[wa _-< ~' are removed from the 
explicit constraints. Hence only the simple linear constraint a _>_ v remains explicit. 
This elimination is accomplished by means of an appropriately defined cost 
functional. For (a, u)~ W, • W, (2, #)e(L2(Ho 1) x L:(12)) x IR and c >__ 0 we put 

c 
~c(a, u; 2, #) = JP(a, u) + (2, e(a, U) )L2tn~)• + ~ [e(a, u)122tHo,)• L~(m 

where 

r 
+ #O(a, la, c) + ~ ]O(a, ~, c)l 2, 

O(a, l~, c) = max(g(a), - ~ )  . 
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Let us consider the problem 

(3.2) min ~c(a,u; 2", u*) over (a, u)e Wa • W subject to a > v . 

The relationship between (Pa) and (3.2) will be analyzed in detail at the end of this 
section. At the moment  we content  ourselves to assert that a local solution (a*, u*) 
o f (P  a) is also a local solution of (3.2) provided the coercivity condition (C) that will 
be specified below holds at (a*, u*). The augmented Lagrangian algorithm deter- 
mines (a*, u*) by solving (3.2). Since the Lagrange multiplier pair (2", p*) in (3.2) is 
not known a priori, it has to be determined iteratively within the algorithm. This 
will require to solve 

(3.3) min ~c(a ,  u; 2, #) over (a, u) ~ W, x W subject to a > v on Q ,  

(for (2,/~) in general different from (2",/z*)). Unless (2,/~) is sufficiently close to 
(2",/~*) or c is sufficiently large, (3.3) may have no solution. Hence we shall consider 
as an intermediate step the problem 

(3.4) min ~ ( a ,  u; 2, #) subject to a > v and (a, u) e Ba,  

where Bo = { (a, u)~ W, x W: I(a, u) - (a*, u*)lwo • w < 6}. It is assumed throughout  
that 

0 < 6 < 6 "  1 
= = x/k77 (2 + 

where k2 is a constant that depends continuously on (7, k, ,  v-  1, q~,f) and is given 
explicitly in Appendix. The constraint (a, u)~ Ba reflects the local nature of the 
convergence analysis that will be given. It need not be implemented in actual 
computat ions as will be discussed below. Let us also observe that due to the choice 
of the specific norms involved in the definition of ~ ,  the differentiation of u with 
respect to x is uniformly of first order in all terms of ~ that contain u. 

The algorithm 
(i) Choose a nondecreasing sequence of positive numbers {ci}F=l and start-up 

values (2 ~176 x L2(f2)) x IR +. Set n = 1. 
(ii) Determine (a", u") as the solution of 

(Pc.) min~c . ( a ,u ;~ . " - l , /~  " -1)  s u b j e c t t o a > v  and (a,u)~Ba. 

(iii) Put  

2" = 2"-  1 + ~ e(a", u") 
Z 

Cn ~n -- 1, = +  _0(a ., cO.  

(iv) If convergence is achieved stop. Otherwise put n = n + 1 and return to (ii). 

Convergence of this algorithm can be established provided that a certain 
coercivity condition already mentioned before holds at (a*, u*) and the associated 
Lagrange multiplier (2", #*, r/*). To describe this condition we require a modified 
Lagrangian functional which involves a slack variable w which allows to treat the 
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inequality constraint g(a) < 0 as an equality constraint. Fo r  (a, u, w)~ Wa X W X IR, 
(2, ~, rl)~(L2(H~) x L2(f2)) x IR x W~ and c > 0 let 

e c 
U ) [ L 2 ( H ~ ) x L 2 ( O )  "q- ~ Ig(a) + wl z (3.5) J~(a, u, w) = Ja(a, u) + ~ [e(a, 2 

and define 

(3.6) L~(a, u, w; 2, #, tl) = J~(a, u, w) + <2, e(a, u) >L~(H~)• 

+ #9(a) + (rl, l(a)>wo. 

Condition (C) 
There exist constants a > 0 and Co > 0 such that 

2 ~g * D( . . . . .  )Lr , u*, w*; 2",/~*, r/*)((h, v, y), (h, v, y)) > al(h, ' 2 = ,':, y)lwo • w• 

holds for all (h, v, y)r  W: • W• IR, where w* = - o(a*). 

Here we denote by D~a, ~ * ~, w)Lco(a , u*, w*; 2", ~t*, t/*)((h, v, y), (h, v, y)) the 
second Fr6chet derivative of L~ o at (a*, u*, w*; 2*, l~*, tl*) in directions 
(h, v, y). Condit ion (C) will be investigated independently in Sect. 4. If it holds at 
a solution (a*, u*) with fl > 0, then this solution is required to be a global solution 
of (PP), whereas, if (C) can be established at a solution (a*, u*) with fl = 0 then it 
suffices for this latter solution to be a local one. 

In the statement of the basic convergence result for the augmented Lagrangian 
algori thm we shall also introduce a constant/~ which depends on (go, 20, k~, 7, v-  ~, 
(0, f, z). The  dependence is rather involved but  can be given explicitly. We further 
put  

/ /  
^ 

= max ~-~,, 

Theorem 3.1. Assume that (C) holds and that (2 ~ #~ x L2(Q)) x IR + and 
ct > ~. Then the quadrupel (a n, u"; 2 ~-1, pn-1) defined by the aloorithm satisfies the 
estimate 

(3.7) ] a *  a n 2 n 2  _ wo+lu*- -Unl~r+ 2-~-(I 2 . -  2 IL2(H~)• -]- I #*  P~I 2) 
rye  n 

2 
_< (12" 2n-1 2 - -  - -  - -  [ L 2 ( H ~ ) x L 2 ( Q )  "3 t- [ ~ *  - -  f l n - 1 1 2  ) 

0"C n 

and [2n[L2(H$)• and p" are in [0, f t]for all n = 1, 2 . . . .  

This theorem implies the convergence of (a ", u") to (a*, u*) and boundedness of 
(2.,/~n). The sequence {(a n, un)} furthermore satisfies 

Corollary 3.1. Under the assumptions of Theorem 3.1 

n = l  O" 
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Remark 3.2. Corollary 3.1 also implies the estimate 

la* . 2 #* a l w o + l U *  u " 1 2 < ~ 2  (I 2 .  o z  - -  - -  - -  2 I L 2 ( H ~ ) •  + I - #~ , 
f i e  n 

for all n = 1, 2 . . . . .  Hence, if Cl is sufficiently large or if 1(2 ~ po) _ (2", ~*)1 is 
sufficiently small, then (a", u")~ intBo for all n. In this case the constraint (a, u)~ B~ 
in (3.4) is not  active and (a",u") is also a local solution of (3.3) with 
(2, #, c) = (2"- ~, #"-  ~, c,). If the above requirement on (2 ~ ~ or c~ are not satis- 
fied, then nevertheless (a", u")~ intB~ for all n sufficiently large, due to the conver- 
gence of (a", u") to (a*, u*). 

Theorem 3.1 gives only uniform boundedness of the updated Lagrange multi- 
pliers (2", #"). Next  we shall show their convergence, which in turn will improve the 
rate of convergence of (a", u") to (a*, u*). Simultaneously we establish convergence 
of the Lagrange multiplier t/" associated with the constraint a > v in (Pc,). The 
assumption will be made that (a",u")~intB~ for all n. In the theorem below 
K denotes a constant that depends on (v- a, 7, kx, 6", fl, 2 ~ #o, Co, T, r z, sup c,) 
a n d / ( ( l ( a *  - v, a * ) l - ~ )  stands for a constant, which in addition depends on the 
angle (a* - v, a*)wo between a* - v and a*. The explicit dependence of K and 
K on the parameters of the problem is given in the proofs. We further introduce the 
constants 

6 = rain(6*, �89 (7 - la* Iw.)) and ~ = max ~, (~ + y)(~ _ la* Iwo) ' 

Theorem 3.2. Assume that (C) holds, that cn is a nondecreasing sequence with 
c, ~ [~, Cm~x] for  some Cm~x > ~ and that (a", u") ~ int Bo for all n. Then we have: 

(i) Ifla*[wo = y and 6ie(0, 6"],  then for all n = 1, 2 . . . .  

I f *  . 2 _ # . 1 2  . 2 - 2 IL~<ng~xL2~o) + I#* + [q* - t/ Iwo 

[K + / ( ( l ( a *  - v, a * ) l - 1 ) Y  
<= a" r l .  (12" - 2 ~ Iz~(ng~• + 1#, _ #o12). 

1 11=1 Ci 

(ii) I f  [a*lwo < y, 6~(0, S], Cl > ~ and #o = O, then #" = O for  all n and 

K" 12" n 2  n 2  0 2  r/Iwo < 12" - -  - -  n - -  2 I L 2 ( H ~ ) x L 2 ( O )  . 2 [ L 2 ( H ~ ) •  [~l* a n  ]--Ii=l Ci 

We now turn to a discussion of the relationship between the optimization 
problems (Pa) and (3.2). This will be accomplished in several steps. Recall the 
definition of J~ in (3.5) and consider 

(P~) min Jg(a, u, w) 

subject to 

e(a, u) = O, 

g(a) + w = O, 

I(a) < O, 

w > O ,  
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where the nonlinear inequality constraint with finite dimensional image space is 
reformulated as an equality constraint with a slack variable, and the equality 
constraints are also considered in penalty terms. It is simple to argue that (a*, u*) is 
a local solution of (P~) if and only if (a*, u*, w*) = (a*, u*, - g(a*)) is a local 
solution of (Pff). The Lagrangian functional associated with (Pff) is given by 

(3.8) s u, w; ~., #, v, r/) = J~(a, u, w) + (2, e(a, U))L2(HI)xL2(f2) 

+ #(g(a) + w) -- vw + (q, l (a))w. ,  

for (a, u, w)e W~ • Wx IR and (2, #, v, r/)~(L2(Ho 1) • L2(f2)) • IR • ~ x W~. 

Lemma 3.3. Let (a*, u*, w*) = (a*, u*, -- g(a*)) be a local solution of (P~). Then 
there exists a unique Lagrange multiplier (X, ft, ~, ~) of (P~) in the sense that 

(i) g ~ 0 ,  ( q , a ) w  >=0, f o r a l l a ~ W  f ,  
(ii) ^0 * g D( . . . . .  )L~ (a , u , -- g(a*); )~/2, ~7, q) = 0, 

(iii) (f/, l(a*) ) = O, 9w* = O. 
In fact, ()~/i, 9, f/) = (2", #*, #*, t/*). 

Observe that due to Lemma 3.3, the Lagrangian function for (P~) evaluated at 
(2", #*, #*, t/*) simplifies to 

s u, w; 2", #*, #*, r/*) = J~(a, u, w) + (2",  e(a, U))L2(H~)xL2(a ) 

+ #*g(a) + (q*, l(a))wo, 

which prompted the introduction of L~(a, u, w; 2, #, r/) in (3.6), and which is also the 
functional for which the coercivity condition (C) is required to hold at 
(a*, u*, - g(a*); 2", #*, ~/*). Our next goal is to eliminate the constraints e(a, u) and 
g(a) + w = 0 from the explicit constraints in (P~). For  this purpose we consider 

( /~)  min s u, w; 2", #*) subject to w > 0, l(a) < 0 

with 

(3.9) Sa~(a, u, w; 2, #) = J](a, u, w) + (2, e(a, U) )L2(H~)xL2(O ) § #(g(a) + w) , 

for (a, u, w)s W, x W x  IR and (2, #)e(L2(H~) x L2(f2)) x IR. The relationship be- 
tween (P~) and (P~), or equivalently (PP), is clarified next. 

Lemma 3.4. Assume that (C) holds at the local solution (a*, u*) of (P~). Then 
(a*, u*, - g(a*)) is a local solution of (P~). Conversely, if(a*, u*, - g(a*)) is a local 
solution of (P~), that satisfies the constraints of (P~), then it is also a local solution of 
(P~) and (a*, u*) is a local solution of the original problem (pl~). 

In a final reformulation of the optimization problem the slack variable w is 
eliminated and we arrive at (3.2), which we repeat for convenence: 

(3.2) minCe(a ,  u; 2*, #*) subject to l(a) <= 0 ,  

where 
e 

~Vc(a, u; 2, #) = JP(a, u) + (2, e(a, U) )L2(n~)• ) + ~ ]e(a, u)lE2(n~)• 

r 
+ #O(a, #, c) + ~ IO(a, ~, c)l 2 �9 
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It is simple to argue that (a*, u*, max(0, - g(a*) - #*/c)) is a local solution of (P~) 
if and only if (a*, u*) is a local solution of (3.2). In particular, if(a*, u*) is a local 
solution of(P ~) such that (C) holds at (a*, u*, - 9(a*)), then (a*, u*) is also a solution 
of(3.2). This ends our discussion on the relationship between (PP) and problem (3.2) 
which is solved in the algorithm that was described above. 

We close this section with the remark that the results of this paper can be 
extended to the case when f2 is a multi-dimensional domain, provided that W, is 
endowed with a topology that embeds Wa compactly into C(0, T; C(ff)) and the 
a priori estimates of Sect. 2 are changed accordingly. 

4 Stability analysis 

In this section we show that the coercivity condition (C) of Sect. 3 also guarantees 
stability of the solutions of the problem (3.2) as well as of (Pa) with respect to 
perturbations in z. Recall that (3.2) is the optimization problem that is solved 
iteratively by the augmented Lagrangian algorithm. To emphasize the dependence 
of (3.2) on the observation z we henceforth write in this section ~ ( a ,  u, 2", #*, z) 
for W~(a, u, 2", #*) and we denote by z* the unperturbed observation function. For 
convenience we repeat the definition of Wc(a, u; 2", #*, z) and of (3.2), whose 
dependence on z is also indicated by an index: 

1 2 fl l a l 2  + (2", e(a, U)>L~(n~)• J~'~(a, u; 2", #*, z) = ~ lu -- Z I L ~ )  + 

C 2 C + ~ ]e(a, u)lL2(n~)*L~ta) + #*O(a, #*, c) + ~ O(a, #*, C) 2 

and 

(3.2)2 min orgy(a, u; 2", #*, z) over (a, u)~ Wa • W subject to a > v. 

Henceforth we fix an unperturbed observation function z*~ L2(Hlo) and when 
referrin9 to quantities in Sect. 3 it is understood that z is replaced by z*. We have the 
following result on the stability of the solution of (3.2)~ with respect to perturba- 
tions in z: 

Theorem 4.1. Assume that (C) holds at a (local or global) solution of(3.2)~, and that 
c __> max(#*(c~*) - i ,  2Co). Then there exist neighborhoods V1 of z* in LE(Ho 1) and II"2 
of(a*, u*) in WaX W, and a constant tc > 0 such that for every z e Vi there exists 
a local solution (az, Uz)~ V2 of(3.2)~ and all local solutions of(3.2)~ in V2 satisfy 

I(az a*,Uz u*)lwo• < ~lz , 1/2 - -  - -  = _  - -  Z L 2 ( H ~ )  . 

An analogous result holds for the stability of the solutions of the problem (P~). 
We recall the definition of (P~) and indicate the dependence on z by an additional 
index: 

(P~)~ m i n I ~ l u - z ] 2 2 ( x ~ ) + f l l a ] 2 o }  sub j ec t t oe (a ,u )=O and a e d .  

Theorem 4.2. Assume that(C) holds at a (local or global) solution of (P')~,. Then 
there are neighborhoods V1 of z* in L2(Ho i) and V2 of (a*, u*) in W~ • IV, and 
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a constant ~ > 0 such that for every z ~ 17"1there exists a local solution (a,, Uz)E 17" 2 
of(3.2), and all local solutions of (Pa), in V2 satisfy 

* < /~[Z , 1/2 [ ( a ~ - a * , U z - U  ) [woxw= - z  L2(n~). 

Proof of  Theorem 4.1. The proof  is based on Theorems 4 and 6 of [A1]. These 
theorems require that  the solution (a*, u*) is a regular point  with respect to the 
constraint  a > v and that  there exists a ne ighborhood U of (a*, u*) and a constant  

such that  

(4.1) ~r ~(a* ,u*;2* , l~* , z*)+~l (a -a* ,u -u*)[2wo•  

for all (a, u)~ U satisfying a > v. Clearly, (a*, u*) is a regular point  with respect to 
the constraint  a > v. In view of the technical L e m m a  A.2 wi th / i  = p* we have 

CO 
U) [L2(H~) x L2(~) (4.2) Ja(a, u) + <2", e(a, U)>L~(no~)• + ~-[e(a ,  z 

C0 
+ #*O(a, ~*, c) + - f  ]O(a, #*, c)l 2 + Q/*, v - a>wo 

(7 
> JP(a*, u*) + ~ ](a - a*, u - u*)l~vo • w 

for all c > max  ,2Co and (a, u)~B6,. Since c > Co and since (q*, v - a> < 0 

for a > v, (4.2) implies 

(7 
~c (a ,  u; 2", kt*, z*) > ~ffc(a*, u*; 2", ~*, z*) + ~ ](a - a*, u - u*)]2 •  

for all c > max ~ ,  2co and (a, u)e B~., with a > v. This is the desired estimate 

(7 
(4.1) with ~ = ~ and ff = B~.. [] 

Proof of  Theorem 4.2. We proceed as in the p roof  of Theorem 4.1. In the proof  of  
L e m m a  3.1 that  is given in the Appendix,  it is shown that  (a*, u*) satisfies the 
regular point  condit ion with respect to the constraints  e(a, u) -- 0 and a ~ ~r Hence 
it suffices to argue the existence of a ne ighborhood  1.7 of (a*, u*) and of a constant  

> 0 such that  

(4.3) JP(a, u) > JP(a*, u*) + 8[(a - a*, u - u*)[2 • 

for all (a, u ) ~ 7  with e(a, u) = 0 and a ~ d .  
As a consequence of the fact that  

~O(a, ~, c) + ~ O(a, ~, c) 2 = (Imax(0, c9(a) + ~)12 - #2) ,  

~r implies #*0(a, kt*, c) + 20(a,/1", c) 2 < 0. This observat ion together  with (4.2) a 

implies (4.3) and the theorem is proved.  [] 
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5 The coercivity condit ion 

In this section we turn to a discussion of the coercivity condition (C) and establish 
three special cases for which (C) holds. In the first case we make essential use of the 
regularization term in the cost functional JP(a, u) and determine a range for the 
regularization parameter  within which (C) is fulfilled. This range of regularization 
parameters is determined, most importantly,  by the distance between the observa- 
tion z and the attainable set { u ( a ) : a ~ r  It will be convenient, henceforth, to 
indicate the dependence of the solutions of (Pa) on fl and we shall denote in this 
section by (a~, u~) a global minimum of (Pa), fl > 0. Fur thermore  we put  

and 
U p = {u~ :(a~, u~)is a global solution of (PP)} , 

A ~ *. �9 = {ap .(aa, u~) is a global solution of (P~)} . 

The following result in [CK]  summarizes some properties of (a~, u~) as a function 
of ft. It is essential here, that (a~, u~) be a global solution of (Pa). 

Proposit ion 5.1. For fl > 0 let (a~, u~) denote a global solution of  (PP) and let 
0 < fig < ft. Then the following relationships hold: 

(i) * < " * SUpa~aP Iap I w. = lnf,~ ~a~olaao I Wo, 
(ii) , 2 " < .  , 2 sup.~o~v~ l ut~o -- ZIL~trI~) = lnfu~vPlua -- ZlL~m~). 

(iii) I f  fin ~ 0  + and ~ is any weak cluster point o f  a~. ~ A p", then (& u(8)) is 
a solution of(P~ Furthermore we have 

I~lw. = min  laol Wa = l im sup l a ~ l w . .  
a* ~ A  ~ n--*oe a ' ~ a  r 

(iv) There exists a monotonically increasing function p with l i m ~ o §  0 
such that for fl > 0 

sup [u~' z - Z I L ~  < lU~ --  z = ZlL~(~la~ + B P ( B ) .  
U p 

In the statement of (iv) of Propos i ton  5.1 observe that l u~ - z l 2 is independent 
of the choice of u* e (pO). 

Proof  of  Proposition 5.1. Part  (i)-(iii) are from [CK]  and (iv) is a consequence of(iii) 
and the fact that  

l u "~ 2 z l : 2 ( . ~  < lu* 2 - = - ZlL2(,~) + /3(la~l 2 -- la~'12), 

which holds for every solution (a*,u~) of (pO) and (a~,u~) of (P~), 
f l > 0 ( [ f K ] ) .  [] 

Proposit ion 5.2. Let (a~, u~) and (a~, u~) denote global solutions of  (PP) and (po) 
respectively and suppose that 

(5.1) lu* - zlbc~o~) </~o 2-~z(1 - /~o)  - p(/~o) 
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holds for  some tio ~ (0, 1). Then there exist  positive constants Co, 0 and ~_~ (0, rio) such 
that 

(5.2) D~a,., P * w)L~(%, u'~, w~; 2*, #*, r/*)((h, v, y),(h, v, y)) __> t i l l(h,  v, y)12~215215 

holds for  all ti~[ti_, rio] and c > Co. I f  z is attainable, i.e. i f  u* = z, then (5.2) is valid 
for  all ti ~ [0, rio] for  some rio > O, f > O. 

Proposi t ion 5.2 implies that Condit ion (C) holds with a = tiff, for ti~ [~,  rio], 
provided that ]u~ -ZlL2(no~)is sufficiently small. 

Proof  o f  Proposition 5.2. Throughout  the proof  we shall write 2* for 2* and put 
A* = (2", g*, r/*). To  denote differentiation with respect to x we use an index or the 
opera tor  V. The second Fr6chet derivative of Lff is given by 

(5.3) 2 # * D( . . . . .  )Lc(a#, u~, w~; A*)((h, v, y), (h, v, y)) 

Iv 2 = [L2(H~) + tilhlZwo 

- 2 ( 2 " , (  - A)-l(hvx)~,}L~(n~) +/~*[h[ 2 

+ c I( A)- 1 [v, (a'~ vx)~, -- * 2 
- -  -- (hu#,x)x] IL~(~g) + clv(0, ")1~ + c( (a~ ,  h}w~ + y)2 

We first estimate those terms in (5.3) that are not related to inequality constraints. 
For  this purpose we define 

(5.4) M(ti ,  c)(h, v) = Ivl~z(ng) -t- tilh[~vo - 2 (2" ,  ( - m)- l (hVx)x}L2(H~)  

+ c l (  a) -~Ev,  (a~v~)= (hu~',,)x] 2 - - - I L ~ . o  ~) + C I V ( 0 ,  ")1~2 �9 

The individual terms in (5.4) are estimated as follows: 

(5.5) 1(2", ( -- A)-~(hv~)~)lL~(n~) = ] (V2*, V( -- A)-~V(hv~)}L2(L2)I 

< ]2* IL2(n~)lhv~ IL2tL z) <= kx 12" [L~(n~)[h[wo Iv [L2tH~) 

< k~ lu~ - zlL~H~)IhIwolVE=r 
V 

where in the last term we made use of Lemma 3.3, which implies - compare  Lemma 

[2*[L~(n~) < ~ [U~ --ZIL~(U~). Next  we 3 . 2 -  that  have 

(5.6) 1( A)- l [v ,  (a~Vx)x �9 2 
- -  -- -- (hu:, ~)~] IL2(nA) = 

( V, -- (a~ Vx)x -- (hu'~,x)x, ( - A) -~ Iv, - (a~ Vx)x - (hu~.x)x] ) 
2 = [vt[L2(n-i ) -- 2(vt,  ( - -  A)-XV(a~Vx + hu~,x)} 

+ (V(a~Vx + hu~,~), ( - A)- ~V(a~vx + hu~,x)) 

> lv, I~(H-,) - 2lV, lLZ(U- ~)1( -- A ) - lV(a~Vx  + hu#.* :,)lL2(n~) 
�9 2 + I( - A)-W(a~ 'v~  + hua,~)lL~r 

_-> �89 Iv, lZ~r ~) -- 21a~vxl~ -- 21hu~',~l~ 

>�89 l~r 2k2[ * ~ 2 = - a# [W, IV~IL~ -- 2k~lhl~volu~ [L2(H~ ) 2  

(! ) Iq, lb = [VtIL2tH-I) 
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Combining (5.4)-(5.6) we find 

(5.7) M(/3, c)(h, v) > (1 - CXl)]V[2:ta~) + (fl - c1r 

where 

~1 ----- 2k~7 2 
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C 2 2klv lu~ - zlL~(~)Ihlw~IVlL=(.~) -4- ~ IV, IL=(/~-I), 

and x2 = 2k2( ! i~PlL2 ( m 1 2 + ~5 l/ILk(n-1)). 

Following I-IK2] we set c = 6/3 with 6 to be determined below. Then (5.7) implies 
for any ~ ( 0 ,  1) 

M(/3, 6/3)(h, v) > (1 - 6/3~:x)lvl~(no,) + 13(1 - 5~c2)1hl2 

kl 2 2 1 
2 fllh[2. + fl61v, l~(n-,) ~/31"~ ~ ' ~ - p2 

+ / 3 ( 1  - ~c26 - 2)1h12o �9 

Choosing 6 as 

one obtains 
6 = �89 max(x i  - i ,  x~-l) 

2k2 2 ) z 
. . . .  IVlL~<~) (5.8) M(fl, g/3)(h,v) >= 1 6/3xl e ~ l u ~  ZlL2(H~) 

+ �89 lb ( . - , )  + �89 - ~)lhf~~ 

In view of Proposi t ion 5.1(iv) and (5.1) we have 

y2 

sup lug' o - z122(n~) < lu* - zJ22(n~) + floP(flo) < fl0~12 (1 - / 3 0 ) .  
UPo 

Since this inequality is strict and since by Proposi t ion 5.1 its left hand side is 
monotonical ly increasing with/30, there exist/3_e(0,/30) and el e(0, 1) such that 

(5.9) sup lu~' zl~2(~o~) < v2~l va - = fl ~ (1 --/30) 

holds for all fl~E_fl,/3o]. Inserting (5.9) into (5.8) with e = ~l leads to 

(5.10) M(fl, ~/3)(h, v) > ~ Ivl~(n&) + �89 6/31v,1~(.-~) 

+ �89  - et)lhl2w., 
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1 
for all f ie  [fl_, rio]. Here we also used the fact that 6 < 2~x1" Returning to (5.3) we 

find 

(5.11) D~,, . . . .  )Lg#(a'~, u~, w'~; A*)((h, v, y)(h, v, y)) 

>= M(fl, 6fl)(h, v) + 6fl( <a~, h )w, + y)Z , 

where for any pc (0 ,  1) 

1 <a~, h>2o - pZy2 + yZ (5.12) (<a~, h)w, + y)Z > <a~, h) 2 - --~ 

> ( 1 - p 2 ) y Z  ( ~ _  l)yZ[hl~vo . 

Hence, together with (5.10) we find 

2 # * * * "  * F D( . . . . .  )Lo#(aa, u#, w#, A )((h, v, y)(h, v, y)) > fl �89 Iv 2 [L2(n~) 
1._ 

= # [  �89 [vl~2(u~) + 12 6lv, lL2(U 1 ) 2  + 6(1 - p 2 ) y 2  

Let Po be the unique positive root  of 

6(1 - p2) = �89 (1 - ~ / -  6~ ~ - 1 

in (0, 1). Then for all c > co = 6B ~ the following inequality holds for all Be  [fl, rio] 

D~, # * ,, w)L~(a#, u~, w'~; A*)((h, v, y), (h, v, y)) 
>_ 2 # , 2 _ D( . . . . .  )Laa(a ~, u~, w~; A*)((h, v, y), (h, v, y)) > flffl(h, v, Y)lWo•215 

where # = min(�89 �89 6(1 - p2)). This is the desired estimate (5.2). [] 

Let us turn to the case z = u*. F rom Proposi t ion 5.1 and (5.8) with e = �88 we 
derive 

( fl k 2 ) 2fl6[VtlL~(~t-~)+~sfl[h'2~ M(fl, 6fl)(h,v)> 1 - ~ - 8 ~ T p ( f l ) 1 / ) [ 2 2 ( H o l ) §  2 

Next  we choose flo such that 

V 2 

p(#o) -<_ ~ (1 - #o). 

Since fl ~ p(fl) is monotonical ly  increasing we have 

1 fl 8k2 "~' flo 8k 2 flo 
2 -~ p t p ) > l  2 v2 p(flo)>--f  for f l~[O,  f lo] ,  
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and consequently 

1 2 M(fl, 6fl)(h, v) > 2flolV[L~H~) + �89 I~2,H-,, + ~ fl]hl2w. 

> �89 fl(IvlLZ2~.~, + 61v,12~. -,) + �88 Ihl~.) ,  

for f l~[0,  flo]. We use this estimate in (5.3) and, recalling (5.12), we obtain for 
c _-> 6/~o = Co 

O~a . . . .  )L~ (ap, u?, w~; A*)((h, v, y), (h, v, y)) 

>f l  � 8 9 1 8 9  ~ - 6 y  - -1  Ihl~v. �9 

We assign to p2 the value 8672(1 + 8672) -~ which ensures that 

6 and 8 ~ - 67 1 • 6 ( 1 - p e ) - i  +8672 - = 4 ,  

so that for c > Co and fle [0, flo] 

D~,,.,.~)L~(a~, u~, w~; A*)((h, v, y), (h, v, y)) >=/~(�89 Ivl~.o,~ + �89 61vt l~-  ,) 

6 
+ - - 1  + 8 6 T  2 y2 d- 1 i h l 2 )  => fl#l(h, v, y ) 1 2  x w x R  , 

( w i t h S = m i n  �88189 +86~  2 " 

Next we address the special case in which the Lagrange multiplier #* is positive. 
= (ao, Uo) of (po) need only In this case coercivity holds with fl 0 and the solution * * 

be a local one. A sufficient condit ion for the nonnegative Lagrange multiplier #* to 
be in fact positive is given in [KW].  Of course, due to the complementari ty 
condition,/~* > 0 can only hold if * lao [w~ = ~. The precise result is as follows. 

Proposition 5.3. Let (a*, u*) denote a local solution of (P  ~ and suppose that p* > 0 
and 

(5.13) lu* - ZlL~mD < 

Then (C) holds with fl = O. 

v min(p*,  1) 

4kl 

Proof We use the same notat ion as in the proof  of Proposit ion 5.2 and find 

M(O, c)(h, v) +/~*lhl2~ > 1 v l 2 2 ~ -  2 (2" ,  ( - A)-l(hVx)x)LZ(H~) 

+cl( A)-'[v, (a*vx)x �9 2 
- - - (hux)x]lL2r + #*lh}2o 

C 2 __ > [vl2~mob - 2 k--L1 lu* -- ZlL=(ng,lhIw~ + -~ IV~IL2~n-~J 2ck2~2tv12~(n~) 
!2 
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~ [I)t]L2(H-1) "1- 1 2ck~y 2 kl  [u* - zlLz(u~) - - I v l L = ( , , ~ )  
Y 

+ _ 1 2 - v  ZlL~(ng)l[h[2~ 

= -2 IVtIL+tH-') + 1 -- C•I -- --V lU* - ZILZ(H+) vl zL+(.+) 

Inserting this estimate into the second Fr6chet derivative of L ~ one obtains 

z o . A*)((h,  y) , (h ,v ,  2 D t . . . . .  )Lc (a , u*, w*; v, y)) ~ 2 Ivtl,2(u 1) 

@ 1 CK 1 -- --11.~* ZIL2(H 1) 2 - - IvlL2(,+) 
V 

+ # * - c ~ 2 - - - v  lu*-zlL2(uo~)-coy 2 ~ - 1  I h l ~ o + C o 0 - p Z ) y 2  

for any c > co. Next we define 

6 = min(#*, 1) and co = ~ max ~-1 ~ 

a n d c h ~ 1 7 6 1 7 6 1 7 6  <~-=4" By assumption 5 > 0. This gives 

the estimate 

o . w*; A*)((h,  v, y), (h, v, y)) D~. . . . .  )L~ (a , u*, 

> O{a, u, o * A*)((h,  y), (h, v, y)) = w)Lco(a , u*, w*; v, 

> Co 6 6 
--~ IVtl~2(H-a) + ~ Ivl~=(n~o) + ~ Ihl~v. + Co(1 - p2)y2 > al(h, v, y)12o•215 , 

for every c >= Co, where a = min(C2,4,-6 c ~  p2)). This is the desired result. [] 

As a third case in which one can establish (C) we consider the situation when 
the optimization problem is finite dimensional. This corresponds to the situation 
occuring in numerical calculations when the discretization of the variables a and 
u is fixed. Let W M and W. M be finite dimensional subspaces of W and Wa 
respectively and consider the unregularized problem 

(p)M minlu - zlZ=(Uo ~) 

subject to e(a, u) = O, a ~ d  c~ WMa and u~ W ~t . 

We assume that there exists a solution (a*, u*) of (p)M and an associated Lagrange 
multiplier (2", #*, r/*). Let ~:L2(12) ~ LZ(I2) denote the unique continuous exten- 
sion of ~ : H t ( g 2 ) ~ L Z ( I 2 )  with ~ ,  = V ( -  A)-aV~p and observe that ~ is an 
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orthogonal  projection whose kernel is the set of all constant functions [IK2].  We 
require moreover  that there exists a constant K (depending on W M, W M and u*) 
such that 

2 (5.14) [VtIL2~U-,) + ]v(O,')]~2 < Klv[~2~n~, for all ve  W M , 

and 

(5.15) , z K - 1  [~(hux)IL2(L2) >= [h[~v., for all he  W. M . 

Proposition 5.4. Let the above assumption on the existence of a solution of(P) M and 
an associated Lagrange multiplier as well as on the equivalence of the norms 
according to (5.14), (5.15) hold. Then condition (C) is satisfied, provided that 
lu* - zlL2~HD is sufficiently small. 

Proof First we estimate M(0, c) as defined in (5.4) from below: 

M(O, c)(h, v) = I VILZ2r -- 2 (2",(  -- A)- 1 (hvx)x)LZ(1.I~) 
+ el( a)- l [vt  (a*vx)~  , 2 clv(0,')l~2 -- -- -- (hUx)x]lL2tnD + 

> I 2 kx - zlL2(u~)lhlw, lvlL~(u~ = VlL~tnD-- 2 [U* 
V 

C 
+ 2 lr z - - - (a v~)~)IL~HD 

> ( 1  kxlu* Z IL~(H ' )2cK 2ck~y2)lv z . . . .  IL~r 
V 

where we have used (5.5), (5.14) and (5.15). In the next estimate use of (5.12) is made 

D(2 . . . . .  )L~P(a*, u*, w*; A*)((h, v, y), (h, v, y)) = M(O, c) +/~*lhl 2 + c( (a*, h)w.  + y)2 

> 1 - -  l u *  - -  Z ] L Z ( H I  ) - -  2cK -- 2ck17 [VlL2(U 1) 

( )) + K 1 c kl lu* - ZIL~r -- C7 -- 1 Ih12. + c(1 - p2)y2 . 
2 v 

4K72 we arrive at Choosing p2 = 4Ky z + 1 

2 , A*)((h, v, y), (h, v, y)) Dr . . . . .  )L~(a , u*, w*; 

> ( ~ + ~ K ) (  1 . . . . .  k~lu*v ZlL~(nD 2cK 2ckZyZ)(lvlZ,,n~o)+ ,vl2~,n-~,) 

F 
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F rom this estimate it follows that for appropriately defined constants Co and a 

2 D~,, . . . .  )Lc(a*, u*, w*; ).)((h, v, y),(h, v, y)) > al(h, v, Y)lwo •215 

for all c > Co, provided that  lu* - zlLl~no~ ) is sufficiently small. 
If (p)M is considered with a regularization term then (5.15) may be omitted. [] 

6 A numerical example 

The proposed algorithm was tested for numerous numerical examples some of 
which will be presented together with the relevant numerical specifications in 
a technical report. Here we give only one specific example which arises from 
discretizing u with bilinear splines over the grid of 22 x 38 elements and discretizing 
a by bilinear splines with half as many elements in each coordinate direction. In 
particular we consider the estimation of a in (2.1) when T = 1, 

u*(t, x) = t s i n n x ,  

a*(t, x) = 1 + sin2nx sin 2 n t ,  

f ( t ,  x) = sin ~x + rc2t sin ~x - lr2t sin 2 z~t(2 sin r~x cos 2 r~x - sin 3 rrx), 

and tp = 0. The data are given by 

zij = u*(1 + 6rij) 

where ri~ are uniformly distributed r andom numbers with values in [ -  1, 1], 
6 = .01, c = 10, fl = 5"10 -6 and u* are the values of u* at the nodal points of the 
grid. The start up values of  2, a, u were chosen to be (2 ~ a ~ u ~ = (0, 1, z). With 
these specifications the result for a after 5 iterations can be seen in Fig. 2, the 
optimal parameter  is depicted in Fig. 1. We observe that the supremum error is 

Fig. 1 
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Fig. 2 

concentrated along the singular set 5 ~ = {(t, x)~ Q:u*(t, x) = 0}. Numerical ly  the 
errors are given by 

la zz'3s - a*lL2 = 0.06 

la22,38 * 
- a  Iwa=3 .42  

[aeZ '38-a*l~  = 0.22. 

In the case of unper turbed  data, i.e. 6 -- 0, the graph of the est imated paramete r  is 
indistinguishable from Fig. 1. For  example, we found l a aS' 38 _ a* [~ = 0.008. 

Appendix 

Proof of  Lemma 3.1. Let (a", u")~ Wax W be a minimizing sequence. This implies 
that  a " ~ d  and u " =  u(a") by (3.1). Since d is weakly compact  there exists 
a subsequence (which we denote again by) a" converging weakly to a e d .  By 
L e m m a  2.3 the corresponding solutions u" converge strongly in L2(Hlo) to u(a). 
Hence we may  infer 

inf JP(a, u) = lim JP(a", u") 
e(a, u) = O n'-* eo 

1 lira lu" 2 ~ lim infla"l~vo = - - zlL2(n~) + 2 , ~  
2 n--~ oo 

= ~ [u - zl~2(H~) + lim infla"[~va 
n ~ o o  

1 2 B > -~ ]u - zlL2(n~) + ~ ]al2~ = Jt3(a, u),  
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where the last inequality is a consequence of the weak (sequential) lower- 
semicontinuity of  the norm. 

To  show the existence of a Lagrange multiplier at a local solution (a*, u*) of 
(P~) we refer to the version of the K u h n - T u c k e r  Theorem in [MZ] .  It requires the 
verification of a regular point condit ion at (a*, u*). Performing the appropr ia te  
identifications with the quantities in [ M Z ]  this amounts  to the condit ion (recall the 
definition of the positive cone in Wa): 

0 e int {((( -- A)-  1 [vt - (hu*)x - (a*Vx)x], v(O, ")),  

- �89 ( [a*12o - 7 2) - -  ( a * ,  h ) w o  - p ,  a *  - v + h - b): 

(h, v)e Wa • W, pe]R+,  b e  W +)  c (LZ(H~) • L2(Q)) • ]R • ma . 

Define 

q / =  { ( f  tp, r, a)e(L2(H~)  x t2 (O) )  • JR_ • Wa: [rl <= �88 7(7 - v~/-T), [aJLoo <: V0}, 

with 

1 7 -  vx//T 

27 + v x / T "  

Note  that  q/ is a ne ighborhood of the origin in L2(H~)•  L2(f2)x IR • Wa (see 
L e m m a  2.1). We show that  for any (J~, ~0, to, ao)egg there are (h, v)e W, x W, 
p e IR +, b e Wa + such that  

(A.1) ( - A)-  l(v, - (hu*)x - (a*Vx)x) =fo,  v(O, ") = ~o , 

�89 _ ?z) + (a*, h ) w .  + p = - ro ,  

v -  a* - h + b = - ao �9 

Choosing 
h = - �89 - a) + �89 + a)e  W , ,  

we find that  b as given by the third equat ion of (A.1) satisfies 

b > - v a -  �89 - a) + �89 + a) > 0 ,  

and hence b e Wa + . Insert ing h into the second equat ion of (A.1) together  with the 
est imate 

I(a*, v)wol <= v T x / T  (A.2) 

implies 

P ~ - �88 7(Y -- w / T )  + �89 (1 - a)7 2 - �89 yvx/~(1  + a) 

= �88 ~(7 - v ~ / - ~  - �89 ~7(~ + v ~ / ~ )  = o ,  

and therefore p e lR +. The first equat ion in (A.1) results in 

v, - ( a*vx )~  = ( - A) fo  + (hu*~)~, 

v(O,') = r  
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which has a (unique) solution for any choice of (~ ,  ~bo) in L2(Ho 1) x L 2. Applying 
the Kuhn-Tucke r  theorem in [MZ]  we draw the conclusion that there is a multi- 
plier (2", ~*, ~I*)e(L2(H~) x L2(f2)) • IR • W~ such that (a*, u*) is a stationary 
point of La(a *, u*; 2", p*, q*) and the complementari ty conditions hold: 

(A.3) #* g(a*) = 0 = Q1*, l(a*) )w~ 

/~*>_-0, ( t /* ,a )>=O for a l l a e W .  + .  [] 

For  further reference we note that for (h, v) e Wa X W 

(A.4) 

D(a..)L~(a *, u*; 2", ~l*)(h, v) = <u* - z, V)L2(a~) + fl<a*, h >w. 

+ < , ~ ' ,  ( - a ) -  1 I v ,  - (a*v~)~ - (hu*~)xl > L 2 ~  

+ (2" ,  v(O, ")>L~(m + I~*(a*, hFw, -- (q*, hFw. �9 

Proof  of  Lemma 3.2. Put h = 0 in (A.4) and conclude that in view of the first order  
necessary optimality condition 

(A.5) 
(2" ,  V..)L2tL~) -- ((a*(2*)x)x, V>L~(L2) + (2" ,  V(0, ") >L~m + ((  -- A)(u* -- z), V>L~(L~ = 0 

holds for all ve  W, in particular for v(t) = Z(t)w where weH~( t? )  and ) ~ N ( 0 ,  T). 
For  this choice of v we find 

<2*,V,>L:tL~) = I 2*(t)~dt, w = - I V,2*(tl)~dt, w , 
0 L2(f~) 0 L2(~) 

where Dt2* denotes the distributional derivative of 2* with respect to t. The 
remaining terms in (A.5) give 

((  - A)(u* - z), V>L~(L~) -- <(a*(2*)~)~, V)L~(L~) = ~ [( -- A)(u* -- z) 
0 

- (a*(2*)~)~]zdt, w>L:~a). 

Inserting these expressions into (A.5) yields 

( i [ - o t ) ~ * ( t ) - ( a * ( 2 * ) ~ ) ~ - A ( u * - z ) ] ) ~ d t ' w  L~(a, = 0  

for all w~H~(f2)  and ;~@(0 ,  T). By density of H~(Q) in Lz(f2) we infer 

(A.6) Dr2* = - (a*(2*)~)~ - a(u* - z) ,  

and since the right hand side is an element of LZ(H -~) we conclude that 
D t 2 * e L 2 ( H  -1)  and consequently 2*e  W. Hence we may apply (A.6) to the first 
term in (A.5). Observing (A.6) we find for all v e W 

0 = < - (;~*),  - ( a * ( , ~ * ) ~ ) x  + ( - a ) (u*  - z), V>L~L2~ 

+ ~ <2", v>L=(mdt + <2", V(0,')>L~(m 
0 

= <2*(T), v(T, ")>L=(m -- <2~'(0) -- 2",  V(0, ")>L2(m . 
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Choosing v appropriately we conclude 

(A.7) 2*(T) = 0 and 23 = 2*(0).  

This establishes the second part of Lemma 3.2 and by uniqueness of the solution of 
the backward equation (A.6), (A.7) we infer uniqueness of 2*. 

To show uniqueness of (~*, q*) let (2",/~*, q*)~(L2(H~) x L : ( O ) )  • IR x Wa, 
i = 1, 2 be two pairs of Lagrange multipliers so that  

D(a, u)LP(a *, u*; 2", #*, r/*)(h, v) = 0 

is satisfied for all (h, v) ~ Wa • W. Set v = 0 and subtract the two identities. This 
gives 

(A.8) 5 # * ( a * ,  h)wa = (6rl*, h ) w ,  for all h e  IV,, 

where 
6/~* =/~* - / z *  and 6t/* = q* - ~7" �9 

First assume a* ~ v and choose h '=  a* - v. Inserting ff into (A.8) and using the 
complementari ty conditions (A.3) one obtains 

6/~*([a*l~v, - (a*,  V)w~ = (rtl*, a* - v )  = O . 

Consequently,  again referring to (A.3) and (A.2) one finds 

0 = 6p*(72 - (a*,  v ) w . )  >= g)#*7(;) - v x / @ )  > O.  

This contradict ion implies that 6#* and, by (A.8), 5q* vanish. A similar argument 
may be carried out if a* - v. This completes the proof  of Lemma 3.2. [] 

Next we shall use (A.6), (A.7) and (A.3) to derive a priori bounds on the 
Lagrange multiplier. 

Lemma A.1. There are constants  C~ = Ci (k l ,  3), v - l ,  fl), i = 1, 2, 3 such that the 
fo l lowing est imates  hold: 

(i) [/~*IWxL2(fJ)~ Cl(t~OlL2(fg ) "~ [ZIL2(H~) + IflLZ(H-1)) , 

(ii) [r/*Iw, < fly + Cz(l~ol~2(~) + Izl~2(~) + bfl2LZ(n-,)), 

0 </~* ,f = 0 if la*lw. < ~ , 
(iii) 

---- ( < -- fl -t- C3([(pl~(a ) + [Z[ZL~(n~)-t- IflLz~(,-~)) if [a*{w, = ? �9 

P r o o f  F r o m  the estimates that follow it can be seen that the constants C~ can in 
principle be calculated explicitly. An argument analogous to that which led to 
Lemma 2.2 shows that 

1 , ~ , z  1 __1 2 
- 12x (0)[L2(a) -t- 1211L2(t/~) < v2 IA(u* z)l~2r [u* - -  = -- ZlLZ(H~) Y ~ y2  ' 

and 
F2k2~2 71/2 

= 2 /  (lu* �9 l(2*),[L~(~t-~) < L v2 + A ILZ(ng) + IZIL2(H~)) 
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These estimates combined with Lemma 2.2 and (A.7) imply (i). Evaluating the first 
order necessary optimality condition (A.4) for (h, 0)e W, x W results in 

(h.9) 

- -  <)~*, (-- A)- 1 (hu*)x>L2(a~) + #* <a*, h>wo - <r/*, h)w,  + fl <a*, h>wo = 0, h e Wa. 

First assume l a* ]wa < 7 so that by (A.3)/~* vanishes. Consequently (A.9) implies 

( n . 1 0 )  1,7*lWo _-< 3~ + kx * * 121 [L2(.o~)IU IL~(.~> �9 

Next we consider la*lwo = 7. This yields the estimate 

(A.1I) <a*, a* - V>Wo _>-- 7(7 - v v C )  > 0 .  

Inserting h = - a* + v into (A.9) gives in view of (A.3) 

# * < a * , a * - v > w o < f l < a * , v - a  ) w o +  a )Ux IL2(L2) , = I ' l l  IL2(H~)I(V 

Dividing by <a*, a* - v) and using (A.11) we arrive at 

Iv - a * l w o  
0 < I~* < - fl + I~*IL2(H~)IU*IL:(H~)k~ 

- v / - T )  ' 

Since (v, a*)w ,  >= v : T  we infer 

Iv a*[2w~ v2T - 2<v, * 72 = ~,2 - = + < - = ( 7  - + 

and hence 

, , , k l  / 7  vC@ 

This implies the estimate given in (iii). We return to (A.9) and - still assuming that 
la*Iw. = y -  we obtain the estimate 

I<0*, h)w=l _~ [(/~* + fl)7 + kllA~{JL=(ng)Ju*[L~(ng~]lhlwo �9 

Combining the estimate with the one just derived for #* results in 

-- I 2 * J a ~ m , o > l u * l L ~ ( ~ )  . [t/*lwo =< kl 1 + ~ vx /T - I  

This inequality together with (A.10) and the estimates for * lax IL2(no ~) and ]U*lL2(no ~) 
imply the bound for 10*lwo as shown in (ii). [] 

Proof  of  Lemma 3.3. As in the proof of Lemma 3.1 one can show that 
( a * ,  u * ,  - w * )  = (a*, u*, - a(a*)) is a regular point in the sense of [MZ] which 
implies the existence of a (unique) Lagrange multiplier that satisfies (i)-(iii) of 
Lemma 3.3. Instead, we shall verify directly that the quadrupel (2", #*, #*, r]*) 
satisfies these conditions if(2*, kt*, r/*) is the Lagrange multiplier for (pa) at (a*, u*). 
Recall (3.8) and observe that 

C 2 
s u, w; Z*, #*, #*, ~1") = La(a, u; l*, #*, r/*) + ~ Je(a, U)IL2(B~)• L2(I2 ) 

+ c Ig(a) + w[ 2 
B 

A 
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Therefore Lemma (3.1) implies for (h, v, y)~ IV, x W x  IR 

^~ * g(a*); 2",/z*, #*, q*)(h, v, y) D(a,,,, w)Lc(a , u*, - 

= D~a.u)Lt~(a *, u*; 2", #*, ~/*)(h, v) = 0 ,  

which is (ii) of Lemma 3.3. Conditions (i) and (iii) of Lemma 3.3 coincide with the 
complementar i ty  conditions (A.3). This completes the proof  of Lemma 3.3. [] 

Proof of Lemma 3.4. We commence the proof  with a brief discussion of L]  which 
was defined in (3.6). L~(a, u, w; 2, It, r/) is three times continuously Fr6chet differenti- 
able with respect to (a, u, w). For  further reference we note for (h, v, y) ~ W, • W • IR 

(A.12) # D~a . . . .  )L~(a, u, w; )~*, #*, t/*)((h, v, y), (h, v, y)) 

= IVlL=~g) + fllhl~v. - 2 ( 2 " ,  ( - A)-l(hvx)x)L=(na) 

+ It* IhlrZv. + cl( - A)-~l-v, - (av~)~ - (hux)~]22(n~) 

-- 2c ( (  -- A)- 1 [ut - (au~)~ - f ] ,  ( - A)- ~(hv~)~)L~mS) 

+ c[v(0, ")l~o) + c((a, h)w~ + y)2 + c(�89 (la[~. - 7 z) + w)lhl~v~ �9 

The third derivative is given by 

3 /~ Dt . . . . .  )Lr u, w; )~ *, p*, r/*)((h, v, y) (3) )  ___ 3c((a,  h)wo + y)lhl2 .  

-- 6c ( (  - A)-  1 [v, - (avx)x - (hu~)x], ( - A)-l(hvx)x)L2trx~). 

This together with the estimate 

I( - A)- l(av~)xlLZ2tH~) < lav~IL2tL2)I( -- A)- l(av~)xlL2(H~ 

< lavxl~2~L2)< 2 2 2 klIa[w.IVIL2(HA) 
implies the bound  

3 # . �9 �9 ID~ . . . . .  )Lc(a, u, w, 2 , # , q*)((h, v, y)(3)[ 

< 3clhlZ.(lalw.lhlw~ + lY[) + 6ck~[lv, lL2(n-,) 

+ kxlalw.[V[L~(n~)+ kllhlw~176 

Expanding L](a, u, w; 2*, it*, q*) in a ne ighborhood of a local solution 
(a*,u*,w*) of (P]) into a Taylor  series and taking into account  that 
L](a, u, w; 2", It*, ~/*) = /2] (a ,  u, w; 2", #*,/~*, q*) and that 

D~ . . . . .  )s u*, -- 9(a*); 2",/~*, #*, ~/*)(h, v, y) = 0 ,  

we find for c > Co 

(A.13) L~(a, u, w, .~*, It*, tl*) > L~o(a, u, w; 2",/~*, r/*) 

2 # * = JP(a*, u*) + D< . . . . .  )L~o(a , u*, w*; 2",/~*, r/*)(A*, A*) + R ,  

where we have set A* = (a - a*, u - u*, w - w*). It can be shown that the estimate 
for the third Fr6chet derivative of L] derived above implies 

(m.14) IRI < 16 k2colA*t3,•215 
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with 

k2 = 97 + 3 + 6kl + 30k~7 + 6k~ kot]~m + [fP~n-,~ �9 

We further note that (cf. (3.6), (3.9)) 

~f(a ,  u, w; 2*, #*) - L~(a, u, w; 2*, It*, r/*) 

= # * w - ( q * , l ( a ) ) w , > O  f o r w > 0 ,  l(a)<=O. 

The last inequality is a consequence of (A.3). This fact together with 

~f (a* ,  u*, w*; 2", #*) = J~(a*, u*), celR + , 

(A.13), (A.14) and condition (C) justifies the following estimates (Co as specified by 
condition (C)) 

5af(a, u, w; 2", u*) __>.. 5('fo(a, u, w; 2", ,u*) => L]o(a, u, w; )~*, I-t*, q*) 

> Jg(a*, u*) + alA* 12=,, w• - IRI 

O" 
> 5el(a*, u*, w*; ,~*,/~*) + ~ IA*I2.•215 

if only 

(A.15) 
3o- 

k2r 

and w >= O, l(a) <= O. This shows that (a*, u*, w*) is a minimum of (P~) in a neigh- 
borhood of (a*, u*, w*) which is determined by (A.15). The second assertion of 
Lemma 3.4 is a consequence of the observation that 

L#f(a, u, w; 2",/~*) = J#(a, u, w) = J#(a, u), 

if (a, u, w) satisfies the constraints of (Pf ) .  [] 

Next we turn to the discussion of problems (3.3) and (3.4). For this purpose we 
first consider (tiff) with (2", #*) replaced by (2, #)e  (LZ(H 1) • Lz(Q))x JR, i.e. 

(A.16) rain ~q'f(a, u, w; 2,/~) subject to w > 0, and l(a) < O, 

where L#c ~ was defined in (3.9). Since (A.16) is not related to (Pf) anymore, we 
ensure existence of a solution by introducing the additional constraint (a, u, w) ~/3~, 
where for 6 > 0, 

~ (a, u, w)e W, x W x IR" ,(a, u)- (a*,u*) lwo•  lw - w*l < ~- + v'~ ~ . 
( C J 

We also recall that B~ = {(a, u)e Wax W:l(a, u) - (a*, u*)lw~215 < 6}. Since 
s u, w; 2, #) is weakly lower semicontinuous in (a, u, w) it attains a minimum at 
a point (ti, fi, ~) on the weakly sequentially compact set {(a, u, w)e IV, x Wx ~..: 
w > O, l(a) < 0} c~/3~. Let us put 

(A.17) w(a)= max(  0 ' - ~ - - c  9(a)).  
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Note that for (a, u)e W, x W fixed w(a) minimizes de~(a, u,'; 2, It) over w > 0. Then 
in view of w* = - 9(a*) we find 

Iw(a) - w*l = p-- + Iv(a) - 0(a*)l, 
C 

and hence 

1 2 
(A.18) Iw(a)-- w ' l<#+_-  I [ a l w , -  la*12.[<#+71a=- - a*[w. < - + 7 6 #  

C 2 C = C  ' 

provided that la - a*lwa < & We also find 

de~(a, ti, ~; 2, #) > rain de~(ti, ti, w; 2, ~) = o~f,(a, ti; ,~, # ) ,  
Iw - w*l < g c  + ~,6 

w > 0  

where we used (A.18). Moreover we have 

min de(a, u, w; 2, It) < min rain de(a, u, w; 2, It) 
(a,u,w)~#, (~u~e g~ Iw - w*t < ,~/c + ~6 

w>o, l (a )<o  l(a)<O w>O 

= rain acgc(a, u; 2,/~) < o~gc(~, ti; 2, It), 
(a,u)eB~ 
l(a) < 0 

where again (A.18) was employed. The last two estimates imply 

min 5el(a, u, w; 2, #) = min ~c(a, u; ~., # ) .  

w ~_ O, l(a) < 0 l(a) < 0 

The optimization problem on the right hand side of the last equality is problem 
(3.4), on which our algorithm is based. 

The proof of convergence of the augmented Lagrangian algorithm will require 
the following auxiliary functional. Define 

L*(a, u; It, c) = Ja(a, u) + (2", e(a, U) ) L 2 ( H I ) x  L2(O) 

C0 C0 
+ -~ le(a, u)12z<ug~ • + I-Z*O(a, It, c) + -~ IO(a, #, c)l 2 + (tl*, v - a ) w a ,  

where Co is defined in condition (C) and (2", It*, t/*) is the Lagrange multiplier 
associated with the local solution (a*, u*, - g(a*)) of (P~). We have the following 
result 

Lemma A.2. Assume that  condition (C) holds at a local solution (a*, u*, - o(a*)) of  
(P~). Choose fieF,+ arbitrary and define 

~ * = ~  ( 2 + ~ ) - t ,  ~=max( f i (~ . ) - t ,  2co),  

and B~. = {(a, u): t(a, u) - (a*, u*)lw.~w < ~*}. Then (a, u)eB~, implies 

f f  
L*(a, u; #, c) > JP(a*, u*) + ~ I(a - a*, u - u*)l~. •  

for all c > ~ and It ~ [0, fi]. 
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Since 0(a*,/~*, c) = 0, we have 

(A.19) L*(a*, u*; p*, c) = Ja(a*, u*),  

and thus Lemma A.2 implies in particular that (a*, u*) affords an unrestricted 
minimum to L* on B~,. 

Proof of Lemma A.2. Recall the definitions of L~ and w(a) ((3.6) and (A.17) 
respectively) and infer that 

L~o(a, u, w(a); 2",/~*, q*) + It*w(a) = L*(a, u; I~, c) . 

Since #*w(a) > 0 we conclude that 

(A.20) L*(a, u; #, c) > L~o(a, u, w(a); 2", #*, ~/*) 

In the proof of Lemma 3.4 it was shown that 

(A.21) 
ff * 2 

L~o(a, u, w; ;.*, #*, rl* ) >= J(a* ,  u*) + -~ I(a - -  a * ,  u - -  u * ,  w - w ) [ w o •  w x  R 

provided that 

3a 
(A.22) I(a - a*, u - u*, w - w*)[ 2wo • w • R < �9 

= k2co 

Due to the choice o f / ~  [0,/i], 6" and ~ we have 

~<-~<6".  
r C 

For (a, u)~ Ba. it follows from (A. 18) that 

I ( a -  a*,u - u*, w(a) - w*)lwo•215 < I ( a -  a*,u - u*)lwo• + Iw(a)-  w*[ 

< 3" + -~ + 76* < (2 + y)6* < 3 _ / ;  . 
C ~ [ K 2 C o  

Therefore (a, u, w(a)) satisfies (A.22) if only (a, u)~B~.. Consequently we may 
combine (A.20) and (A.21) which implies the assertion of Lemma A.2. [] 

The proof of Theorem 3.1 is similar to the one given in [IK1]. To make the 
paper selfcontained we present an outline of the proof. 

Proof of  Theorem 3.1. For  every n > 1, let (a", u") be a solution of(Pc,) in B~ and let 
(2", #") be determined by the algorithm. Using the update formulas and the fact 
that the penalty parameters c, are nondecreasing with Cl > 2Co, we find for 
n = 1,2 . . . .  

Cn - -  CO n (A.23) (l a"- I - #*)O(a", #"-  t, c,) + - - - ~  O(a , #"- t, c,) 2 

1 __> _ [ ( ~ .  _ ~ , ) 2  _ ( ~ . - ~  _ ~ , ) 2 2  
Cn 
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and 

C n - -  C O 
-- u )IL2(Ho~) • L~(o) (A.24) ( 2 " - 1  2*, e(a n, Un))L~(n~)~L~(a~ + ~ [e(a", " 2 

1 > [12" , 2 2 , -1  , 2 = 2 ILZ(Hol) • L2(C~) [ - -  - -  - -  - -  2 [L~(~%) •  . 
Cn 

Since S ~  0 it follows from the update formula for #n that p n >  0 for all 
n = 0, 1 . . . . .  This implies that 

max(cg(a*) + #n, 0) < S n for all n = 0, 1 . . . . .  

This fact is used to establish the estimate 

(A.25) .Ifc.(an, un;2n-l, l~n-1)<=gfc,(a*,u*;2n-l,  sn-1 ) 

1 
= Ja(a*, u*) + ~c, [(max(cny(a*) + S n-l ,  0)) 2 - (pn-1)2] 

< Ja(a*, u*) . 

Let us consider the quanti ty 2 ( # * +  * #o o [2 [L2(H~)xL2(f2)) "[- Ar [2 [L2(Hg)• By 
Lemma A.2 this expression can be bounded by a constant  6 which depends on 
(kl, y, v -1, fl, ~o,f, z; S ~ 20). Henceforth we put /i = 6. Inductively we shall show 
that/~.  ~ [0,/~]. Clearly Po ~ [0, / i ]  and we now assume that #,_ 1~ [0, p]  as well. 
Then by (A.25), (A.23), (A.24), Lemma A.2 (which is applicable since c, > ~, 
S n-1 ~ [0, fi] and (a n, un)~B~, with 6 < 6*) and (A.3) we find 

da(a*, u*) > .g~,(an, un; 2n- l, Sn-1 ) 

= L*(a n, un; S n-l ,  %) + (2  n-1 -- 2*, e(a n, u n ) ) L 2 ( f t ~ ) x L 2 ( E I )  

Cn - -  Co n n 2 (]An-  1 I + ~ [e(a, u )[L2(H1)xL2(I2) + - -  S*)O(a", p . -  c.) 

Cn - -  CO ^ n + ~ g (a ,  p" -  1, c,)2 _ (~/., v - an)wo 

> JP(a*, u*) + 2(I  an - a*l~v~ + [u" - u*l~v) 

1 + [ [ 2 "  , 2 -1 , 2 . . . .  2 [L2(H~)• 2 [L2(H~)xL2(O) [An 
Cn 

1 
+ _ [ ( , , .  _ s , ) 2  _ ( s n - 1  _ # * ) 2 ] .  

s 

This estimate implies 

9 
[a* , 2  _-- (12, , 2  - -  a [Wa "+" [U* - -  U n [ ~  "~- -- 2 [L2(H1)• "4- Is* - ] . /n [2 )  

GCn 

2 _< ( [ 2 *  - 2 " - 1  2 - -  - -  [L2(Ho  1) x L 2 ( Q )  "~  I # *  - -  S n -  1 1 2 )  . 
GCn 
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This is (3.7). Fur ther  we find 

12" . 2 _ 2 , -1  2 - -  • [L2(H~)xL2(fft) ..~ [p* -- ~n[2 ~ 12. IL2(H1) xL2(O) "~ 1~* - -  /'/n- 112 

and therefore 

The last estimate determined the choice of /~ and it also shows that  /~" and 
]2"lL2mo~)• are in [0, ft]. This ends the proof. [] 

For  the proof  of  Theorem 3.2 we modify a technique first developed in [IK1,  
IK2].  It will be assumed henceforth that  (a", u")z in t  B~ so that  the constraint  
(a, u)eBo* is not active. In this case there exists a (unique) Lagrange multiplier 
r/" s W, such that  for all (h, v) ~ W a x W 

(A.26) D(, , ,o~c,(a ~, u"; 2"-1, it~-l)(h, v) - (q", h)  = O, 

and 
(rl", v -- a")wo = O, (rl", a)wo > 0 for all a~  W + . 

In the proof  of Theorem 3.2 the opera tor  R : W, -~ W~ x IR given by 

Rh = ( - h, (a*,  h )wo) 

plays a significant role. We summarize some of its properties. 

L e m m a  A.3. The operator R has closed range and its adjoint is given by 

(A.27) R*(a, cr = - a + aa* . 

The restriction o f  RR*  to the range of  R is a continuous bijection and 

II(RR*)-~RII = 1 . 

Proof. Throughou t  this p roof  we use ( ' ,  ") to denote the inner product  in W,. The 
verification of the first par t  of Lemma  A.3 is straightforward. In order to calculate 
the norm o f ( R R * ) -  aR, let h be an arbi t rary  element in W,. Then there exists kT~ Wa 
such that  

(RR*)-~  Rh = (RR*) -  ' (  - h, (a*, h ) )  = ( - h, (a*, if)) 

is equivalent to 

( - h, (a*,  h) )  = ( - / ~ -  (a*,  #)woa*, (a*, #)  + (a*,  h ' ) la*[2) ,  

which gives 

( a * , h )  _(a*,_h) 
( R R * ) - I R h  = - h + 1 + [a*[ ~ a*, 1 + la*12J " 
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Consequently we have 

l(+*l,h,~ ( a * ,  h )  2 
[(RR*)-IRhl  2 = [ - h + 2 a*12. + (1 + la*12) 2 

( a * , h )  2 < [h[2 
= [hie 1 + la*l 2 = " 

The observation that equality is obtained above for h I a* completes the proof  of 
Lemma A.3. [] 

Lemma A.4. Let P R denote the orthogonal projection of W, x IR onto range R. Then 
the following decomposition holds: 

1 + ]a*[ 2 
(a*, 1) = I-(a, O) - PR(a, 0)], provided that (a, a*)  4: O. 

(a, a*)w.  

Proof Lemma A.3 implies that k e r R * =  span{(a*, 1)} and that WuxlR = 
range R O) ker R*. Thus we find 

(I - Pg)(a,e) - (a ,a*)w~ + e (a*, 1), 
1 + l a*12  

for all (a, ~)e W~ x IR, 

and the lemma follows. [] 

Lemma A.5. Assume that (C) holds, that cl > ~, 6 < 3", sup c, < oo and that for all 
n (a ~, u")e in t  B0. Then there are constants Ki = Ki(v -1, 7, kl ,  6", fl, 2 ~ #o, Co, T, 
(p,f, z, sup c~), i = 1, 2, such that 

(i) 12" - ~nIL2(H~)xL2 <~ Kll(a* - a ~, u* - u")lw,• 

(ii) I f la*l  = T then 

I(q* - -  r/", # *  - -  # " ) [ w .  • = < / ( [ ( a *  - -  a", u*  - -  u " ) l w .  • w ,  

where Is is a constant which in addition to the arguments of KI  depends also 
on [(a*, a* -- v)wal-  1. 

(iii) l f ]a*lw,  < 7, ~ ( 0 ,  6], cl => ~ and #o = 0, then 

# " = 0 ,  n = 1 , 2  . . . .  
and 

It/* - r/"Jw. < K21(a* -- a", u* -- u")lw~215 w 

holds for all n = 1,2 . . . . .  

Proof In view of the update formula, (A.26) is equivalent to 

0 = ( U  n - -  2, V)L2(H~) + f l ( a  n, h ) w .  - ( r f ,  h ) w .  

+ (2  ", D~..u~e(a", u")(h, V))L2tnA)• 

Cn n 
+ -~ ( e ( a ,  u"), Dt., u~e(a ~, u")(h, V))L~(I~)• 

+ (#n + �89 c.O(a ~, i~.-1, c.))(a", h ) w , .  
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which holds for all (h, v)e W. • W. Subtracting the above identity from the first 
order necessary optimality condition for (a*, u*) yields for all (h, v) e W. x W 

(A.28) 0 = <u* - un, V>L2(H&) + fl<a* -- a", h>wo - (t l* - q", h>w~ 

+ (2" -- 2", D(.,.)e(a", u")(h, V ) > L 2 ( H I ) x L 2  

- <2", D~,.)(e(a",  u") - e(a*, u*))(h, V)>L2(H~)xL2 

Cn 
+ ~ <e(a*, u*) - e(a", u"), D(o,.)e(a", u")(h, V)>L2Cn&)• 

+ I.t*(a*, h )  - #"<a", h )  - 2O(a" ,  g . - 1 ,  c.)<a", h>wo I 

Define the operator M . :  W - ~  L z ( t t  1) • L 2 by 

M . v  = D(a,,,)e(a", u")(0, v) = (( - A)-I  [vt - (a"vx)x], v(O, ")) 

and evaluate (A.28) for (0, v), v e W, to obtain 

< 2 "  - -  ),n, M n V > L 2 ( H ~ ) x L  2 = - -  <l.,l* - -  U n, U>L2(H~) 

Cn 
+ <2", ( - A)- 1 [(a* - a")Vx)x] >L2(H~) -- ~ (e(a*,  u*) -- e(a", u"), M.V>L~(tt~)• L~ �9 

This implies the estimate 

1<2" - 2 n, M,,V>L=(H~)• < [ l u *  - U"]L2~H~) + kala* - a"lwol2*lL~n&)]lVlL~(Hg) 

Cmax , 
+ --~--[e(a , u*) -- e(a", U")IL=~,~)~L~IM.vI~=r215 �9 

The operator M.  is a continuous bijection and by Lemma 2.2 

IM~- ' (~ 4,)12~,n~) < m a x ( !  ~ ) l ( j ~  : 

holds for its inverse. Combining these last two estimates we find 

[ (!L~I '/2 
(A.29) {2" - -  ~n lL2(HIo ) •  ~ max , v2]  j ([u* - -  U n l L 2 ( H o  1) 

Cmax 
+ kl {2*]L~(z~)la* -- a"lwo) + ~ ]e(a*, u*) -- e(a", U")[L~r215 �9 

A short calculation gives for the last term in (A.29) 

(A.30) {e(a*, u*) - e(a", u"){ < lu* - U"{w + {u*(O, ") - u"(O, "){L~(a) 

+ kl([u"l~u&) + ~22)1/21(a * - -  a", u* - u n ) l w a x L 2 ( H ~ )  " 

Moreover we have 

,u,0.',,_-< + 



506 

In fact, integrating 

lu(0, " ) [ ~ j  = 
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I2 ,u,s - ")12~mds -4-lu(t, ")lrz~(m 

with respect to t~[0 ,  T ]  and using 1~o1~2 < 1 2 = 4l~OxlL2 for ~o~Hol(f2) gives 

Tlu(0, ")12 < T l u l  2 + �88 Inlay 

which implies (A.31). Inserting (A.30) and (A.31) into (A.29) yields 

]2* - -  ,~n[L2(Hlo)  X L 2  ~ Kll(a* -- a", u* -- u") lw,  • w , 

where the dependence of the constant  K~ on the parameters specified in the 
statement of the theorem can be made explicit by Lemma A.1 and Corol lary 3.1. 

To verify (ii) we evaluate (A.28) for (h, 0), h ~ Wa which leads to 

(A.32) ( -  (t/* - q") + (#* - #")a*, h )w.  = - f l ( a *  - a", h ) w .  

- la"(a* --  a", h ) w .  + (2* - 2],  ( - A)-1(hu*)x)L2~ng)  

Cn n 
- -  ( 2 ] ,  ( - -  A )  - 1  [h(u* - u ~ ) . ]  )L~(n~) + ~ O(a , #"- t, c,,) ( a ~, h )w~ 

c ,  ( e (a* ,  u*) - e(a", u"), Dr u")(h, O) )L~(ng)• �9 
2 

The right hand  side of  (A.32) defines a continuous linear functional f f  on W,. 
Hence by Riesz' Theorem there is 8 e  IV,, such that ( i f ,  a ) w , , w o  = (?t, a ) w o  and 
[alw. = I f f  [w~*. Lemma A.3 shows that (A.32) is equivalent to 

( R * ( t l *  - tl", #*  - #"), h )  = (~t, h ) w , ,  for all h e  IV,,  
i.e. 

R * ( q *  - rf', #* - #") = gt . 

This implies 
PR(tl* - tl", I~* - #") = ( R R *  ) -1R? t  

and, again by Lemma A.3 

(A.33) IPR(r/* - q", #* - P")lw~ • < I~lwo �9 

We consider two cases: first assume [a*[ = ?. This implies in particular that 
(a*,  a* - v)  > 0. Consequently by Lemma A.4 with a = a* - v we infer 

1(I - PR)(q* - q", P* - P")Iw~215 = (1 + 72)- 1/21((r/* - r/~, p* - #"), (a*, 1 ) )w,•  

= (a*, a* - v ) - l ( 1  + 72)1/21(r/* - q", a* - v ) w .  

- ((rl* - rl ~, la* - ~"), PR(a* - v, O ) ) w ,  ~ l  �9 

As a consequence of (A.3) and (A.26) one obtains 

(r/* - q", a* - v)  = - (r/~, a* - a ~) , 
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which together with (A.33) results in 

(1 + ])2)1/2 
I(I - PR)(t/* - q",#* - #")l < ( - a * ~ ; - - -  v )  (l~"12w~ + la* - vitro) ~/2 

"(la* - a" 2 
~o + lal~o) ~/~ . 

and consequently 

I(r/* - rt", # *  - tz")lwo • < K l ( l a *  - a"l 2 + 2 1 a l 2 o )  ' /2  (A.34) 

where 
1 + 7  2 

K2 - ( a * , a * -  v )  2(1~/"12" + l a *  - vlZwo) + 1 . 

Next we derive an estimate for a. Recall that/2" > 0 for all n > 0 and therefore 

]O(a", I~ "-1, c")l _-< Ig(a")l = [g(a") - 0(a*)[ < �89 + 27)1a" - a*iwo. 

In view of this estimate and of the first par t  of L e m m a  A.5 we obtain the following 
bound on [a I: 

I~lwo < [/~ + fl + k , K l l u * l L 2 ( n ~ )  + kll2qlL2~n/,) 

Cmax 
+-2-kl lu" iL=(,~)(1  + kl(lu"lLZ2(u~)+ la*12o) x/2) 

Cmax 
+ - 7 - ( 6 *  + 2Dla"lwo]l(a* - a", u* - u")lwo• . 

Insert ing this estimate into (A.34) and taking into account  the bounds implied by 
Theorem 3.1 and Lemma  A. 1 we finally arrive at 

I('/* - ~/",/~* - /~" ) [wo•  ~. _-</~l(a* - a", u* - u " ) lWo•  

where/~  is a constant  which in addit ion to the arguments  of K ,  also depends on the 
angle in Wa between a* and a* - v. 

It remains to consider the case la*l < 7. This implies o(a*)< 0 and con- 
sequently #* = 0. Define 

S =  min(6*, �89 - l a * l w o ) )  and ~ = max g, ( S +  7)(~ - 2  la*lwo) 

and let (a, u) = Bs, # e [0, p]  and c > ~. Due to this choice one finds 

0(a) + - - < � 8 9  la*l - ~ ) ( S +  la*l + ~) + � 8 9  ~)(~ - la*t) <�89 - 7) < 0 
C 

which in turn implies that  

C n ( C. n- 1 ]An - 1 
~ tn=pn-1  + ~ O ( a n , ~ n - l ,  Cn)=maXxJ~n-1 + ~ g ( a n ) , ~ )  = 2 

Due to the assumpt ion that /~o= 0, this establishes that /~n= 0 and therefore 
0(a", #" -  1 c.) = 0, for all n = 1, 2 . . . . .  Consequently in the present ease no terms 
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involving #* and/in appear in (A.32). Thus, to obtain a bound for It/* - r/hi we may 
directly refer to (A.32) which gives by arguments similar to those which led to the 
estimate for I~1: 

[r/* - ~In[wo < Kzl(a* -- a n, u*  - u n ) [ w ~ •  . 

This completes the proof of Lemma A.5. [] 

Proof of Theorem 3.2. The proof of this theorem follows from an induction 
argument using Theorem 3.1 and Lemma A.5. [] 
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