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Summary. This paper deals with the problem of obtaining numerical estimates of
the accuracy of approximations to solutions of elliptic partial differential equa-
tions. It is shown that, by solving appropriate local residual type problems, one can
obtain upper bounds on the error in the energy norm. Moreover, in the special case
of adaptive h-p finite element analysis, the estimator will also give a realistic
estimate of the error. A key feature of this is the development of a systematic
approach to the determination of boundary conditions for the local problems. The
work extends and combines several existing methods to the case of full k-p finite
element approximation on possibly irregular meshes with elements of non-uniform
degree. As a special case, the analysis proves a conjecture made by Bank and
Weiser [Some A Posteriori Error Estimators for Elliptic Partial Differential
Equations, Math. Comput. 44, 283-301 (1985)].
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1. Introduction

In this work we address the problem of computing a posteriori error estimates for
approximations to elliptic boundary value problems. Although we have in mind
adaptive h-p finite element computations, the analysis also includes various other
types of approximation.

The error estimates are based on local residual problems similar in type to those
discussed in [5,6, 11, 12]. There are, however, significant differences in the approach.

Although the boundary value problem which we are approximating may be
associated with an operator of the form

Lu=—-V-(aWVu)+ cu
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the local residual problem will always be Poisson’s equation. This means that the
error estimation analysis can be done independently of the analysis of the particular
form of the operator L. More importantly, error analysis routines can be
developed which exploit properties of the Laplace operator to develop a very efficient
routine for solving the local problems. The first main result is to show that the error
estimator always overestimates the true error. Essentially, we do not need to make
any further regularity assumptions on the true solution other than ue H(£).

In order to show that the estimator does not give an unduly pessimistic
estimate, further assumptions are made on the source of the approximation u,. In
particular, we assume u,, is obtained by an h-p adaptive finite element computation,
possibly on irregular meshes with elements of differing shapes and non-uniform
polynomial degree. A preliminary analysis reveals that the estimate can become
very pessimistic unless the boundary conditions for the local problems are chosen
carefully.

The question of boundary conditions is examined in detail with the result that
a scheme proposed by Bank and Weiser [5] for piecewise affine approximation on
triangular elements is extended to the case of full h-p approximation on irregular
meshes. It is of interest to not¢ that in determining the boundary conditions one
works on the same element patches which occur in the related works of Babuska
et al. [3, 4]. As special cases of our results, we obtain the result conjectured in Bank
and Weiser [ 5] that a certain error estimator always overestimates the true error,
and provide theoretical support for the heuristic results of Kelly [9].

2. Notations and preliminaries

Let Q denote an open bounded Lipschitzian domain in R? with a piecewise smooth
boundary 0Q. The boundary consists of a finite number of smooth arcs meeting
with internal angle 6 (0, 2n).

The Sobolev space H™(Q), me Z ™, is a Hilbert space defined as the completion
of C*(Q2) in the Sobolev norm

1/2
(2.1) llullm,s):{ > j]D“ulzdx}
lal=mQ
where o = (0, &), ;€ Z™*, |af = oy + a5 and
"l
2.2 D*u=———
@2 " axtox

is the distributional derivative. H™(Q) is equipped with the inner product
(2.3) ,Vmo= Y [D°u-D*vdx
| £mQ

We use the notation H°(Q) = L,(Q) in the case m = 0. Let & be a partition of
Qinto a collection of N = N(2) subdomains Q2 with boundaries 6Qx,1 < K < N,
such that

@) N(P) < o

N
() Q= | Qx, %N Q= F, K*L
‘K=1
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(iii) Qx are Lipschitzian with piecewise smooth boundaries 0Qg
(iv) T = 02x N 092,,1 £ K, L £ N are sets consisting of a finite number p(K, L)
of components such that

p(K, L) M
FKL = U FKL ) SKL
M=

=1
where I'¥; are smooth arcs and Sk, is a set of isolated points such that

(K, L)
U F?LGSKLZg OéK,LéN

M=1

We set I'gx = 0Qx n 69Q. Notice that
BQK - U I:?(IL
LM

With these notations, it is possible to unambiguously characterize the boundary
segments of the partition as

N

(2.4) E=E@)= J TI¥
K,L=0
K>L
1=M=p(K L)

The boundary segments lying on the interior of Q are denoted by

N
K.L=1
K>L
1=M=p(K,L)

The outward pointing unit normal vector on Q is denoted by ny. Let

+1, K>1L

UKLZ"‘GLK={_1 K <L

and define n(s) = ox ng(s) = opxn,.(s), se 'Y, . That is, n points outward from the
subdomain with the largest index.

Throughout, if v is some function defined on Q, then its restriction to Q is
denoted by

(2.6 vg=vlg, 1SKZEN

In addition to the global Sobolev spaces and norms above, we introduce the
broken Sobolev spaces H™(#):

27 H™P) = {ve L,(Q): ke H"(Qx); L S K < N}
equipped with the norm
N 1/2
8) (oo =1 3l ;|,2,,,QK}
K=1

Evidently H™(Q) ¢ H™(#) for me N and
(29) HO@) = L,(?) = L,(Q) = H(Q)
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Let L,(E) denote the space of classes of square integrable functions defined on
E with the norm

1/2

N

(2.10) lollo,r = ) [ lok.!* ds

= M
K,L=0 TI'¥

K> L
1SMSp(K, L)
and inner product

N

211 @ 0oe= Y [ okax.ds
K,L=0 T¥
K>L
1SM<p(K, L)

where o}, = @l u is the restriction of ¢ to I'};. Analogous inner product and

norm are deﬁned on L,(E;).

Throughout let y denote the various trace operators associated with mappings
to the boundaries or segments of boundaries [1]. For any curve I, the space
H'2(I') is the completion of C*(I') in the norm on H*(I') given by

(2.12) witar = Iwliar + Iwldr

where

lw(x(s)) — w(x(@)?
j 5 lx(s) — x(5)]?

It is well known that y e ' (H'(Qk), H*(8Qx)) and is surjective. Finally, we denote
the space of continuous linear functionals on HY2(I') by H™ Y2(I').

(2.13) |W[1/2r dsdt

3. Model problem

Consider the following boundary-value problem for given data feL,(Q) and
ge L(Iy):

Lu=f in Q
3.1) gz=0 on I
aa =g on Iy
where
(32 Lu= —V-(aVu) + cu
and
(3.3) Inalp= &, Iyulp=20Q

We shall assume there exist constants g,a, ¢ and ¢ such that the coefficients
aeC(Q) and ce C(Q) satisfy

O<ag<gax)<a, O<cLcelx)st for xeQ



Unified approach to error estimation 27

The important case of ¢ = 0 is therefore excluded but will be discussed in the
concluding remarks.
Let
V(Q)={ve H (Q): yo =0 on I}}

Then ue V() is the weak solution to (3.1) if

(3.4) afu,v) = I(v) YveV(Q)
where
(3.5 a(u, v) = {fz(a Vu Vo + cuvydx
and
(3.6) )= [ fodx + [ gyvds

Q Iy

Under the above hypotheses a: F(Q)x V(2) - R is a continuous and coercive
bilinear form and I: V(Q) > R is a continuous linear form. The Lax-Milgram
theorem guarantees the existence of a unique solution to (3.4).

It is convenient to break the global forms I(+) and a(-,-) into sums of
contributions from each subdomain Qy of the partition 2:

(37 ag(u,v) = | (@Vu-Vo + cuv)dx
Qg
(3.8) k)= | fodx+ | gyvds
Qg Qe NIy
so that
N
3.9 a(u,v) = 3, ax(u,v)
K=1
and
N
(3.10) w)=Y ()
K=1

We shall use the notation || - ||z to denote the energy norm

(3.11) lvlle = \/al,v)

and
(3.12) lollex =/ ax(v, )
so that
N
(3.13) oz =% lvlf
K=1

Finally, we introduce the space Vg, 1 < K < N

(3.14) Vi = {ve H'(Qx):yv =0 on 8Qx N I}



28 M. Ainsworth and J.T. Oden

and
(3.15) V(?)= {ve H(?): yv=0o0n I}

so that, equivalently,

(3.16) V(P) = ﬁ Ve

1

Let H(div, Q) denote the space

(3.17) H(div, Q) = {ge[L*(Q)]*: divge L*(Q)}
which is equipped with the norm

(3.18) 191 Fa,0) = 1divg 1 2y + gl 20,

Further, define the subspace 2 — H(div, Q) to be
(3.19) 9= {qu(div,Q): $ vn-qds =0 Vve V(.Q)}
aa

Finally, denote the space of continuous linear functionals on ¥(#) and which
vanish on V(Q) by 4.

Lemma 3.1. A4 continuous linear functional y on V(P) vanishes on V(Q) (i.e. ue M) if
and only if there exists ge 2 such that

(3.20) p@)= Y ¢ vgng-qds

K=1 oQx
Proof. The result follows in a similar way to Lemma 1 in [14]. O
Let o : IT'¥ — IR be such that for seI' ¥,
(321 a(s)+oa(s)=1, O0SK LN, 1=M=pK,L)

For any ve H*(2), [v], {vD,, [0v/dn] and {dv/dn),€ L,(E) are defined as follows

(with the convention v, = 0) for se 'Y, and for all '}, €E:

[v]

H
(3.22) on

C0Dalpu = ol yox + offeyor

(&),

ru = OKLYUK + OLkYUL W
KL

“OK[)IUK O[K'}’IEL
Fg
KL

— M M
= Ogy V1Vg + % g¥10L ]

M
FKL
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In other words, [v] is the difference or jump in v between neighboring subdomains
whilst {v), is a linear combination or weighted average of v between neighboring
subdomains.

A key result in the development is the following generalization of a result
(Percell-Wheeler) found in [13]:

Lemma 3.2. Let ve H*(?) and we HY(P). Then

0 0
oo £ g =[5} o)+ (5).0),,

Proof. Owing to the regularity ve H*(#), it follows that n- Vve L*(0Q) (see [8,
p- 9, Remark 1.1]) and therefore the duality pairings may be treated as Lebesgue
integrals over the boundaries of the subdomains. We have

avK N p(K,L)

Z $ —yw,(ds—- Z >y j—yw,(ds
K=1 0%, K=1 L=0 M= 11""
N  p(K,L) avK N pK, L)
=2 X f_VWKdS’“ )IEDY f vwxds
LK=0 M=1 [‘M LK o M=1 r"
K>L <L
N p{K, L) N pi{L,K)
= X X J- VdeS+ Y oy ]—wads
L,K=0 M=1 1““ KL o0 M=1 FM
K>L <K
NooelkD ov ov
= 2 R (et o) s
LK=0 M=1 ¥ n,

K>L
N p(K,L)

vy,
Z Z f (‘TKL n )’WK+0LK‘5—YWL)dS

LK=0 M= 1rM
K>L

dvg [ dv + ov
OKL an_ an kL T OkL an -

YWk = arg oxr [W] + (W),

Now

and

80 since og; + o, = 0 we obtain

vk vy, v v
O.KLTVWK + ULK‘é“YwL = {ogL + aKL)”: ](W%z + (g + aKL)[[W]] < >
1-a

and the result follows as claimed since ag; + apx = 1. [
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4. A posteriori error bounds

Let u, be any approximation to the true solution of the model problem such that
@.n u,eV(Q)n H{(P)

Such an approximation might, for example, be obtained using a finite element
discretization with Qy as the elements. Conversely, u, might simply be some guess
at the true solution.

The problem of interest is that of numerically estimating the accuracy of the
approximation. The error e(x) in the approximation at x is defined as u(x) — u;(x).
We shall be specifically interested in obtaining bounds on the error measured in the
energy norm, fellg.

Lemma 4.1. Let J: V(Q) — R be defined as
4.2) J) = ta(v,v) — I(v) + a(uy, v)
Then the error e = u — w, is the unique minimizer of J over V(Q). Moreover,

(4.3) —%lelg=J(@= inf J@v)

ve V(Q)

Proof. First, notice that ee V(Q) since u, e V(22). Now
J(v) = 2a(v, v) — I(v) + a(uy, v) = 3a(v, v) — a(u, v) + aluy, v)
= 3a(v,v) — ale,v)

and hence
J)=—3%lel}

Let AeR and we V(). Then
J(e)—J(e+ iw)= — 1A %a(w,w) <0

and equality holds iff |Aw||2 = 0 <> Aw = 0. Thus J(¢) < J(v) Yoe V(Q). O

Let Jp: V(#) - R be defined as

N

4.4 Je)= Y {%GK(U, v) — Ig(v) + ag(un, U)}

K=1

That is, J» is an extension of J to V(2) > V(Q). Let ¥, : V(#)x .# — R denote
the Lagrangian functional

4.5) L (v, 1) = J5(v) — p(v)

associated with the constraint ve V(Q), u representing the Lagrange multiplier. It is
instructive to compare the Lagrangian %, with analogous functionals used in the
analysis of primal-hybrid finite element methods [14].
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Lemma 4.2. With the above assumptions and notations there follows

(4.6) —4llelz= inf sup Z(vp)

veV(P) ue M

Proof. Let @: V(2)— R be the functional
P(v) = sup Lp (v, )

ue M

) — {J(v), ve V(Q)

+ o0, otherwise

and observe that

Therefore
inf sup Fp(v,u) = inf &(v)= inf P(v)
ve V(?) pe ve V{P) ve V(Q)
= inf J@)= —3]ell:
ve V(Z)

where the final step follows from Lemma 4.1. O

Let v € V(). Then applying Green’s identity on each subdomain, we have
N N auh
4.7 a(up,v) =Y, ag(us,v)= Y, { ¢ a=—yvds + § vLu,dx
K=1 k=1 L a0y Ong Q
Applying Lemma 3.2 to the first term gives

N N auh
48)  a(up,v)= Y [vLudx+ Y { { [{aajﬂ (0D,

K=10 K,L=0 ¥

K>L
L=M=zp(K, L)

+ <a% >1_a[[v]} } ds

N N auh
=Y [vLudx+ Y { {Hﬁa—}](v%
K=1 e on

Qg K, L=1
K>L
1=M=p(K, L)

0u,. N auh
+<a%>laa[v]}ds+ Py r_[‘a%yvds

1EMZp(K,0)

since ag, = 1, from (3.22) we obtain

<a % > =0, Yoo = 0, {(v), =vg and
on 1-a

ou ou
[[aa—n":]]=aa—nh on I'¥
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Now yv =0 on I'f, n Ip and so

N
49) Jo)= ) {

K=1

ok Al () mte

1
iax(v, v) — (f;v)o,x + (Luy, U)o,x}

N 1 5uh
= z {EQK(U,U)'}‘(LM;, “j;U)O,K'f' z j (a'é;_g>'yvl(ds

1=M=p(K,0) ¥
N Ouy,

+ Y ] aKLuia = }lvv,(ds}
L=1 ™

C R ), e

K,L=1 r;‘b
K>L
1EMZp(K, L)
since
N N p(K,L) a
N P R i 7 PR P
L>=Ll ry K=1L=1 M=1 ry
1EM=p(K, L)
Let
(4.10) rg(x) = f(x) — Luy(x), x€Qg

denote the elementwise residual and define

0
g—a% on IyAT%, 1<K<N,1<M < p(K,0)
@4.11) Ry =

0
—au[{a%]] on MM, 1<K,LSN,1SM<=p(K L)

Then:

ou
(4.12) Ja(v) = Z Jg, K(U)+<< ah> JM])
n/i1-« 0,E
where J,; 1 Vi — R is given by

(4.13) Jp k(vx) =2 Yag(vg, vx) — (rx, Uk)o.x — § Ryyvg ds

R

Notice that it is unnecessary to define Rx on I, since yvog = 0 on I,.
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Roughly speaking, we may interpret this result as showing that J, may be
decomposed into a sum of local contributions from each of the subdomains Q,
plus an extra term coupling the local contributions though the regularity ve V(Q).
The significant feature, from our viewpoint, is the possibility of choosing the
Lagrange muitiplier pe .4 in such a way that the coupling is severed. If this step
could be achieved, then it would result in a sequence of local problems rather than
a single global problem. This situation is highly desirable in practice since the
computational cost of dealing with a sequence of local problems is much smaller
than dealing with a single global problem.

In the following, we focus on the problem of constructing a suitable choice of p.
Making use of the definitions (3.22) we find

du, al d Oty
(4.14) <<“a_n>1-; ["DO,E:K; P r{,£<“%>1_avds

1SMzZp(K, L)

Noting that

N

(4.15) = |y

1=M=zp(K, L)

we may formally define the linear functional { on Vi by

N F) A
(4.16) = Y | <a%> ogds

L=0 M
1SMSp(K, L) &
Examining this expression one readily concludes that, in fact, { is a bounded linear
functional on L*(6Q) and hence a fortiori { € H */?(6Q). Recalling that the Trace
Operator
H(div, Qx)ag— ng-ge H Y2(0Qy)

is surjective, we may construct g€ H(div, Q) such that

N auh
4.17) { vgng-qds= Y [ (a— vk ds
1-a

80y L=0 r on
1=M=p(K L)

Performing this procedure over each subdomain results in our having constructed
g€ H(div, Q) satisfying

N N N auh
@18 Y [oxmeqds=S Y | <a~—> veds
K=1 30, k=1 L=0  m on [y-a
1SMspK, L) *
Ou
(4.19) =(<a_h> ' )
on /1, [v] 0,E
Moreover, suppose ve V(Q), then
N
(4.20) Y. | vkng-qds= §vn-qds

K=1 30, 0
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and

421 <<a%>w, M), _ §< 5"">1_auds=o

where the final quantity vanishes since yv = 0 on I'; and {a (0u,/dn) >, _, = Oon I'y
by definition. In view of the above developments, it follows that ge 2. Applying
Lemma 3.1 then shows that there exists fie .# such that

0
(4.22) o) = (<a = > bl )M

Hence, returning to J,, we find we may write

(4.23) Jo() = Y Jox) = pv)

K=1

and, equally well,

(4.24) L, ) = Z Jo x(0) + 2(v) — p(v)
Therefore, we can obtain the desired decoupling in the case u = ji.

Lemma 4.3. Let jic # be constructed as above. Then

(4.25) lelz < sup — 2L, (v, 1)
ve V{P)
where
N
(4.26) Lo, p) =Y Jpxv)
K=1

Proof. From Lemma 4.2, we have

—3%lelli = inf sup % (v,u) 2 sup inf (v, p)

veV(P) pe 4 ue M ve V(P)

2 inf Z5(0)

ve V(#)

80 “e”é < SUPyevip) — 2% (U, 4. O

One serious drawback of this result as a means of estimating the error is the
presence of the supremum term which either will not be attained by our computed
choice of ve V{#) or the cost involved in calculating a suitable v will prove to be
disproportionately expensive compared to the computational effort expended in
obtaining u, itself. This type of difficulty was successfully resolved in [2] using dual
variational principles (see [7]).
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Lemma 4.4. Let

4.27) Wy = {peH(div, Qx): § ng-pvds = <f> Ryvds Yve VK}

0Q 22

In addition, let §yx: Wx — R be the functional
1.1 1.1 R
(4.28) %x(p) = ~5 §~p-pdx——§—(V-p+rK) dx (4.28)
0, @ 25 ¢

where r is the element residual of (4.10). Further, let v} e Vi be the solution of the
local problem

4.29) ax(v}, ) = (rg, w)o.x + § Ryywds Yoe Vg
0Qx
Then
(430) 0) pt < avtew,
and
(4.31) (it) in£ Jox (0g) = Jp x (V%) = Gx(p%) = sug G (pk)

Proof. (i) The existence and uniqueness of v} is a consequence of the Lax-Milgram
Theorem. The strong form of (4.29) is

—VelaVvg) + cof =rx in Qg

ovg
a—=RK on GQK\FD
Ong
yog =0 ondQxnly
Let pf = aVv§. Then
Vepg = cvg — ree La(Qy)
whilst
N ovk
ng-pr=a—=Rx ondQ\I},
5nK
Thus p} e Wy.
(i) That v} is the minimizer of J, x follows in a similar manner to Lemma 4.1.
Moreover vk e Vx so

1
Ja (U;) = Eax(v;z, U;) - (rK’U;E)O.K - § RKVU}'EdS
0Qx

1
= 59k (vk vk) — ax(vg, vi) = —5ax(vg, vk)

Furthermore,

1 1.1 1
Gr(pt) = — 3 [ alVvE)Pdx — 5 { E(cv,";)zdx = —Ea,((v}'g,v}‘;)
2 2
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Since % is strictly concave and quadratic, it suffices to show %y is stationary at p¥.
Let

(4.32) qe{qu(div,Qx): $ yon-qds =0 Vve VK}

82

and let AeR. Then p§ + Age Wy and

d
agx(ﬂz + A@)li=o

1 1
—Qf ;lI'Pz*de - ,25 ;(V"I)(V‘P}'E + rg)dx

=— [ q-Votdx — [ (V-qvEdx

Qg Qg

— § yok(ng-q)ds

0Qy

This now vanishes owing to (4.32). O

Theorem 4.5. Let Wy be as in (4.27). Then

N N
(4.33) lell2<—23 %(p) Vpe [] Wk

K=1 K=1

Proof. From Lemmas 4.3 and 4.4 we have

N N N
Hellé§ sup z —2Jp x(v) = — 2 Z inf Jp x(vg) = —2 z sup % (px)

veV(®P)K=1 K=1ve¥Vyg K=1 pge Wy

A

N N N
-2 z Yxpx) VpxeWx = —2 z %x(p) Vpe n Wk J
K=

1 K=1 K=1

The main result, Theorem 4.5, shows that computable error bounds can be
obtained merely by constructing elements of the linear manifolds Wy . Obviously to
obtain realistic estimates it is necessary to choose p with some care.

5. Local element residual error estimator

In this section we propose a strategy for constructing p. Let ex: Wy —» R and
Ag: Wx — R be defined as

1
(5.1) ex(p) = S—dp-pdx
and
(5.2) ‘ Ap) = | %(V-p + rg)dx

Q2x
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Furthermore, let

(53) WK(P) = EK(P) + A% kP

Then Theorem 4.5 may be rewritten as

(54) el < Z ng(p) Vpe H Wk

K=1

This result suggests that p should be chosen to minimize the local functionals
nz(p). Owing to the fact that the functionals and spaces are local this is a
viable practical method. However, an alternative approach is pursued for reasons
which will become clear. Rather than minimizing eg + A% we shall concentrate all
our efforts on the term A} alone. The strategy is therefore to choose px € Wx such
that

(5.5) Ax(pk) < Axlgx) Vaxe Wy

On subdomains Q: 0Qx n Ip £ ¢J it is always possible to choose py to give
Ax(px) = 0. Specifically we choose py = Vo, where gy e H(Qy) satisfies

_A(pK =Trk in QK
F
(5.6) %: Rx on 02\

yok =0 on dQxnTp

The existence of a unique @y is again guaranteed by the Lax-Milgram Theorem.
For subdomains Q: 0Qx n I, = (¥, itis in general not possible to choose pg
such that Ag(px) = 0. The following result quantifies this statement.

Lemma 5.1. Suppose 6Qx  I'p is empty. Let ox e H'(Qy) be such that

—A(pK=rK—c5K in QK
5.7

0
5(:_:= RK on 5QK

where

(58) 5K={j‘rde+ § RKdS}/{§CdX}
Qx 2% P

then

(5.9) () VoxeWx

and

(5.10) (@) Ax(Vog) < Ax(ge) Vqxe W

Proof. (i) First, observe that

f(rx—céx)dx + § Rxds=0

Mk
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It is well known that this compatibility condition is necessary and sufficient for the
existence of a solution ¢x e H!(Q4) to (5.7), (¢ being unique up to the addition of
an arbitrary constant). Now

V-(Vog) = — rx + coxe L,(Q)
and
nK-V(pK=%=RK on 6QK
ong
so Vpge Wg.
(i) Let gxe Wx be given and define

k= Veoqx +rre Ly (Qg)
then

1
Axlge) = | ~&Rdx
2 €
Moreover, since gg € Wy,
[ Exdx = § ng-qgds+ [ rgdx = § Ryds+ | redx =0k § cdx
Q¢ 8Qx Qg 0y Qg Qk

By the Cauchy-Schwarz Inequality,

2 2
1
<5K ] cdx) =< [} 5dx> < [ cdx- [ —&%dx
Qx Qg Qg Qxc

and, hence,

1
A2 (Vog) =02 [cdx < ;«fzdx=/1,2((qx) ]
Qx Qg
In view of this result, we choose px = Vg where ¢ is any solution of the local
problem (5.7). The local error estimator on subdomain £y is taken as

1% (Vog) = e2(Vog) + Az (Vo)

where @y is the solution of (5.6) or (5.7) depending on whether or not Ip
intersects 0Q.

Theorem 5.2. Let @y be the solution of (5.6) or (5.7). Then

(5.11) lelz = Y nx(Vox)

K=1
Proof. Follows immediately from foregoing arguments and (5.4). O

The importance of this result is that no matter how we choose a(s) subject to
(3.21), the resulting error estimator always gives an upper bound on the true error.

At this stage it is worthwhile to compare the result with other types of element
residual methods. Almost all existing methods are associated with the specific
choice a(s) = 3.

A more fundamental difference between the method proposed here and existing
methods is that the local problem involves only the Laplacian operator whilst
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other methods have local problems based on the operator L. While it might seem
more advantageous to have local problems based on L this actually does not
appear to be the case.

One requirement of error estimators which is of paramount importance is that
they must be cheap to compute. The local problems are often solved using finite
elements in an h, p, or h-p mode. The main cost in solving by finite elements is the
assembly of stifiness matrices and solution of the resulting matrix equation. By
basing the local problems on the Laplacian one can assemble the stiffness matrix
a priori on the reference element and keep this as data within the code. Secondly,
one can easily construct an orthogonal basis for the p-version finite element
approximation in the case of the Laplacian operator. This not only makes the
solution of the linear system extremely cheap but allows one to increase the
accuracy of the approximation of the local problem very simply. As a consequence,
one can assume that the local problems have been solved exactly as indeed we shail
do throughout our analysis.

Lemma 5.3. Let @k be a solution of the local residual problem (5.7). Then

1/2 -1/2 ae
(5.12)  Ax(Vog) ( | ce dx) +< ] cdx) $ <6—> ds
Qg Rk /1-a

Qx

Proof. From Lemma 5.1 we have

A (Vog) =06} | cdx
Q4
where

51( j cdx = j rde + § RKdS

Qg Qg 0Qy

Now rg = f— Luy, = Ley, so

Ok [ cdx = — f V-(aVeg)dx + | cexdx + ¢ Rgds

Q¢ Qx 30y

= § {—a2—+RK}ds+ | cexdx

0Qy Qx

On 0Qx\ 8Q we have

Oe du Ju ou
513) — g% = _g— . B Zth
( ) a + RK aanK + anK B [25°33 ﬂia on
= — a‘a—u“ a auh a a [ aauh g
= ane Bng | KL on Iy KL onl, LK
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By the Triangle and Cauchy-Schwarz Inequalities,

de
— d
6;§;KUKL<aan>l—a ’

de
a— ds
aix < on > 1-a
and hence

12 -12 e
Ax(Vog) S| | ce?dx + | fcdx $ (a— ds
25 ong / 1-a

Qr Qg

<

Ok | cdx

Qx

+

| cedx
Qx

1/2
§( fedx-§ cezdx) +

Qx Qx

Lemma 54. Let ye HY(Qy) and let

(5.14) Y= | cx//dx/j cdx

Qx

Then there exists a constant C > 0 such that

(5.15) I — Ve lloa, = Chel¥lie,

where hxy = diam(Qg).

Proof. If ¥ is constant then ., = . The result follows from a standard application
of the Bramble-Hilbert Lemma. 0O

Lemma 5.5. There exists a constant C > 0 such that

1/2 12
(5.16) ex (Vox) _S_( { al Ve[zdx) + Chx( ] cezdx>

Qx

de \ 2 172
172 ve d
+ Ch (aﬁx<a">1~a s)

Proof. By the Triangle Inequality

1 1/2
ex (Vog) = ( j El VCPxizdx>

Qx

1/2 1 1/2
g( { al Ve]zdx) +( ] EIV(pK— aVe[zdx>

Q2 Q2

Let aVy = Vg — aVe then
—Vi(aW)= —Vopg + V-(aVe) =rg — céx + V-(aVe)

= Le — ¢dx + V-(aVe) = cle — dk)
While on 0Qg\ I, using (5.13)

‘ 5!/1 _ 6(pK aex _ aeK _ de
aanK h 6nK aanx B RK aanx B GKL<a0n 1-a
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Therefore
1 5 oy
§—laVyPdx = § a—yds — § Yy V-(aV)dx
0,4 Qx ong Qx

=—4 GKL<a2 > Yds + | ycle — dg)dx

0Qy Qg
de
=— ¢ og(a— Yds+ [ cpedx — Y 6k | cdx
a0y on/q_, 2 Q
Examining the proof of Lemma 5.3 we find
Oe
Ok [cdx=—§ aKL<a—> ds + | cedx
Q a0 on/i_, 2
and so
de
[ LlavyPdx = § au<aa > (W — o)ds + | ce(y — v.)dx
o, 4 20k n/i1-« Q

de\? 1/2
§<6§K<05§>1_ad‘9> “ll’_‘/’cﬂo,ag,(

12
C( f ce"'d)c) 1Y — Yelioa,

2«
By Lemma 5.4 and standard Trace Inequalities

1 — Vellosa, < Ch " 1Y — Yelloa, < Ch* 1Y, 0,

and since a is bounded below by a > 0,

Wlia, <~ [ ~laVy|?dx
Qg

1
a

|Q|»—t

Therefore

1 1/2 de \ 2 1/2 1/2
( f—lthﬂ[zdx> gCh}(”( $ <a—> ds) +ChK< Scezdx>
o, 4 o0y on/i-« o

Collecting these results gives (5.15). [
The following result complements Theorem 5.2.

Theorem 5.6. For any ux > O there exists C > 0 such that

de
he { 2=
K<5n>1_a 0,8Qx
e 2
$ou(Ge), | [ geoe]

517 ni(Vor) (1 + px)llelio, + CU + pgt) { 2

+ Chilelldo, +
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Proof. Follows from previous lemmas and the elementary inequality

(@a+b? <1+ px)a® + (1 + p)b? Vug >0 O

This resuit shows that a necessary condition in order for Y X _, #2 to realisti-
cally estimate the true error is that {de/dn ), _, be sufficiently small. The controlling
term in the right hand bound is

2
/ [ cdx
QK

de
— d
aixUKL<an>1—a s

Notice that the denominator behaves like means ()~ ! as hx — 0. In particular
there is a danger that the right hand side will blow up as hx — 0, making the bound
meaningless.

(5.18)

6. Flux splitting for finite element approximations

In this section we suppose u, is an approximation obtained using the finite element
method with Qg corresponding to the elements. A related approach has been
developed in [10]; but the types considered here of finite element schemes may be
h, p, or h-p versions, including k-irregular meshes [3].

Let # (2) denote the set of unconstrained or proper nodes in the partition 2, see
[3] for details. Let A€ %#(£) and let L, be the degree one basis function associated
with node A. We suppose L 4 to be scaled so that it takes the value 1 at the node A.
Let S, denote the patch of elements forming the support of L,

(6.1) S4={Qk: Qg nsupp(L,) is non-empty}

and let @ , denote the boundary segments lying on the interior of the support of L,
(supp°Ly)

(6.2) Qu = {Ixr: Ixr = supp®(L,) or Ty < Iy nsupp(L,)}
In the following, we shall show how ay; may be constructed such that the scalar,
(6.3) Ag =0k § cdx = | rgdx + § Rgds

2 2 x

vanishes on all elements Qg: 0Qx NI = .
Let Ae #(#P). For each Qe S, define

6.9 Ri= [rgLydx

Qx

and for each I'y; € @, define

{ [[a%unf}]yLAds K,L+0
rKL

{ (a%-g)yLAds L=0
r‘o

(6.5) Pl =
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With each boundary segment I'y; € Q4 we associate a constant A%, . Notice that
both Iy, and I' xe Q4 and it will usually be found that A%, + A,

Theorem 6.1. For each Ae F(P) there exist {34, }r, <0, Such that

(6.6) ® A, +4i5,=1 VIeQy,

(6.7) (i) Afy=1 VIeQ,

(6.8) (ii1) Y A pgL=RE VQgeS,
Lilg eQy

Proof Let w5 = A5, p5., [;.€Q4. With this notation, (i)—(ili) become (since
piL = Piy)
@ .“;L +ug; = th
(i) ‘u?o = p;o
(i) Y = RE
L:TxieQu

We may eliminate the unknowns y;;, L < J by using the first two conditions to
give, for each QgeS,,

A A _ pA _ A A
(69) Y Hu— Y Mk =Rg Y Pk Y Pio
Lilg eQy Lilg eQy Ll eQy Txo€Qy
O<L<K L>K>0 L>K>0

This represents a linear system of | S| equations in the unknowns uf;, L > J > 0,
I'i;eQ,. Let M, denote the underlying matrix for this system.
We examine the null space ker(M*) of M*. Suppose EeR4 is such that
M*¢& = 0. First, notice that each column of M, (and therefore each row of M %) has
precisely two non-zero entries corresponding to each unknown uf,, J>L >0
occurring once in the equations when Qx = Q; and Qx = Q;. Moreover, these
non-zero entries are +1 and — 1. Therefore

M:é=0©€K=€J VFKJEQA,K>J>O

Since supp(L,) is connected this is now equivalent to all of the components of
¢ being the same constant. That is

ker(M*) = span{A}

where 4 = (1, 1,. .., )e RS54,
By the Fredholm Alternative, a necessary and sufficient condition for the
existence of solutions to (6.9) is that the data be orthogonal to ker(M*). That is

(6.10) YRE=Y ¥ okt Y Y of

QyeS, QreS4 LilxeQu QreS4s TxoeQy
L>K
Now
RK = j rKLAdx

Qx

= { fLydx — [ (@Vu,+ VL4 + cu,L)dx + § a yLAds

Qy 2x Ong
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and, hence, since | g, s, 2x = supp(L,), we have

Y Re=(fiLy)—a, L)+ Y §aé—yLAds

QreS, QyeS, 00y hg

Applying Lemma 3.2 and noting [L, [ =0, (L,> = L, gives

0
y §a yLAds— Y 3 f[ uh}]yLAds
QgeS, 00x QxeSy Fri€Qu My
ou
=S T b+ TN (s

QxeS, LilxeQu QreS, TkoeQuIxo
L>0

Moreover, by the definition of the Galerkin finite element solution, there holds
a(uy, Ly) =(fily) + Y Z | gyLads
QreSy TkaeQu I'xo

Combining these results gives

SR=Y Y s+ T3 f (a5 -a)iLa

QzeS, QreSs LilxeQy Qx84 Txo€Qu I'xo
L>0

which in view of (6.5) gives (6.10). It therefore follows that there exists a solution of
()-ai). O

Applying the Fredholm Alternative once again, we deduce that there will be an
infinite number of solutions in the case of I'y ~ supp®(L 4) being empty. Otherwise
the solution wili be unique.

The constants A%, are used to construct the ay,’s used in the average < - >, and
{* >1 -« Specifically, for each element Qg e 2 and for each I'y,€Q,, we define
(6.11) axs(s)= Y, Ag,L4ls)

AeF(P):
TxeQu

Some special cases of (6.11) for 0- and 1-irregular meshes in two dimensions are
shown in Figs. 1 and 2.

Theorem 6.2. Let ay; be constructed as in (6.11). Then
() axss)+oyx(s)=1, selg;:Ix;0lp= &
() [redc+ § Reds=0, VQu:Qxnlp= &

Qp 0y

Proof. Notice that Y L,(x)=1,xeQx:QxnIp= .

Ae F(P)
1. Let selg;; then

ags(s) +agx(s) = Y A%, La(s) + Z Mg La(s)

AcF (P) AeF(P)

I'r;€Qy4 TixeQu
= Y (&, +M)Las5)=1
AeF(P)

3 4 A =
since Ay, + Af = 1
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Q, F

2

O H

Fig. 1. Flux splitting for O-irregular mesh
(4%, are as in Theorem 6.1).

o ,(8) = AL, Ly(s) + A2, Lg(s)
3 (8) = A4, Lo(s) + A, Le(s)
oy (s} = A, La(s) + A2, Ly(s)
(8} = A3, La(s) + A%, Le(s)

2y J:Tx;€E Igsy

J>0

Jilg,€E Fy;
J>0 TI'xseQu

A 4
— 2 APk
AeF (P)
W

—— T Ri=-

AeF (P)

and, hence,

Qy 20,

7. Equivalence of estimator

AcF () Qx

45

Fig. 2. Flux splitting for 1I-irregular mesh
(4%, are as in Theorem 6.1).

oy,(8) = A, La(s) + A%, Lg(s)
a,5{s) = A, La(s) + A5 L(s)
,6(8) = A5 La(s) + A5, Le(s)
as6(s) = A5 La(s) + A5¢ Le(s) + A4S, L(s)

_ 5u;, 5u;,
$ Rgds=— Y | ocm[a%—}]ds-k rxésr{o<g —a 6n>ds

- T 13 sfalle- T8

Ae F(F)

I'xo€ E A€ F (P}
TroeQu

Z I rKLAdx= - Irxds

Qx

AK=Srde+§RKdS=O. ]

While Theorem 5.2 assures that our estimate will always bound the error, it is of
importance to examine whether the estimator provides an equivalent measure of
the error. Theorem 5.6 suggests that unless care is taken to control the quantity
(e/ony, _,, the bound can be very poor. The aim of this section is to show that the
Construction for « in Sect. 6 does control this quantity effectively.
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In addition to the previous assumptions we shall further assume that Qy are
convex subdomains. Let

(1.1) Ny ={QLeP: 0Q, N IRk = 'k is non-empty}

Then A4 is the set of elements neighboring Q. Let

(7.2) lxy = |Ixy| = length of I'y,

and suppose that there is a fixed constant x > 0 such that for all Qxe2:
0]

1 1
(7.3) ~<s X< viewy
K hK
This means that the meshes should be locally quasi-uniform.
Furthermore, we assume there is a fixed constant M such that

(ii)
(7.4) card( A/ )M VQge?

where card (A4 ) indicates the number of elements in the set 4. This assumption
does not exclude the case of k-irregular meshes [3], but it does force the degree of
irregularity (k) to be finite.

(i) Finally, we assume that the number of edges meeting at any given node is
uniformly bounded independently of 2.

The finite element approximation is assumed to be a piecewise polynomial on
each element Qg, but we shall not assume the polynomial degree is constant.
However, we suppose the maximum degree p to be bounded above, independently
of 2. This assumption excludes the p or h-p versions proper (but is satisfied for
essentially every practical implementation of these versions).

These assumptions are placed on the regularity of the mesh. The following
represents an assumption on the regularity of the true solution u:

There exists a piecewise polynomial = on & of degree at most p + 1 such that

)
h}(/2<aa(u - 71:)>1~

for some constant C independent of #. This is similar to the saturation assumption
made in [5], but the present version is weaker in that we do not assume C — 0 as
2 is refined. Finally, due to (7.3), we assume that the following local inverse
estimates for ve 2,(Q) are valid

2

(7.5 lu — )z +

< Cllelig
0,E;

|U|0,r,, =< Cl}é? 0100,

ov
(7.6) —| = CLE?vle.

0,0y

6”1(

[vlpe, < Chg'?vlyq,
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and that the trace inequality holds,

ovl? 1
= C(rlvligx + hK|U|22,gK>-
KJ

T —
(7 ) on 0,lxs

Lemma 7.2. Under the previous assumptions
Je
B2 { a=—
K on 1—a

Proof. By the Triangle Inequality

Oe d
h}(/2<aa-n‘>1* h}(/2<a%(u—7z)>l_

Now
2

0
h§’2<aa—n(n - uh)>1_« < Chx(

Using the Trace Inequality gives

= Clefle
0,E,

for some constant C > 0.

=
0.,

0
i/2 (7 —
- + i hy <aan(1t u,,)>1_a

0,E,

2 )
0, gy

a 2
a—i (nm —u,) +
Ong 0,7

ag;(n — ty)

0,7ks

2

‘1‘6_(7I — Uy)

hK 6nK

é Chl((llz,]1 ]7[ - uh!igx + hK"’t - uhligx)
ovrxl

< Chyllitim — g + bt m — o)

SClm— g,

Summing over all edges gives

0
h}(’2<aa(n — u,,)>1»

Im—uplie < llm—ullg+ lele
Therefore using (7.5)

h}(’2<a@> §C<1h§/2<a%(u—n)> + [ln—ul]E>+C[|e][E
on/i-o 0,E; on 1—a{0,E,

= Cllellg [
Theorem 7.3. Let @y be a solution of the problem

SCin—~ulg
0.5,

Moreover

‘—A(pK =Tk in QK
subject to

yog =0 ondQyxn oy

ou
% —cxml[aaf] on 0 \I'y

0 du
" g—a—h on 0Qx NIy

on
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where ag; is constructed as in Sect. 6. Then under the above assumptions there exists
a constant C, independent of 2, such that
N

(7.8) el < Y ex(Vox) < Cllel}

K=1
where h = maxhy and

1
& (Vox) = [ | Voox P dx.

Qg
Proof. From Theorem 6.2 we have 5y = 0 on Qx: Qx "I, = & and so
nx(Vox) = ex(Vox) + 03 | c(x)dx = ex(Vog)
Qg
Applying Theorem 5.2 gives

N

N
lelz < 3 nz(Vox)= 3, & (Vok)

K=1 K=1

Je
h1/2 e
K <6n>1_a
and by Lemma 7.2 we then obtain
ex(Vox) < (1 + Chp)lel ¢ + Cllelz ¢

Summing over all elements gives
N

Y ex(Vox) < Clelz. 0

K=1

By Lemma 5.5 we have

2
ex(Vox) = (L + Chi)llelz x + C

0,00y

8. Summary and examples

The foregoing analysis can be regarded as consisting of two main sections.

The culmination of the first part is Theorem 5.2 which states that the error
estimator generated using the local element residual method should always provide
an upper bound on the true error, so long as the boundary conditions do not entail
any loss in flux, that is to say, condition (3.21) holds. The most common type of
element residual method is to choose the symmetrical splitting factor 4. However,
further analysis reveals that the estimator, while bounding the error, can be very
pessimistic unless the boundary conditions for the local problem are chosen
carefully (see comments which follow (5.18)). The upper bound property was
conjectured by Bank and Weiser [5], on the basis of numerical experiment for the
case of piecewise linear approximation on triangles.

The second part of the work then focuses on the determination of boundary
conditions used in the local problems, and, in particular, on the choice of splitting
which determines the boundary conditions. It is shown that there exists splittings
which mean that the term previously leading to gross overestimation will now
vanish. One by-product of this work is that the “equilibration” used by Kelly [9] in
one dimension is extended to higher dimensions, more general operators and
irregular meshes.
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Throughout we have assumed that the operator is of the form
Lu= —V-(a(x) Vu) + c(x)u

with ¢ > 0. However, if the boundary conditions are chosen as suggested so that
Theorem 6.2 is valid, then the restriction ¢ > 0 can be relaxed, meaning that both
the theory and the method extend to problems with no absolute terms such as
Poisson problems.

In the one-dimensional case, the splitting factors were given explicitly by Kelly
[91. Suppose that the element I is the interval (xg, x4 ). In this case we need only
choose the splitting at each node. Let

Jx = [au(xg) ]

K
Rk
Ag, k-1 = 5 -

and define

Using the standard orthogonal projection property of finite element approxima-
tion one can easily show that

Rx_;
Jx

This choice of splitting then leads to the satisfaction of the condition of the
condition 4 ¢ = 0. In order to illustrate the necessity of employing the equilibration
procedure, we consider the simple problem of finding u:

—u'+u=f on(0,1)

og-1,k=1—ogg_1=

subject to
u@@) =u(l)=0

The function f is chosen so that the true solution is of the form
u(x) =x" 4+ 10(1 — x)® —x — 10(1 — x)

We present results of approximating this problem on uniform meshes with ele-
ments of uniform degree. The results in Table 1 show the effectivity indices (ratio of
estimated to true error) in the case of symmetrical splitting (« = 4). The results for
the cases p=2 and p=4 are seen to be unsatisfactory owing to the poor
approximation to the boundary flux obtained using a simple averaging between
neighboring elements. In Table 2, we give the corresponding effectivity indices for
the splitting described above.

Table 2. Effectivity indices for splitting

Table 1. Effectivity indices for splitting « = 1/2 A =0
Degree  Uniform mesh spacing Degree  Uniform mesh spacing

(p) {p)

1/4 1/8 /16  1/32  1/64 1/4 1/8 1/16

1 1.529 1272 1088 1.017 1.000 1 1.003 1.0007 1.000
2 5.536 6.238 7.264 7.828 8.127 2 1.001 1.0002  1.000
3 1497 1211 1074 1.026 1.007 3 1.024 1.0006  1.000
4 4494 5395 5816 5995 5.670 4 1.167 1.166 1.165
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For the case of Poisson’s equation, Kelly attempted to satisfy the condition
A = 0 by means of a global minimization of the functional Y A% over the splittings
o subject to the condition (3.21). It was found that the objective functional could be
driven to zero to machine accuracy in each case. This comes as no surprise in view
of Theorem 6.2 above. Numerical results given by Kelly [9] show that the constant
appearing in (7.8) is close to unity.
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