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Summary. Grassmann, Taksar, and Heyman introduced a variant of Gaussian 
elimination for computing the steady-state vector of a Markov chain. In this 
paper we prove that their algorithm is stable, and that the problem itself is 
well-conditioned, in the sense of entrywise relative error. Thus the algorithm 
computes each entry of the steady-state vector with low relative error. Even the 
small steady-state probabilities are computed accurately. The key to our analysis is 
to focus on entrywise relative error in both the data and the computed solution, 
rather than making the standard assessments of error based on norms. Our 
conclusions do not depend on any condition numbers for the problem. 
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1. Introduction 

A fundamental problem in computational probability is that of finding the steady- 
state distribution of a finite-state, discrete-time, irreducible Markov chain. This is 
equivalent to finding the steady-state vector of an irreducible stochastic matrix. See 
Seneta [9] for the basic facts and terminology of stochastic matrices and Markov 
chains. We formally state 

Problem I. The data consists of an irreducible stochastic matrix P of order n. The 
problem is to compute the steady-state vector it = (re1, r t 2 , . . . ,  re,), which is deter- 
mined by 

~ P = ~ ,  ~ z~j= 1. 
j=l 

In [4], Grassmann, Taksar, and Heyman introduced a variant of Gaussian elim- 
ination for this problem. Their method, which is now known as the G TH  
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algorithm, is the subject of this paper. Empirical evidence that the G TH  algorithm 
computes steady-state probabilities with small relative error has been documented 
in [-4, 6]. The GTH algorithm involves no subtractions, and therefore loss of 
significant digits due to cancellation is ruled out completely. Grassmann, Taksar, 
and Heyman attributed the accuracy of their method to the absence of subtraction. 
The analysis presented here supports this. 

The key result of this paper is that Problem I above is particularly well 
conditioned, in the sense of entrywise relative error. This is to say, if small 
relative errors are introduced into the entries of P, then only small relative errors 
result in the entries of n. Theorem 1 in the next section contains the formal 
statement. This strengthens a closely related result of Seneta ([-9], Theorem 7.2 and 
its corollary). An important consequence of Theorem 1 is that the steady-state 
vector of an irreducible stochastic matrix is close to that of its floating-point 
approximation in the sense of entrywise relative error. (Minor annoyances such as 
the floating-point matrix failing to be stochastic are dealt with in Sect. 2.) In view 
of this conditioning property, we should seek an algorithm that computes the 
steady-state vector with small entrywise relative error. We prove in Sect. 4 that the 
G T H  algorithm of [-4] achieves this. It has been noted [5, 6, 14, 16] that Gaussian 
elimination may produce large relative errors when used to solve Problem I. 
A quick summary of our results is that the relative error in the entries of the 
steady-state vector computed by G T H  is bounded by roughly 9nZu, tt being the 
unit roundoff, when a small fraction of the computation is done in double pre- 
cision. Due to statistical effects, the actual error is expected to be much smaller than 
this bound. 

The accurate computation of the small entries of a steady-state vector is 
a real concern in stochastic modeling. We illustrate this with an example from 
telecommunications. Consider the problem of modeling packetized data arriving 
at a statistical multiplexer in a communication network [17]. A server reads 
an address from each incoming packet, and then directs the packet to the 
appropriate outgoing channel. Since the server takes time to read the address 
of the packet, some buffering is needed to prevent loss of other arriving packets. 
The choice of buffer size is an important design issue. For  switching in the 
Broadband Integrated Services Digital Networks (B-ISDN's) of the future [17], 
certain applications, such as transmission of high-definition television signals, 
demand a packet loss rate of no more than about one in a billion (10 -9) 
[2]. In the model, this packet loss rate is the steady-state probability that 
the buffer is full. For  the model to be useful, we must be able to calculate 
this small probability. Theorem 2 below guarantees that the G T H  algorithm 
with double precision arithmetic computes each component of the steady- 
state vector with low relative error for models with on the order of 1000 
states. 

Our analysis assumes nothing beyond irreducibility about the structure of the 
Markov chain, unlike [,12-14, 16] where the nearly-uncoupled case is discussed. It 
involves no growth factors or condition numbers. The former is to be expected, as 
P - I is (weakly) diagonally dominant [3], but the latter is surprising. Our analysis 
is also unusual in that it is not based on norms, and in that it assures good 
entrywise relative accuracy of the computed solution. The existing literature is 
generally based on norms and absolute error [1, 5, 8, 16], and does not yield 
entrywise relative error bounds for the computed solution. 



Entrywise perturbation theory and error analysis 111 

2. Conditioning 

When a stochastic matrix is stored electronically in floating-point form, the 
machine matrix may not be stochastic. This is partly because the row sums of the 
machine matrix may not equal 1, due to rounding. This difficulty may be avoided 
by removing the redundancy in the full matrix P, and recording only the off- 
diagonal entries as data. However, there is still the possibility that the machine data 
will not represent a stochastic matrix, since the sum of the off-diagonal entries of 
a row may exceed 1 due to rounding, this implying a negative diagonal entry. Such 
perturbations are not problematic, and we incorporate them into the analysis by 
slightly extending the scope of Problem I. We now describe the extended problem. 

Let G = (go) be a generator of order n. That is to say G has nonnegative off- 
diagonal entries and row sums 0. We further assume that G is irreducible, which is 
to say that G + 21 is an irreducible nonnegative matrix for 2 > 0 sufficiently large. 
(I denotes the identity matrix of the appropriate order.) Such matrices G are in fact 
the continuous-time analogues of the P's of Problem I: they are the generators of 
irreducible, continuous-time Markov chains. The extended problem is to find the 
steady-state vector of G. 

Problem II. The data is the @ d i a g o n a l  entries gij, i #:j, of an irreducible order-n 
generator G. The problem is to compute the steady-state vector ~ of G, which is 
determined by the equations 

7 ~ i g i j  = 7t j  j g j i  , 7"Cj = 1 . 
i = l , i # j  \ i =  1,i:~ j = l  

An alternative way of writing the first n equations here is riG = 0. We have chosen 
to write them in a way that emphasizes the fact that only the off-diagonal entries of 
G are needed. To cast Problem I in the form of Problem II, we need only take Pli, 
i+ j ,  as our data gij, i+ j .  The matrix G is then P - I. Thus Problem I is a special 
case of Problem II. 

For completeness, we state a simple and well-known lemma on irreducible 
generators, which is needed below. 

Lemma 1. Let  the order-n irreducible generator G be partitioned as 

where B is a square matrix  o f  order n - 1. Then B is invertible, F = - B -  i is 
a nonnegative matrix, and the vector 

(2.2) a = (1; wTF) 

is positive and satisfies aG = O. 

Of course, the steady-state vector n of G in the lemma is simply a/s where 
s - - -a l  + a2 + - - .  + a,. In (2.1) we are using the convention that vectors are 
column vectors by default, so that row vectors such as w ~ are indicated with 
a transpose. Conventions in probability lead us to make exceptions for left 
eigenvectors of G such as ~r and a, which are row vectors. On another point of 
notation, the partition (2.1) allows us to refer to the entries of G without using 
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complicated subscripts. For  example, we prefer w T n ( w 2 ,  w 3 , . . .  ,Wn)  to 
(g12, gl 3 . . . . .  g in) ,  although they mean the same thing. 

Theorem 1 below is the good-conditioning property of Problem II promised in 
the Introduction. It includes the observation that the machine data for Problem II 
will always represent a true irreducible generator; Problem I was not robust under 
rounding errors in this sense. 

(2.4) 

and 

Theorem 1. Let gij, i 4= j, be the @diagonal entries of an irreducible generator G of 
order n, and suppose that the numbers gij, i 4: j, satisfy 

(2.3) KLgij "( gij ~ Kugij, i 4-j , 

where 0 < KL < 1 < Ku. Then gij, i 4= j,  are the off-diagonal entries of an irreducible 
generator G, and the steady-state vectors ~ and ~ of G and G satisfy 

~ )  n / < ~ j < \ ~ /  re/, j =  1,2 . . . . .  n ,  

\Kuu,/ n ~ = ~ = \ K L ]  --'nk j , k = l ,  2 . . . .  , n .  

Proof G is defined uniquely by setting its off-diagonal entries to be the gi]s, and its 
diagonal entries to be the negatives of the off-diagonal row sums. Inequality (2.3) 
implies that Oij > 0 for i 4= j, since KL > 0, and therefore G is a generator. Irreduci- 
bility of a generator is determined by the pattern of zeros and nonzeros in its 
off-diagonal entries, and, since this pattern is the same for G and G (because in fact 
KL > 0), it follows that G is irreducible. 

Suppose now that G and G differ only in their first row, and that (2.3) holds. 
When we partition G as in (2.1), the matrix B is the same as for G, while the vector 
w T is different. We denote the new w T vector by r? x. Since F = - B-1 is the same 
~ r  both generators, we may identify left eigenvectors of eigenvalue zero for G and 
G according to (2.2) as 

a = (1; wTF) and fi = (1; ~TF) .  

By definition, al = ~il = 1. For the other components of 8, with fij  denoting the 
(i,j)-entry of F, we deduce from (2.3) that 

and 

g~j = ~ ~i~j <= Ku ~, wj f i j=  Kuaj, j >  1, 
i=2 i=2 

n 

Clj = ~t)ifiij ~ K L  E w j f i j  = KLai, J > 1 . 
i=2 i=2 

Combining these we have 

(2.6) KLaj < it I < Kvaj, j = 1, 2 , . . . ,  n .  
n n With s = ~1 aj and ~ = ~1 aj, it follows that 

(2.7) KLS <- ~ <-- KuS �9 
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As n~ = a / s  and ~ = ~/~, we deduce from 

(2.8) ~z~ < ~j < n~, 

Similarly, as ~/~k  = a /ak  and ~/ffk = aj/ak, 

= ~ - =  - - ,  j , k =  1,2 . . . . .  n .  (2.9) \ Ku / rCk rCk TCk 

Theorem 1 now follows upon changing the rows of G into those of (~ one row at 
a time, each time invoking the bounds given by (2.8) and (2.9). [] 

(2.6) and (2.7) that 

j =  1 , 2 , . . . , n .  

we deduce from (2.6) that 

When KL and Ku are both close to 1, hypothesis (2.3) implies that the off- 
diagonal entries of G and (~ are close in the sense of relative error. To clearly relate 
Theorem 1 to the conditioning of Problem II, we give a special case. 

Corollary 1. Let 9ij, i 4: j, be the @diagonal  entries of  an irreducible generator G of  
order n, and let Oi~ be close to 91~ for i 4: j in the sense of  entrywise relative error: 

I glj - -  g i j ]  <: ggij, i 4: j ,  

where O <= e < 1. Then 0ii, i 4: j, are the off-diagonal entries of  an irreducible gener- 
ator G, and the steady-state vectors ~z and ~ of  G and G satisfy 

~j = \ l ~ - e /  - 1 = 2 n ~ + O ( e 2 ) ,  j =  1,2 . . . .  , n .  

Proof The hypothesis is equivalent to (2.3) with KL = 1 -- e and Ku = 1 + e. The 
conclusion follows from (2.4) by routine manipulations. [] 

If 0ij denotes the floating-point approximation to the real number glj, then the 
hypothesis of Corollary 1 holds with e = u, the unit roundoff in floating-point 
arithmetic. The conclusion is that the machine data has a steady-state vector which 
is within an entrywise relative error of only about 2nu of the true steady-state 
vector. 

We digress to give a simple probabilistic insight into these results, for the reader 
familiar with Markov chains. Divide the path of the Markov chain with generator 
G into regenerative cycles according to visits to state 1. Classify these cycles 
according to the state first visited after state 1. Thus a cycle of type j > 2 begins 
with a visit to state 1 followed by a visit to state j. The relative frequency of cycles of 
typej is proportional to gl~ = w~. Thus, small relative changes in the wi's will result 
in small changes in the relative frequencies of the different types of cycles, and so 
the steady-state probabilities will experience small relative changes. 

Theorem 7.2 and its corollary in Seneta [9] contain the idea of Theorem 1. 
However, Theorem 1 allows larger relative perturbations on the diagonal than 
Seneta's results do, but gives essentially the same conclusion. Theorem 5 of Meyer 
and Stewart [8] characterizes the sensitivity of the steady-state vector to perturba- 
tions in the entries of a stochastic matrix P, but does not explicitly treat relative 
perturbations of the kind considered here. Insensitivity of the steady-state vector to 
small relative perturbations in the data is a theme of [11-13, 15, 16], but some 
block structure is assumed. Normwise perturbation analysis [1, 8, 13] leads to 
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consideration of the norm of the Drazin inverse of G as a measure of the condition- 
ing of Problem II. The conclusions of this analysis suffer from the drawbacks of 
norms mentioned at the end of the Introduction. 

As we stated in the Introduction, the G T H  algorithm brings to fruition the 
possibility engendered in Theorem 1 of computing the steady-state vector with 
good entrywise relative error. In the next section we describe the G T H  algorithm. 
We remark that Gaussian elimination with floating-point arithmetic is an unstable 
algorithm for Problem II. This is because, while Theorem 1 assures us that the 
solution is well determined by the floating-point representation of the data, 
Gaussian elimination may introduce substantial errors into the computed solution 
[6, 5]. See [14, 16], where this point is illustrated in the light of a conditioning 
property for the nearly-uncoupled case. 

We close this section with an example showing that perturbations of the 
approximate magnitude of the bounds in (2.4) and (2.5) are possible under (2.3). We 
adopt  the setting of Corollary 1, as it is easy to work with. Consider the order-n 
generator G, defined by 

- 1 - e  1 + ~  0 -.- 0 0 

M + I  
(M--1) (1- -  M _  1 e) --M(1--e) 1+~  --- 0 0 

M + I  
( M - 1 ) ( 1 - - M _  1 e) 0 --M(1--e) -.- 0 0 

M + I  
(M - 1)(1 e) 0 0 . . . .  M(1 - g) 1 + 

M - 1  

M(1 - e) 0 0 .-- 0 - M(1 - e) 

where M, e > O. The maximal entrywise relative perturbation in the generator 
G, compared to Go is (M + 1)e/(M - 1). The steady-state probabilities are given by 

7z~(e) = C f  l + e y - 1  \~ ,~ f -Ze )J  ' j = l ' 2 ' ' ' ' ' n '  

where C is determined to make the sum 1. Let us take esmall and M large, in such 
a way that M = e -2. Then C = 1 + O(e2), so that C has no impact on the second 
non-zero term in the expansion of 7zj(e) in powers of e. Moreover, the maximal 
entrywise relative perturbation (M + 1)e/(M - 1) becomes e + O(e 2) , and so the 
hypothesis of Corollary 1 is satisfied (ignoring higher order terms in e) with G = Go 
and G --- Q .  A little calculation gives 

I~j(e) - ~(0)1 
~j(o) 

- 2 ( j -  1)e + O(e2) .  

For  e small, the maximal relative perturbation in the steady-state vector is in its 
n-th component,  and is 2(n - 1)e + O(g2). Thus the bound 2he + O(e z) of Corollary 
1 is nearly best possible. The same example shows that the bounds (2.4) and (2.5) 
are nearly best possible. 
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3. The GTH algorithm 

Let us point  out  some of the features that  may  be exploited in solving Prob lem II. 
More  details may  be found in [5]. The  question is to find a nonzero  vector  a with 
aG = 0, where G is an irreducible generator.  Let us factorize G in the form LU,  by 
Gauss ian  elimination, where U is unit upper  t r iangular  and L is lower triangular.  
In doing this, no pivoting will be necessary [3], and the last column of L will be 0. 
As U is invertible, the system aG = 0 reduces to the t r iangular  system a L  = 0. This 
is solved by setting a,  = 1 and back-substi tut ing.  There results a left eigenvector 
a of  G with eigenvalue zero, which only has to be scaled to identify the steady-state 
vector. Note  that  only one t r iangular  system has to be solved. 

Consider  the LU-factor izat ion of the genera tor  G, carried out without  pivoting. 
This produces a series of  matrices of  decreasing order  G = G ~1), G (2), G (3) . . . . .  
where G (k) denotes  the matr ix  to the south-east  of  the k-th pivot  entry (and 
including that  pivot  entry), just  before the k-th Gauss  t ransformat ion  [7] is applied. 
These may  be defined inductively as follows. - / - ,  (k) Having  defined t ,  , we part i t ion it as 

T 

where Bk is of  order  n - k. We define G ~k+l) by 
T 

13kW k 
(3.1) G ~k+l) = Bk + - -  

O~ k 

It is easily verified that  G (k + 1) inherits the proper ty  of being a genera tor  f rom G (k). 

Therefore we have 

(3.2) ~ k =  ~ Wk~,  k =  1 , 2 , . . . , n ,  
j = k + l  

where Wki is the (j -- k)-th entry of the vector  Wk. 
Back-subst i tut ion now proceeds as follows. We set a ,  = 1, and, for 

k = n - 1, n - 2 . . . . .  1, calculate ak according to 

(3.3) ak = - -  ajv jk ,  
O~k j = k +  1 

Vjk being the (j - k)-th entry of  the vector  Vk. I t  remains only to scale the a~'s to find 
the rc/s. To  do this, set 

(3.4) s = a l + a z + . . . + a , ,  and ~ = a j / s ,  j =  1,2 . . . . .  n .  

The G T H  algor i thm follows formulas  (3.1) - (3.4). Let  us describe it in steps. 

G T H  A L G O R I T H M  
F o r k =  1 , 2 , . . . , n - 1  

Step 1: Calculate ak according to (3.2). 
Step 2: Calculate the off-diagonal entries of (3.1). 

Set a, = 1. 
F o r k = n - l , n - 2  . . . . .  1 

Step 3: Calculate  ak according to (3.3). 
Step 4: Calculate the gj's according to (3.4). 
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The simple Step 1 is what distinguishes GTH from standard Gaussian elimination. 
It allows one to avoid computing the diagonals in (3.1) by subtraction, and so 
ensures that no cancellation occurs in the algorithm. 

The matrix G tk) has a probabilistic interpretation. It is the generator for the 
underlying Markov chain observed only while it is in the reduced state space 
{k, k + 1 . . . .  , n}. For  this reason, the GTH algorithm is sometimes called the 
State-Reduction Algorithm, although this interpretation applies whether or not 
(3.2) is used to compute the pivots. For  more on the probabilistic interpretation of 
Gaussian elimination, see [4]. 

4. Error analysis 

If one attempts a simple forward error analysis of Gaussian elimination, rounding 
errors appear to grow exponentially. This is because no account is being taken of 
the conditioning of the problem. Backward error analysis [18] allows one to 
separate the conditioning of the problem from the stability of the algorithm. 
Problem II has been shown to be well-conditioned irrespective of the data, and so 
a forward error analysis of GTH may be possible. Here we give such an analysis. 
We prove that the computed steady-state probabilities are accurate to a relative 
error of O(n3)u, where u is the unit roundoff in floating-point arithmetic. For 
example, with u = 5 x I0-14, a typical value for double-precision arithmetic, our 
analysis guarantees that for a 1000-state Markov chain every steady-state prob- 
ability, no matter how small, is computed with about 4 correct digits (see 
Theorem 2). For a chain with 10,000 states, one accurate digit is guaranteed. 
Statistical effects in rounding error accumulation lead us to expect much better 
accuracy. 

Our analysis also shows how the accuracy of the algorithm might be improved 
at very little cost. We find that the rounding errors in computing the pivots as sums 
in (3.2) are responsible for the leading-order term in our error bound. If these pivots 
are accumulated in double precision (or at least higher precision), we find that the 
computed steady-state probabilities are provably accurate to a relative error of 
only O(n2)u. This compares quite well with the best possible accuracy, which is 
about 2nu according to Theorem 1 and the example following it. It is achieved at 
an additional cost of only O(n a) double-precision additions, which is negligible 
compared to the overall cost of O(n a) operations. 

In what follows, a "hat" will indicated a value computed in floating-point 
arithmetic. In assessing floating-point errors, care must be taken to fully exploit 
nonnegativity and the absence of subtraction. The main consequence of this is that 
the result of a sequence of floating-point operations, including additions, will have 
good relative accuracy. The reason for this is, in essence, that if each term in a sum 
of nonnegative numbers is approximated to a relative error of e, then the (exact) 
sum of the approximations will have a relative error of at most e also. Following 
Appendix 3 of [10], we write (k )  for a quotient of the form 

(1 + e~)(1 + e2)...(1 + e~) 

(1 + 6x)(1 + 52)---(1 + ~ ) '  

where each ei and tJl is no greater in magnitude than the unit roundoff u, and 
a + b = k. As explained in [10], these symbols provide a convenient way of keeping 
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track of relat ive-error bounds.  For  example,  we have the useful formalism 
( k l ) ( k 2 )  = ( k  1 + k2).  Moreover ,  assuming that  ku < 0.1, we have 

(4.1) ( k )  = 1 + e, where [e[ < 1.06ku. 

See [7, 10, 18] for the basics of rounding-error  analysis. O u r  first result is 

Theorem 2. For every instance o f  Problem I I  o f  order n with floating-point data, the 
G T H  algorithm computes the solution with accuracy characterized by 

r2/= (2~b(n)+ n)rt./, j =  1,2 . . . .  , n ,  

where q~(n) = (1/3)(2n 3 + 6n z - 8n). l f  (249(n) + n)u < 0.1, then 

1 ~ / -  rci]< 1.06(2qS(n) + n)u, j = 1, 2 . . . . .  n . 
~j 

Proof  It  simplifies things a little to first address the accuracy of the left eigenvector 
a computed  at Step 3 of  G T H ,  rather  than the ul t imate solution re. Recall that  aj is 
7tire,, so that  a ,  = 1. In this proof,  we refer to a left eigenvector o f  a generator whose 
last entry is 1 as an a-vector. We construct  a function ~b such that  for any instance of 
Problem II  of order  m in f loating-point  form, when its a-vector  a is computed  by 
G T H  in f loating-point  ar i thmetic  with unit roundoff  u, the computed  a-vector  is 
entrywise within a factor of  (q~(m)) of the true a-vector:  

(4.2) ~ j = ( ( b ( m ) ) a j ,  j =  1,2, .  . . , m .  

This implies, upon  taking account  of the addit ional  inaccuracy in the ~j's due to the 
m - 1 addit ions and one division in Step 4 of G T H ,  that  

~ = (2q~(m) + m)rc j ,  

from which Theorem 2 follows by (4.1). 
It remains to prove (4.2) for a suitable function ~b. The  p roof  is by induction on 

m. We may  define 4~(1) to be zero, as G T H  assigns the correct value 1 to aa when 
n =  1. The induction hypothesis  is that  we have assigned values to 
~b(1), ~b(2) . . . .  , ~b(n - 1), for some integer n > 1, in such a way that  (4.2) holds for 
m = 1, 2 . . . . .  n - 1. We show how to assign a value to ~b(n) so that  (4.2) continues 
to hold for m = n. In this way, 4~ is defined so that  (4.2) holds for all m. 

Hav ing  set out our  induction hypothesis,  let G be an irreducible f loat ing-point  
generator  of order  n. To  minimize subscripting, we part i t ion G using the nota t ion  
of (2.1). Step 1 of  G T H  is to compute  the pivot  c~ according to equat ion  (3.2). The 
sum of n - 1 nonnegat ive  f loating-point  numbers  is computed  with a relative error  
characterized by 

(4.3) fi = (n  - 2)c~. 

Next, according to Step 2, the off-diagonal entries of G ~2) are computed .  A super- 
script (2) will identify quanti t ies associated with G {2). Entrywise, the formula  is 

(4.4) ~(2) vlwj 
Yij  = g i j +  , i ~ j ,  i , j = 2 , 3  . . . .  , n .  

o~ 

As ~ is computed  with the error  described in (4.3), and three more  rounding errors 
are in t roduced in the multiplication,  division, and addi t ion needed to compute  
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g(2) i j ,  we see that  the relative error  in comput ing  the off-diagonal entries of G (2) is 
characterized by 

(4.5) -~2) (n  + "" r gij = 12gij  , i : ~ j .  

Of course, we are using the fact that  everything is nonnegative.  
N o w  we have shown that  the off-diagonal entries of G (2) a r e  within a factor of 

(n  + 1) of those of  G (2). Thus  inequali ty (2.3) holds with K v  and KL being the 
upper  and lower bounds  on the range of (n  + 1), which are (1 - u) -("+1) and 
( 1 -  u) "+1, respectively. Therefore,  by inequality (2.5) of Theorem 1, the true 
a - v e c t o r  a t z ) = ( a 2 ,  a3 . . . . .  an) of G (2) is entrywise within a factor of 
(2(n - 1)(n + 1)) = (2(n 2 - 1)) of the true a-vector  o f G  Cz). No te  that  in applying 
(2.5) G t2) is of  order  only n - 1. 

The  G T H  algor i thm continues now by simply applying the G T H  algor i thm 
itself to the order-(n - 1) genera tor  G tz). This allows us to argue informally as 
follows. In the preceding paragraph ,  we saw that  the true a-vector  a (2) for G (2) is 
close to that  of  G (2). Since the latter matr ix  is of  order  only n - 1, the induction 
hypothesis  assures us t h a t  the true a-vector  of  G(2) is computed  accurately. Thus  
the computed  a-vector  of  G (2) is close to the true a-vector  of G (2). Let us repeat  this 
argument ,  but  now quantifying the accuracy. F r o m  the preceding paragraph ,  the 
true a-vector  of  G (2) is entrywise within a factor of ( 2 ( n  2 - -  1)) of the true a-vector  
of  ~r By the induction hypothesis,  the computed  a-vector  for G(2) is entrywise 
within a factor  of ( q ~ ( n -  1)) of the true a-vector  of G (2). Combin ing  these 
statements,  we find that  the a-vector  a (2) o f  G (2) is computed  accurate  entrywise to 
a factor  of (~ (n  - 1) + 2(n 2 - 1)). 

As a = (a l ;  a(2)), it remains only to assess the error  in comput ing  al  f rom the 
back-subst i tu t ion equat ion (3.3) (Step 3 of GTH) .  The  accuracy inherited by ~ia is 
easily seen to be character ized by a factor of  (~b(n - 1) + 2(n 2 - 1) + 2n - 2) ,  
taking account  of the n - 1 multiplications,  n - 2 additions, and the division by 
the inaccurate  ~ of (4.3). F r o m  this we conclude that  the following choice of  ~b(n) 
preserves (4.2) for m = n as long as ~b(n - 1) does for m = n - 1" 

~b(n) = ~b(n -  1) + 2n 2 + 2 n -  4 .  

With the initial condi t ion ~b(1) = 0 this determines an allowable choice of ~b(n) for 
all integers n > 1: 

(4.6) ~b(n) = �89 3 + 6 n  2 - -  8 n ) .  

We have proved  (4.2) with this choice of q~, and Theo rem 2 follows. [] 
We show below that  the accuracy of the computed  pivot  02 is critical to our 

overall  assessment of  the accuracy of the compu ted  steady-state  vector. There are 
several considerat ions which would suggest either that  (4.3) is an overes t imate  of 
error  in ~, or  that  this error  can be reduced cheaply. Fo r  example  

�9 I f  we calculate the sum in (3.2) in double  precision, or  at least in somewhat  
greater  precision, a2 will be accurate  to a factor of  (1 ) .  Since only abou t  n2/2 
addit ions are expended in comput ing  these pivots th roughou t  the G T H  
algori thm, as against  O(n 3) opera t ions  overall, the extra  cost of  high- 
precision compu ta t ion  of the pivots  is negligible. 

�9 By summing  the w's in (3.2) in pairs repeatedly,  the pivot  will be computed  
accurate  to a factor of  ( l og2n  + 1), compa red  to the ( n -  2 )  of  (4.3). 
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Summing in increasing order of magnitude is another  accuracy-improving 
device. 

�9 Statistical effects in the accumulat ion of  rounding errors in (3.2) suggest that  

the error factor in c2 will be closer to ( x / n )  than to (n  - 2). 
�9 If the generator  satisfies gi~ = 0 for j  > i + K, with K ,~ n, as is sometimes the 

case in modeling, then at most  K - 1 nonzero entries must be added for each 
pivot, giving an error  characterized by a factor of ( K  - 2). This applies to 
the block-tr idiagonal examples of Heyman  [6]. 

We now repeat the analysis leading to Theorem 2, with the assumption that  the 
pivot sums in (3.2) are accumulated in double precision. Our  induction hypothesis 
is that the G T H  algorithm, with this improvement,  computes  the a-vector of any 
floating-point generator  of order m < n with accuracy characterized by 

(4.7) fit = (~k(m))aj, j = 1, 2 , . . . ,  m ,  

where ~(1), ~(2) . . . . .  ~b(n - 1) are given values. Our  goal is to identify a value for 
O(n) such that (4.7) continues to hold for m = n. The only difference in this analysis 
is in our  assessment of the error  in the pivot 02, which, in contrast  to (4.3), is now 

~=<1)~. 

A routine assessment of  rounding error  for (4.4) shows that the relative error in 
comput ing the off-diagonal entries of  G (2~ at Step 2 of G T H  is characterized by 

(4.8) ~(2) (2) gij = < 4 > g i ~ ,  i # j .  

Therefore, by inequality (2.5) with KL = ( 1 -  u) 4 and Ku = ( 1 -  u) -4, the true 
a-vector a (2) = (a~, a3 , . .  �9 a,) of G ~2) is entrywise within a factor (8(n - 1)> of  the 
true a-vector of  G r Note  that G (2) is of  order  n - 1 in applyin~ (2.5). 

By the induction hypothesis, the computed  a-vector for G r is entrywise 
within a factor of  ( 0 ( n - I ) )  of the true a-vector of ~r It follows that 
a ~2> = (az, a3 . . . .  , a,) is computed  accurate entrywise to a factor of  0t(n - 1) + 
8 ( n -  1)>. It remains to assess the error in comput ing  al by back-substi tution 
according to (3.3). The relative error  inherited by 61 is characterized by a factor of  
(O(n - 1) + 8(n - 1) + n + 1>, by routine error  analysis. F rom this we conclude 
that the following choice of 0(n)preserves (4.7) for m = n as long as ~/(n - I )does  
for m =  n -  1: 

O(n) = ~k(n-  1) + 9 n - -  7 .  

With the initial condit ion 0(1) = 0 this determines O(n) for n > 1: 

(4.9) ~k(n) = �89 2 - 5n - 4).  

We have proved (4.7) for all m with this function ~b. Arguing as we did just following 
(4.2), we summarize our  results as 

Theorem 3. For every instance o f  Problem I I  o f  order n with floatino-point data, the 
G T H  algorithm with pivots totaled in double precision computes the solution with 
accuracy characterized by 

~ j = ( 2 ~ ( n ) + n ) r t j ,  j = l , 2 , . . . , n ,  
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where ~k(n) is 9iven by (4.9). l f  (2O(n) + n)u < 0.1, then 

[~J - 7tit < 1.06(2~,(n) + n)u < 9.54nZu. 
7rj 

In Sect. 2 we saw that  the relative error due to initial roundoff  is in the worst case 
about  2nu. The bound  given by Theorem 3 is greater by a factor of only about  5n. 
Unde r  the weight of O(n 3) single-precision operations,  this worst-case accuracy 
seems very good. 
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