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0. Introduction

The aim of this paper is to analyse the approximation of a linear parabolic Cauchy
problem of the type:

0
o du=f  inQx]0, o[

ot
0.1) u(x,0) = up(x) inQ
u(x,t) =0 indQx1]0, o[ ,

by using a Galerkin method in space and an A(®)-stable linear multistep method
of order g = 1 in time. The use of a generic A(@)-stable method (introduced by
Widlund in [13]) allows us to discuss separately the space and the time discretiz-
ation, and to overcome the second order Dahlquist barrier of the 4-stable methods
(see [5]).

We write (0.1) as an abstract Cauchy problem in an usual Hilbert triple
VcocHcV*

0.2) u(0) = uy; w(t)+ AC) u(t)=f(@t), fort>0,

and we study the error in the norm of L*(0, o; V')~ L*(0, oo; H).
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The time discretization by means of an implicit Euler scheme was studied in
[12]. The error analysis in the case ug = O for Euler and Crank-Nicolson methods
was carried out in [4], whose outline we follow. For a different approach see
eg [3, 7]

We choose a Galerkin approximation family {¥,} of ¥ and a couple (p, 6) of
polynomials which define the multistep method:

plz) =Y a;z/, oz)=Y Bz eC[z].
j=0 j=0

For a discretization step k>0 and a suitable choice of g initial values
hub, ... "uk_, in V,, the fully discretized problem consists in the sequence of
linear equations in the unknown *uf, ;e V;:

g9 g
z (x]( un+p U) + Z ﬁjan+](hun+j9 U) = Z B](f:i—p U), VUE Vh, Vn g 0 >
i=0 j=0 Jj=0

| =
o

where f* = f(kn) and a*(u,v) = v {A(kn) u, vDy.
In particular we get the stabilty estimate:

-1
kY. ["ubly + sup [ "uk SC{k YolfR+ Z (1"ublf + kil "u k”v)}

nelN neN neN j=

If the multistep method is of order ¢q and the data { f, uy} are sufficiently smooth
and compatible, so that u belongs to H%(0, o0; V') n H?* (0, co; ¥ *) and the initial
values may be chosen opportunely, we have the error estimate:

1/2
{k Y lHutkn) — "u’,illnzz} + sup |ukn) — "ugly < Cle,[ul
nelN neN

+ k% ullga(0, ;v ) HI* 100, w0: V%)) >
where e,[u] is the best approximation error:
(03) eh[u] = lnf{ ” u— hv” L2(0, o;V)n L=(0, co;H); hUELZ(O’ 0, Vvh) n LOO(O7 o0, H)} -

The paper can be outlined as follows: in Sect. 1 we make precise our hypotheses
and state the theorems about stability and convergence in the “energy norm”;
proofs are given in Sects. 2 and 3.

Error estimates in norms of type L*(0,c0; V)~ HY?(0, 00; H) as showed in
[11], are contained in a forthcoming paper.

1. The continuous problem and its discretization
Notations

Let:
VG dsH = H*Ci dsV*
be a triple of separable Hilbert spaces, || - || the norm of V and |-| the norm of H,

induced by the scalar products ((-,-)) and (-, +) respectively; we identify H and
H* and denote by (-,-) again the antiduality between ¥* and V. A density
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argument allows us to consider V' * as the completion of H with respect to the dual
norm:

[-lx=sup (,0).

veV,jjv]|=1

We shall also assume, without loss of generality, that [v]| < ||v||, VveV.

Let # be a Banach space and let neIN. H", (#) and W7 *(%) are the usual
Sobolev space of #-valued distributions on the real half line J0, + oo .

We set also, for neN:

H'W'(V, V*) = HY (V) n HY L (YY),

and we recall the continuous imbedding H%' '(V, V*) g W% °(H) .

The continuous problem

Assume that we are given, for t > 0, a measurable family of linear continuous
operators A(t) from V to V'* and five constants M, L, 2, @,6 >0, 6 < © < n/2,
such that, for every veV, teR™*:

(A1) IA(E) vy < Mol Re(A(t) v,v) Zafv]?;

(A2) larg(A(t)v,v) | £ @ — 9 ;

(A3) Z “A(t_,.;.l)—A(t])“ip(y’y* éL, Vto < tl <... < tn <... GIR+ .

jeN

Remark 1.1. The values of @ and § influence the choice of the multistep method we
consider; hypothesis (Al), which ensures the well-posedness of the successive
Cauchy problem, implies that (A2) holds at least for @ = arccos(a/M) + 6.(A3)is
a supplementary hypothesis required by the stability of the discretizations; it
simply means that 4 is of bounded variation.

For every feL? (V*), upeH, we shall construct and study a family of approxi-
mations of the solution u of the abstract Cauchy problem:

(L.1) u0) = ug;  w(t) + AWy u(t) =f(t), fort>0.

This function belongs to H%(V, V'*) and satisfies the “energy inequality” (see [2],
for example):

(1.2) ][ul|Lz+(V)r\L’i(H) < C{”f”Li(V‘) + ]uo[} .

Moreover, when f belongs to H% (V*), 4 belongs to W% *(L(V,V*))and { f, 4, uo}
are related by suitable compatibility conditions, then u belongs to H%™ XV, V'*).
These relations may be easily deduced by g-times differentiation of equation (1.1)
and are expressed in terms of a vector ¢,( f, ug) = (co, - . . , ¢,) Whose components
are so defined:

m

m .
(13)  co=to, Cm+r=f"(0)~ ) (j )A‘” ©) cm-j; 0=m<gq.

i=0
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If we ask that ¢,e V' x H we obtain:

(14) {ueHwV’V*)’ uP(0) = G(fuoh 0=j=gq

lullgarrv,vry £ CLLf T arom + leg(f, o)l vaxn}
so that we may summarize our regularity hypotheses:

(Ad)  feHY(V*), AeWL™(ZLV, V™), cfiug)eVixH; q21.

The method

We discretize problem (1.1) by a g-step linear method. More precisely, we assign
2g + 2 coefficients {a;, B;};-0,..., , and we set, for every time step k > 0,

(1.5) [a=fnk),  Az=A(kn); neN(%)

Choosing g initial values u§,...,u%_ eV, we intend to construct an approxi-
mation u® of the solution u(nk) by the following algorithm:

Vnz0, find ut, eV such that:

(1.6) .
Z ajun+1 + Z ﬁ;Aﬁﬂunﬂ Z BJ n+j

J ji=0

If Re[e,B,]1>0 (3, by (Al) and the Lax-Milgram lemma we can invert the
operator:

1
(1'7) k a + BgAnJrg s

for every neN and we can solve (1.6) with respect to u.,, once

um---auﬁ«{»g—l: 53"'5 ﬁ+g
are given. By induction we obtain existence and uniqueness for the sequence
{uﬁ}neN i X A .
To solve (1.6) from the numerical point of view we introduce a Galerkin family
{V4} of closed subspaces of ¥ (*), and consider the fully discretized problem:

Given "ug§,"u,. . . "uk_, eV, find {*uk. },cn © Vi such that:

(1.8) g
z un+1+ z ﬂjAn+j un+1 Z ﬁjfﬁ+j,hw =0 Vhwe Vh .
=0

!By (A4) f and A are continuous, so this setting makes sense

2By (A2),%,8,+0, arg[a,f,] < n — @ would suffice. In fact these conditions are equivalent if the
coefficients are real

3In practice, ¥, are finite-dimensional
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The stability and convergence properties of these methods (in the finite dimen-
sional case) may be briefly expressed in terms of the two polynomials:

g A g A
(19)  p@)=3 w2, o=} Bz’ eClz]; o’ +1B,/> >0,
j=0 ji=0
which we may suppose prime. On (p, o) we shall impose the following conditions

(see for instance [10]) :

(P1) strong A(O)-stability: for |z] =2 1 o(2) is different from O and the quotient
p(z)/o(z) is contained in the closed sector:

(1.10) S.—e={¢eC: |argé|<n— 0O}, 0<O=7/]2.
(P2) order q: when z — 0 we have
(1.11) p(e?) — zo(e) = 0(z*1)
for an integer g = 1; in particular this implies the consistency, i.e.:

(1.12) p(1)=0,  p(1)=ofl) +0

Remark 1.2. (P1) implies that ocgﬁg is different from O and is contained in S, _g; in
other words, the method must be implicit ((p, 6) have degree g) and (1.7) can be
inverted. Moreover, the possible unitary roots of p are simple.

Remark 1.3. When © = r/2 we are dealing with an A-stable method, whose
stability properties are well known (see [3, 5]). On the other hand, for these
methods the “Dahlquist Barrier” forces g < 2, so that the use of more general
A{@)-stable methods with @ < 1/2 becomes necessary if we want to reach higher
orders. We recall, for example, the Backward Differentiation Schemes of
orders < 5.

From now on we assume that (P1) and (P2) are satisfied for fixed @ and g.

Stability estimates and approximation results

Theorem 1.4. Let us assume that properties (A1-3) and (P1) hold; then the solution
"uk of (1.8) satisfies:

113 kY 1Mk + suplub? < c{k SO+ S el + v'u';m} ,
)

nelN neN

nelN Jj
where C depends only on the constants M, L, a, @, 6 and on (p, 6) (*).

Remark 1.5. We have the estimate:

(1.14) kY IfA I3 <20 lavey s

neN

0, by (A4) the right hand member of (1.13) is finite.

“From now on, we always denote with C such constants
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We denote with H,, the closure of V}, in the H-norm and with V¥ the antidual
of V4, so that V,, H,, V¥ is a new Hilbert triple; P, is the surjective “restriction”
of V*on Vi:

(1.15) vi{Ppv, "Wy = (0,"w), [[Pwlyy £ livlly, YoeV* Viwel,.
Moreover, we have the best approximation result:

VYveH, P,veH,, |v— Pyol= hI:IEigh lv — "w] .
We assume that:
(G1) P(V)c V,; 1C > 0: [Pyl £ Cllwll, YveV
for a constant C independent of h. In particular, this implies that:

ViweV,, o — Pwl < o —"wl + ["w — Pyo| = v —"w|
+ [ P'w ~ o)l (1 + O)llo —"w] ,

so that P, realizes:

(1.16) lo — Pyo|| < €' min flo—"w],

weV,

and, for a function u in L2 (V) L% (H):

(1.17) lu — Paull2 yarza S Cenlul ,

e,[u] given by (0.3). We denote the error on the initial values by:

(1.18) 2 [whus, . .., fuk_ 1= max |Pu(kj) — "u¥?
0sj<g

-1
£ k'S | Pl) — M

j=0

and we may suppose that the choice of the initial values satisfies the following
requirement:

(I1) 8[u§hul(‘>,- ces h“’g‘—d < CKIL ”f“Hq(o,kg;V*) + ||Cq lvexu].

Remark 1.6. By (A4) we know from the equation the Taylor expansion of u around
0 up to the order g; so, a possible choice of the initial values is:

g—1

(1.19) W=y %(jk)’, W= Pul; 0<j<g.
=0 *-

We have:

Theorem 1.7. Assume that (A1-4),(P1-2),(G1)and (11) hold; then the solution "u}, of
(1.8) satisfies:

{k > lu(kn) — "ui‘,llz}l/z + sup Ju(kn) — *uj] <

neN nelN
C{kq ”u“H‘i“(V,V') +{u— Pz wynrzan + 8[14;"”’6, sy h“z—l]} <
C{R LIS oy + Neg(fiuo) lvaxnl + enlul},

with C depending only on the various constants introduced but not on h, k.
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2. Proof of the theorems: stability

Preliminary outline; sequences spaces

We try to find the estimates of the preceding theorems by rewriting equations (1.6)

and (1.8) in a different form. Setting "4 = P, A4, equation (1.8) becomes formally
equivalent to (1.6) in the new Hilbert triple ¥V, H,, V:

g
(21) Z d n+]+ Z ﬁJhAn-f-] n+] Z B]thrﬁ-p ngO,
ji=0

N

moreover, the operator "A satisfies in this framework the same conditions
(A1-3) and by (1.15) P, is a contraction from V* to V¥; so, concerning the
study of stability, we may limit ourselves to consider equation (1.6), suppressing
the index h.

We denote vector valued sequences with bold characters and suppress the index
k too when this fact does not generate mistakes. If # is an Hilbert space, we
introduce the operator £ on #™:

22) (E®) o= Uns1 s
with its powers:

i i n—j» f g .
23) (E0)y = Vns s (E-fv)n:{”f PSS yieN.

0, ifn<j

£/ is the right inverse of E/: E'E ~/v = v, for every sequence v. For every polynomial
1(z) = ) .47z’ we have consequently:

(2.4) (EE)D)n = 2 Vstns; -

Setting (A4v), = A,v,, for ve VN, we write:

|
]
Jlagl

g
AUy 4 j + Z BjArH-jvn*}-j = (p(k ) v+ U(E)Av) YnelN .
i i=0 n
We set also:
v,, ifn<j
2.5) Voed™ o= { nn=J
0, ifn>j

so that, if w=(uo,...,uy_,)€V? <= V" is the vector of the initial values, (1.6)
becomes:

u[g—l =4u,

p(5)
k

(2.6)
u+ o(E)Au =o(E)f

Finally, we call T; = k™ p(g) + o(g)4, and write (2.6) in the compact form:
@7 Ta=oE)f ul,-i=u.
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By linearity we may enclose the initial conditions in the equation and write it in
terms of u* = u — u:

(2.8) Tt =o(®)f—Tw, ul,_;=0.

To complete our formulation, we specify the spaces where we set (2.8), taking into
account the quantities arising in (1.13) which we shall deal with.
We call I} () the Banach space of the #-valued sequences v such that:

29 ol =k ) loal% <0, 1Sp<oo,

neN
and IP(s#) = I®(#) the Banach space of the bounded sequences with the sup-
norm; we observe that there is a natural antiduality between If (3#) and I? (#'*):

~ 1 1
(2.10) 120#)< 0y W>t£(x") =k Z H (Uns Wa)wr*s ;4‘ —=1;

nelN P

finally, we indicate with l.f (##) the closed subspace of If (#) given by the
sequences v with »|,_; = 0. The operator E is well defined on these spaces and
its norm is 1.

Theorem 1.4 may be so restated:

Theorem 2.1. Assume that u* is a solution of (2.8) with fel2(V*). Then u™ satisfies
the stability estimate:

(2.11) flu* lizoyni=@) S C{ Hflhzor + ”E“lwm)nlﬁ(m} .

Remark 2.2. As we have already noticed, this result gives an analogous bound
for the solution of (2.1%: we call *T, the operator P,T, and consider "u*,

solution of:
"T'u* = o®)P,f —"Ti'u
we have:

(2.12) [ *a* lizwymt=@n = C{ I flzom + ”hEH l“(H)nl,Z((V)} .
Up to now we have only changed our notations; we shall show how these are really
more convenient. The basic tool of our proof is explained in the following section;

we state first a lemma on inversion of operators like (2.4):

Lemma 2.3. Assume that the roots of the polynomial t(z) = Zj‘:o?’ ;27 have modulus
< 1; then there exists a sequence of complex numbers {y';} jew+4 Such that:

Y il=ltTl <o,

jzg
and ¥ we #N:
(2.13) v)y-1 =0, TE=w<>v,= ) yiw,~;, Vn=g.
i=g
Moreover:

wel:(f)»velf(%), “”“zg(x’) <t I W”!,‘j(am .
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Proof. Thanks to the hypothesis on 1, 7(z)”! is a holomorphic function in
lzf>1—¢ for an ¢>0 and we can write its power series development
around oo:

(2.15) 1(z) ' = Z y}z‘j, Z pil=]t" < 0.
jzg izg

We denote with 77 !(g) the linear operator:

w1t lHEW=u, Un =3, YiWa—j

which is uniformly bounded in every If () by |t !].
[t remains to prove (2.13); by definition, the coefficients y; satisfy the algebraic
relations:

2-‘1: 1, ifn=0 VneN
n "= . ne y
A T =00 =00 e o

which imply that:

n+j

(T(E)TAI(E)W)'I— Z ’YJ(T(E) 1w)tH*—_y Z V, z y wn+1 i =

(l :J + l) = Z< Z Yj’y;'-i-l) Wp =W,
ji=0
Remark 2.4. It is obvious that () is bounded on every [2(#), with norm <
[t = Y9Iyl

Corollary 2.5. Suppose that v satisfies:
v,-1 =1, e =w eli{H) .

Then we have:

(2.16) ol igoey S 1T 1 Iwlhigory + 177 el 2 lliger)
Proof. Writing v* = v — v we observe that v* satisfies:
-1 =0; W =w-—Ep,

and conclude by the previous lemma. O

A basic isomorphism

Let U be the subset of the extended complex plane: {zeC: |z| > 1} U {0} and
consider the Hardy space H%(U, #) of the #-valued holomorphic functions g on
U such that:

1 = .
2.17) 3 lim - [ lglre) % d0 = |glzaw ) -

rot1+ 2n —~n
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Every g in H3(U, #) admits a trace (still denoted with g) on oU = {zeC: |z] = 1}
which belongs to L2(0U; #). The coefficients of the Laurent expansion around
oo are given by the Fourier coefficients of g in L%0U; #) :

1

> [ g€e™dd, glzy= 3 g.z7".

-7 neN

(2.18) gn =

We have the fundamental relation:

(2.19) g 1E o = 191 E20v 0y = ';N Igall% -

So, HY(U; #) is a Hilbert space isomorphic to 14(o#) by the transformation:
220)  geli0) = J@= 3 6z gl = Kl

The most interesting fact for us is given by the following rules:

2.21) if go=0 thenEg(z) = z§(z);
(2.22) A = A constant = 4g(z) = Aj(z) .

For a sequence vel Z(v) we have:

p(EW(E) = p2)3(z),  o(®(2) = 0(z) 6(2),

and:

p(2)

2.23) Tev(z) = E25(2) + 40200 = Té(@)

when A4 is constant.

Proof of Theorem 2.1. The case 4 = A constant.

We call g, = a(8)[ f— Au], g2 = |k~ p(E)u with the obvious bounds:
g1 lizom < ot {1 f lizom + Mllulizon}, lg2lliken < glpl lall=a
We split correspondingly #* into the sum u; + u,, with:
(#)lg-1 =0, Tuj=g; j=12

and study separately these sequences.

Claim 2.6.

(2.24) Nl izoy < Cllgs iz -

By (2.23), u; belongs to z (V) if and only if there exists a solution 4, in HXU; V) of
the equation:

p(2)

(2.25) Titiy (z) = ) + Ao2) i) = §1(2).
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We know that, for |z] = 1, is 6(z) #0; denoting by y(z) the rational function p(z)/a(z),
y{(z) is holomorphic in U and continuous on éU. We may rewrite as follows:

(2.26) %Z)ﬁl(z) + Aiz) = o(z) ~§,(2).

If §i(z) is in H*(U; V*) also §,(z)/o(z) belongs to HZ(U, V'*) and its norm is
bounded by C, |g: | 2wy, With: C, = max,; =, la(z) ~*|.

It remains to study the invertibility of y(z) +4. But (A1-2) imply that the
operator { + A is invertible from V'* to V if {eS,_g with the bound:

1
(2.27) otdv=f= v £ —=fl«
asin

By (P1) y(z) belongs to S,_¢ when |z| = 1, so the mapping:

z—»[ﬂ%+A]_l

is well defined, bounded and continuous from U to £ (¥*, V) and holomorphic in
U. 1t follows that [k~ *y(z) + 4] 'e(z) ~'§,(z)is holomorphic in U, has a 0 of order
g in oo and satisfies the estimate:

B 1 ;
(2.28) la@) | = asindlo) | 1) Il -

Because of (2.19) we get:

C,
lalizoy < 7sing lgillizor >
that is (2.24). O

Claim 2.7. There exists a polynomial A(z) of degree g such that:

229 swp {Rein (X o) Az ot voelzon:

nelN

in particular, this implies:
(2.30) ey ey = Cllgs iz -
We denote with Z, the set of the unitary roots of p, and set:

pu(Z) = H (Z - é), Po = P/Pu» pé(z) = p“f) '
seZ, z é

We call w= py(E)v; by Lemma 2.3 there exists a constant f = |pg | >0 only
depending on p, such that:

(2.31) “v”l"“(H) §ﬁ“”’”1w(11) .

We note that, by Remark 1.2, there exist constants {c, }.z, such that:

L=} cepe)=w= Y cepe(e)w;

zez, zez,
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setting ¢ = ), Ice|* and v* = ps(E)w = [pepo](E)v, we have:

(2.32) wal> S ¢ ¥ 3% (Wl Scsup Y, |vil®.
iez, neN &eZ,
We say that:

(2.23) Alz) = 2Bczpolz) Y, pelz), AEW =2Bc Y. pe(R)EW =2fc Y Ev®
EeZ, ¢eZ, geZ,

is a good choice for (2.29). Recalling that p(e)v = Ev* — &v° and observing that psp,
has degree g — 1 and consequently v§ = 0, we have:

Re ,,gm,< PER i) ]ln>

12(H)
2fc
= B Re 3 120 CBV® — &%, (BY) D izcm)
k ¢eZ,
=2BcRe 3 Z (UJ+1 évf,vfﬂ)
§eZ, j=

2 fe Z 054117 = 10517 = Be 3. 1wl

CeZ, j= &elZ,

By (2.32) and (2.31) we get (2.29); (2.30) follows by taking the duality of equation
Tiuy = g; with A(g)u4|, and recalling (2.24). O

Claim 2.8.

(2.34) laalizwy < Cllgaliicm) -

We use a duality argument; first we establish a transposition formula. Suppose that
u|,-1 = v|,—; = 0 and consider the symmetry:

_ , , Wy, fO0ZLnEN
SN: WO Syw =W, W), = .

0 ifn>N
For a polynomial t(z) =  9_,7;z/ we have:
(2.35) 2o KTE), V' D2 r) = 12 <8, TE)OD 12 )

where we called 7(z) = (@) = Z j=o7 7,2, In fact we have:

0

lk(.)f)<T(E)uaw>lk(.#’) Z (Z ’V} n+ j» Wy — n> k Z Z(un+]7 )’,WN n)
n=0 j=

h=N-m—j) =

n Mza

- g N-g
Z u""‘f”);jWN—"):k Z Z (uN—ms ')jjwm-fj)

j=0m=0

N
Z "m> ViWm+j) = 2eay$u, TE)WD 1 2(m) -

|I
S [\/]n
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Consider now A*, the adjoint of 4, and set:

Tk=%E)+ G(E)A*

T, has the same property of T}, since (5, &) satisfies (P1) and A* satisfies (A1-2) . In
particular: _ "
W=y < Cll Twlizor), Vweli(V).

and, by (2.35)
(2.36) 2ol T, Syvdizivy = 12v SNl Tkv>zi(v‘)
On the other hand we have:

llwzllizry) = suplisnuzllizvy
NeN

and: _
2SSz, T w2

Isvuzllizw) sup =
welZ(V1\(0) [Tewlliz v

12Ty, Sy WH vy
= su

Sup =
welZ(V N0} N Tewlizor)
1t $g2, Sw W>z°v(H>
welZ(V N0} [Tewll 120
[ w

I
lg2 iy sup o EE < Clig, i, O
wer2ono 1wl 2o

{7AN

Claim 2.9,
oz lh=any = lg20km) -
We repeat the same technique of 2.7. [0
Remark 2.10. 1t may seem that notations like | - {l,2()~i=(x) are superfluous, being

I{(V) l™(H); actually the norm of this immersion tends to oo when k goes to 0,
whereas our constants C are independent of k.

Proof of Theorem 2.1. A depending on time.

The discussion of this more general case is based on the simple remark that the
values of the truncated sequence #|y of (2.7) depend only on # and f|y. Observing
that u satisfies:

(2.37) %—) u+ o(E)Ayu = o(E)f— T,u + o(E)[(Ay — A)u], VNeN,

we get consequently the estimate:

(2.38) etz yni= iy S CLILf Inll 2ot + 1(An — Aulyllizg-)

2
+ el o] s
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the last term may be controlled in the following way (we set #|_; = O):

N
I(Ay — iyl <k Y 1Ay — 412w

j=0

N
< Y Ay — A1 (sl 20 — lal- 1l 2)
j=0

N-—

< Y 1Ay — A2 lul;l e
j=0

-

N-1
— Y Ay = Aped 12 a2
j=0

N-1

SAM Y || Ay — A;l — [ Ay — A;ei - lull g
j=o
N-1 5

< 4M Z |IA,-—A,'+1”'””‘J'”1,§(V)
=0

From (2.38), denoting with X the square of the norm of u|y in I?(V) N [*(H), we
get the recurrent relation:

N-1

(2.39) Xy = C{I Sl tz,i(V*) + flull lz,z((V)nl““(H)} + Z a;X;,

i=0
a;=4MA;+1 — Ajllew,vr -

Since Y ;ewa; S 4ML < o, by an easy application of a Gronwall-like lemma, we
have:

Nl 2w ynt=cy < C{Hf”zi(v*) + ”E”l,ﬁ(mnzm(ﬂ)} U
3. Proof of the theorems: convergence

Approximation lemmata

We shall compare the approximate solution *u of (1.8) with the discretized continu-
ous solution u; we set:

(3.1) (ITu), = u(kn), (*Mu), = Pyulkn) = (I1Pyu), .
On IT we have the following results (see [1, 97):

Lemma 3.1. There exists a constant C > 0 such that:
(32) VoeHYL(H), |[Hv|pgw = C{ lollLz ey + k] DqU”Li(af)}

Corollary 3.2. If v belongs to H* (V) and (G1) holds true, we have:

(3.3) v~ hHU”zﬁ(V)ntw(H) < C{kq ”U“H‘i(V) + flv— PhU“Li(V)an(H)}
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Lemma 3.3. Assume that ve H.* () and consider the local truncation error:

= =

(3.4) G [v](t) = i ot + jk) — i Biv'(t +jk), t=0.
j=0 j

j=0

There exists a constant C > 0 such that:

(3.5) 1Gelv] L2y + K DG 0] 2 ) £ CK v flHa 1y »
and:
(3.6) MG 0] )iz £ CKk ullgarte) -

Proof. (3.6) is an immediate consequence of (3.5) and (3.2); so, we may limit
ourselves to prove (3.5), or equivalently:

(3.7) 1D/ G012 ey S CRT T vllwa 2y, 0Sj=<q.

Let (o, o be the restriction operator from L(J#) to L:(#)and let p be a linear
extension operator with the properties:

(38) peL(LL(F), LAH) ~ L (HY ' (F), H ' (#)); VfeL’(H),
fo,oi(Pf) =S
Still denoting by G, the operator (3.4) on the whole real line, we have:

10, o Gx[P(0)] = G [v]
so that:

1GLo] 122 ) = 1710, 0t [G[P() 1] 2o = 1 GiLp ()] ll2ce) 5

therefore we have only to prove (3.7) for R-defined functions.
By applying the Fourier transform (°) to G,[v] we obtain:

FLG[v]1HE) = k™ {p(e***) — 2mikéa(e®™ )} F [v](¢) .
By (P2) we get:

lp(e™) —ixa(e™) | < Clx|**!, xeR,
so that:

”g[Gk[U]](f)”LZ(X’) < CKY lél"“f[v](i)llum <Ck HUHan(x’) -
(3.7) for j > O follows immediately by the identity D'G,[v] = G [Div]. O
Remark 3.4. We observe that:

116G, [v] = p(E)

ITv — o(&)v' .

Convergence theorem

With new notations, Theorem 1.7 becomes:

> We denote with & the Fourier transform in L2(#):

FIQ) =[e ™ o@)dy  NF [W]lLee) = 10020 -
R
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Theorem 3.5. Assume that (A1-4), (P1-2), (G1)and (11) hold true; the solution *u of:
(3.9) "T'u = o(B)'I1f, "ul,_, ="u
satisfies:
Il " — Mullgwyni=ny S C{k")]u”Hq: twoty T lu— Puullp2 vyars ) + e[u;"u]}
(3.10) S GRS N asom + lieg(f, uollvaxud + elul}
Proof. We have the following decomposition:
Hu—"u=ITu—"u) + ("Iu — "u)

so that, by applying Corollary 3.2, it remains to study the difference *d = *ITu — "u
which is contained in If(V,) N I®(H,) .

Our purpose is to write a difference equation satisfied by “d and to apply the
preceding stability estimates. We observe that:

H"dlg—l ”t,f(V)nlm(H) = (hH“)lg—l - hE ”l,z((V)nl”(H) = E[UQhEJ
so that, by (I1):
(3.11) I, - 2w yni=cery S KILUS 1 oo, kg vy + g llvaxal -

If we apply operator "IT to (1.1), we obtain *ITu’ + *AITu = "f, with "4 = P, A,
" = P,f, and:

"L[*u] = o(B) 1 f + P, {ﬂ(ki) My — o(E)Hu’} + o(E)'AIT(Pyu — u) .

Taking the difference with (3.9), we get:
" = "G [u] + o(®)'AIT(Pyu — u) .
By Lemma 3.3
"G, [u] 2ot < qu““”u‘i“(w) 5
and by Corollary 3.2 we have:
1" AT (Pyu — wlizos) < M||"Tu — Hu gy,
< C{|Pyu — ull2 ) + ktullgew} s

taking into account (3.11) and applying Theorem 1.4, we conclude our proof. O
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