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Summary. This paper  deals with the problem of obtaining numerical estimates of 
the accuracy of approximations to solutions of elliptic partial differential equa- 
tions. It is shown that, by solving appropriate local residual type problems, one can 
obtain upper bounds on the error in the energy norm. Moreover, in the special case 
of adaptive h-p finite element analysis, the estimator will also give a realistic 
estimate of the error. A key feature of this is the development of a systematic 
approach to the determination of boundary conditions for the local problems. The 
work extends and combines several existing methods to the case of full h-p finite 
element approximation on possibly irregular meshes with elements of non-uniform 
degree. As a special case, the analysis proves a conjecture made by Bank and 
Weiser [Some A Posteriori Error Estimators for Elliptic Partial Differential 
Equations, Math. Comput.  44, 283-301 (1985)]. 
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1. Introduction 

In this work we address the problem of computing a posteriori error estimates for 
approximations to elliptic boundary value problems. Although we have in mind 
adaptive h-p finite element computations, the analysis also includes various other 
types of approximation. 

The error estimates are based on local residual problems similar in type to those 
discussed in [5, 6, 11, 12-]. There are, however, significant differences in the approach. 

Although the boundary value problem which we are approximating may be 
associated with an operator of the form 

Lu =- - V. (a Vu) + cu 
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the local residual problem will always be Poisson's equation. This means that the 
error estimation analysis can be done independently of the analysis of the particular 
form of the operator L. More importantly, error analysis routines can be 
developed which exploit properties of the Laplace operator to develop a very efficient 
routine for solving the local problems. The first main result is to show that the error 
estimator always overestimates the true error. Essentially, we do not need to make 
any further regularity assumptions on the true solution other than u E H~(f2). 

In order to show that the estimator does not give an unduly pessimistic 
estimate, further assumptions are made on the source of the approximation Uh. In 
particular, we assume uh is obtained by an h-p adaptive finite element computation, 
possibly on irregular meshes with elements of differing shapes and non-uniform 
polynomial degree. A preliminary analysis reveals that the estimate can become 
very pessimistic unless the boundary conditions for the local problems are chosen 
carefully. 

The question of boundary conditions is examined in detail with the result that 
a scheme proposed by Bank and Weiser [5] for piecewise affine approximation on 
triangular elements is extended to the case of full h-p approximation on irregular 
meshes. It is of interest to not6 that in determining the boundary conditions one 
works on the same element patches which occur in the related works of Babu~ka 
et al. [3, 4]. As special cases of our results, we obtain the result conjectured in Bank 
and Weiser [5] that a certain error estimator always overestimates the true error, 
and provide theoretical support for the heuristic results of Kelly [9]. 

2. Notations and preliminaries 

Let f2 denote an open bounded Lipschitzian domain in IR 2 with a piecewise smooth 
boundary 0f2. The boundary consists of a finite number of smooth arcs meeting 
with internal angle 0 ~ (0, 2n). 

The Sobolev space Hm(f2), m ~ Z +, is a Hilbert space defined as the completion 
of C~(O) in the Sobolev norm 

(2.1) It u [Im, t~ = ~ID"u[Zdx 
I~ mr2 

where ~t = (~,, ct2), ~ti~2g +, ]~t[ = ~1 + ~2 and 

(2.2) O~u - 
41 ~2 ax 1 ax 2 

is the distributional derivative. H"(O)  is equipped with the inner product 

(2.3) (u,v)m,a= ~ ~D'u 'O~vdx  
[~tl < ra t? 

We use the notation H~ = L2(f2) in the case m = 0. Let ~ be a partition of 
t2 into a collection o f N  = N ( ~ )  subdomains OK with boundaries 0f2r, 1 < K < N, 
such that 

(i) N ( ~ )  < 

N 

(ii) ~ = U ~2~, f2K C~ f2L = ~ ,  K + L 
" K = I  
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(iii) Or are Lipschitzian with piecewise smooth boundaries Of 2r 
(iv) FKL = t3f2r C~ aOL, 1 < K, L < N are sets consisting of a finite number p(K, L) 

of components such that 

p (K, L) 

r,,L = U r~'L ~ SKL 
M=I 

where FruL are smooth arcs and SKL is a set of isolated points such that 

p (K, L) 

U FMLnSKL = ~ O < K , L < N  
M=I 

We set FoK = OOK ~ Of 2. Notice that 

aoK = U 
L , M  

With these notations, it is possible to unambiguously characterize the boundary 
segments of the partition as 

N 

(2.4) E = E(~)  = U FfL 
K , L = O  

K > L  
I < M < p ( K , L )  

The boundary segments lying on the interior of O are denoted by 

N 

(2.5) E, = E , (~ )  = U FMrL 
K , L = I  

K > L  
1 < - M < - p ( K , L )  

The outward pointing unit normal vector on Oxc is denoted by nK. Let 

+1, K > L  
O'KL = - -  O'LK = - -  1, K < L 

and define n(s) = trKLnr(s ) = trLrnL(s), s~ F~L. That is, n points outward from the 
subdomain with the largest index. 

Throughout, if v is some function defined on O, then its restriction to OK is 
denoted by 

(2.6) vr=--vIoK, 1 < K < N 

In addition to the global Sobolev spaces and norms above, we introduce the 
broken Sobolev spaces Hm(~): 

(2.7) H " ( ~ )  = {veL2(O): VKeH"(Or); 1 < K < N} 

equipped with the norm 

(2.8) Ijvllm,~= {r~= , I 2t2,, 
/)K } i/2 

Evidently H"(f2) = H " ( ~ )  for m e N  and 

(2.9) H~  = L2(~)  -- L2(f2) = H~ 
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Let L2(E) denote the space of classes of square integrable functions defined on 
E with the norm 

i 
]1/2 

N 
(2.10) I1~o IIo, e = Z I [ eKLM 12 ds 

K,L=O Fx~ 
K>L 

I <=M<p(K,L) 

and inner product 

N 
(2.11) (r Z)o,E = E ~ u U q~Kr" ZKL ds 

K,L=O FKML 
K>L 

I<=M<p(K,L) 

where tp~L = q~lr7 L is the restriction of q~ to F~L. Analogous inner product and 

norm are defined on L2(EI). 
Throughout  let y denote the various trace operators associated with mappings 

to the boundaries or segments of boundaries [1]. For any curve F, the space 
H1/E(F) is the completion of C~~ in the norm on H~(F) given by 

(2.12) 

where 

W 2 2 [1/=,r = Ilwlli/=,r + Ilwllo, r 

(2.13) w12/2 r = S ~ Iw(x(s)) - w(x(t))l z dsdt 
r r Ix(s) - x(t)l 2 

It is well known that y E s H~(OQK)) and is surjective. Finally, we denote 
the space of continuous linear functionals on H1/2(F) by H-1/2(F). 

3. Model problem 

Consider the following boundary-value problem for given data f6LE(Q) and 
g ~ L2 (IN): 

L u = f  in • "] 

(3.1) ~ u = 0  on Fo 
Ou 

a~n = 9 onFN 

where 

(3.2) 

and 

(3.3) 

Lu =- - V. (a Vu) + cu 

I"NnFD= ~ ,  fNUfD-----~Q 
We shall assume there exist constants a, d, c and ~ such that the coefficients 
a e C l ( O )  and c e C ( ~ )  satisfy 

O < a < a ( x ) < &  O < c < e ( x ) < ~  f o r x ~ O  
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The impor tan t  case of  c -= 0 is therefore excluded but will be discussed in the 
concluding remarks.  

Let 
V(~2) = {veHl(~2): yv = 0 on I'D} 

Then u e  Vff2) is the weak solution to (3.1) if 

(3.4) a(u,v) = l(v) Vve V(f2) 

where 

(3.5) a(u, v) = ~ (aVu .Vv + cuv)dx 

and 

(3.6) l(v) = ~ fv  dx + ~ gTv ds 
rN 

Under the above hypotheses  a: V(12) x V(~2) ~ IR is a cont inuous  and coercive 
bilinear form and l: V ( f 2 ) ~  IR is a cont inuous linear form. The  Lax-Mi lg ram 
theorem guarantees  the existence of a unique solution to (3.4). 

It is convenient  to break  the global forms l ( . )  and a ( - , . )  into sums of 
contributions from each subdomain  OK of the part i t ion ~ :  

(3.7) aK (U, V) = S (a Vu. Vv + cur) dx 
QK 

(3.8) IK(V) = ~ fv dx + ~ gTv ds 
Or OQ~ n FN 

so that  

N 

(3.9) a(u, v) = ~ aK(U, V) 
K = I  

and 

N 

(3.10) l(v) = ~, Ix(v) 
K = I  

We shall use the nota t ion  fi" fl ~ to denote  the energy norm 

(3.11) IIvIl~ = ax~ ,v )  

and 

(3.12) II vIIE, K = X/~(V ,  V) 

SO that  

N 

(3.13) 1t~ 2=  Z IIv 2K 
K = I  

Finally, we introduce the space V~, 1 < K < N 

(3.14) VK = {veHl (Ox ) :Tv  = 0 on 0f2K n Fo} 
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and 

(3.15) 

so that, equivalently, 

(3.16) 

Let H(div, O) denote  the space 

M. Ainsworth and J.T. Oden 

V(~)  = {veHI(:~) :  ~/v = 0 on FD} 

N 
v(~,)= [I v,, 

K=I 

(3.17) H(div, O) = {q �9 [LZ(Q)] 2 : div q �9 L2(O)} 

which is equipped with the norm 

2 2 (3.18) I]q[[ 2H(div, a) = ][divqllL2(~) + IIq IIL2r 

Further ,  define the subspace ~ c H(div, f2) to be 

(3.19) ~ =  {qeH(div 'Q)"  ' v n ' q d s = O  Vv�9 V(f2) 

Finally, denote the space of cont inuous linear functionals on V(~)  and which 
vanish on V(f2) by ~ .  

Lemma 3.1. A continuous linear functional # on V ( ~ ) vanishes on V ( O ) (i.e. # �9 J/[ ) if 
and only if there exists q �9 .~ such that 

N 

(3.20) #(v) = ~ ~ vKnr 'qds  
K = I  012 K 

Proof. The result follows in a similar way to Lemma 1 in [14]. [] 

Let alL: FMrL -* ]R be such that  for ser~L 

(3.21) aML(S ) + ~MK(s ) = 1, 0 <= K, L <= N, 1 <= M <= p(K, L) 

For  any v �9 H 2 (~),  ~v~, (v)~,  ~av/On~] and (dv/~n)~ �9 L2 (E) are defined as follows 

(with the convent ion Vo =-- 0) for seF~L and for all FML � 9  

~O~FMz" aKL~VK .3ff ffLK~)U L 

-~- r ~ l  V K "~- {7LK~l V L 
(3.22) On r7 ~ 

<v>~[r7 ~ = ~ V K  + ~ ' V L  

~n ~ rT~ 
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In other words, [v~ is the difference or jump in v between neighboring subdomains 
whilst (v)~ is a linear combination or weighted averaoe of v between neighboring 
subdomains. 

A key result in the development is the following generalization of a result 
(Percell-Wheeler) found in [13]: 

Lemma 3.2. Let v eHZ(~ )  and w e H l ( ~ ) .  Then 

(3.23) 
K = I  c~f2r 0 ,E  1-a t  0 ,E  

Proof. Owing to the regularity veHZ(N),  it follows that n. VveL2(t?f2K) (see [8, 
p. 9, Remark 1.1]) and therefore the duality pairings may be treated as Lebesgue 
integrals over the boundaries of the subdomains. We have 

yg-  Vwx as = 
K=10Ox tJt~K K = I  L=O M = I  FXL ~nK~WKdS 

L,r=O M = I  r,l~nK TwKds+ ~ j ~ - 7 w K d s  
L,K=O M=I F~LUnK 

K > L  K < L  

L,,~=o M=I ,~:~n~ ~w'ds+ K,L=o~ o(,~,,~)M=~/.anL f a~ 
K > L  L < K  

K > L  

Now 

and 

K > L  FKL 

,~,..~n = ~ c~K~+ ,r,~,~ ~ 1-. 

so  since aKL -t- (ILK =-- 0 w e  o b t a i n  

and the result follows as claimed since arL + ~Lr -- 1. [] 
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4. A posteriori error bounds 

Let Uh be any approx imat ion  to the true solution of the model  p rob lem such that  

(4.1) Uh e V(f2) ~ H 2 ( ~ )  

Such an approx ima t ion  might, for example,  be obtained using a finite element 
discretization with f2K as the elements. Conversely,  uh might  simply be some guess 
at  the true solution. 

The p rob lem of interest is that  of numerical ly est imating the accuracy of the 
approx imat ion .  The error  e(x) in the approx ima t ion  at x is defined as u(x) - Uh(X). 
We shall be specifically interested in obtaining bounds  on the error  measured  in the 
energy norm,  ][ e tie. 

L e m m a  4.1. Le t  J : V(f2) ~ IR be defined as 

(4.2) J(v)  = �89 v) - l(v) + a(uh, V) 

Then the error e = u - uh is the unique minimizer o f  J over V(f2). Moreover ,  

(4.3) -�89 Llell~ = J(e)  = inf J(v)  
ve  V(O) 

P r o o f  First, notice that  e e V(f2) since Uh �9 V(~2). NOW 

J(v)  = �89 v) - l(v) + a(uh, V) = �89 v) -- a(u, v) + a(Uh, V) 

= �89 v) -- a(e, v) 

and hence 
J ( e )  = 1 - 2 IJell~ 

Let 2 e IR and ~o e V(f2). Then 

J(e)  - J ( e  + 2co) = - �89 (9) < 0 

and equality holds iff [I 2(o [I~ = 0 ,*~ ;Leo = 0. Thus  J(e)  < J(v)  V v e  V(f2). [] 

Let J~  : V(~ )  ~ IR be defined as 

(4.4) Je (v )  = ~ar(V,  V) -- IK(V) + aK(Uh, V) 
K = I  

Tha t  is, J e  is an extension of J to V ( ~ )  ~ V(O). Let s : V(~ )  x Jr '  ~ IR denote 
the Lagrang ian  functional 

(4 .5 )  ~ , ( v ,  ~ )  = J~(v)  - ~(v) 

associated with the constra int  v �9 V(f2), # representing the Lagrange  multiplier. It  is 
instructive to compare  the Lagrang ian  La e. with analogous  functionals used in the 
analysis of  primal-hybrid finite element methods  [14]. 
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Lemma 4.2. With the above assumptions and notations there follows 

(4.6) - � 8 9  inf sup s (v, #) 
v~ V(~') / ~ , / t  

Proof Let ~ :  V(~)  ~ IR be the functional 

�9 (v) = sup s #) 
,u e Jr' 

and observe that  

r  = ~J(v), 
ff 

V E  V(~2) 

+ oo, otherwise 

inf s u p s  (v,p) = inf cb(v) = inf cb(v) 
ve  V ( ~ )  #~ .1[  w v ( ~ )  v~ V(O) 

= inf J ( v ) = - � 8 9  
v~ V(~)  

Therefore 

where the final step follows from L e m m a  4.1. [] 

Let v e V(~) .  Then applying Green 's  identity on each subdomain ,  we have 

(4.7) a(Uh, V)= aK(Uh,V)= ~ a~nKTVds + ~ vLuhdx 
K = 1 K = 1 Of 2~ 12~ 

Applying L e m m a  3.2 to the first term gives 

N n {~aaUh ~ 
(4.8) a(uh, v) = E ~ VLuhdX + ~" ~_ an _~ (v)= 

K =  I fi  x K , L = O  
K > L  

I < M < p ( K , L )  

+ (a aUh 

n n {WaaUh ~ 
E IvLu.ax+ E f U_ an_U 

K = 1 0 x  K,  L = 1 FK ~ 
K > L  

I < M < p ( K , L )  

+ a N  1 ~v~ ds+ E 
- K = I  

I <=M<=p(K,O)  

since ~ro - 1, f rom (3.22) we obtain  

a U h  1 a N  rvas 

a an / 1 - ~ - -  O, ?Vo = O, <v>~ = va and 

auh 
ana l  a N  ~ 1 7 6  
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N o w  ?,v = 0 o n  F~o c~ Fo a n d  so 

(4.9) Je(v) = -~aK(V,V) -- (fV)o,K + (LUh, V)o,K 
K = I  

+ 
N 

E 
K , L = I  

K > L  
I <_M<_p(K,L) 

 5{ aOUh  +(a dun 

+ -~n - o ~,vcls 
a ~Uh 

K = 1 FKMo 
I < M < p ( K , O )  

=K=I -~aK(V,V)+(LUh--fV)o,K+ ~. ~ a -- a<-M<-o(K,O) rTo ~n g 7VKdS 

since 

N 

+ E 
L = I  

1 <M<-p(K ,L)  

N 

+ E 
K , L = I  

K > L  
I < M < p ( K , L )  

[aC3Uh~ } 
S o, TL 1_ On ~ ~v~ as 

Ouh \ 
S a ~ n / 1  ~v~ds 

Fx~ --g 

K, L = 1 FK ~ 
K > L  

I <-M<-p(K,L) 

Let 

(4.10) rK(X ) = f ( x )  --  Luh(x), 

d e n o t e  the e l emen twise  res idual  a n d  def ine 

f Ou, 

g - a-~n on  

(4.11) RK= ~ Ouh-~ 

Then:  

K = I  L = I  M = I  F~r 

x~f2 K 

FN n FMKo, 1 < K < N, 1 < M < p(K, O) 

o n  F M I < K, L <_ N, I < M < p(K, L) KL ~ ~ - -  ~ ~- 

where  J~,, r : VK ~ IR is g iven  by  

(4.13) J ~ , K ( O K )  = � 8 9  V K )  - -  ( r K ,  V K ) O , K  - -  ~ R K T V K  ds 
aOr 

Not i ce  tha t  it is u n n e c e s s a r y  to def ine R K o n  Fo, since yVK = 0 o n  Fo. 

(4.12) J~(v) = r = l  J~ . r (v )  + \ \  On 1 - ,  o,E 
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Roughly speaking, we may interpret this result as showing that Je  may be 
decomposed into a sum of local contributions from each of the subdomains f2K, 
plus an extra term coupling the local contributions though the regularity v ~ V(~2). 
The significant feature, from our viewpoint, is the possibility of choosing the 
Lagrange multiplier/~ ~ J / / in  such a way that the coupling is severed. If this step 
could be achieved, then it would result in a sequence of local problems rather than 
a single global problem. This situation is highly desirable in practice since the 
computational cost of dealing with a sequence of local problems is much smaller 
than dealing with a single global problem. 

In the following, we focus on the problem of constructing a suitable choice of ~t. 
Making use of the definitions (3.22) we find 

 'a'l ( <'> } (4.14) \ \  On , ~v~ = E E ~ a~n n vds 
1 - a t  O , E  g = l  L = O  FU 1 - a t  

I < M < = p ( K , L  ) xz 

Noting that 

N 

(4.15) dot( = U F~L 
L = O  

I < - M < - p ( K , L )  

we may formally define the linear functional ( on V K by 

N / ~uh t (4.16) ((v)= ~ S a~n vKds 
L = 0  f u  1 - a t  

I < M < p ( K , L )  ft. 

Examining this expression one readily concludes that, in fact, ~ is a bounded linear 
functional on LZ(OOr) and hence afortiori (~ H 1/2(~f2 K). Recalling that the Trace 
Operator 

H(div, Or)~q ~ n~ . q E H- 1/2 (O~2K) 

is surjective, we may construct q ~ H(div, t2K) such that 

( 4 . 1 7 )  ~vKnx.qds= ~ o  ~ /aouh\  
oo~ = \ ~n / l _~vK as 

I < M < p ( K , L )  ~L 

Performing this procedure over each subdomain results in our having constructed 
q~ H(div, f2) satisfying 

N u N S ( c 3uh~)  vKds 
(4.18) E f vKnr.qds = Z Z rr~ \ 1-, 

K = I  00~  K = I  L = 0  
1 < M < p ( K , L )  

(4.19) =(/aOUh)  ) 
1 --~t O , E  

Moreover, suppose v ~ V(I2), then 

N 

(4.20) E I vrnr.qds = ~ vn.qds 
K = 1 O0~t O0 
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and 

/ Ouh 
) x - v ds = (4.21, ( ( a ~ n ) x _ , ~ v ] ] ) o . e : ~ a \ a - ~ n  0 

where the final quantity vanishes since ~:v = 0 on Fo and (a (OUh/~3n)) a -~ = 0 on Fn 
by definition. In view of the above developments, it follows that q ~.~. Applying 
Lemma 3.1 then shows that there exists ft ~ Jr' such that 

(4.22) ft(v) = a On /1  ' [[v]] 
-~ t  O , E  

Hence, returning to J~,, we find we may write 

N 

J~.(v)  = Y~ J~ . , , ( v )  = f t(v)  
K = I  

(4.23) 

and, equally well, 

(4.24) 
N 

~e~(v,u) = Y~ J~,~(v) + ft(v) - u(v) 
K = I  

Therefore, we can obtain the desired decoupling in the case # = ft. 

Lemma 4.3. Let ft~ Jg be constructed as above. Then 

(4.25) Ilell~ < sup - 2 ~ ( v ,  ft) 
ve  V ( ~ )  

where 
N 

(4.26) ~,e~(v, f t )=  ~ Jc,,K(v) 
K = I  

Proof From Lemma 4.2, we have 

- � 89  inf sup .~ee (v, #) _>_ sup inf 
ve  V ( ~ )  #e .At  , u ~  vc  V ( ~ )  

~ (v, ~) 

>__ inf ff~ (v, ft) 
ve  V ( ~ )  

so Ile[l~ ~ sup~v(~ ) -  2~(v , /~ ) .  [] 

One serious drawback of this result as a means of estimating the error is the 
presence of the supremum term which either will not be attained by our computed 
choice of v~ V(~) or the cost involved in calculating a suitable v will prove to be 
disproportionately expensive compared to the computational effort expended in 
obtaining uh itself. This type of difficulty was successfully resolved in [2] using dual 
variational principles (see [7]). 
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Lemma 4.4. Let 

(4.27) W r = { p E H ( d i v ,  f2K): ~ nK .pvds=  ~ Rrvds  Vv~VK} 
Of 2~ 0OK 

In addition, let fgx : WK --* IR be the functional 

(4.28) fix(P) = 1 ~ 1 1_ $ - 2 a a P . p d x  - 2a ~ (V.p  n t- r K ) 2 d x  (4.28) 

where r K is the element residual of  (4.10). Further, let v~ 6 Vr be the solution of  the 
local problem 

(4.29) a~(v*,co) = (rr,CO)o,r + ~ Rr~oods Vc~e Vr 

Then 

(4.30) (i) p~: da = aVv~e WK 

and 

(4.31) (ii) inf J~,K (vr) = J~.K(v~) = ffK(P~) = sup fqK(Pg) 
vl~ ~ V~ PK E W/r 

Proof (i) The existence and uniqueness of v* is a consequence of the Lax-Milgram 
Theorem. The strong form of (4.29) is 

- V.  (a Vv~) + cv~ = rK 

Let p* = a Vv~. Then 

whilst 

i n  ~t'~ K 

~v~ 
a ~ n r =  Rr  on0~2rkF  D 

~v] = 0 on OfaK c~ FD 

V.p~ = cv* - r re  Lz(f2K) 

n r ' p ~ = a o n K = R r  on0f2KkF D 

Thus p* ~ WK. 
(ii) That  v* is the minimizer of J~,r  follows in a similar manner  to Lemma 4.1. 

Moreover v~ ~ V~ so 

J~,K (v~) = ~ar(V~, V*) -- (rK, V~)O,K -- ~ RKyv~ds 
t?Yg~ 

-- ~a~(v~, * - a~(v*, v* ) = -~a~(v7, ,  v~,) 

Furthermore, 

fgK(P*) = _ 12~S al Vv*]2dx _ _~1 !(ev~) z dx = _ ~aK(vr * v*) 



36 M. Ainsworth and J.T. Oden 

Since (~K is strictly concave and quadratic, it suffices to show c~ r is stationary atp~.  
Let 

(4.32) qe{qeH(div,~x)" ~ Tvn'qds=O VveVK} 

and let 2 e IR. Then p* + 2q ~ Wx and 

dNK(P• f 1-q'v* dx 1-( V" rx)dx + 2q)la=o = - - f q)(V.p~ + 

= - S q ' V v ~ d x -  I(V'q) v}dx 
OK f~x 

= - ~ ~ q , ( n K . q ) d s  
O~2x 

This now vanishes owing to (4.32). [] 

Theorem 4.5. Let WK be as in (4.27). Then 
N N 

(4.33) Ilell 2 <=- 2 ~ ~K(P) Vpe I~ WK 
K = I  K = I  

Proof. From Lemmas 4.3 and 4.4 we have 

N N N 

J[ell~ < sup ~ --2J~,K(v)= - -2  ~ inf J~,,K(vx)= - - 2  ~ sup f#,~(PK) 
v e  V ( ~ ' )  K = 1 K = 1 v x ~  Vx  K = 1 p ~  W K 

N N N 

< - 2  ~ f#~(PK) V p ~ e W ~ = - - 2  2 f#K(P) Vpe 1--I WK 
K = I  K = I  K = I  

[] 

The main result, Theorem 4.5, shows that computable error bounds can be 
obtained merely by constructing elements of the linear manifolds WK. Obviously to 
obtain realistic estimates it is necessary to choose p with some care. 

5. Local element residual error estimator 

In this section we propose a strategy for constructing p. Let eK: WK-4 ]R and 
Ax : WK -~ IR be defined as 

(5.1) 

and 

(5.2) 
1 

A2(p) = ~,e(V'P + rx)2dx 
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Furthermore, let 

(5.3) t/2(p) = e2(p) + A2(p) 

Then Theorem 4.5 may be rewritten as 

N N 

(5.4) IleIJ~<= ~ ~I~(P) Vpe ~ WK 
K = I  K = I  

This result suggests that p should be chosen to minimize the local functionals 
~/2(p). Owing to the fact that the functionals and spaces are local this is a 
viable practical method. However, an alternative approach is pursued for reasons 
which will become clear. Rather than minimizing e 2 + A t we shall concentrate all 
our efforts on the term A~ alone. The strategy is therefore to choose p r e  We such 
that 

(5.5) AK(PK) <= AK(qK) VqKe WK 

On subdomains t2r" 0t] r c~ FD # ~ it is always possible to choose PK to give 
Ar(pK) -- O. Specifically we choose PK = V~pK where q~reHl(t~K) satisfies 

(5.6) 

--A~OK=rK in QK "1 

Oq~r 
an - Re on a~2e\FD 

? ( P r  = 0 on OQK r~ 1"o 

The existence of a unique q~r is again guaranteed by the Lax-Milgram Theorem. 
For subdomains ~2K : 0~2e C~ FD = ~ ,  it is in general not possible to choose p r  

such that Ae (PK) = 0. The following result quantifies this statement. 

Lemma 5.1. Suppose O~2 K C~ FD is empty. Let q)K e H1(t2 r ) be such that 

(5.7) 
- A ~ 0 e = r e - c 6 e  in ~2 K 

0 ~ ~  _ 
On K R K o n  OQK 

where 

then 

(5 .9 )  (i) V~oee W e 

and 

(5.10) (ii) Ae(Vcpe ) < AK(qK) Vqee Wr 

Proof (i) First, observe that 

( r K  - c~e)dx + ~ Reds  = 0 
~x Ot2x 
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It is well known that this compatibility condition is necessary and sufficient for the 
existence of a solution ~Or e H 1 (0 K) to (5.7), (q~r being unique up to the addition of 
an arbitrary constant). Now 

V ' ( V ~ K )  = - -  rK + C(~K~ L 2 ( Q K )  

and 
O~OK 

ilK" ~7(~K - -  ~ n ~  - -  RK o n  O~c~ K 

SO V(pK~ W K, 

(ii) Let qK ~ WK be given and define 

~K = V'qK + rK~L2(s 
then 

AE(qK) = f 1-~Z dx 
flK C 

Moreover, since qK ~ Wr, 

 Kdx = .K'q ds + f r dx = 
~2K O~r f2r 

By the Cauchy-Schwarz Inequality, 

RKds + ~ r r d X = 6 K  ~ Cdx 
OQx ~K OX 

6r cdx = ~dx < ~ cdx" ~2dx 
Qx OK C 

and, hence, 

A~(V~or) = 62 I cdx < f 1-r : A~(qr) [] 
~2r flr C 

In view of this result, we choose PK = Vq~r where q~r is any solution of the local 
problem (5.7). The local error estimator on subdomain f2r is taken as 

rl2(Ver) = e2(VtPK) + A2(V~OK) 

where tpK is the solution of (5.6) or (5.7) depending on whether or not Fo 
intersects O•K. 

Theorem 5.2. Let qgr be the solution of(5.6) or (5.7). Then 

N 

(5.11) [lell~ < ~ r/~(V~pK) 
K = I  

Proof. Follows immediately from foregoing arguments and (5.4). [] 

The importance of this result is that no matter how we choose a(s) subject to 
(3.21), the resulting error estimator always gives an upper bound on the true error. 

At this stage it is worthwhile to compare the result with other types of element 
residual methods. Almost all existing methods are associated with the specific 
choice a(s) = �89 

A more fundamental difference between the method proposed here and existing 
methods is that the local problem involves only the Laplacian operator whilst 
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other methods have local problems based on the operator L. While it might seem 
more advantageous to have local problems based on L this actually does not 
appear to be the case. 

One requirement of error estimators which is of paramount  importance is that 
they must be cheap to compute. The local problems are often solved using finite 
elements in an h, p, or h-p mode. The main cost in solving by finite elements is the 
assembly of stiffness matrices and solution of the resulting matrix equation. By 
basing the local problems on the Laplacian one can assemble the stiffness matrix 
a priori on the reference element and keep this as data within the code. Secondly, 
one can easily construct an orthogonal basis for the p-version finite element 
approximation in the case of the Laplacian operator. This not only makes the 
solution of the linear system extremely cheap but allows one to increase the 
accuracy of the approximation of the local problem very simply. As a consequence, 
one can assume that the local problems have been solved exactly as indeed we shall 
do throughout our analysis. 

Lemma 5.3. Let Or be a solution of the local residual problem (5.7). Then 

Proof. From Lemma 5.1 we have 

4(v~K) = a~ f cdx 
~K 

where 
aK J cdx= J rKdx + ~ RKds 

fl~ t~ K OQK 

Now rr = f - LUh = Let ,  so 

3, f cdx = - f g . (age , )dx  + J ce~dx + ~ Rrds 
~ f2 t f2~ Og~r 

} = ~ - -a~n + R  K ds+ IceKdx 
OQ~ t2r 

On 0t2r\Ot2 we have 

(5.13) au Ou, K IVa ]l --a~nK + R r =  --a~nK + a~n~ -~KriL ~?n jJ 

( /  ,~u~ - a ~  
= , - ,  

= . L i a r ) ,  
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By the Triangle and Cauchy-Schwarz Inequalities, 

< ( ~ c d x ' ~ c e 2 d x ) l / 2 + l o ! , ( a ~ n ) 1 _ d s  

and hence 

Ar(Vq~r)--< a.Sce2dx + ~ c d x )  o!a~nx~ 1 [] 

Lemma 5.4. Let OeHl ( f2 r )  and let 

(5.14) 0c = f c O d x / f  cdx  
Qx If~K 

Then there exists a constant C > 0 such that 

(5.15) II O - 0c llo,a, < ChKIO[~,o, 

where hK = diam(f2K). 

Proof. If 0 is constant then O~ - O. The result follows from a standard application 
of the Bramble-Hilbert Lemma. [] 

Lemma 5.5. There exists a constant C > 0 such that 

(5.16) er(Vqor) < ~ a117el2 dx + Chr ~ ce2 dx 
f~K ~r 

Proof. By the Triangle Inequality 

< = ( ~ a l V e l Z d x ) ~ / E + ( ~ l V q ) r - a V e [ 2 d x ) i / 2  

Let a VO = Vq~K - a Ve then 

- V.(aVO) = - Vq~K + V.(aVe) = rK -- C6K + V.(aVe) 

= Le -- C6K + V.(aVe) = c(e -- fir) 
While on af2r\FD, using (5.13) 

O~b Oq~K Oer Oer a-finn 1- ,  
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Therefore 

OK Qx K OK 

OOx Qx 

= -  ~ a,,,.(ade\ ~,ds+ ~ r ~ cdx 
~o,, On / 1 -o, a,, o,, 

Examining the proof of Lemma 5.3 we find 

/a~ 
~K i c d x  = - ~ aK, ds + S c e a x  

and so 
/a~ 

l laV~12 dx = - ~ art. (~ - ~9c)ds + ~ ce(O - q~c)dx 
o. a oo. \ t i n ~ l - ,  o, 

/ de \2  x~l/2 
< o!,, ~ a~n)x-o ,  ds )  tlt~ - t~cIlo, oo,, 

\1/2 
+ c ~ ~e ~ a x )  II ~ - ~,, lt o ,~  

f2~ / 

By Lemma 5.4 and standard Trace Inequalities 

[1~' - @~ IIo, oo. _-< ChKX/2[l@ - qJr Ho, o. _-< Chlg/2]~[l,o,, 

and since a is bounded below by a > 0, 

ir  < 1 S 1 [a 17@[2dx 
~'~ = ~ s 

Therefore 

/ de \2  "~1/2 + ChK(oCe2dx)l/2 ( ~f2 !laVl[l[2dx)l/2<fhl/2(o!x~a~)l_ctds) 

Collecting these results gives (5.15). [] 

The following result complements Theorem 5.2. 

Theorem 5.6. For any #r > 0 there exists C > 0 such that 

(5.17) ?II(V~OK)~ (1 + ].tK)llell2,ox 'b C(1 + #K1)(  hi,;( de ~ [ 2 

+ Ch~ 1] e I[ g,o, + ,ilk art, d s  c dx 

41 
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Proof Follows from previous lemmas and the elementary inequality 

( a + b )  2 < ( 1  +#K)a  2 + ( 1  +#~1)b2  V p r > 0  [] 

This result shows that a necessary condition in order for ~ =  1 ~/2 to realisti- 
cally estimate the true error is that (de/On)~ _~ be sufficiently small. The controlling 
term in the right hand bound is 

de 2 

oo~ \ o n ~ l - ,  I Io~ 

Notice that the denominator behaves like means (OK)- ~ as hr -~ O. In particular 
there is a danger that the right hand side will blow up as hr ~ O, making the bound 
meaningless. 

6. Flux splitting for finite element approximations 

In this section we suppose uh is an approximation obtained using the finite element 
method with ~2 r corresponding to the elements. A related approach has been 
developed in [10]; but the types considered here of finite element schemes may be 
h, p, or h-p versions, including k-irregular meshes [3]. 

Let ~ (~) denote the set of unconstrained or proper nodes in the partition ~ ,  see 
[3] for details. Let A e ~ ( ~ )  and let L A be the degree one basis function associated 
with node A. We suppose La to be scaled so that it takes the value 1 at the node A. 
Let SA denote the patch of elements forming the support of LA 

(6.1) Sa = {QK : QK c~ supp (La) is non-empty} 

and let Qa denote the boundary segments lying on the interior of the support of LA 
(supp ~ LA ) 

(6.2) QA = {FKL: FKL C supp~ or FrL ~ FN n supp(LA)} 

In the following, we shall show how ~rL may be constructed such that the scalar, 

(6.3) A r = 6 r  S c d x =  ~ rKdx + ~ RKds 
fix I2r O~r 

vanishes on all elements f2r: Ot2r c~ Fo = ~ .  
Let A e ~ ( ~ ) .  For  each I2reS a define 

(6.4) R~ = j" rKLadx 
f / t  

and for each/'KL ~ Qa define 

(6.5) 

dub 

pAL = f dub _ g )  ?LA 

K , L # - O  

ds L = 0 
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With each boundary segment FKL ~ QA we associate a constant 2rAL . Notice that 
both FKL and FLK ~ QA and it will usually be found that 2AL 4: 2LAK. 

2A Theorem 6.1. For each A ~ ( ~ )  there exist { jL}r~Q~ such that 

(6.6) (i) 2jAL+2~j~-I VFjL~QA 

(6.7) (ii) 2sA0=I VFjo~QA 

(6.8) (iii) ~ A A 2rLpr L = R~ VY2r~SA 
L:F~:t.EQa 

A A A #~L=2jLPJL, FjLEQa. With this notation, (i)-(iii) become (since Proof. Let 
pjA L A 

= P L J )  

( i )  A ~ A 
]~JL "~ #L J  ~ PLJ 

( i i )  A A #JO ~ PJo 
(iii) ~ A = #KL RA 

L:r~L~2A 

We may eliminate the unknowns #LJ, L < J by using the first two conditions to 
give, for each s K ~ SA, 

(6.9) ~ I~L-- ~, # ~ = R ~ -  ~ P ~ r - ~  P~o 
L : FKL e Q~ L : FrL e QA L: FrL e QA rKoe OA 
O < L < K  L > K > O  L > K > O  

This represents a linear system of ISAI equations in the unknowns #~j, L > J > 0, 
Fr.s e QA- Let Ma denote the underlying matrix for this system. 

We examine the null space ker(M*) of M*.  Suppose ~ElR Is*l is such that 
M* ~ - 0. First, notice that each column of MA (and therefore each row of M* ) has 
precisely two non-zero entries corresponding to each unknown #ffL, J > L > 0 
occurring once in the equations when f2 r = f2j and f2 r = f2 L. Moreover, these 
non-zero entries are + 1 and - 1 .  Therefore 

M * ~ = O ' ~ r = ~ j  VFrj~QA, K >  J > O  

Since supp(La) is connected this is now equivalent to all of the components of 
being the same constant. That is 

ker(M~) = span {2} 

where 2 = (1, 1 . . . . .  1)~IR Is'l. 
By the Fredholm Alternative, a necessary and sufficient condition for the 

existence of solutions to (6.9) is that the data be orthogonal to ker(M*). That is 

(6.10) E RK a =  E E PLAK + E E P~O 
O~eSA O~sS.4 L:Frt.eQ~ fl~eSa fKo~Qa 

L>K 

Now 

R~= ~ rrLAdx 
Qx 

OUh 
= S f L d d x  - ~ (aVUh" VL~ + CUhLa)dx + ~ a 7Lads 

Or Or 0Ox ~tlK 
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and, hence, since i,_)o~s, t~r = supp(La), we have 

Z g~=( f ,  La)--a(Uh, La)+ E o~ a~nKTLA as 
f~eSa OreS~ 

Applying Lemma 3.2 and noting ~L,4 ~ = 0, ( L a )  = LA gives 

Ouh W Ouh Tl . .  
2 ~ a  7LAds= E E I ~ a ~  TLAaS 

a~es. oo, r ~2reSA Fr~eQx F~ 

Z Z ~ ~u~ = P~+ Z Z ~ a~n'/LAS)ds 
OxeSa L:Fr~eQa ~eSa F~oeQa F~o 

L > O  

Moreover, by the definition of the Galerkin finite element solution, there holds 

a(uh, La)=( f ,  La)+ Z Z f gTLads 
a~S,~ Fxo~Q~ r~o 

Combining these results gives 

Z R ~ =  Z Z 
fl~eS., 01:eS,, L:FxL~QA 

L > O  

f dub ) 
P~L + E E f ~a~n- -g  7Lads 

OrES,i FxoEQa F~o 

which in view of (6.5) gives (6.10). It therefore follows that there exists a solution of 
(i)-(iii). [] 

Applying the Fredholm Alternative once again, we deduce that there will be an 
infinite number of solutions in the case of FN c~ supp~ being empty. Otherwise 
the solution will be unique. 

The constants 2~s are used to construct the a~fs used in the average ( �9 )~ and 
( " ) l -~ .  Specifically, for each element f 2 r ~  and for each FKs~Qa, we define 

(6.11) axs(s)= ~ 2~sL~(s) 
A e3r(~): 
rK,~Q~ 

Some special cases of (6.11) for 0- and 1-irregular meshes in two dimensions are 
shown in Figs. 1 and 2. 

Theorem 6.2. Let a~s be constructed as in (6.11). Then 

(i) aKj (s) + ask (s) --- 1, s e Frs : rrs c~ co = 

(ii) I r x d x  + ~ R r d s = O  , V ~ K : ~ K N . F O =  
f~x cWlx 

Proof. Notice that 

1. Let s ~ FKs; then 

~Kj(s) + ~ M s )  = 

since it,s + ).saK - 1. 

La(x) = 1, X ~ K : t ? K m F o  = JZ~- 

Z 2r~ILA(s)+ Z 2sAKLA(s) 
AE~(~) AESr(~) 
F,~ e QA Gx E QA 

Z 
AESr(~) 

(~s  § X~x) LA (s) = 1 
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B 

f~2 

C A 

'F 

D H 

Fig. 1. Flux splitting for 0-irregular mesh 
(2~s are as in Theorem 6.1). 

~ ( ~ )  = ~,~ L~(s) + ~,~ L.(~) 

~23(s) = 2zA3LA(S) + 2c3 Lc(s) 

%4(s) = 2~4La(s ) + 23~ 

~ = "~1LA(S) -{- ;tEl LE(S) 

B 

E ~  ~3 

D 
Fig. 2. Flux splitting for 1-irregular mesh 
(2~j are as in Theorem 6.1). 

~(s)  = ,~'~L~(s) + ,t~,~ L.(s) 

a26(s ) = 2~6La(s ) + 2C6Lc(s) 

. 

R~ ds = - -  

a ~z x 
E ~ a ~  J:r,,,~E �9 ~  ds + ~ ~ # - a~. )~s 

F~oeE FKO 
J>O 

~ A .  ~ ~u~ 1 
Z f 2 '~,,,',AU_a ~ d s - s  2 pf, o 

J:FItjEE Ix., Ac_ar(~) FxocE A6,~r(.~ ') 
J>O FKjeQa fxo~Qa 

= __ ~ ,  A A 
2 K J P K J  

Ae~-(~') 
fx j  E QA 

= -  Z R ~ = - -  ~, .~ r K L a d x = - ~ r r d s  

and, hence, A K =  ~ rKdX + ~ RKds=O. [] 

7. Equivalence of estimator 

While Theorem 5.2 assures that our estimate will always bound the error, it is of 
importance to examine whether the estimator provides an equivalent measure of 
the error. Theorem 5.6 suggests that unless care is taken to control the quantity 
(Oe/On) 1 - , ,  the bound can be very poor. The aim of this section is to show that the 
construction for a in Sect. 6 does control this quantity effectively. 
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In addition to the previous assumptions we shall further assume that OK are 
convex subdomains. Let 

(7.1) .ArK = {OLE:~i~: (~O L t~ ~ O  K = ILK is non-empty} 

Then ~/-K is the set of elements neighboring OK. Let 

(7.2) Irj = [FKj [ = length of Frs 

and suppose that there is a fixed constant K > 0 such that for all f 2 K ~ :  

(i) 

(7.3) -1 < __lKd < K V J ~,/[# K 
rc = hr - 

This means that the meshes should be locally quasi-uniform. 
Furthermore, we assume there is a fixed constant M such that 

(ii) 

(7.4) card(Jffr)  < M Vt2Ke~  

where card(Jffr)  indicates the number of elements in the set .Art. This assumption 
does not exclude the case of k-irregular meshes [3], but it does force the degree of 
irregularity (k) to be finite. 

(iii) Finally, we assume that the number of edges meeting at any given node is 
uniformly bounded independently of ~ .  

The finite element approximation is assumed to be a piecewise polynomial on 
each element OK, but we shall not assume the polynomial degree is constant. 
However, we suppose the maximum degree it5 to be bounded above, independently 
of ~ .  This assumption excludes the p or h-p versions proper (but is satisfied for 
essentially every practical implementation of these versions). 

These assumptions are placed on the regularity of the mesh. The following 
represents an assumption on the regularity of the true solution u: 

There exists a piecewise polynomial n on ~ of degree at most/5 + 1 such that 

(7.5) ][u - ~z[]2 + hlK/2 (a~--~(u - n)) l_~ i. < ,,e [12 

for some constant C independent of ~ .  This is similar to the saturation assumption 
made in [5], but the present version is weaker in that we do not assume C ~ 0 as 

is refined. Finally, due to (7.3), we assume that the following local inverse 
estimates for v e ~ ( f 2 r )  are valid 

Ivlo, r,. < ("11/2 = ~ ' K  IIVlIO,'~. 

Ov < el  jr  x;2 II v II 1,~2~ (7.6) ~ o,r,, 

Ivh, o.  < ChK 1/2 Ilvlla,~. 
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and that the trace inequality holds, 

(7.7) 

Lemma 7.2. Under the previous assumptions 

l ade \  -~, o,E, < CltetlE hlK/2 \ O n / I  = 

for some constant C > O. 

Proof. By the Triangle Inequality 

h~/2/aOe\ _~ o.E,<= Ih~/2(a~--~(u rc)/i_~ o,E, 1'2/ 0 -- + h k/ \a~n(rt - uh) " 
\ a n / ~  / 1 - ~  o.~, 

Now 

h~/2 a (n - uh) < Ch~: a (n - + a (~ -- Uh) 
1--a O, Fx., O,F~.,. O, FKz, 

Using the Trace Inequality gives 

hr a (rt -- Uh) < ChK (I~) ] ~ - Uh [ 2 Z 

<= ChK(l[~) In - uhl~2a. + h~ I In - uhlZ, a.) 

__< C 11 x - Uh II ~,~. 

Summing over all edges gives 

Moreover 

Ilrc - uhl[~ < IIn --  u t l~  + ile[l~ 

Therefore using (7.5) 

h1'2// 8e)1_~ ' o,E,<C(lh~/2(a~nn(U--rO)l_~lo, e + I l z - u l I ~ ) + C l l e l [ e  , ,  = 

< C l l e l l E  [ ]  

Theorem 7.3. Let q~r be a solution of the problem 

- A q ~ x  = r r  in f2 K 
subject to 

7q)K = O on OOr ~ Fo 

I ~aOUh~ 
Oq,~ = - ~ s [  On J on OOK\FN 

Onr Ouh 
g - a-~n on ~?OK c~ Fs 
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(7.8) 

where h-= max hr and 

where ~rs is constructed as in Sect. 6. Then under the above assumptions there exists 
a constant C, independent o f~ ,  such that 

N 

Ilel[~_-< Z e~(V~oK) < Clle[l~ 
K = I  

Proof From Theorem 6.2 we have 6r = 0 on Or" f2r n 1"o = ~ and so 

12x 

Applying Theorem 5.2 gives 

II II 2 <  e E _  

By Lemma 5.5 we have 

N N 

r = l  K = I  

C h 1 / 2 / 0 e \  i, ao. e~(Vq)r)<(l +Ch~)llelgK + K \On/~_~ 

and by Lemma 7.2 we then obtain 

~,~(V~or) _-< (1 + Ch~)II 2 elIE, K + Clle ~ K 

Summing over all elements gives 
N 

Z ~(Vq, rt <-_ C11e11~. 
K = I  

[] 

8. Summary and examples 

The foregoing analysis can be regarded as consisting of two main sections. 
The culmination of the first part is Theorem 5.2 which states that the error 

estimator generated using the local element residual method should always provide 
an upper bound on the true error, so long as the boundary conditions do not entail 
any loss in flux, that is to say, condition (3.21) holds. The most common type of 
element residual method is to choose the symmetrical splitting factor �89 However, 
further analysis reveals that the estimator, while bounding the error, can be very 
pessimistic unless the boundary conditions for the local problem are chosen 
carefully (see comments which follow (5.18)). The upper bound property was 
conjectured by Bank and Weiser [5], on the basis of numerical experiment for the 
case of piecewise linear approximation on triangles. 

The second part of the work then focuses on the determination of boundary 
conditions used in the local problems, and, in particular, on the choice of splitting 
which determines the boundary conditions. It is shown that there exists splittings 
which mean that the term previously leading to gross overestimation will now 
vanish. One by-product of this work is that the "equilibration" used by Kelly [9] in 
one dimension is extended to higher dimensions, more general operators and 
irregular meshes. 
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Throughou t  we have assumed that  the opera tor  is of  the form 

L u  - - V .  (a(x) Vu) + c(x)u  

with c > 0. However ,  if the boundary  condit ions are chosen as suggested so that  
Theorem 6.2 is valid, then the restriction c > 0 can be relaxed, meaning that  both  
the theory and the me thod  extend to problems with no absolute  terms such as 
Poisson problems.  

In the one-dimensional  case, the splitting factors were given explicitly by Kelly 
[9]. Suppose that  the element Ix  is the interval (xK, xK + 1 ). In this case we need only 
choose the splitting at  each node. Let 

g , ,  = 

and define 

O~ K '  K - -1  = "-'~K " 

Using the s tandard or thogonal  projection proper ty  of  finite element approx ima-  
tion one can easily show that  

O ~ r _  l ,  r : 1 - -  O ~ K , K _  1 - -  JK 

This choice of splitting then leads to the satisfaction of the condit ion of the 
condit ion d K = O. In order  to illustrate the necessity of  employing the equil ibration 
procedure,  we consider the simple problem of finding u: 

- u " + u = f  on (0, 1) 
subject to 

u(0) = u(1) = 0 

The function f is chosen so that  the true solution is of  the form 

u(x) = x 7 + l O ( 1 -  x) s - x - 1 0 ( 1 - x )  

We present results of approximat ing  this problem on uniform meshes with ele- 
ments  of uniform degree. The results in Table  1 show the effectivity indices (ratio of 
est imated to true error) in the case of symmetrical  splitting (~ = �89 The results for 
the cases p = 2 and p = 4 are seen to be unsatisfactory owing to the poor  
approx imat ion  to the boundary  flux obtained using a simple averaging between 
neighboring elements. In Table 2, we give the corresponding effectivity indices for 
the splitting described above. 

Table 1. Effectivity indices for splitting ~ = 1/2 

Degree Uniform mesh spacing Degree Uniform mesh spacing 
(P) (P) 

1/4 1/8 1/16 1/32 1/64 1/4 1/8 1/16 

1 t.529 1.272 1.088 1.017 1.000 1 1.003 1 .0007 1.000 
2 5.536 6.238 7.264 7.828 8.127 2 1.001 1 .0002 1.000 
3 1.497 1.211 1.074 1.026 1.007 3 1.024 1 .0006 1.000 
4 4.494 5.395 5.816 5.995 5.670 4 1.167 1.166 1.165 

Table 2. Effectivity indices for splitting 
A r = O  
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F o r  the case of Poisson ' s  equat ion ,  Kel ly  a t t empted  to satisfy the condi t ion  
Ax = 0 by means  of a g lobal  min imiza t ion  of  the funct ional  ~ A  2 over  the spli t t ings 

subject  to the condi t ion  (3.21). I t  was found that  the object ive funct ional  could  be 
dr iven to zero to machine  accuracy  in each case. This comes as no surprise in view 
of Theorem 6.2 above.  Numer ica l  results given by Kel ly  [9] show that  the cons tan t  
appea r ing  in (7.8) is close to unity. 
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