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O. Introduction 

The aim of this paper is to analyse the approximation of a linear parabolic Cauchy 
problem of the type: 

(0.1) f ~ t +  A u = f  
u(x, O) = Uo(X) 

u(x, t) = 0 

in s x]0 ,  oo[ 

in~2 

in 80  x ]0, oo [ , 

by using a Galerkin method in space and an A(O)-stable linear multistep method 
of order q > 1 in time. The use of a generic A(O)-stable method (introduced by 
Widlund in [13]) allows us to discuss separately the space and the time discretiz- 
ation, and to overcome the second order Dahlquist barrier of the A-stable methods 
(see [5]). 

We write (0.1) as an abstract Cauchy problem in an usual Hilbert triple 
V c H c V*: 

(0.2) u(O) = Uo; u'(t) + A(t) u(t) = f ( t ) ,  for t > O, 

and we study the error in the norm of L2(0, ~ ;  V) ~ L~~ ~ ;  H). 
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The time discretization by means of an implicit Euler scheme was studied in 
[12]. The error analysis in the case Uo = 0 for Euler and Crank-Nicolson methods 
was carried out in [4], whose outline we follow. For a different approach see 
e.g. [3, 7]. 

We choose a Galerkin approximation family { Vh} of V and a couple (p, a) of 
polynomials which define the multistep method: 

0 O 
p(z) : y~ ~jzJ, a(z) = ~ ~jz~ er 

j=O j=O 

For a discretization step k > 0 and a suitable choice of 9 initial values 
huk,.  " . ,  huo_lk in Vh, the fully discretized problem consists in the sequence of 
linear equations in the unknown huk+oE Vh: 

1 o 0 g 
----~0 h k k h k ~j( u,+ j, v) + ~, ~ v), w ~  vh, >= = f l j ( f .+j ,  Vn O, ~ja.+j( u,+j, v) k 

k j =  1=o j=o 

where fk  = f (kn)  and ak(u, V) = v.<A(kn) u, V>v. 
In particular we get the stabilty estimate: 

I[ u,  IIu < C k 2 H fk  [I 2. + ~ h k 2 (I UjlH + ktJnukl[ 2) . 
neN hEN n e N  j = O  

If the multistep method is of order q and the data {f, Uo} are sufficiently smooth 
and compatible, so that u belongs to Hq(O, oo; V) c~ H q+ I(0, ~ ;  V*) and the initial 
values may be chosen opportunely, we have the error estimate: 

k ~" [lu(kn) h k 2 -- u.][v + sup }u(kn) -- huk[a <= C{eh[u] 
n ~ N  n ~  

+ kqH u ]jHq{o, oo,V)~Hq+ 'to, ~;v*)} , 

where eh[U] is the best approximation error: 

(0.3) eh[u] = inf{ I[u -- hVIIL2tO,| hveL2(O, ~ ;  Vh)C~ L~(0, ~ ;  H)} . 

The paper can be outlined as follows: in Sect. 1 we make precise our hypotheses 
and state the theorems about stability and convergence in the "energy norm"; 
proofs are given in Sects. 2 and 3. 

Error estimates in norms of type L2(0, o0; V)t'-)H1/2(0, oo; H) as showed in 
[11], are contained in a forthcoming paper. 

1. The continuous problem and its discretization 

Notations 

Let: 
V ~  dSH -- H * ~  dsv* 

be a triple of separable Hilbert spaces, II �9 II the norm of V and I" t the norm of H, 
induced by the scalar products ((-, .)) and ( . , - )  respectively; we identify H and 
H* and denote by (-, .) again the antiduality between V* and V. A density 
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argument allows us to consider V* as the completion of H with respect to the dual 
norm: 

II'll. = sup ( - ,v ) .  
w v ,  Itvll= 1 

We shall also assume, without loss of generality, that Iv1 < [] vii, VvE V. 
Let ~ be a Banach space and let ne]N. H~_(~) and W";~176 are the usual 

Sobolev space of ~-valued distributions on the real half line ]0, + oo [ .  
We set also, for n~IN: 

H~. + I(V, V*) = H"+(V) c~ H"+ + x(V*), 

and we recall the continuous imbedding H"+ + I(V, V*)~ W~~176 

The continuous problem 

Assume that we are given, for t > 0, a measurable family of linear continuous 
operators A(t) from V to V* and five constants M, L, ~, 6), 6 > 0, 6 < (9 < n/2, 
such that, for every w V ,  t~]R+: 

(A1) I[A(t) v [ t .<  Ml{vl[, Re(A(t) v, v) > ~Llv[[ 2 ; 

(A2) larg(A(t)v, v) [ < 6) - 6 ; 

(A3) ~ [ IA( t j+ l ) -  A(tj)ll~e(v,v*)<= L, 
j~N 

V t  0 < t 1 < . . .  < t n < . . .  ~ ] R  + . 

Remark 1.1. The values of O and 6 influence the choice of the multistep method we 
consider; hypothesis (A1), which ensures the well-posedness of the successive 
Cauchy problem, implies that (A2)holds at least for O = arccos(~/M) + 6. (A3)is 
a supplementary hypothesis required by the stability of the discretizations; it 
simply means that A is of bounded variation. 

For  every f eL2(V*) ,  uoeH, we shall construct and study a family of approxi- 
mations of the solution u of the abstract Cauchy problem: 

(1.1) u(0) = no; u'(t) + A(t) u(t) =f(t) ,  for t > 0 .  

This function belongs to H I+(V, V*) and satisfies the "energy inequality" (see [21, 
for example): 

(1.2) l[ U []Lz+(V)nL~+(H) ~ C{ 11 f ][L~+(V *) + lUo[} �9 

Moreover, whenfbelongs to Hq+(V*), A belongs to W~( , .~ (V ,  V*)) and {f, A, no} 
are related by suitable compatibility conditions, then u belongs to H U  I(V, V*). 
These relations may be easily deduced by q-times differentiation of equation (1.1) 
and are expressed in terms of a vector eq(f, no) = (Co,. �9 �9 cq) whose components 
are so defined: 

c o = n o ,  c , , + l = f ( " ) ( O ) - ~  ( 7 ) A U '  (O) c . - f i  O < m < q .  (1.3) 
j=O k J /  
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If we ask that  cqe V ~ x H we obtain: 

SueHq++I(V,V*), u(J)(O)=cj(fUo), O< j < q  
(1.4) 

"~ llull~v '(v,v*) < C{ Il f lI~+(v*) + Ilcdf, uo)llw• ' 

so that we may  summarize our  regularity hypotheses: 

(A4) fenq+(V*), AeW~_~ cdf, uo)~Vq• q > l .  

G. Savar6 

The method 

We discretize problem (1.1) by a 9-step linear method. More  precisely, we assign 
29 + 2 coefficients {aj, flj}j=o . . . . .  g and we set, for every time step k > 0, 

(1.5) fk =f(nk), Ak, = A(kn); n e N ( 1 )  

Choos ing  g initial values u~ , . .  k �9 ,ug-l~V, we intend to construct  an approxi-  
mat ion  u k of  the solution u(nk) by the following algorithm: 

Vn >= O, find u~+o~ V such that:  

(1.6) 1 a g g 
O~jUn+ j .~ ~ k k k " fljAn+jUn+j Z = fl j fn+j 

j = O  j = O  j = 0  

If  Re [~gflg] > 0 (2), by (A1) and the Lax-Milgram lemma we can invert the 
operator:  

1 
(1.7) ~ % + flgAk.+o, 

k for every n~IN and we can solve (1.6) with respect to u,+ o, once 

uk, . . . . .  uk,+o - 1 ,  f k , .  . . , f k +  ~ 

are given. By induction we obtain existence and uniqueness for the sequence 
k {Un}neN 

To solve (1.6) f rom the numerical point  of view we introduce a Galerkin family 
{ Vh} of closed subspaces of  V (3), and consider the fully discretized problem: 

{( 'hkhkGlven U o ,  U 1 ,  - - ",huk-16Vh, find{huk+o}.~c;suchthat: 
(1.8) 1 g g g 

-k 2 o~jh kUn+j+ Z fljAn+jk h kUn+j__ ~.~ fljfkn+j,h W = 0 VhwEVh . 
\ j = O  j = 0  j = O  

1 By (A4) f and A are continuous, so this setting makes sense 
2 By (A2), ~g/~g 4= 0, arg [~g/~g] < ~t - O would suffice. In fact these conditions are equivalent if the 
coefficients are real 
3 In practice, Vh are finite-dimensional 
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The stability and convergence properties of these methods (in the finite dimen- 
sional case) may be briefly expressed in terms of the two polynomials: 

g g 

(1.9) p(z )= ~ ~iz j, a (z )= ~ fljz j eC[z ] ;  I%[ 2+]flot 2 > 0 ,  
1 = 0  j=O 

which we may suppose prime. On (p, cr) we shall impose the following conditions 
(see for instance [10]) : 

(P1) strong A(O)-stability: for Izj > 1 a(z) is different from 0 and the quotient 
p(z)/a(z) is contained in the closed sector: 

(1.10) & - o = { { e C : l a r g { t  < ~ - 8 } ,  O < O < r t / 2 .  

(P2) order q: when z --+ 0 we have 

(1.11) p(eO - za(e z) = O(z q+ 1) 

for an integer q > 1; in particular this implies the consistency, i.e.: 

(1.12) p(1) = 0, p'(1) = a(1) 4=0 

Remark 1.2. (P1) implies that %/~9 is different from 0 and is contained in S=-o; in 
other words, the method must be implicit ((p, a) have degree 9) and (1.7) can be 
inverted. Moreover, the possible unitary roots of p are simple. 

Remark 1.3. When O = n/2 we are dealing with an A-stable method, whose 
stability properties are well known (see [3, 5]). On the other hand, for these 
methods the "Dahlquist Barrier" forces q < 2, so that the use of more general 
A(O)-stable methods with O < =/2 becomes necessary if we want to reach higher 
orders. We recall, for example, the Backward Differentiation Schemes of 
orders < 5. 

From now on we assume that (PI) and (P2) are satisfied for fixed @ and q. 

Stability estimates and approximation results 

Theorem 1.4. Let us assume that properties (A1-3) and (P1) hold; then the solution 
h k uli of (1.8) satisfies: 

I g -1  
2 '~ blj I J;  , (1.13) k y' IIhuk, ltE + suplhuk, 12 < C k ~ l l f ,kl l ,+ ._.(kllhu~tl2+[ h~ '2 ' ]  

h e n  hEN t hEN j = 0  

where C depends only on the constants M, L, ~, O, 3 and on (p, a) (4). 

Remark 1.5. We have the estimate: 

2 .~  2[[f (1.14) k ~  Ilfk. 11. = 112,+(v*), 
lIEN 

so, by (A4) the right hand member of (1.13) is finite. 

4 From now on, we always denote with C such constants 
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We denote with Hh the closure of Vh in the H-norm and with V~' the antidual 
of Vh, SO that Vh, Hh, V*  is a new Hilbert triple; Ph is the surjective "restriction" 
of V* on V~': 

(1.15) V',(Phv, h W ) v h = ( V ,  hW), IIPhvllv~<llv[l. ,  VveV*, VhweVh. 

Moreover, we have the best approximation result: 

V v e H ,  PhVEHh, IV -- PhV[ = min Iv - hw] . 
hWEHh 

We assume that: 

(G1) Ph(V) ~ vh; 3 c  > 0: IlPhvll < CIlviI, v v e w  

for a constant C independent of h. In particular, this implies that: 

Vhw'~Vh, llv--Phvll < [[V--hW[I + I Ihw--  Vhvll = t t v - -hwl t  

+ ] tPh(hW- v)II < (1 + C ) j j v -  h w j l ,  

so that Ph realizes: 

(1.16) II v - PhV I[ < C'  min II v -- hW I[ , 
h w ~ V  h 

and, for a function u in L2+(V)n L~(H): 

(1.17) IIu - PhUIIL~+(V),~L~+(n) < Ceh[U] , 

eh[u] given by (0.3). We denote the error on the initial values by: 

(1.18) e2[U;hUko, . . . , hu~- l ]  = max ]Phu(kj) _ h.ujlk,2 
0 < j < g  

g - 1  

+ k ~ tlPhu(kj) -- built 2 
j = 0  

and we may suppose that the choice of the initial values satisfies the following 
requirement: 

(I1) eEu;hug,. . . ,  hU~-l] < CkffflfIlnq~o,~o;v*) + I tc~l lvq•  

R e m a r k  1.6. By (A4)we know from the equation the Taylor expansion of u around 
0 up to the order q; so, a possible choice of the initial values is: 

q--1  
--c._j,. t h k k. = Jk ) ,  = P h u j ,  O < j < g  (1.19) uj ~ uj . 
l!" / = 0  

We have: 

Theorem 1.7. Assume  that (A1-4), (P1-2),  (G1)and  (I1) hold; then the solution huk, o f  
(1.8) satisfies: 

k ~ l] u(kn)  - auk, ll2 + sup lu(kn) - hu~l < 
h E N  n ~ N  

C{ k q [I u [[n~++ l(v, v*) + tlu - Phu IIL~+ (V)~L~+ (n) + e[U;hU~) , . . . ,  hUg- 1] } < 

C{kq[llf]l~+~v *) + IIcq(f, Uo) IIv,• + eh[u]} , 

with C depending only on the various constants  introduced but not on h, k. 
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2. Proof of the theorems: stability 

Preliminary outline." sequences spaces 

We try to find the est imates of  the preceding theorems by rewriting equat ions (1.6) 
and (1.8) in a different form. Setting hA = PhA, equat ion (1.8) becomes formally 
equivalent to (1.6) in the new Hilbert  triple Vh, Hh, V*: 

~=0 h k r~ h~k h k k ~; u . + j +  p; .a.+j u . + j =  f l jPh f .+ j ,  n > O ;  (2.1) ~ j=  j=o j=o 

moreover ,  the opera to r  hA satisfies in this f ramework  the same condit ions 
(A1-3) and by (1.15) Pn is a contract ion from V* to V~'; so, concerning the 
study of stability, we may  limit ourselves to consider equat ion (1.6), suppressing 
the index h. 

We denote vector  valued sequences with bold characters  and suppress the index 
k too when this fact does not generate mistakes.  If  ~ff is an Hilber t  space, we 
introduce the opera to r  E on o~ffN: 

(2.2) (EV) n = Vn + 1 , 

with its powers: 

( v , _ j ,  if n > j  
(2.3) (EJv), = Vn+j, (E-JV)n = < ~0, if n < j  V jEN . 

E j is the right inverse of E J: EJE-Jv = !~, for every sequence r. Fo r  every polynomial  
0 j r(z) = ~ j~oTiZ we have consequently: 

g 
(2.4) (r(E)V). = Z ~Jl)nwj " 

j=o 

Setting (Av), = A,v , ,  for v~ V y, we write: 

kj~=o O ~ j v ' + j + ' :  j : o  ~ flJAn+jvn+J= P~)V-k-O'(E)Av n' VnE]N. 

We set also: 

(2.5) V v e ~  N' vii = ~Vn, 
if n < 

J 

[0 ,  if n > j 

so that, if u_ = (Uo . . . . .  uo_ 1)e V ~ c V N is the vector  of the initial values, (1.6) 
becomes: 

ulg_ =-u_, 

(2.6) p(E) 
T U + O'(E)Au = O'(E)f 

Finally, we call Tk = k - i p ( E )  -t- O'(E),4, and write (2.6) in the compac t  form: 

(2.7) TkU = a ( E ) f  UI~- t = _U. 
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By linearity we may enclose the initial conditions in the equation and write it in 
terms o f u  + = u - u :  

(2.8) Tk u+ = t r (E)f - -  TkU_, U +lg-~ = O. 

To complete our  formulation,  we specify the spaces where we set (2.8), taking into 
account  the quantities arising in (1.13) which we shall deal with. 

We call l~ (of) the Banach space of the of -va lued sequences v such that: 

(2.9) [l~l[~<~) = k ~ IIv, II~ < oo, I ~ p < 0o,  
n E N  

and l f f (of)  = l| the Banach space of the bounded sequences with the sup- 
norm; we observe that there is a natural  antiduality between l~' (of) and l~" (of*):  

1 1 
(2.10) tg(~e)(v, W)l~(.;t a*) : k E ~ ( V n ,  Wn),,ut'*; p + ~, = 1 ; 

hEN 

finally, we indicate with [k ~ (of)  the closed subspace of If (of) given by the 
sequences v with v]0_, = 0. The opera tor  ~ is well defined on these spaces and 
its norm is 1. 

Theorem 1.4 may be so restated: 

T h e o r e m  2.1. Assume that u + is a solution of(2.8) with f e  l2 ( V*). Then u + satisfies 
the stability estimate: 

(2.11) [[u + fl,~(v)~t~(n) < C{][flld,(v*) + [lu_ltt~(H)m~(v)} �9 

Remark 2.2. As we have already noticed, this result gives an analogous bound 
for the solution of (2.1): we call hTk the opera tor  PhTk and consider hu+, 
solution of: 

hTkhu + = a(E)PhZ-- hTkhu , 
we have: 

(2.12) II hu+ II ,~(v)m~(m --< C{ [I f l l  ,~(v*) + 1[ h_U]I tO(H)m~(v)} �9 

Up  to now we have only changed our  notations; we shall show how these are really 
more  convenient. The  basic tool of our  p roof  is explained in the following section; 
we state first a lemma on inversion of operators  like (2.4): 

Lemma 2.3. Assume that the roots o f  the polynomial z(z) : ~ : o y j Z  j have modulus 
< 1; then there exists a sequence of  complex numbers {V'j}j~N+g such that: 

IT'j] = Iz - l l  < c~ , 
J~g 

and V w e a N :  

n 
(2.13) v [ 0 - 1 = 0 ,  Z(E)V=WC>Vn= ~) ' )W,_ j ,  V n > g .  

j=g 

Moreover: 

wel~(~)=~v~l~(~), I[vl[~(x~) < I z - l l  {[w[tz~(~) . 
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Proof Thanks  to the hypothesis  on ~, z(z) -1 is a ho lomorph ic  function in 
[zl > 1 -  e for an e > 0  and we can write its power  series development  
a round  oo: 

(2.15) T(z) -1 = ~ w)zl j ,  ~ IW)! = I~- '1 < o0 .  
J>=g J~o 

We denote with z-X(E) the linear operator:  

1~"+ T - I ( E ) B  ~ : V, V n = ]) j W n _  j 
j=~ 

which is uniformly bounded  in every l~' (Yf) by I~-1]. 
It remains to prove  (2.13); by definition, the coefficients y / s a t i s f y  the algebraic 

relations: 

~ ,j,.+j 5o. { 1' ifn=O 
' = = Vne]N 

~:0 ' 0, if n > 0  ' 

which imply that: 

ff 0 n+j  

( ' ~ ( E ) T - I ( E ) W ) n  = E '~J('~(E)-IB~)n+J = E ]]J E "~iWn+J - i  = 
j=O j=O i=j  

) ( i = j + l )  -- yjy}+~ w . - t = w ,  
/ = 0  j 

Remark 2.4. It  is obvious  that  Z(E) is bounded  on every lf(~'f~), with norm < 
g 

I~l --- Y, j=ol~j l  

Corollary 2.5. Suppose that v satisfies: 

vl0-1 = s  
Then we have: 

~(E)v = , ,  ~ l ~ ' ( ~ ) .  

(2.16) 

Proof. Writ ing v + = v - v we observe that v + satisfies: 

(v +) Io-1 = 0; ~(E)V + = w --  ~(E)V,  

and conclude by the previous lemma.  [] 

A basic isomorphism 

Let U be the subset  of the extended complex plane: {z~tE: Izl > 1} ~ ( ~ }  and 
consider the H a r d y  space H2(U; A, ~) of  the o~r ho lomorph ic  functions g on 
U such that: 

(2.17) 3 lira ~ lJ g(re is) II2 dO z 
r ~ l  + 
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Every g in HE(U;get a) admits a trace (still denoted with g) on 0U = {z~C: Jz] = 1} 
which belongs to L2(0U; 9r The coefficients of the Laurent  expansion around 

are given by the Fourier coefficients of g in L2(63U; o~) �9 

1 ~ 
(2.18) g, = ~ _S g( ei~176 g(z) = .~Y" g , z - " .  

We have the fundamental  relation: 

(2.19) [[g[lZz(v;~e)= Ilgll~2(0v;~)= ~ 110,112 " 
n~N 

So, Hz(U; Yg) is a Hilbert space isomorphic to l~(~)  by the transformation: 

(2.20) g e l ~ ( J g ) o  O(z) ~ z-"" 2 = g, , Ilg[]z~(~) = k[lOlIn2(v;~). 
n~N 

The most interesting fact for us is given by the following rules: 

(2.21) if go = 0 then Eg(Z) = z(~(z) ; 

(2.22) A - A constant  :~ Ag (z) = A~t(z). 

For  a sequence v~i~(V) we have: 
A 

p ( E ) V ( Z )  = p ( g )  13(g), O'(E)V(Z) = O'(Z) /~(Z) , 

and: 

A 

(2.23) TkV(Z) = ~(z) + Aa(z)~(z) = ~ ( z )  

when A is constant. 

Proof of  Theorem 2.1. The case A -= A constant. 

We call g~ = a ( E ) [ f - -  A_u], 02 = llk-lp(E)U with the obvious bounds: 

I[0x {[t~(v*) < la[ { I l l  Hd, tv*) + mlt_ulll~(v)}, Iig2 Ilt~(u) =< g[P] ]lU[tt=(H) 

We split correspondingly u + into the sum ua + u2, with: 

(U.i)lo_1-----O , Tkuj=gj ,  j = l , 2  

and study separately these sequences. 

Claim 2.6. 

(2.24) II ux II ~(v) _-< C II gx Ils~(v*) 

By (2.23), U l belongs to l~ (V) if and only if there exists a solution ti~ in H :(U; V) of 
the equation: 

p ( z )  . ,  , 
(2.25) ~ f i l  (z) = - - ~  u(z) + Aa(z) fi(z) = / h  (z). 
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We know that, for Iz[ ~ 1, is a(z) +-0; denoting by V (z)the rational function p (z)/o'(z), 
?(z) is holomorphic in U and continuous on OU. We may rewrite as follows: 

(2.26) ?(z) ~ - I ] I ( Z  ) + A t l ( Z )  = I~(Z) -101(Z ) . 

If Ol(z)is in Hz(u; V*) also Oi(z)/a(z) belongs to Hz(u; V*) and its norm is 
bounded by C, I[gi [In~w;v*), with: C, = maxlz I = 1 [a(z) - x[. 

It remains to study the invertibility of ?(z)+A. But (A1-2) imply that the 
operator ~ + A is invertible from V* to V if ~eS~_o with the bound: 

1 
(2.27) ~v + Av = f => {] v {1 < - -  [1 f 1[. 

= es in6 

By (P1) ?(z) belongs to S~-o when [z[ > 1, so the mapping: 

is well defined, bounded and continuous from ~Y to ~(V*,  V) and holomorphic in 
U. It follows that [k-  1 ~(z) + A] - la(z) - 101 (z)is holomorphic in U, has a 0 of order 
# in oo and satisfies the estimate: 

1 
llOl(z) II, �9 

~tsin61a(z) I 
(2.28) II~(z) IF 

Because of (2.19) we get: 

that is (2.24). [] 

Cff 
IlulllXcv) < IlgllllXcv*), = esinfi 

Claim 2.7. There exists a polynomial 2(z) of  degree g such that: 

fRe,. t '~m/p(E)v ) } _>-IIv[l{~(n,, V w [ ~ ( H ) ;  (2.29) sup]..~ 'k( ) \  k ,[2(E)V]]. ,~(u) 

in particular, this implies: 

(2.30) Ilul ]lz~(u) < 6110111,X(v*) �9 

We denote with Zp the set of the unitary roots of p, and set: 

p.(z) 
p,(z) = I-[ (z -- ~), Po = PIP., pC(z) -- 

~ Z p  Z - -  

We call w = po(E)V; by Lemma 2.3 there exists a constant ]~ = ]Poll > 0 only 
depending on Po such that: 

(2.31) Ilvll/~r </~llwlll~(H) �9 

We note that, by Remark 1.2, there exist constants {cr162 such that: 

1 = ~ ccpr = ~ ccpr ; 
~EZ, ~EZ,  
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setting c = ~ r162 and r ~ = pr = [p~po-](E)V, we have: 

(2.32) Iwnl2~c ~lv~12; Ilwll~=<~)~csup ~ Iv,el z �9 
~Z~ nebl ~eZ~ 

We say that: 

(2.23) 2(z) = 2flczpo(z) ~ pr )~(E)r ~--- 2 t i c  E pr = 2 t i c  E 

G. Savar6 

El) ~ 

,~<je)(Z(E)U, W)l~(je) = k ~ju,+j, WN-. = k ~, ~ (u,+j, ~jWN-,) 
n=O j=O n=O j=O 

g N - g  g N - g  

( n = N - m - - j )  = k  Z Z (u.,j, f jwN- . )=k  Z Z (UN-m, fjWm.j) 
j=O n=O j=Om=O 

g N 

= k ~, ~, (U'm, ~'jWm+j) = d,(n)(U', ~(E)W),~(n) �9 
j=O ra=O 

is a good choice for (2.29). Recalling that p(E)V = EVr - -  ~V r and observing that PcPo 
has degree g - 1 and consequently Vr = 0, we have: 

Re l?,(n, ( P ~ ,  [2(E)V]],/l~(~, 

= 2tiC Re ~ t?,(n)(Ev r -- ~v r (EI)r 
k ~Ez~ 

2flcRe ~ ~ ~ -{vS ,  ~ = (vj+ 1 v j+ i) 
~Zp j=O 

__> pc Z E 2 -  _- Z 2. 
~eZp j = 0  ~eZp 

By (2.32) and (2.31) we get (2.29); (2.30) follows by taking the duality of equation 
TkUl = gz with 2(E)Ull. and recalling (2.24). [] 

C l a i m  2.8.  

(2.34) lJUEl[,~tv) < CllaEIl~(H) �9 

We use a duality argument; first we establish a transposition formula. Suppose that 
ulg-1 = rig-1 = 0 and consider the symmetry: 

, fWN_. i f 0 < n < N  
Szv:W--*SNW=W, (W').= 0 i f n > N  

For a polynomial z(z) = ~,g=oyjZ j we have: 

(2.35) t~(~r~(z(E)U, v')~(je) = z~r)(u', ?(E)V)t~(~) , 

g - j 
where we called f(z) = z(z-) = ~=oT~Z �9 In fact we have: 



A (O)-stable approximations of abstract Cauchy problems 331 

Consider  now A*, the adjoint  of  A, and set: 

/9(E) 
= ~ - -  + ~ ( E ) A *  , 

i?k has the same proper ty  of Tk, since (~, 6) satisfies (P1) and A* satisfies (A1-2) .  In 
particular: 

Ilwl[,~r < Cll T~wlI&v', Vwei~(V) . 

and, by (2.35): 

(2.36) l~,(v*)( Tku, Sur ) l~ (v )=  ~,(V)(,SNU, ~V)t~,(v*) 

On the other  hand we have: 

and: 

I[u2 IIlZ~v) = suplt sNu2 ll,a(v) , 
NEN 

,~(v)<S,,,,*~, :r,, w>#,~v*) 
I1 suu2 II,~v) = sup 

&v* )(T, ,u> sN W ) & v )  
= sup 

/ ~ ( / / ) ( g 2 ,  SN W)I~(H) 
= sup 

< llg2[tl~(~) sup < Cl[g2lll~(n) 
~ ,  ~,(v)\{o~ II T,,w II ,kv*) 

[] 

Claim 2.9. 

It u2 II~(n) <= it g 2 iLia(u) �9 

We repeat  the same technique of 2.7. [] 

Remark 2.10. It  may  seem that  nota t ions  like LI" t],~(v)m*(n) are superfluous, being 
lkz(V) ~ / ~ ( H ) ;  actually the norm of this immersion tends to oe when k goes to 0, 
whereas our  constants  C are independent  of  k. 

Proof of  Theorem 2.1. A depending on time. 

The discussion of this more  general case is based on the simple remark  that  the 
values of  the t runcated sequence u]N of (2.7) depend only on _u and f iN- Observing 
that  u satisfies: 

(2.37) p(E) ~ - -  U + a(E)Auu = a ( E ) f - -  Tku + a(E)[(AN -- A)u], VN~IN , 

we get consequently the estimate: 

(2.38) 2 2 2 
II ulN[Iz~,(v>l~(n) ~ C[ II f i n  [1 t~(v*) + [I (AN - -  A)ulN [1 z~,(v*) 

2 
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the last te rm may  be controlled in the following way (we set u[_ 1 = 0): 

N 
II(AN 2 - A)ulNllt~tv*) < k ~ [IAN - AjH 2" IIUjH 2 

j=O 

N 
2 2 

< ~ liAN -- hill  2 "(l lu[j l l~(v>- [luli-11TtX<v)) 
j = O  

N - 1  

< ~', fIAN -- Aifl 2" [tuIilll2~, 
j = 0  

N - 1  
2 

- ~ ItAN - A j + I [ [  2 "  ltulill/Z(v) 
j = O  

N - 1  
2 2 < 4M ~ Ill AN -- AjI[ --  tl AN -- A i +  x llf" li u l i  llz~(v) 

j = 0  

N - 1  
2 2 < 4 M  ~ IIAj - Aj+ 111"ltuljIllkw) 

j = 0  

F r o m  (2.38), denot ing with XN the square of  the no rm of ulN in l~(V)c~ I~(H), we 
get the recurrent  relation: 

N - 1  

( 2 . 3 9 )  XN < C (  II f [ [  2 2 

j = 0  

a i = 4MlfA~+I  - AiIl~(v,v*) . 

Since ~ j ~ N a  i < 4 M L  < o% by an easy appl icat ion of a Gronwall- l ike lemma,  we 
have: 

3. Proof of the theorems: convergence 

Approximation lemmata 

We shall compa re  the approx imate  solution hu of (1.8) with the discretized continu-  
ous solution u; we set: 

(3.1) (IIu). = u(kn), (hIIu)n = Phu(kn) = (HPhu). . 

O n  H we have the following results (see [1, 9]): 

Lemma 3.1. There exists a constant C > 0 such that: 

(3.2) VveHq+(~Ct~), ]llIvll,~r < C{ llvtlL~,~) + kqilOqvllL~+(~} 

Corollary 3.2. I f  v belongs to H~+(V) and (G1)holds true, we have: 

(3.3) Hllv - hHvlil~(V)~,rtn) <= C{kqliv[IH~+tv) + [Iv - P h U I I L 2 + ( V ) n L ~ ( I t ) }  
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Lemma 3.3. Assume  that v~Hq+ + l(~vf) and consider the local truncation error: 

(3.4) Gk[V](t) = ~ j~==o ~jv(t  + jk )  - /=o f l /v '( t  + jk) ,  t > O . 

There ex is ts  a constant  C > 0 such that: 

(3.5) IlGk[V] IIL2 (~,,~) + kq{I DqGk[V] HL2()ff) ~ C kq[tvltuL+'t~r) , 

and: 

(3.6) I[ HGk Iv] }[ t~(g) <= C k q ][ u II Hq+ § l(Yr) �9 

Proof.  (3.6) is an immediate consequence of (3.5) and (3.2); so, we may limit 
ourselves to prove (3.5), or equivalently: 

(3.7) I[DJGk[ v] tIL~tX) < Ckq-JHv[]uq+§ 0 < j < q . 

Let rto.o~ t be the restriction opera tor  from L2(j/F)to L 2 ( y f ) a n d  let p be a linear 
extension opera tor  with the properties: 

(3.8) peSf(L2(~) ,L2(jut~))c~LP(Hq++~(H),Hq+~(Jut~));  V feL2+(H) ,  

rio, o~t(Pf)  = f . 

Still denoting by Gk the opera tor  (3.4) on the whole real line, we have: 

rEo, o~cGk[p(v)] = Gk [v] , 
SO that: 

tlGk[V] []L~(~ ,~) = [[rto, oo[[Gk[p(v)] ] [JL2+()ff)"( [1Gk[p(v)] [[L2(jr) ; 

therefore we have only to prove (3.7) for lR-defined functions. 
By applying the Fourier  t ransform (5) to Gk[V] we obtain: 

~ [ G k  [v]]  (~) = k -1 { p(e2~ikr _ 2rdkCtr(e2~ikr } ~ Iv] (~) .  

By (P2) we get: 
[P( e i x ) - i x a (  eix) l <-- C l x t  ~ x ~ I R  , 

so that: 

II o~[Gk[v]](~)I[LW,e)< Ckql[ I~lq+l~l-v](~)ll /~(,r)< Ckq livlln~.,(~,e) . 

(3.7) for j > 0 follows immediately by the identity DJGk[V] = G~[D~v]. [] 

R e m a r k  3.4. We observe that: 

p(E) 
HGk[V]  - H v  - ~r(E)Hv' . 

k 

Convergence  theorem 

With new notations,  Theorem 1.7 becomes: 

5 We denote with ~- the Fourier transform in L 2 ( ~ ) :  

�9 ~[v-l(~) = S e-2~ir dt; II ~[-v] IlL21,e~ = IlvllL2t~ - 
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Theorem 3.5. A s s u m e  that  (A1-4), (P1-2) ,  (G1)and (I1)hold true; the  solut ion hU of: 

h u (3.9) hTkhU = a(E)h//f, hulg_ l = _ 

satisfies: 

}lhu -- Iluilt~(v),~t~(n) < C{kqIlulln~+ + '(v,v')  + [In - PnUI]L~W),~LI(H) + e[u;nu]}  

(3.10) < C{kq[l[fl[H~+(v *) + [Icq(f, Uo)[[vq.n] + eh[U] } 

Proof .  We have the following decomposi t ion:  

17u - "u = ( l l u  - hlTu) + (hI lu  -- hu) 

SO that, by applying Corol lary  3.2, it remains to study the difference h d =  h l I u  -- hu 
which is contained in 12k(Vh)n l~176 

Our  purpose  is to write a difference equat ion satisfied by hd and to apply  the 
preceding stability estimates. We observe that: 

]1 hdlo-  x Ht~,(v)m~gH) = II (hHu)la - 1 -- hU_ I l l~w)m~n) = e[U;hU] 

SO that, by (I1) : 

(3.11) ]lhdla - 1 It t2(V)nt| <= kq [ H f l[ Hq<O,ka, V*) + [leq I[ v ~ • n] . 

If  we apply  opera to r  h / 7  t O  (1.1), we obta in  hFlu' + hAI-Tju = h f ,  with hA = PhA, 
hf :_. eh f ,  and: 

Tak ing  the difference with (3.9), we get: 

hT~ hd = h1-16~ [U] + a(E)hA 11(Ph U -- U).  

By L e m m a  3.3 

2 * ll hlI  Gk[Ul  I[t~vo < C kqIl u llH"++ 'r , 

and by Corol la ry  3.2 we have: 

[IhAFI(Phu -- U)l]t~,(v~) < m [ l h l I u  - IIu[[t~,tv) 

< C {  ][PhU -- u ItLZ+tv) + k s II u Iln~+<v~} ; 

taking into account  (3.11) and applying Theo rem 1.4, we conclude our  proof. [] 
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