

A (Θ) -stable approximations of **abstract Cauchy problems**

Giuseppe Savaré

Istituto di Analisi Numerica del C.N.R., Corso Carlo Alberto 5, 1-27100 Pavia, Italy

Received May 26, 1992

Summary. We study the approximation of linear parabolic Cauchy problems by means of Galerkin methods in space and $A(\Theta)$ -stable multistep schemes of arbitrary order in time. The error is evaluated in the norm of $L^2_t(\dot{H}^1_x) \cap L^{\infty}_t(L^2_x)$.

Mathematics Subject Classification (1991):65M12

O. Introduction

The aim of this paper is to analyse the approximation of a linear parabolic Cauchy problem of the type:

(0.1)
\n
$$
\begin{cases}\n\frac{\partial u}{\partial t} + Au = f & \text{in } \Omega \times]0, \infty[\\
u(x, 0) = u_0(x) & \text{in } \Omega \\
u(x, t) = 0 & \text{in } \partial \Omega \times]0, \infty[\ ,\n\end{cases}
$$

by using a Galerkin method in space and an $A(\Theta)$ -stable linear multistep method of order $q \ge 1$ in time. The use of a generic $A(\Theta)$ -stable method (introduced by Widlund in $\overline{13}$]) allows us to discuss separately the space and the time discretization, and to overcome the second order Dahlquist barrier of the A-stable methods (see $\lceil 5 \rceil$).

We write (0.1) as an abstract Cauchy problem in an usual Hilbert triple $V \subset H \subset V^*$:

(0.2)
$$
u(0) = u_0; \qquad u'(t) + A(t) \ u(t) = f(t), \quad \text{for } t > 0,
$$

and we study the error in the norm of $L^2(0, \infty; V) \cap L^{\infty}(0, \infty; H)$.

The time discretization by means of an implicit Euler scheme was studied in [12]. The error analysis in the case $u_0 = 0$ for Euler and Crank-Nicolson methods was carried out in [4], whose outline we follow. For a different approach see e.g. [3, 7].

We choose a Galerkin approximation family $\{V_h\}$ of V and a couple (ρ, σ) of polynomials which define the multistep method:

$$
\rho(z) = \sum_{j=0}^{g} \alpha_j z^j, \qquad \sigma(z) = \sum_{j=0}^{g} \beta_j z^j \quad \in \mathbb{C}[\,z\,] .
$$

For a discretization step $k > 0$ and a suitable choice of g initial values u_0^k ,..., $u_{\theta-1}^k$ in V_h , the fully discretized problem consists in the sequence of linear equations in the unknown $u_{n+g}^k \in V_h$:

$$
\frac{1}{k} \sum_{j=0}^{g} \alpha_j (h u_{n+j}^k, v) + \sum_{j=0}^{g} \beta_j a_{n+j}^k (h u_{n+j}^k, v) = \sum_{j=0}^{g} \beta_j (f_{n+j}^k, v), \quad \forall v \in V_h, \ \forall n \ge 0,
$$

where $f_n^* = f(kn)$ and $a_n^*(u, v) = v^* \langle A(kn) u, v \rangle_v$.

In particular we get the stabilty estimate:

$$
k\sum_{n\in\mathbb{N}}\|{}^{h}u_{n}^{k}\|_{V}^{2}+\sup_{n\in\mathbb{N}}\|{}^{h}u_{n}^{k}\|_{H}^{2}\leq C\bigg\{k\sum_{n\in\mathbb{N}}\|f_{n}^{k}\|_{V}^{2}+\sum_{j=0}^{g-1}\left(\|{}^{h}u_{j}^{k}\|_{H}^{2}+k\|{}^{h}u_{j}^{k}\|_{V}^{2}\right)\bigg\}.
$$

If the multistep method is of order q and the data $\{f, u_0\}$ are sufficiently smooth and compatible, so that u belongs to $H^q(0, \infty; V) \cap H^{q+1}(0, \infty; V^*)$ and the initial values may be chosen opportunely, we have the error estimate:

$$
\left\{k \sum_{n \in \mathbb{N}} \|u(kn) - {}^{h}u_{n}^{k}\|_{V}^{2}\right\}^{1/2} + \sup_{n \in \mathbb{N}} |u(kn) - {}^{h}u_{n}^{k}|_{H} \leq C\left\{e_{h}[u]\right\}
$$

$$
+ k^{q} \|u\|_{H^{q}(0, \infty; V) \cap H^{q+1}(0, \infty; V^{*})}\right\},
$$

where $e_h[u]$ is the best approximation error:

$$
(0.3) e_h[u] = \inf\{\|u - {}^h v\|_{L^2(0,\infty;V)\cap L^{\infty}(0,\infty;H)}; {}^h v \in L^2(0,\infty;V_h) \cap L^{\infty}(0,\infty;H)\}.
$$

The paper can be outlined as follows: in Sect. 1 we make precise our hypotheses and state the theorems about stability and convergence in the "energy norm"; proofs are given in Sects. 2 and 3.

Error estimates in norms of type $L^2(0, \infty; V) \cap H^{1/2}(0, \infty; H)$ as showed in [11], are contained in a forthcoming paper.

1. The continuous problem and its discretization

Notations

Let:

$$
V \subsetneq {}^{ds} H \equiv H^* \subsetneq {}^{ds} V^*
$$

be a triple of separable Hilbert spaces, $\|\cdot\|$ the norm of V and $|\cdot|$ the norm of H, induced by the scalar products $((\cdot, \cdot))$ and (\cdot, \cdot) respectively; we identify H and H^* and denote by (\cdot, \cdot) again the antiduality between V^* and V. A density argument allows us to consider V^* as the completion of H with respect to the dual norm:

$$
\|\cdot\|_*=\sup_{v\in V,\,||v||=1}(\cdot,v)\,.
$$

We shall also assume, without loss of generality, that $|v| \le ||v||$, $\forall v \in V$.

Let $\mathscr B$ be a Banach space and let $n \in \mathbb N$. $H^{\pi}_+(\mathscr B)$ and $W^{\pi}_+\mathscr C(\mathscr B)$ are the usual Sobolev space of \mathscr{B} -valued distributions on the real half line $\left[0, +\infty\right]$.

We set also, for $n \in \mathbb{N}$:

$$
H^{n+1}_+(V, V^*) = H^n_+(V) \cap H^{n+1}_+(V^*)
$$

and we recall the continuous imbedding $H^{n+1}(V, V^*) \subsetneq W^{n} \circ H$.

The continuous problem

Assume that we are given, for $t > 0$, a measurable family of linear continuous operators $A(t)$ from \tilde{V} to V^* and five constants $M, L, \alpha, \theta, \delta > 0, \delta < \theta \leq \pi/2$, such that, for every $v \in V$, $t \in \mathbb{R}^+$:

(A1) $||A(t) v||_* \leq M ||v||$, $Re(A(t) v, v) \geq \alpha ||v||^2$;

$$
|\arg(A(t)v,v)| \leq \Theta - \delta ;
$$

(A3)
$$
\sum_{j \in \mathbb{N}} \|A(t_{j+1}) - A(t_j)\|_{\mathscr{L}(V, V^*)} \leq L, \qquad \forall t_0 < t_1 < \ldots < t_n < \ldots \in \mathbb{R}^+.
$$

Remark 1.1. The values of Θ and δ influence the choice of the multistep method we consider; hypothesis (A1), which ensures the well-posedness of the successive Cauchy problem, implies that (A2) holds at least for $\Theta = \arccos(\alpha/M) + \delta$. (A3) is a supplementary hypothesis required by the stability of the discretizations; it simply means that \overrightarrow{A} is of bounded variation.

For every $f \in L^2_+(V^*)$, $u_0 \in H$, we shall construct and study a family of approximations of the solution \vec{u} of the abstract Cauchy problem:

(1.1)
$$
u(0) = u_0; \qquad u'(t) + A(t) u(t) = f(t), \quad \text{for } t > 0.
$$

This function belongs to $H^1_+(V, V^*)$ and satisfies the "energy inequality" (see [2], for example):

(1.2) l[U *[]Lz+(V)nL~+(H) ~ C{ 11 f][L~+(V *) +* lUo[} 9

Moreover, when f belongs to $H^4_+(V^*)$, A belongs to $W^{q}_{+} \infty(\mathcal{L}(V, V^*))$ and $\{f, A, u_0\}$ are related by suitable compatibility conditions, then u belongs to $H^{q+1}(V, V^*)$. These relations may be easily deduced by q -times differentiation of equation (1.1) and are expressed in terms of a vector $c_a(f, u_0) = (c_0, \ldots, c_a)$ whose components are so defined:

$$
(1.3) \t c_0 = u_0, \t c_{m+1} = f^{(m)}(0) - \sum_{j=0}^{m} {m \choose j} A^{(j)} (0) c_{m-j}; \t 0 \leq m < q.
$$

If we ask that $c_q \in V^q \times H$ we obtain:

 \overline{a}

$$
(1.4) \qquad \begin{cases} u \in H^{q+1}(V, V^*), & u^{(j)}(0) = c_j(f, u_0), & 0 \le j \le q \\ ||u||_{H^{q+1}(V, V^*)} \le C \{ ||f||_{H^q_+(V^*)} + ||c_q(f, u_0)||_{V^q \times H} \end{cases},
$$

so that we may summarize our regularity hypotheses:

$$
(A4) \qquad f \in H^q_+(V^*), \quad A \in W^{q, \infty}_+(L^p(V, V^*)), \quad c_q(f, u_0) \in V^q \times H; \quad q \ge 1
$$

The method

We discretize problem (1.1) by a *g*-step linear method. More precisely, we assign $2g + 2$ coefficients $\{\alpha_i, \beta_i\}_{i=0}$ g and we set, for every time step $k > 0$,

$$
(1.5) \t f_n^k = f(nk), \t A_n^k = A(kn); \t n \in \mathbb{N}({}^1)
$$

Choosing g initial values $u_0^k, \ldots, u_{g-1}^k \in V$, we intend to construct an approximation u_n^k of the solution $u(nk)$ by the following algorithm:

(1.6)
$$
\begin{cases} \forall n \geq 0, & \text{find } u_{n+g}^k \in V \text{ such that:} \\ \frac{1}{k} \sum_{j=0}^g \alpha_j u_{n+j}^k + \sum_{j=0}^g \beta_j A_{n+j}^k u_{n+j}^k = \sum_{j=0}^g \beta_j f_{n+j}^k \end{cases}
$$

If $\text{Re} [\alpha_a \overline{\beta}_a] > 0$ (²), by (A1) and the Lax-Milgram lemma we can invert the operator:

$$
\frac{1}{k}\alpha_g+\beta_g A_{n+g}^k\,,
$$

for every $n \in \mathbb{N}$ and we can solve (1.6) with respect to u_{n+a}^k , once

$$
u_n^k, \ldots, u_{n+g-1}^k, \qquad f_n^k, \ldots, f_{n+g}^k
$$

are given. By induction we obtain existence and uniqueness for the sequence ${u_n^k}_{n \in \mathbb{N}}$

To solve (1.6) from the numerical point of view we introduce a Galerkin family ${V_h}$ of closed subspaces of $V(3)$, and consider the fully discretized problem:

(1.8)
$$
\begin{cases} \text{Given } {}^{h}u_{0}^{k}, {}^{h}u_{1}^{k}, \ldots, {}^{h}u_{g-1}^{k} \in V_{h}, \text{ find } \{ {}^{h}u_{n+g}^{k} \}_{n \in \mathbb{N}} \subset V_{h} \text{ such that:} \\ \left(\frac{1}{k} \sum_{j=0}^{g} \alpha_{j} {}^{h}u_{n+j}^{k} + \sum_{j=0}^{g} \beta_{j} A_{n+j}^{k} {}^{h}u_{n+j}^{k} - \sum_{j=0}^{g} \beta_{j} f_{n+j}^{k}, {}^{h}w \right) = 0 \quad \forall {}^{h}w \in V_{h} . \end{cases}
$$

¹ By (A4) f and A are continuous, so this setting makes sense

² By (A2), $\alpha_q \overline{\beta_q}$ + 0, arg $[\alpha_q \overline{\beta_q}] \leq \pi - \Theta$ would suffice. In fact these conditions are equivalent if the coefficients are real

³ In practice, V_k are finite-dimensional

The stability and convergence properties of these methods (in the finite dimensional case) may be briefly expressed in terms of the two polynomials:

$$
(1.9) \qquad \rho(z) = \sum_{j=0}^{g} \alpha_j z^j, \qquad \sigma(z) = \sum_{j=0}^{g} \beta_j z^j \quad \in \mathbb{C}[\![z]\!]; \quad |\alpha_g|^2 + |\beta_g|^2 > 0 \;,
$$

which we may suppose prime. On (ρ, σ) we shall impose the following conditions (see for instance $[10]$) :

(P1) *strong A(* Θ *)-stability:* for $|z| \ge 1$ $\sigma(z)$ is different from 0 and the quotient $\rho(z)/\sigma(z)$ is contained in the closed sector:

(1.10)
$$
S_{\pi-\theta} = \{\xi \in \mathbb{C} : |\arg \xi| \leq \pi - \Theta\}, \quad 0 < \Theta \leq \pi/2.
$$

(P2) *order q*: when $z \rightarrow 0$ we have

(1.11)
$$
\rho(e^z) - z\sigma(e^z) = O(z^{q+1})
$$

for an integer $q \ge 1$; in particular this implies the consistency, i.e.:

(1.12)
$$
\rho(1) = 0, \qquad \rho'(1) = \sigma(1) \neq 0
$$

Remark 1.2. (P1) implies that $\alpha_g \beta_g$ is different from 0 and is contained in $S_{\pi-\phi}$; in other words, the method must be implicit $((\rho, \sigma)$ have degree g) and (1.7) can be inverted. Moreover, the possible unitary roots of ρ are simple.

Remark 1.3. When $\Theta = \pi/2$ we are dealing with an A-stable method, whose stability properties are well known (see $[3, 5]$). On the other hand, for these methods the "Dahlquist Barrier" forces $q \le 2$, so that the use of more general $A(\Theta)$ -stable methods with $\Theta < \pi/2$ becomes necessary if we want to reach higher orders. We recall, for example, the Backward Differentiation Schemes of orders \leq 5.

From now on we assume that (P1) and (P2) are satisfied for fixed Θ and q.

Stability estimates and approximation results

Theorem 1.4. *Let us assume that properties* (A1-3) and (P1) *hold; then the solution* $h u_n^k$ of (1.8) satisfies:

$$
(1.13) \qquad k \sum_{n \in \mathbb{N}} \| {^h} u_n^k \|^2 + \sup_{n \in \mathbb{N}} | {^h} u_n^k |^2 \leq C \bigg\{ k \sum_{n \in \mathbb{N}} \| f_n^k \|_*^2 + \sum_{j=0}^{g-1} (k \, \| {^h} u_j^k \|^2 + | {^h} u_j^k |^2) \bigg\} \,,
$$

where C depends only on the constants M , L , α , Θ , δ and on (ρ, σ) (⁴).

Remark 1.5. We have the estimate:

(1.14)
$$
k \sum_{n \in \mathbb{N}} \|f_n^k\|_*^2 \leq 2 \|f\|_{H^1_+(V^*)}^2 ;
$$

so, by (A4) the right hand member of (1.13) is finite.

 4 From now on, we always denote with C such constants

We denote with H_h the closure of V_h in the H-norm and with V_h^* the antidual of V_h , so that V_h , H_h , V_h^* is a new Hilbert triple; P_h is the surjective "restriction" of V^* on V^* :

$$
(1.15) \t\t\t v_h^* \langle P_h v, {}^h w \rangle_{V_h} = (v, {}^h w), \quad || P_h v ||_{V_h^*} \leq || v ||_*, \quad \forall v \in V^*, \quad \forall {}^h w \in V_h.
$$

Moreover, we have the best approximation result:

 $\forall v \in H$, $P_h v \in H_h$, $|v - P_h v| = \min_{h_w \in H_h} |v - w|$.

We assume that:

(G1)
$$
P_h(V) \subset V_h; \quad \exists C > 0: ||P_h v|| \leq C ||v||, \quad \forall v \in V
$$

for a constant C independent of h . In particular, this implies that:

$$
\begin{aligned} \nabla^h w \in V_h, \quad & \|v - P_h v\| \le \|v - {}^h w\| + \|\,^h w - P_h v\| = \|v - {}^h w\| \\ \n&+ \|P_h ({}^h w - v)\| \le (1 + C) \|v - {}^h w\| \;, \n\end{aligned}
$$

so that *Ph* realizes:

(1.16)
$$
\|v - P_h v\| \leq C' \min_{h_w \in V_h} \|v - h_w\|,
$$

and, for a function u in $L^2_+(V) \cap L^{\infty}_+(H)$:

(1.17) *IIu - PhUIIL~+(V),~L~+(n) < Ceh[U] ,*

 $e_h[u]$ given by (0.3). We denote the error on the initial values by:

(1.18)
$$
\varepsilon^2 [u; {}^h u_0^k, \ldots, {}^h u_{g-1}^k] = \max_{0 \le j < g} |P_h u(kj) - {}^h u_j^k|^2 + k \sum_{j=0}^{g-1} ||P_h u(kj) - {}^h u_j^k||^2
$$

and we may suppose that the choice of the initial values satisfies the following requirement:

(11)
$$
\epsilon[u; {}^h u_0^k, \ldots, {}^h u_{g-1}^k] \leq C k^q \llbracket ||f||_{H^q(0,kg;V^*)} + ||c_q||_{V^q \times H} \,.
$$

Remark 1.6. By (A4)we know from the equation the Taylor expansion of u around 0 up to the order q ; so, a possible choice of the initial values is:

(1.19)
$$
u_j^k = \sum_{l=0}^{q-1} \frac{c_l}{l!} (jk)^l, \qquad {}^h u_j^k = P_h u_j^k; \quad 0 \leq j < g.
$$

We have:

Theorem 1.7. Assume that $(A1-4)$, $(P1-2)$, $(G1)$ and $(I1)$ hold; then the solution ${}^h u_n^k$ of (1.8) *satisfies:*

$$
\left\{ k \sum_{n \in \mathbb{N}} ||u(kn) - {}^{h}u_{n}^{k}||^{2} \right\}^{1/2} + \sup_{n \in \mathbb{N}} |u(kn) - {}^{h}u_{n}^{k}| \leq
$$

$$
C\left\{ k^{q} ||u||_{H_{+}^{q+1}(V, V^{*})} + ||u - P_{h}u||_{L_{+}^{2}(V) \cap L_{+}^{q}(H)} + \varepsilon[u, {}^{h}u_{0}^{k}, \ldots, {}^{h}u_{g-1}^{k}] \right\} \leq
$$

$$
C\left\{ k^{q} [||f||_{H_{+}^{q}(V^{*})} + ||c_{q}(f, u_{0})||_{V^{q} \times H} + e_{h}[u] \right\},
$$

with C depending only on the various constants introduced but not on h, k.

2. Proof of the theorems: stability

Preliminary outline." sequences spaces

We try to find the estimates of the preceding theorems by rewriting equations (1.6) and (1.8) in a different form. Setting $^hA = P_hA$, equation (1.8) becomes formally equivalent to (1.6) in the new Hilbert triple V_h , H_h , V_h^* :

$$
(2.1) \qquad \frac{1}{k}\sum_{j=0}^{g} \alpha_j^{\ h} u_{n+j}^k + \sum_{j=0}^{g} \beta_j^{\ h} A_{n+j}^k u_{n+j}^k = \sum_{j=0}^{g} \beta_j P_h f_{n+j}^k, \quad n \ge 0 ;
$$

moreover, the operator h *A* satisfies in this framework the same conditions (A1-3) and by (1.15) P_h is a contraction from V^* to V_h^* ; so, concerning the study of stability, we may limit ourselves to consider equation (1.6) , suppressing the index h.

We denote vector valued sequences with bold characters and suppress the index k too when this fact does not generate mistakes. If $\mathcal H$ is an Hilbert space, we introduce the operator E on \mathscr{H}^{N} :

$$
(2.2) \qquad \qquad (\text{Ev})_{n} = v_{n+1} \ ,
$$

with its powers:

(2.3)
$$
(\mathbf{E}^j \mathbf{v})_n = v_{n+j}, \qquad (\mathbf{E}^{-j} \mathbf{v})_n = \begin{cases} v_{n-j}, & \text{if } n \geq j \\ 0, & \text{if } n < j \end{cases} \forall j \in \mathbb{N}.
$$

 E^{-j} is the right inverse of E^{j} : $E^{j}E^{-j}v = v$, for every sequence v. For every polynomial $\tau(z) = \sum_{i=0}^{g} \gamma_i z^j$ we have consequently:

(2.4)
$$
(\tau(E)v)_n = \sum_{j=0}^g \gamma_j v_{n+j} .
$$

Setting $(Av)_n = A_n v_n$, for $v \in V^N$, we write:

$$
\frac{1}{k}\sum_{j=0}^{g}\alpha_{j}v_{n+j}+\sum_{j=0}^{g}\beta_{j}A_{n+j}v_{n+j}=\left(\frac{\rho(E)}{k}v+\sigma(E)Av\right)_{n},\quad\forall n\in\mathbb{N}.
$$

We set also:

(2.5)
$$
\forall v \in \mathscr{H}^N, \qquad v|_j = \begin{cases} v_n, & \text{if } n \leq j \\ 0, & \text{if } n > j \end{cases}
$$

so that, if $u = (u_0, \ldots, u_{q-1}) \in V^q \subset V^N$ is the vector of the initial values, (1.6) becomes:

(2.6)
$$
\begin{cases} u|_{g-1} = \underline{u}, \\ \frac{\rho(E)}{k} u + \sigma(E) A u = \sigma(E) f \end{cases}
$$

Finally, we call $T_k = k^{-1} \rho(E) + \sigma(E)A$, and write (2.6) in the compact form:

(2.7)
$$
T_k u = \sigma(E) f, \qquad u|_{g-1} = \underline{u} .
$$

By linearity we may enclose the initial conditions in the equation and write it in terms of $u' = u$ –

(2.8)
$$
T_k u^+ = \sigma(E) f - T_k \underline{u}, \quad u^+|_{g-1} = 0.
$$

To complete our formulation, we specify the spaces where we set (2.8), taking into account the quantities arising in (1.13) which we shall deal with.

We call $l_k^{\epsilon}(\mathcal{H})$ the Banach space of the \mathcal{H} -valued sequences v such that:

(2.9)
$$
\|v\|_{l^p_k(\mathscr{H})}^p = k \sum_{n \in \mathbb{N}} \|v_n\|_{\mathscr{H}}^p < \infty, \quad 1 \leq p < \infty,
$$

and $l_k^{\infty}(\mathcal{H}) = l^{\infty}(\mathcal{H})$ the Banach space of the bounded sequences with the supnorm; we observe that there is a natural antiduality between $l_k^p(\mathcal{H})$ and $l_i^p'(\mathcal{H}^*)$:

$$
(2.10) \t\t tk(\mathscr{H})\langle v, w \rangle_{lk(\mathscr{H}^*)} = k \sum_{n \in \mathbb{N}} \hat{\mathscr{H}}(v_n, w_n)_{\mathscr{H}^*}; \quad \frac{1}{p} + \frac{1}{p'} = 1 ;
$$

finally, we indicate with $l_k^p(\mathcal{H})$ the closed subspace of $l_k^p(\mathcal{H})$ given by the sequences v with $v|_{q-1} = 0$. The operator E is well defined on these spaces and its norm is 1.

Theorem 1.4 may be so restated:

Theorem 2.1. *Assume that* u^+ *is a solution of* (2.8) *with* $f \in l^2$ (V^*)*. Then* u^+ *satisfies the stability estimate:*

(2.11) [[u + fl,~(v)~t~(n) < *C{][flld,(v*) + [lu_ltt~(H)m~(v)} 9*

Remark 2.2. As we have already noticed, this result gives an analogous bound for the solution of (2.1): we call T_k the operator P_hT_k and consider μ^* , solution of:

$$
{}^hT_k{}^h u^+ = \sigma(\mathbf{E}) P_h f - {}^hT_k{}^h u,
$$

we have:

(2.12) II hu+ II ,~(v)m~(m --< C{ [I fll ,~(v*) + 1[h_U]I tO(H)m~(v)} 9

Up to now we have only changed our notations; we shall show how these are really more convenient. The basic tool of our proof is explained in the following section; we state first a lemma on inversion of operators like (2.4):

Lemma 2.3. *Assume that the roots of the polynomial* $\tau(z) = \sum_{i=0}^{g} \gamma_i z^j$ have modulus $<$ 1; then there exists a sequence of complex numbers $\{\gamma'\}_{i\in\mathbb{N}+q}$ such that:

$$
\sum_{j\geq g}|\gamma'_{j}|=|\tau^{-1}|<\infty,
$$

and \forall *we.* \mathcal{H}^N :

(2.13)
$$
v|_{g-1} = 0, \quad \tau(E)v = w \Leftrightarrow v_n = \sum_{j=g}^{n} \gamma'_j w_{n-j}, \quad \forall n \geq g
$$

Moreover:

$$
w \in l^p_k(\mathcal{H}) \Rightarrow v \in l^p_k(\mathcal{H}), \qquad ||v||_{l^p_k(\mathcal{H})} \leq |\tau^{-1}| ||w||_{l^p_k(\mathcal{H})}.
$$

Proof. Thanks to the hypothesis on τ , $\tau(z)^{-1}$ is a holomorphic function in $|z| > 1 - \varepsilon$ for an $\varepsilon > 0$ and we can write its power series development around oo:

(2.15)
$$
\tau(z)^{-1} = \sum_{j \ge g} \gamma'_j z^{-j}, \qquad \sum_{j \ge g} |\gamma'_j| = |\tau^{-1}| < \infty.
$$

We denote with $\tau^{-1}(E)$ the linear operator:

$$
w \to \tau^{-1}(\mathbf{E})w = v, \qquad v_n = \sum_{j=g}^n \gamma'_j w_{n-j}
$$

which is uniformly bounded in every $l^p_k(\mathcal{H})$ by $|\tau^{-1}|$.

It remains to prove (2.13); by definition, the coefficients γ_j satisfy the algebraic relations:

$$
\sum_{j=0}^{g} \gamma_j \gamma'_{n+j} = \delta_{0,n} = \begin{cases} 1, & \text{if } n = 0 \\ 0, & \text{if } n > 0 \end{cases} \forall n \in \mathbb{N},
$$

which imply that:

$$
(\tau(E)\tau^{-1}(E)w)_n = \sum_{j=0}^g \gamma_j(\tau(E)^{-1}w)_{n+j} = \sum_{j=0}^g \gamma_j \sum_{i=j}^{n+j} \gamma'_i w_{n+j-i} =
$$

$$
(i = j + l) = \sum_{l=0}^n \left(\sum_{j=0}^g \gamma_j \gamma'_{j+l}\right) w_{n-l} = w_n
$$

Remark 2.4. It is obvious that $\tau(E)$ is bounded on every $l_k^p(\mathcal{H})$, with norm \leq $|\tau| = \sum_{j=0}^g |\gamma_j|.$

Corollary 2.5. *Suppose that v satisfies:*

 $\mathfrak{v}|_{g-1} = \underline{\mathfrak{v}}, \qquad \tau(\underline{\mathfrak{v}}) \mathfrak{v} = \mathfrak{w} \in l_k^{\nu}(\mathscr{H})$

Then we have:

$$
(2.16) \t\t ||v||_{l^p_k(\mathscr{H})} \leq |\tau^{-1}| ||w||_{l^p_k(\mathscr{H})} + |\tau^{-1}| |\tau| ||\underline{v}||_{l^p_k(\mathscr{H})}
$$

Proof. Writing $v^+ = v - v$ we observe that v^+ satisfies:

$$
(\mathbf{v}^+)\big|_{g-1}=0;\qquad \tau(E)\mathbf{v}^+=\mathbf{w}-\tau(E)\mathbf{v}\,,
$$

and conclude by the previous lemma. \square

A basic isomorphism

Let U be the subset of the extended complex plane: $\{z \in \mathbb{C} : |z| > 1\} \cup \{\infty\}$ and consider the Hardy space $H^2(U, \mathcal{H})$ of the \mathcal{H} -valued holomorphic functions g on U such that:

(2.17)
$$
\exists \lim_{r \to 1^+} \frac{1}{2\pi} \int_{-\pi}^{\pi} ||g(re^{i\theta})||_{\mathscr{H}}^2 d\theta = ||g||_{H^2(U; \mathscr{H})}^2.
$$

Every g in $H^2(U; \mathcal{H})$ admits a trace (still denoted with g) on $\partial U = \{z \in \mathbb{C} : |z| = 1\}$ which belongs to $L^2(\partial U; \mathcal{H})$. The coefficients of the Laurent expansion around ∞ are given by the Fourier coefficients of g in $L^2(\partial U; \mathcal{H})$:

$$
(2.18) \t\t g_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(e^{i\theta}) e^{in\theta} d\theta, \t\t g(z) = \sum_{n \in \mathbb{N}} g_n z^{-n}.
$$

We have the fundamental relation:

(2.19)
$$
\|g\|_{H^2(U;\mathscr{H})}^2 = \|g\|_{L^2(\partial U;\mathscr{H})}^2 = \sum_{n\in\mathbb{N}} \|g_n\|_{\mathscr{H}}^2.
$$

So, $H^2(U, \mathcal{H})$ is a Hilbert space isomorphic to $l^2(\mathcal{H})$ by the transformation:

$$
(2.20) \t\t g \in l_k^2(\mathscr{H}) \to \hat{g}(z) = \sum_{n \in \mathbb{N}} g_n z^{-n}; \t ||g||_{l_k(\mathscr{H})}^2 = k ||\hat{g}||_{H^2(U;\mathscr{H})}^2.
$$

The most interesting fact for us is given by the following rules:

(2.21) if
$$
g_0 = 0
$$
 then $\widehat{eg}(z) = z\hat{g}(z)$;

(2.22) $A = A \text{ constant } \Rightarrow \widehat{Ag}(z) = A\hat{g}(z)$.

For a sequence $vei_{k}^{2}(V)$ we have:

$$
\widehat{\rho(E)}\mathfrak{v}(z) = \rho(z)\,\widehat{v}(z), \qquad \widehat{\sigma(E)}\mathfrak{v}(z) = \sigma(z)\,\widehat{v}(z)\,,
$$

and:

(2.23)
$$
\widehat{T_k v}(z) = \frac{\rho(z)}{k} \widehat{v}(z) + A\sigma(z)\widehat{v}(z) = \widehat{T}_k \widehat{v}(z)
$$

when A is constant.

Proof of Theorem 2.1. The case $A \equiv A$ constant.

We call $g_1 = \sigma(E)[f - Au]$, $g_2 = ||k^{-1}\rho(E)u$ with the obvious bounds:

 $||g_1||_{L^2(\mathcal{V}^*)}\leqq |\sigma|\{||f||_{L^2(\mathcal{V}^*)}+M||\underline{u}||_{L^2(\mathcal{V})}\}, \qquad ||g_2||_{L^1(\mathcal{H})}\leqq g|\rho||\underline{u}||_{L^\infty(\mathcal{H})}$ We split correspondingly u^+ into the sum $u_1 + u_2$, with:

 $(\mathbf{u}_i)|_{a=1}=0$, $T_k \mathbf{u}_i = \mathbf{g}_i$, $j=1,2$

and study separately these sequences.

Claim 2.6.

(2.24) II ux II ~(v) _-< C II gx Ils~(v*)

By (2.23), u_1 belongs to $l^2_k(V)$ if and only if there exists a solution \hat{u}_1 in $H^2(U; V)$ of the equation:

(2.25)
$$
\hat{T}_k \hat{u}_1(z) = \frac{\rho(z)}{k} \hat{u}(z) + A \sigma(z) \hat{u}(z) = \hat{g}_1(z).
$$

We know that, for $|z| \ge 1$, is $\sigma(z) \ne 0$; denoting by $\gamma(z)$ the rational function $\rho(z)/\sigma(z)$, $\nu(z)$ is holomorphic in U and continuous on ∂U . We may rewrite as follows:

(2.26)
$$
\frac{\gamma(z)}{k}\hat{u}_1(z) + A\hat{u}(z) = \sigma(z)^{-1}\hat{g}_1(z).
$$

If $\hat{g}_1(z)$ is in $H^2(U; V^*)$ also $\hat{g}_1(z)/\sigma(z)$ belongs to $H^2(U; V^*)$ and its norm is bounded by $C_{\sigma} ||g_1||_{H^2(U;V^*)}$, with: $C_{\sigma} = \max_{|z|=1} |\sigma(z)|^{-1}$.

It remains to study the invertibility of $y(z) + A$. But (A1-2) imply that the operator $\zeta + A$ is invertible from V^* to V if $\zeta \in S_{\pi - \theta}$ with the bound:

$$
(2.27) \t\t \t\t\t \zeta v + Av = f \Rightarrow ||v|| \leq \frac{1}{\alpha \sin \delta} ||f||_*
$$

By (P1) $\gamma(z)$ belongs to $S_{\pi-\theta}$ when $|z|\geq 1$, so the mapping:

$$
z \rightarrow \left[\frac{\gamma(z)}{k} + A\right]^{-1}
$$

is well defined, bounded and continuous from \bar{U} to $\mathscr{L}(V^*, V)$ and holomorphic in U. It follows that $\lceil k^{-1} \gamma(z) + A \rceil^{-1} \sigma(z)^{-1} \hat{g}_1(z)$ is holomorphic in U, has a 0 of order q in ∞ and satisfies the estimate:

(2.28)
$$
\|\hat{u}(z)\| \leq \frac{1}{\alpha \sin \delta |\sigma(z)|} \|\hat{g}_1(z)\|_*.
$$

Because of (2.19) we get:

$$
\|\boldsymbol{u}\|_{l^2_{k}(V)} \leqq \frac{C_{\sigma}}{\alpha \sin \delta} \|\boldsymbol{g}_1\|_{l^2_{k}(V^*)},
$$

that is (2.24) . \Box

Claim 2.7. *There exists a polynomial* $\lambda(z)$ *of degree g such that:*

$$
(2.29) \quad \sup_{n\in\mathbb{N}}\left\{\operatorname{Re}_{i_k}^{\widehat{z}(H)}\left\langle\frac{\rho(\operatorname{E})v}{k},\left[\lambda(\operatorname{E})v\right]\right|_n\right\}_{i_k^2(H)}\right\}\geq\|v\|_{l^{\infty}(H)}^2, \quad \forall\ v\in l_k^2(H);
$$

in particular, this implies:

$$
(2.30) \t\t\t ||u_1||_{l^{\infty}(H)} \leq C ||g_1||_{l^2_{R}(V^*)}.
$$

We denote with Z_{ρ} the set of the unitary roots of ρ , and set:

$$
\rho_u(z) = \prod_{\xi \in Z_p} (z - \xi), \qquad \rho_0 = \rho/\rho_u, \qquad \rho_\xi(z) = \frac{\rho_u(z)}{z - \xi}.
$$

We call $w = \rho_0(E)v$; by Lemma 2.3 there exists a constant $\beta = |\rho_0^{-1}| > 0$ only depending on ρ_0 such that:

(2.31) Ilvll/~r </~llwlll~(H) 9

We note that, by Remark 1.2, there exist constants ${c_{\xi}}_{\xi \in Z_{\tau}}$ such that:

$$
1 = \sum_{\xi \in Z_p} c_{\xi} \rho_{\xi}(z) \Rightarrow w = \sum_{\xi \in Z_p} c_{\xi} \rho_{\xi}(E) w ;
$$

setting $c = \sum_{\xi \in \mathbb{Z}} |c_{\xi}|^2$ and $v^{\xi} = \rho_{\xi}(E)w = [\rho_{\xi}\rho_0](E)v$, we have:

$$
(2.32) \t\t |w_n|^2 \leq c \sum_{\xi \in Z_\rho} |v_n^{\xi}|^2; \t\t |w||^2_{l^{\infty}(H)} \leq c \sup_{n \in \mathbb{N}} \sum_{\xi \in Z_\rho} |v_n^{\xi}|^2.
$$

We say that:

$$
(2.23) \quad \lambda(z) = 2\beta c z \rho_0(z) \sum_{\xi \in Z_\rho} \rho_\xi(z), \qquad \lambda(\mathrm{E}) \mathbf{v} = 2\beta c \sum_{\xi \in Z_\rho} \rho_\xi(\mathrm{E}) \mathrm{E} \, \mathbf{w} = 2\beta c \sum_{\xi \in Z_\rho} \mathrm{E} \, \mathbf{v}^\xi
$$

is a good choice for (2.29). Recalling that $\rho(E)v = Ev^2 - \zeta v^2$ and observing that $\rho_{\zeta}\rho_0$ has degree $g - 1$ and consequently $v_0^2 = 0$, we have:

$$
\begin{split} \text{Re } \iota_{k(H)} \Big\langle \frac{\rho(\text{E})v}{k}, [\lambda(\text{E})v] \big|_{n} \Big\rangle_{l_{k}(H)} \\ &= \frac{2\beta c}{k} \text{Re} \sum_{\xi \in Z_{\rho}} \iota_{k(H)} \langle \text{E}v^{\xi} - \xi v^{\xi}, (\text{E}v^{\xi}) \big|_{n} \rangle_{l_{k}(H)} \\ &= 2\beta c \text{Re} \sum_{\xi \in Z_{\rho}} \sum_{j=0}^{n} (v_{j+1}^{\xi} - \xi v_{j}^{\xi}, v_{j+1}^{\xi}) \\ &\geq \beta c \sum_{\xi \in Z_{\rho}} \sum_{j=0}^{n} |v_{j+1}^{\xi}|^{2} - |v_{j}^{\xi}|^{2} = \beta c \sum_{\xi \in Z_{\rho}} |v_{n+1}^{\xi}|^{2} . \end{split}
$$

By (2.32) and (2.31) we get (2.29) ; (2.30) follows by taking the duality of equation $T_k u_1 = g_1$ with $\lambda(E)u_1|_n$ and recalling (2.24).

Claim 2.8.

(2.34) lJUEl[,~tv) < CllaEIl~(H) 9

We use a duality argument; first we establish a transposition formula. Suppose that $||u||_{q-1} = v||_{q-1} = 0$ and consider the symmetry:

$$
s_N: w \to s_N w = w', \qquad (w)_n = \begin{cases} w_{N-n} & \text{if } 0 \le n \le N \\ 0 & \text{if } n > N \end{cases}
$$

For a polynomial $\tau(z) = \sum_{j=0}^{g} \gamma_j z^j$ we have:

(2.35)
$$
i_k^2(\mathscr{H})\langle \tau(E)\mathbf{u}, \mathbf{v}' \rangle_{l_k^2(\mathscr{H})} = i_k^2(\mathscr{H})\langle \mathbf{u}', \overline{\tau}(E)\mathbf{v} \rangle_{l_k^2(\mathscr{H})},
$$

where we called $\bar{\tau}(z) = \overline{\tau(\bar{z})} = \sum_{i=0}^{g} \bar{\gamma}_i z^i$. In fact we have:

$$
u_{k}^{2}(x^{p}) \langle \tau(E)u, w \rangle_{l_{k}^{2}(x^{p})} = k \sum_{n=0}^{N} \left(\sum_{j=0}^{g} \gamma_{j} u_{n+j}, w_{N-n} \right) = k \sum_{n=0}^{N} \sum_{j=0}^{g} (u_{n+j}, \bar{\gamma}_{j} w_{N-n})
$$

\n
$$
(n = N - m - j) = k \sum_{j=0}^{g} \sum_{n=0}^{N-g} (u_{n+j}, \bar{\gamma}_{j} w_{N-n}) = k \sum_{j=0}^{g} \sum_{m=0}^{N-g} (u_{N-m}, \bar{\gamma}_{j} w_{m+j})
$$

\n
$$
= k \sum_{j=0}^{g} \sum_{m=0}^{N} (u'_{m}, \bar{\gamma}_{j} w_{m+j}) = i_{k}^{2}(u) \langle u', \bar{\tau}(E)w \rangle_{l_{k}^{2}(H)}.
$$

Consider now A^* , the adjoint of A , and set:

$$
\bar{T}_k = \frac{\bar{\rho}(E)}{k} + \bar{\sigma}(E)A^* ;
$$

 \bar{T}_k has the same property of T_k , since $(\bar{\rho}, \bar{\sigma})$ satisfies (P1) and A^* satisfies (A1-2). In particular:

$$
\|w\|_{l^*(H)} \leq C \|T_k w\|_{l^2_k(V^*)}, \quad \forall w \in l^2_k(V) .
$$

and, by (2.35):

$$
(2.36) \t\t\t tk(v*)\langle T_k u, s_N v\rangle_{lk2(V)} = tk2(v)\langle s_N u, \overline{T}_k v\rangle_{lk2(V*)}
$$

On the other hand we have:

$$
\|u_2\|_{l^2_k(V)}=\sup_{N\in\mathbb{N}}\|s_Nu_2\|_{l^2_k(V)},
$$

and:

$$
\|s_N u_2\|_{L^2(\mathcal{V})} = \sup_{w \in \hat{l}_{\mathcal{K}}^2(\mathcal{V}) \setminus \{0\}} \frac{\iota_{\kappa}^2(\nu) \langle s_N u_2, T_k w \rangle_{L^2(\mathcal{V}^*)}}{\|\bar{T}_k w\|_{L^2(\mathcal{V}^*)}}
$$

\n
$$
= \sup_{w \in \hat{l}_{\mathcal{K}}^2(\mathcal{V}) \setminus \{0\}} \frac{\iota_{\kappa}^2(\nu^*) \langle T_k u_2, s_N w \rangle_{L^2(\mathcal{V})}}{\|\bar{T}_k w\|_{L^2(\mathcal{V}^*)}}
$$

\n
$$
= \sup_{w \in \hat{l}_{\mathcal{K}}^2(\mathcal{V}) \setminus \{0\}} \frac{\iota_{\kappa}^1(H) \langle g_2, s_N w \rangle_{L^{\infty}(H)}}{\|\bar{T}_k w\|_{L^2(\mathcal{V}^*)}}
$$

\n
$$
\leq \|g_2\|_{L^1_{\kappa}(H)} \sup_{w \in L^2_{\kappa}(\mathcal{V}) \setminus \{0\}} \frac{\|w\|_{L^{\infty}(H)}}{\|\bar{T}_k w\|_{L^2_{\kappa}(L^*)}} \leq C \|g_2\|_{L^1_{\kappa}(H)} \quad \Box
$$

Claim 2.9.

$$
\|u_2\|_{l^{\infty}(H)} \leq \|g_2\|_{l^1_k(H)}.
$$

We repeat the same technique of 2.7. \Box

Remark 2.10. It may seem that notations like $\|\cdot\|_{l^2(\mathcal{V})\cap l^{\infty}(H)}$ are superfluous, being $l_k^2(V) \subset l^{\infty}(H)$; actually the norm of this immersion tends to ∞ when k goes to 0, whereas our constants C are independent of k .

Proof of Theorem 2.1. A depending on time.

The discussion of this more general case is based on the simple remark that the values of the truncated sequence $u|_N$ of (2.7) depend only on u and $f|_N$. Observing that \boldsymbol{u} satisfies:

(2.37)
$$
\frac{\rho(E)}{k} u + \sigma(E) A_N u = \sigma(E) f - T_k \underline{u} + \sigma(E) [(A_N - A)u], \quad \forall N \in \mathbb{N},
$$

we get consequently the estimate:

$$
(2.38) \t\t\t ||u||_{l^2_k(V) \cap l^\infty(H)}^2 \leq C \big[||f||_N \big\|_{l^2_k(V^*)}^2 + ||(A_N - A)u|_N \big\|_{l^2_k(V^*)}^2 + ||\underline{u}||_{l^2_k(V) \cap l^\infty(H)}^2 \big];
$$

the last term may be controlled in the following way (we set $u|_{-1} = 0$):

$$
\begin{split} \| (A_N - A) \boldsymbol{u} |_N \|_{L^2_k(V^*)}^2 &\leq k \sum_{j=0}^N \| A_N - A_j \|^2 \cdot \| u_j \|^2 \\ &\leq \sum_{j=0}^N \| A_N - A_j \|^2 \cdot (\| \boldsymbol{u} |_j \|_{L^2_k(V)}^2 - \| \boldsymbol{u} |_{j-1} \|_{L^2_k(V)}^2) \\ &\leq \sum_{j=0}^{N-1} \| A_N - A_j \|^2 \cdot \| \boldsymbol{u} |_j \|_{L^2_k W}^2 \\ &\quad - \sum_{j=0}^{N-1} \| A_N - A_{j+1} \|^2 \cdot \| \boldsymbol{u} |_j \|_{L^2_k(V)}^2 \\ &\leq 4M \sum_{j=0}^{N-1} \| A_N - A_j \| - \| A_N - A_{j+1} \| \| \cdot \| \boldsymbol{u} |_j \|_{L^2_k(V)}^2 \\ &\leq 4M \sum_{j=0}^{N-1} \| A_j - A_{j+1} \| \cdot \| \boldsymbol{u} |_j \|_{L^2_k(V)}^2 \end{split}
$$

From (2.38), denoting with X_N the square of the norm of $u|_N$ in $l_k^2(V) \cap l^{\infty}(H)$, we get the recurrent relation:

(2.39)
$$
X_N \leq C \{ ||f||_{t^2_k(V^*)}^2 + ||g||_{t^2_k(V) \cap I^* (H)}^2 \} + \sum_{j=0}^{N-1} a_j X_j,
$$

$$
a_j = 4M ||A_{j+1} - A_j||_{\mathscr{L}(V, V^*)}.
$$

Since $\sum_{j \in \mathbb{N}} a_j \leq 4ML < \infty$, by an easy application of a Gronwall-like lemma, we have:

$$
\|u\|_{L^2_k(V)\cap l^{\infty}(H)} \leqq C\{\|f\|_{L^2_k(V^*)} + \|\underline{u}\|_{L^2_k(V)\cap l^{\infty}(H)}\} \quad \Box
$$

3. Proof of the theorems: convergence

Approximation lemmata

We shall compare the approximate solution $\hbar u$ of (1.8) with the discretized continuous solution u ; we set:

(3.1)
$$
(T u)_n = u(kn), \qquad ({}^h \Pi u)_n = P_h u(kn) = (T P_h u)_n.
$$

On Π we have the following results (see [1, 9]):

Lemma 3.1. *There exists a constant C > 0 such that:*

(3.2) $\forall v \in H^q_+(\mathcal{H}), \quad || \Pi v ||_{L^2(\mathcal{H})} \leq C \{ ||v||_{L^2_+(\mathcal{H})} + k^q ||D^q v||_{L^2_+(\mathcal{H})} \}$

Corollary 3.2. If v belongs to $H^q_+(V)$ and (G1) holds true, we have:

$$
(3.3) \qquad \| \Pi v - {}^h \Pi v \|_{L^2(\mathit{V}) \cap I^\infty(H)} \leq C \big\{ k^q \, \| v \|_{H^q_+(\mathit{V})} + \| v - P_h v \|_{L^2_+(\mathit{V}) \cap L^\infty(H)} \big\}
$$

Lemma 3.3. Assume that $v \in H^{q+1}_+({\mathcal{H}})$ and consider the local truncation error:

(3.4)
$$
G_k[v](t) = \frac{1}{k} \sum_{j=0}^{g} \alpha_j v(t + jk) - \sum_{j=0}^{g} \beta_j v'(t + jk), \quad t \ge 0.
$$

There exists a constant $C > 0$ *such that:*

$$
(3.5) \t\t\t ||G_k[v]||_{L^2_+(\mathscr{H})} + k^q ||D^q G_k[v]||_{L^2_+(\mathscr{H})} \leq C k^q ||v||_{H^{q+1}_+(\mathscr{H})},
$$

and:

(3.6)
$$
|| \Pi G_k[v] ||_{l^2_k(\mathscr{H})} \leq C k^q ||u||_{H^{q+1}_+(\mathscr{H})}.
$$

Proof. (3.6) is an immediate consequence of (3.5) and (3.2); so, we may limit ourselves to prove (3.5), or equivalently:

$$
(3.7) \t\t\t ||D^{j}G_{k}[v]||_{L^{2}_{+}(\mathscr{H})}\leq C k^{q-j}||v||_{H^{q+1}_{+}(\mathscr{H})}, \quad 0\leq j\leq q.
$$

Let $r_{[0,\infty)}$ be the restriction operator from $L^2(\mathcal{H})$ to $L^2(\mathcal{H})$ and let p be a linear extension operator with the properties:

$$
(3.8) \quad p \in \mathscr{L}(L^2_+(\mathscr{H}), L^2(\mathscr{H})) \cap \mathscr{L}(H^{q+1}_+(\mathscr{H}), H^{q+1}(\mathscr{H})); \quad \forall f \in L^2_+(H),
$$

$$
r_{[0,\infty[}(pf)) = f.
$$

Still denoting by G_k the operator (3.4) on the whole real line, we have:

$$
r_{[0,\,\infty[}G_k[p(v)]=G_k[v]\,,
$$

so that:

$$
||G_k[v]||_{L^2(\mathscr{H})} = ||r_{[0,\infty[}[G_k[p(v)]]]||_{L^2(\mathscr{H})} \leq ||G_k[p(v)]||_{L^2(\mathscr{H})};
$$

therefore we have only to prove (3.7) for $\mathbb R$ -defined functions.

By applying the Fourier transform $^{(5)}$ to $G_k[v]$ we obtain:

$$
\mathscr{F}[G_k[v]](\xi) = k^{-1} \{ \rho(e^{2\pi i k \xi}) - 2\pi i k \xi \sigma(e^{2\pi i k \xi}) \} \mathscr{F}[v](\xi).
$$

By (P2) we get:

$$
|\rho(e^{ix})-ix\sigma(e^{ix})|\leq C|x|^{q+1}, \quad x\in\mathbb{R},
$$

so that:

$$
\|\mathscr{F}[G_k[v]](\xi)\|_{L^2(\mathscr{H})} \leq C k^q \|\xi|^{q+1} \mathscr{F}[v](\xi)\|_{L^2(\mathscr{H})} \leq C k^q \|v\|_{H^{q+1}(\mathscr{H})}.
$$
\n(3.7) for $j > 0$ follows immediately by the identity $D^j G_k[v] = G_k[D^j v]. \square$

Remark 3.4. We observe that:

$$
\Pi G_k[v] = \frac{\rho(E)}{k} \Pi v - \sigma(E) \Pi v'.
$$

Convergence theorem

With new notations, Theorem 1.7 becomes:

⁵ We denote with $\mathcal F$ the Fourier transform in $L^2(\mathcal H)$:

$$
\mathscr{F}[v](\xi) = \int_{\mathbb{R}} e^{-2\pi i \xi t} v(t) dt; \qquad \|\mathscr{F}[v]\|_{L^2(\mathscr{H})} = \|v\|_{L^2(\mathscr{H})}.
$$

Theorem 3.5. Assume that $(A1-4)$, $(P1-2)$, $(G1)$ and $(I1)$ hold *true; the solution* $^h\mathbf{u}$ of:

$$
{}^{h}T_{k} {}^{h}u = \sigma(\mathbf{E}){}^{h} \Pi f, \quad {}^{h}u|_{g-1} = {}^{h}\underline{u}
$$

satisfies:

$$
\| {}^h \mathbf{u} - \Pi \mathbf{u} \|_{L^2(V) \cap l^{\infty}(H)} \leq C \{ k^q \| \mathbf{u} \|_{H_+^{q+1}(V, V^*)} + \| \mathbf{u} - P_h \mathbf{u} \|_{L_+^2(V) \cap L_+^2(H)} + \varepsilon [\mathbf{u}; {}^h \underline{\mathbf{u}}] \}
$$

(3.10)
$$
\leq C \{ k^q [\| f \|_{H_+^q(V^*)} + \| c_q(f, u_0) \|_{V^q \times H}] + e_h[u] \}
$$

Proof. We have the following decomposition:

$$
\Pi u - {}^h u = (\Pi u - {}^h \Pi u) + ({}^h \Pi u - {}^h u)
$$

so that, by applying Corollary 3.2, it remains to study the difference $^h d = ^h \Pi u - ^h u$ which is contained in $l_k^2(V_h) \cap l^{\infty}(H_h)$.

Our purpose is to write a difference equation satisfied by *hd* and to apply the preceding stability estimates. We observe that:

$$
\| {}^h d|_{g-1} \|_{l^2_{k}(V) \cap l^{\infty}(H)} = \| ({}^h \Pi u)|_{g-1} - {}^h \underline{u} \|_{l^2_{k}(V) \cap l^{\infty}(H)} = \varepsilon [u; {}^h \underline{u}]
$$

so that, by $(I1)$:

$$
(3.11) \t\t\t\t\t\|h d\|_{g-1}\|_{l^2(\mathcal{V}) \cap l^{\infty}(H)} \leq k^q \llbracket \|f\|_{H^q(0,kg;V^*)} + \|c_q\|_{V^q \times H}.
$$

If we apply operator ^h*II* to (1.1), we obtain ${}^h \Pi u' + {}^h A \Pi u = {}^h f$, with ${}^h A = P_h A$, $^h f = P_h f$, and:

$$
{}^{h}T_{k}[{}^{h} \Pi u] = \sigma(\mathbf{E}) {}^{h} \Pi f + P_{h} \left\{ \frac{\rho(\mathbf{E})}{k} \Pi u - \sigma(\mathbf{E}) \Pi u' \right\} + \sigma(\mathbf{E}) {}^{h} A \Pi (P_{h} u - u) .
$$

Taking the difference with (3.9), we get:

$$
{}^hT_k{}^h d = {}^h\Pi G_k[u] + \sigma(\mathbf{E})^h A \Pi (P_h u - u) .
$$

By Lemma 3.3

 $||^{h} \Pi G_{k}[u] ||_{L^{2}(V_{\alpha}^{*})} \leq C k^{q} ||u||_{H^{q+1}(V_{\alpha})},$

and by Corollary 3.2 we have:

$$
||^{h} A \Pi(P_{h} u - u)||_{L_{h}^{2}(V_{h}^{*})} \leq M ||^{h} \Pi u - \Pi u||_{L_{h}^{2}(V)}
$$

\n
$$
\leq C \{ ||P_{h} u - u||_{L_{h}^{2}(V)} + k^{q} ||u||_{H_{h}^{q}(V)} \};
$$

taking into account (3.11) and applying Theorem 1.4, we conclude our proof. \Box

Aknowledgernents. I wish to thank Prof. C. Baiocchi for many helpful discussions on the whole subject and the referees for their useful suggestions.

References

- 1. Aubin, J.P. (1972): Approximation of Elliptic Boundary Value Problems. Wiley; New York
- 2. Baiocchi, C. (1971): Teoremi di regolarità per le soluzioni di un'equazione differenziale astratta; Ist. Naz. Alta Mat. Symp. Math. 7, 269-323
- 3. Baiocchi C. Discretizzazione di problemi parabolici; (To appear on Ricerche di Matematica.)
- 4. Baiocchi, C. Brezzi, F. (1983): Optimal error estimates for linear parabolic problems under minimal regularity assumptions. Calcolo 20, 143-176
- 5. Dahlquist, G. (1963): A special problem for linear multistep methods. BIT 3, 27-43
- 6. Lions, J.L., Magenes, E. (1972): Nonhomogeneus boundary value problems and applications I. Springer, Berlin Heidelberg New York
- 7. Nevanlinna, O., Odeh, F. (1981): Multiplier techniques for linear multistep methods. Numer. Funct. Anal. Optimization. 3, 377-423
- 8. Rudin, W. (1974): Real and Complex Analysis. McGraw-Hill, New York
- 9. Savaré, G. (1991): Discretizzazioni $A(\Theta)$ -stabili di equazioni differenziali astratte. Calcolo. 28, 205-247
- 10. Stetter, H.J. (1973): Analysis of discretization methods for ordinary differential equations. Springer, Berlin Heidelberg New York
- 11. TomareUi, F. (1983): Weak solutions for an abstract Cauchy problem of parabolic type. Ann. Mat. Pura e Appl. IV Ser. 130, 93-123
- 12. Tomarelli, F. (1984): Regularity theorems and optimal error estimates for linear parabolic Cauchy problems; Numer. Math. 45, 23-50
- 13. Widlund, O.B. (1967): A note on unconditionally stable linear multistep methods. BIT. 7, 65-70