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Summary. This p a p e r  extends the s ingular  value decompos i t i on  to a pa th  o f  
mat r ices  E(t). A n  analy t ic  s ingular  value decompos i t i on  o f  a pa th  o f  matr ices  

E(t) is an  analy t ic  pa th  o f  fac tor iza t ions  E(t) = X(t)S(t)Y(t)  T where X(t) 
and  Y(t) are  o r t hogona l  and  S(t) is d iagonal .  To main ta in  different iabi l i ty  
the d i agona l  entries o f  S(t) are a l lowed to be ei ther  posi t ive or  negat ive  and  
to a p p e a r  in any  order .  This p a p e r  invest igates  existence and  uniqueness  o f  
ana ly t ic  SVD's  and  develops  an a lgo r i thm for c o m p u t i n g  them. We show tha t  a 
real  ana ly t ic  pa th  E(t) always  admi t s  a real ana ly t ic  SVD, a ful l-rank,  smoo th  
pa th  E(t) with dis t inct  s ingular  values admi ts  a smoo th  SVD. We derive a 
different ial  equa t ion  for  the left factor ,  develop  Euler- l ike and  ex t r apo la t ed  
Euler- l ike numer ica l  me thods  for app rox ima t ing  an  analy t ic  SVD and  prove 
that  the Euler- l ike m e t h o d  converges.  
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1 Introduction 

A s ingular  value decompos i t i on  (SVD) o f  a cons tan t  ma t r ix  E E ~ m x n ,  m > n, 

is a fac to r iza t ion  E = UEV T where U E Rmxm and  V E R n x ,  are o r thogona l  
and  E = d iag (a  1 , a2,  G3, . . . ,  %).  The  s ingular  values a l ,  a2,  a 3 . . . . .  % m a y  
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be chosen to be nonnegative and nonincreasing. An important tool in numerous 
applications, the SVD is well-studied and good numerical methods are available 
[4 ,5 ,6 ,7 ,  16]. 

For a real analytic matrix valued function E(t) : [a, b] --* N. mxn, an analytic 
S VD (ASVD) is a path of factorizations 

E(t) = X(t)S(t)  Y (t) T 

where X(t)  : [a, b] ~ ]R mxm is orthogonal, S(t) : [a, b] ~ ~mxn is diagonal, 
Y(t) : [a, b] --* IR mxn is orthogonal and X(t) ,  S(t) and Y(t) are analytic. 

This paper presents conditions under which ASVD's exist, investigates the 
degrees of freedom in the choice of an ASVD, and derives a numerical method 
for tracking a particular ASVD. 

The ASVD has applications in time dependent linear quadratic optimal 
control problems for descriptor systems [2, 9] and in differential algebraic 
equations [15]. A numerical method for the continuous time Riccati equation 
proposed in [9] need all three factors of an explicit smoothly varying SVD and 
the derivative of  the right-hand factor. 

In [15], Reinholdt uses the smoothly varying left nullspace of a matrix 
function E(t) to construct a smoothly varying system of local charts on a 
manifold. He studies the problem of constructing a smooth QR-factorization 
E(t) = Q(t)R(t) where Q(t) is orthogonal and R(t) is upper triangular. The 
columns of Q(t) that span the left nullspace of E(t) give the required local 
charts. A smoothly varying basis of the nullspace can also be obtained from a 
smooth SVD. Although the SVD is more expensive, it is considered to be more 
reliable for determining rank in the presence of  rounding errors. In particular, 
a smooth SVD is more likely to detect that E(t) "nearly" changes rank. Rank 
changes signal singularities in the underlying problem and near rank changes 
are associated with ill-conditioning [3, 17, 18]. 

The numerical method proposed in [15] uses a reference decomposition, 
E(to) = Q(to)R(to). For other values of t, Q(t) is chosen to minimize the 

Frobenius norm IlQ(t)1 Q(t0)l I = V/~lqi j ( t ) - -qi j ( to)12 o v e r  all orthogonal 

factors Q(t). Reinholdt gives explicit formulae for the minimizer and shows that 
under mild assumptions this choice follows a smooth path in a neighborhood 
of t = t 0. The method can easily be adapted to find a smooth SVD in a region 
around t = t 0. Unfortunately, even when a globally smooth SVD exists, the 
path generated by this method may not be smooth outside a neighborhood of 
t = t  o. 

Example 1. For t E [0, re], define 

[3cos(2t) + 1 3 sin(2t) ] 
E(t) = [ --3 sin(2t) 3cos(2t) -- 1 " 

At t o = 0 select the reference SVD 
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The following path results from choosing X(t) to minimize the Frobenius norm 
distance IIX(t) - S(0)II. 

E(t) -- X(t)S(t) Y(t) T 

r r4 01r ~os(,) sin(t)] 
= I - s in ( t )  cos(t)] L0 2J L-sin(t)  cos(t)] 

[--cos(r) --sin(t) ] [4 01 r-cos(t) -sin(t) 1 
L sin(t) -cos( t )  J L0 21 [ sin(t) -cos( t )  J 

t e  to, 

t e  

The path of SVD's is smooth in [0, 2), but using the single reference matrix 

X(0) = I forces X(t) and Y(t) to have discontinuities. Note that there exist 
paths of SVD's that are smooth for all t. For example, 

[ oos,,, sin,,,1 [4 ~ o} r cos,,, 
(1) E ( t ) =  -s in( t )  cos(t)] 2 [ - s in ( t )  cos(t)] " 

The discontinuities in this example are caused by using afixed reference SVD 
to define the smooth path. 

In this paper, we establish the existence and uniqueness of an ASVD 
E(t) = X(t)S(t)Y(t) T that minimizes the total variation (or arc length) 

(2) 

b 

Vrn(X(t)) = i NdX(t)/dt[] dt 
a 

over all feasible choices of X(t) and minimizes Vrn(Y(t)) over the feasible 
choices of Y(t) subject to (2) being minimum. The signs and order of the 
singular values are selected to be consistent with X(t) and Y(t). The left 
singular factor X(t) of minimal variation is shown to satisfy a set of differential 
equations, and a numerical method for calculating the minimum variation 
ASVD is derived. This technique retains the flavor of Rheinboldt's "least 
change possible" approach without using a fixed reference SVD. 

The two orthogonal factors X(t) and Y(t) are treated asymmetrically, but 
often, as in [9, 15], one factor is of  more interest than another. A procedure 
that treats the two orthogonal factors symmetrically is a special case of our 
asymmetric basic procedure. 

Other authors have also investigated properties of the singular values 
and singular vectors of a real analytic matrix. In [17, 18] SVD's of real 
analytic functions of several variables are examined, and first and second order 
perturbation theorems are given. In a recent, as yet unpublished report [1], 
Boyd and DeMoor use explicit derivatives of E(t) to derive first order Taylor 
series approximations to the singular values and singular vectors in the case 
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that the singular values are distinct (as analytic functions). They do not provide 
a method for constructing smooth left and right singular factors in the case of 
multiple singular values. In particular, they do not treat the problem of finding 
a smooth basis for the nullspace. (These authors refer to analytic SVD's by the 
acronym "USVD". We prefer the acronym ASVD.) 

This paper is organized as follows. In Sect. 2 we investigate the existence 
and uniqueness of both smooth and analytic SVD's. We derive an initial value 
problem (IVP) that determines a minimum variation, globally smooth choice of 
the factors X(t) and Y(t) in the case that E(t) is analytic. The minimal variation 
SVD is uniquely determined by its IVP. Section 3 derives a numerical method 
to track a minimum variation SVD based on its defining IVP. The method is 
shown to converge to the minimum variation path as the step size tends to 
zero. This section also presents a few numerical examples and extensions to 
related problems. 

2 Existence and uniqueness of smooth SVD's 

This section develops some basic results on the existence and uniqueness of 
smooth singular value decompositions. 

2.1 Notation 

Throughout the remainder of this paper, we make the simplifying assumption 
that m > n. The case m < n is similar. 

We denote by 

�9 ~m• the real m-by-n matrices; 
�9 ~m, n the set of real m-by-n matrices with orthonormal columns; 

�9 C~,n([a, b]) the set of continuously differentiable functions on [a, b] with 
values in NY• 
�9 Jm,n([a ,  b]) the set of real analytic functions on [a, b] with values in 
]RmX"; (Real analytic functions are those functions with Taylor series that, in 
a neighborhood of each point, converge to the original function.) 
�9 ~m,n the set of diagonal matrices in ~,~mxn ; (A ~_ ~'@m,n if and only if i ~ j 
implies ai j = 0.) 
�9 I n then n-by-n identity matrix; 
�9 (A, B) = Trace(ATB) the Frobenius inner product for A, B E Nmxn; 

�9 IIAII the Frobenius norm, i.e., [[AI[ =def V/( A, A) for A E ltmx"; 
�9 f~(A) the orthogonal matrix nearest (in the Frobenius norm) to the 
nonsingular, n-by-n matrix A [7, Chap. 12.4]. 

Occasionally, where there is no ambiguity, we drop subscripts and omit the 
explicit interval [a, b]. If  A(t) E Clm,n, then we sometimes denote the derivative 

of A(t) by A(t). 
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2.2 Existence 

The next example demonstrates that on analytic SVD must allow "negative 
singular values" and (sometimes) an ordering different from the usual 
nonincreasing one. (In the context of spectral decompositions, this point is 
also discussed in [12].) It also shows that nonuniqueness in the choice of 
singular vectors must be resolved in a smooth way - especially in the case of 
multiple and/or  zero singular values. 

Example 2. Define E(t) : R --+ ]R  2x2  by 

E(t) = [ 1-tO l+t0 ] 

Selecting singular values to be nonnegative and in nonincreasing order along 
the diagonal of S(t) and resolving other nonuniqueness arbitrarily, an SVD 
path of E(t) is 

E(t) = X(t)S(t) Y (t) v 

1 0] [ 1 - - t  0 ] [1 0] 
o -1 j  t o - 1 - t j  k 0 l j  t 6 ( - o o , - 1 ]  

[1 01 [ 1 - t  0 1 1 1  01 
LO 1j L o l + t j  LO 1j tE(--1,O) 

= [ 3/5 4/5] [1 0] [3/5 --4/5] 
L-4/5 3/5J kO 1J L4/5 3/5j t = o  
[0 1] [ l + t  0 ] [0 1 1 
L1 0J L 0 1 - t J  L1 0J t~(0,1] 
[0 -1111+, 0 ][0 11 
L1 0J L 0 - l + t J  L1 0J tE(1,oo) 

Although E(t) is linear in t, X(t), S(t) and Y(t) have jump discontinuities 
and/or  discontinuous derivatives. Discontinuities can occur if the order and 
signs of the singular values are chosen without considering their choices at 
nearby values of t. In the example, at every value of t, the singular values are 
chosen to be positive and in nonincreasing order along the diagonal of S(t). 
This forces a discontinuity where the singular value paths intersect. 

The choice of the orthogonal matrices X(0) and Y(0) is arbitrary. Even 
if S(t) were smooth, resolving the nonuniqueness in X(t), Y(t) arbitrarily can 
cause discontinuities. 

Note that in this example E(t) admits real analytic singular value 
decompositions, for example, 

(3) E(t)=U(t)E(t)V(t)T= [ ~ ~] [ 1 - - t  0 o ,+t] ~ 
Example 2 motivates the following definition. A smooch singular value 
decomposition of E(t) E C~,n([a, b]) is a path of factorizations 

E(t) = X(t)S(t)Y(t) T , 
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where 

and 

X(t) c qtm, m r C~,m([a, b]), 

Y (t) ~ qtn,. C3 C1.,.([a, b]) 

S(t) ~ ~m,~ n Clm,n([a, b]). 

A path of  SVD's is an analytic S VD (ASVD) if 

and 

X(t) E ~m,m N ,~r b]), 

Y (t) C qln, n C3 d , , n ( [ a ,  b]) 

S(t) E ~m,n A , 5~m,n( [a  , b]). 

In both the smooth and analytic cases, the diagonal entries of  S(t) may appear 
in any order and may be negative for some values of  t. 

The existence of smooth SVD's is obtained implicitly as the existence of 
smooth eigenvalue-eigenvector decompositions of  symmetric matrices [8, pp. 
70-71,  120-122]. The following theorem makes this explicit. 

Theorem 1. I f  E(t) E ~g'm,n([a, b]), then there exists an ASVD on [a, b]. 

Proof. Kato [8, pp. 120-122] shows that there exists an orthogonal matrix 
Q(t) E dm+n,m+~([a ,  b]) and a diagonal matrix A(t) E dm+~.m+n([a,b]) 
such that 

(4, 0 E(t)T = (2(t)A(t)Q(t) T . 

Eigenvalues and their corresponding eigenvectors appear in ___ pairs. It is easy 

to verify that if x(t) = [.(0] N (m+~) (partitioned conformally with (4)) is Iv(t)] E 

an eigenvector of  M corresponding to the eigenvalue 2(0, then 2(0 = [ uttt ] [-v(t) J 
is an eigenvector corresponding to the eigenvalue - 2 ( 0 .  

The corresponding eigenvector pairs may be chosen to be orthonormal. 
Hence, corresponding to the r nonzero (as analytic functions) eigenvalues we 
may construct a matrix with orthonormal columns 

1 [X l(t) 
(21 (t) = - ~  k I:1 (t) 

and a diagonal matrix 

A l ( t ) =  [ S ~  t) 

such that 

Xx (t) ] 
] ~ q",. +.,  2r n d . ,  + .  2r 

--yl  (t) 

0] 
- S  1 (t) e ~2r, 2~ n d2~, 2r 

M(t)Q 1 (t) --- (21 (t)A1 (t) 
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or equivalently 

(5) 
E(t) Y1 (t) = X t (t)S 1 (t) 

E(t)Tx1 (t) = Y1 (t)S1 (t). 

Here. the diagonal entries of A I (t) include all nonzero (as analytic functions) 
eigenvalues of  M(t) and the diagonal entries of  Sl(t  ) include exactly one 
member from each ___ pair of nonzero eigenvalues. 

An easy calculation based on the orthonormality of the columns of  Ql 
shows that 

X 1 (t)Tx1 (t) = u (t) T Y1 (t) = I r . 

If r ----- m, then we may take X(t) = X 1 (t) and Y (t) = Y1 (t). 
If r < m, then we must construct an analytic basis of the left nullspace 

of  E(t), and if r < n, then we must construct an analytic basis of  the right 
nullspace of E(t). The projection onto Range (Xl(t)), Pl(t) = X 1 (t)Xl(t) T, is 
an analytic, symmetric matrix, because X 1 (t) is analytic. Applying the results 
of [8, pp. 120-122] to Pl(t) gives X2(t ) E ~ r n din ,m_ r whose columns 
form an analytic, orthonormal set of  eigenvectors corresponding to the zero 
eigenvalues of Pl(t). The columns of  X2(t ) form an orthonormal basis of the 
orthogonal complement of Range (Xl(t)), so [Xl(t), X2(t)] is orthogonal and 
analytic. By construction, Range (E(t)) c Range(X l(t)) and hence 

(6) X2(t)YE(t) = O. 

Set X(t)  = [X 1 (t), X2(t)]. 
If r = n, then we may use Y(t) = Yl(t), so suppose that r < n. Applying 

the same argument used to construct X2(t), we may construct a matrix 
Y2(t) E dgn,n_ r N d n , n _  r such that [Yl(t), Y2(t)] E ~n,n N d n , n  and 

(7) E(t) Y2(t) = O. 

Set Y ( t ) =  [Yl(t), Y2(t)]. 
It follows from (5), (6) and (7) that S(t) = X( t )TE( t )Y( t )  is of  the form 

(8) S ( t ) = [ S ~  t) ~] ~ ~m,n n ~ , . , .  

and E(t) = X( t )S( t )Y( t )  T is an ASVD. (If r = n, then the last column of (8) is 
vacuous and does not appear. If r = n = m, then all the zero blocks in (8) are 
vacuous and do not appear.) [] 

Theorem 1 is stated without proof  in [1]. A related result about individual 
singular values and singular vectors of real analytic functions of  several 
variables appears in [17, 18]. 

If the hypothesis that E(t) is analytic is dropped, then many pathologies 
can arise. The next example shows that even for E(t) ~ C ~176 a smooth SVD 
may not exist. It is similar to examples in [8, p. 111], [12] and [14]. 
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Example 3. Let E(t) : R ---} ~x 2• be the C ~176 function 

l e(_ 1/t2) [cos(I / t )  ] 

E ( t ) = [  [00] sin(1/t) J 

For t ~ O, E (t) has full column rank, so the matrix 

t+o  

t = O  

' [cos(1/t)] 
Q(t) = E(t)(E(t)TE(t))- ~ = [ sin(l/t) 

is well defined. If E(t) = X(t)S(t)Y(t) v is any SVD path, and X.l(t  ) is the first 
column of X(t), then Q(t) = +X. 1 (t)Y(t) T with the sign depending on the sign 
of the one singular value of  E(t). The limit limt_.0 +_Q(t) does not exist. This 
implies that there is no SVD for which both X(t) and Y (t) are continuous at 
t = 0 .  

Although there is no smooth SVD at t = 0, E(t) does have C ~ smooth 
SVD's at other values of t. For example, 

,9, rcos,l  , sin,l  ,] 
[ sin(l/t) cos(l/t)  [ 1 ]. 

It is no coincidence that at the point that does not admit a smooth SVD, 
E(t) neither has full rank nor is analytic. The next theorem shows that if 
E(t) E C~, n has full rank and distinct singular values, then there is a smooth 
SVD. 

Theorem 2. I f  E(t) E clm,n([a, b]) has full column rank and distinct singular 
values for all t E [a, b], then there exists a smooth SVD. 

Proof If E(t) is full rank and has distinct singular values, then the nonzero 
eigenvalues of 

are distinct. Remark 5.10 in [8, p. 115] shows that each nonzero eigenvalue is a 
continuously differentiable function of t, and the projection onto its invariant 
subspace is also continuously differentiable. The invariant subspaces are of 
dimension one. It is easy to construct a smooth eigenvector from a smooth 
projection onto a one dimensional space. Hence, there are matrices X 1 (t) E 

d~[m, n N Clm,n([a, b]), Yl (t) e ~m,n A Cl,n([ a, b]) andSl(t ) e ~m,n A Cl,n([ a, b]) 
that satisfy (5). The result now follows from an argument similar to the proof 
of Theorem 1. [] 

2.3 Uniqueness 

The freedom of choice on constructing an SVD of a matrix is well known. 
This section reviews this theory in order to lay down notation and to establish 
rigorously and precisely what parts of the SVD are uniquely determined by 
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E(t) and what parts may be chosen freely. To calculate an ASVD, it is essential 
that this freedom be resolved in an analytic way. 

A crucial point in the resolution is the correct identification of the 
multiplicity of the singular values of E(t) considered as analytic functions and 
the identification of the dimensions of the corresponding singular subspaces. 
Note that if an ASVD has two singular values of opposite sings, s i(t) = - sj (t), 
there is no natural way to distinguish the singular subspaces of si(t) from the 
singular subspaces of sj (t). For example let 

and suppose E(t) = tD. If  X(t) c d 2 ,  2 n ~//2, 2 is any analytic, orthogonal 

matrix, then E(t) = X(t)( tD)(DX(t)D) T is an ASVD. 
If  s1(t ), s2(t ), s3(t ) . . . . .  Sn(t ) are the singular values of E(t) and if, for any 

i and j ,  si(t ) is identical as an analytic function to neither + sj(t) nor - sj(t), 
then si(t ) and +__sj(t) may intersect only at isolated points. Likewise, a nonzero 
si(t ) may have only isolated roots. The value of an ASVD of E(t) at such an 
isolated point does not give enough information to identify the dimensions of 
the singular subspaces, the multiplicities of the singular values and/or  the signs 
of the singular values of the ASVD. 

We refer to these isolated, exceptional values of t as nongeneric and to 
the others as generic. Formally, generic points are defined as follows. Let 
E(t) E dm,n([a ,  b]). By [8, pp. 120-122], there are real analytic functions 21 (t), 
22(t), •3 (t) . . . . .  )~K (t) which are the distinct (as analytic functions) eigenvalues 
of 

(10) M i t ) =  E ( t f  r 0 " 

The 2j(t)'s are just the singular values of E(t), their negatives and (possibly) 
and additional zero function. A point t 1 ~ [a, b] is a generic point of E(t), if 
for i, j = 1, 2, 3 . . . . .  K ,  i ~ j implies 2i(tl) 7~ 2j(tl). If E(t) is identically 
zero, then all points t are generic. I f  t is not a generic point of E(t), then we 
say it is nongeneric. The nongeneric points are isolated, because the 2j(t)'s are 
analytic functions. 

We now look in detail at the freedom of choice in the construction of an 
ASVD. 

If  E(t) has two ASVD's 

E(t) = X(t)S(t)  Y (t) T = X(t)S(t)  Y (t) T , 

then the two paths are said to be equivalent. If  in addition S(t) = S(t), then the 
paths are called parallel. The two ASVD's are equivalent, if and only if there 
exists QL(t) ~ qlm,m n ~m,m and Q(t) ~ qgn,n n ~n ,~  such that 

f((t) = X(t)QL(t) ,  

QL (t) T s(t)Q(t) = "S(t) 
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and 
Y(t)  = Y( t )Q( t ) .  

Both S(t) and S(t) must be diagonal, so QL(t) have a special structure. 
The main theorem of this section clarifies the structure of such QL and Q. We 
build appropriate choices of QL(t) and Q(t) as products of three elementary 
equivalences: one that reorders the singular values along the diagonal of S(t), 
one that changes the signs of the diagonal entries of S(t) and one that selects 
bases of the left and right singular subspaces. The numerical methods in Sec. 
3 are constructed from these elementary equivalences. 

2.3.1 Permutation equivalence and diagonal equivalence 

The first two equivalences that we discuss are permutation equivalence and 
diagonal equivalence, which are used to fix the order and the signs of the 
singular values. 

Let ~n C ]R nxn denote the set of permutation matrices in ~."• For each 
P E ~n call PL E '-~m a permutation collaborator of P, if PL is of the form 

0] 
PL = 0 Ira- n " 

(If m = n, then PL = P.) If P E ~n and PL E ~m are permutation collaborators 
and S ~ ~6~m,n, then PTL S P  ~ ~m,n" 

The first elementary equivalence is permutation equivalence. Two ASVD 
paths X ( t ) S ( t ) Y ( t )  T and X ( t ) S ( t ) Y ( t )  T are P-equivalent if there exists P E Nn 
and a permutation collaborator PL E ~m such that 

2 ( 0  = X ( t ) P  L, 

(t) = Y (t)P 

and 
"S(t) = p T  s ( t )P  . 

P-equivalence is an equivalence relation on ASVD's. Trivially, if two ASVD's 
are P-equivalent, then they are equivalent. Replacing S(t) by p T s ( t ) P  simply 
reorders the singular values along the diagonal of S(t). Moreover, by choosing 
P E ~n appropriately, any order of the diagonal entries can be achieved. 

The second elementary equivalence is sign equivalence. Two ASVD 
paths X ( t ) S ( t ) Y ( t )  T and X ( t ) S ( t ) Y ( t )  T are D-equivalent, if there exists 
D E ~n, n A ~//n, n such that 

~'(t) = Y( t )O 

and 
S(t) = S( t )D.  

The matrix D is just a diagonal matrix of _l 's ,  so D 2 = I. D-equivalence is an 
equivalence relation on ASVD's. Trivially, if two ASVD's are D-equivalent, then 
they are equivalent. Replacing S(t) by S(t)D changes the sign of some of the 
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diagonal entries of S (t). Moreover, by choosing D E ~n, n ~ ~n, n appropriately, 
at any one distinguished time t = t o all the diagonal entries of S(to)D may be 
made nonnegative. 

2.3.2 Block orthogonal equivalence 

The nonuniqueness of the bases of the left and right singular subspaces is the 
most complex part of the uniqueness theory, and resolving this nonuniqueness 
in a smooth way is the most difficult part of numerical methods. 

In the following, to simplify notation, we consider ASVD's in which multiple 
singular values appear in clusters along the diagonal of S(t). Define a diagonal 
factor S(t) ~ ~m,n A d in ,  n to be gregarious, if S(t) has the form 

(11) S(t) = 

"s 1 ( t ) I ~  1 0 0 . ' .  0 

0 s 2 ( t ) I m 2  0 " ' "  0 

0 0 s 2(t) I~3 "'" 0 

~ ~ ". .  �9 

0 0 0 " "  sk(t)Imk 
0 0 0 " '  0 

where s 1 (t), sz(t ), s3(t ) . . . .  , Sk -1 (0  are distinct, nonzero, analytic functions; 
for i ~ j ,  si(t ) -~ +sj(t) (except possibly at isolated points); and sk(t ) =-- 0 is 
identically zero. If E(t) has no identically zero singular values, then m k = 0, 
and the last column and penultimate row of (11) do not appear. If m = n, then 
the last row does not appear. We say that an ASVD E(t) = X ( t )S ( t )Y ( t )  T is 
gregarious, if its diagonal factor S(t) is gregarious. Note that the multiplicities of 
the singular values in any open subinterval of the domain of S(t) ~ d in ,  n ([a, b]) 
are identical to their multiplicities over the entire domain [a, b]. In this sense, 
the multiplicities are independent of t. 

Gregarious ASVD's have no remarkable special properties. We use 
gregarious ASVD's to simplify the details of the proofs and algorithms. 

We frequently need the following properties which follow directly from the 
definition of generic points. 

Lemma 3. 1. I f  E(t) = X ( t )S ( t )Y ( t )  T = X ( t )S ( t )Y ( t )  x are two equivalent 

ASVD's  and S(tl) = S(tl) at some generic point t = t 1, then S(t) and S(t) 
are identical functions, i.e., the two ASVD's  are parallel. 

2. l f  E(t) = X( t )S( t )  Y (t) T is an A S V D  and t 1 is a generic point o f  E(t) such that 

the constant SVD E(t~) = X ( t l ) S ( t l ) Y  (tt) T is gregarious, then the (possibly) 
nonconstant A S V D  is gregarious. 

3. Every A S V D  can be transformed a gregarious A S V D  by a sequence o f  constant 
P-equivalences and D-equivalences. The ordering and the sings o f  the singular 
values are not unique, but any ordering and choice o f  sings can be obtained. 

Suppose now that S(t) is a gregarious path with the structure (11). Let 
~ s  c d n ,  n be the subspace of matrices that commute with S(t). Thus, ~ s  is 
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the set of  n-by-n block diagonal matrices with block sizes ml ,  m2, m 3 . . . .  , m k 
i.e., Z E M s if and only if it is of  the form 

(12) Z = 

- Z  1 0 0 ...  0 0 

0 Z 2 0 ... 0 0 

0 0 Z 3 . . .  0 0 

: : : " .  : : 

0 0 0 ... Z k - i  0 

0 0 0 . . .  0 T k 

where for j = 1, 2, 3 . . . . .  k - 1, Z j  e R mjxmj  and T k E IR mkxmk. I f  S(t) has 

no identically zero singular value, then m k = 0 and the last row and column 
of  (12) do not appear. 

For each orthogonal matrix Z E M s n ~ n , ,  we call Z L E q/m,m n ~r a 

collaborator of Z,  if Z L is of  the form 

(13) z = 

Z 1 0 0 . . .  0 0 

0 Z 2 0 . . .  0 0 

0 0 Z 3 . . .  0 0 

: : : ".. : : 

0 0 0 . . .  Z k _  1 0 

0 0 0 . . .  0 Z k 

where the blocks Z l ,  Z 2 ,  Z 3 . . . .  Z k _  1 are as in (12), Z k E ~ rnkxrnk and 

m k =  m -- ~=-11 mj.  I f  m k =  0, then the last row and column of  (13) do not 

appear. The set of  block diagonal matrices in d , , ,m  with the block structure 

of  (13) will be denoted ME, s- 

Note that by construction, if E(t) = X ( t ) S ( t ) Y ( t )  T is a gregarious ASVD, 
i.e., S (t) in the form of (11), then for any pair o f  collaborators Z (t) E ~ s  n q/n,n 

and Z L (t) E ME, s N Urn, m, we have 

(14) ZL (t) T s ( t ) Z  (t) = S(t) 

and 

(15) 

E(t) = x( t ) s ( t )  g (t) T 

( x  ( t )z  L (t))(ZL (t)T s (t)Z (t))(Z (t) T Y (t)) T 

= (X(t)Z L (t))S(t)(Z (t) T Y (t)) T . 

Each choice of  Z( t )  and ZL(t ) in (15) corresponds to a different choice of the 
orthogonal  bases of  the left and right singular subspaces of  E(t) .  

We say that two parallel ASVD's  X ( t ) S ( t ) Y ( t )  T and X ( t ) S ( t ) Y ( t )  T are 
Z-equivalent ,  if S(t)  is gregarious and for some Z( t )  ~ M s n q/n,n and  some 
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collaborator ZL(t ) G "~L, S f-) aff rn,m, 

X(t) ---- X(t)ZL(t) 

and 
(t) = Y (t)Z (t). 

The crux of  the problem of computing an ASVD is the problem of selecting 
an appropriate Z-equivalence. As Example 1 shows, a poor choice leads to an 
ASVD that does not extend to the entire domain of  E(t). 

Lemma 4. The matrix E(t) E "~'m,n has two parallel, gregarious ASVD's, 

(16) E(t) = X(t)S(t) Y (t) T = )((t)S(t) Y (t) T , 

i f  and only i f  the two paths are Z-equivalent. 

Proof  If the two paths are Z-equivalent, then it follows from (14) and (15) 
that X(t)S(t) Y(t) T = X(t)S(t) Y(t) T. 

Conversely, suppose (16) holds for some gregarious matrix S(t). Define 
Z (t) E ~#n, n A d n ,  n and Z L (t) E ~tm, m ("1 ~ m ,  m by 

z(t) = ~'(t) v ~ ( t )  

and 
ZL(t ) = X(t )T~( t ) .  

We now show that Z and Z L are collaborators. 
Observe that 

Y (t)T E(t)T E(t) Y (t) = S(t)T S(t) 

or equivalently 

Let S(t) be as in (11), and partition Z = [Z/j] conformally with (12). Equation 
(17) implies that for i, j = 1, 2, 3 . . . . .  k 

s 2 (t)Z/j (t) = Z/j (t)s~ (t). 

If i :~ j, then the squares of the singular values si(t ) and sj(t) are distinct 

analytic functions. Thus, for i ~ j,  s2(t) ~ s~.(t) except, possibly, for isolated 

values of t. Therefore, for i --/: j, Zij(t ) = 0 and Z c ~ s .  Similarly, using 

E(t)E(t) T we can show that ZL(t ) E ~L, S' 
Equation (16) implies that 

( X ( t ) T x ( t ) ) S ( t ) ( Y ( t ) T y ( t ) )  = Z ~ S ( t ) Z  = S(t) .  



(20) 

(21) 

and 

(22) 
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It follows that 
si(t)Z T, iZi = si(t)lm, 

where ZL, i is the i-th diagonal block of Z L ~ ~L,  S and Z i is as in (12). By 
construction, for i = 1, 2, 3 . . . . .  k - 1, si(t ) :/: 0 (except possibly for isolated 
values of t), so ZL, i = Zr Therefore, Z and Z L are the collaborators of a 
Z-equivalence. [] 

This brings us to the main theorem of this section. 

Theorem 5. Suppose 

(18) E(t)  = X ( t ) S ( t )  Y(t) T 

is a gregarious ASVD. The matrix E(t) has an equivalent ASVD 

(19) E (t) = X (t) S (t) Y (t) T = X (t) S (t) Y (t) T, 

i f  and only i f  there exist QL(t) C ~m,m and Q(t) E ~#n,n such that 

Y( t )  T ~ ( t )  = Q(t) = D P Z ( t ) ,  

X(t)T2(t)  = QL(t) = PLZL(t) 

S(t) = pTs ( t )DP ,  

where P c ]R n• is a constant permutation matrix, PL is the corresponding 
collaborator o f  a P-equivalence, D E ~n,n is a constant diagonal matrix o f  
+l's, and Z(t) C ~.~pTsD P = ~'~ and Z L ( t  ) E ~ L ,  pTsDP = ~'~L,S are the 

collaborators o f  a Z-equivalence. 

Proof Clearly, if (20), (21) and (22) are satisfied, then (19) holds and the two 
ASVD's are equivalent. 

Conversely, suppose that (19) holds. The two ASVD's give the following 
two spectral decompositions of E(t)TE(t). 

E(t)TE(t) = Y ( t ) ( S ( t ) T s ( t ) ) Y ( t )  T =  Y(t) (S(t)Ts(t))  Y(t) T. 

The diagonal entries of S(t) and S(t) may differ only in the order and signs of 
the diagonal entries. Thus, there are constant D- and P-equivalences such that 

(23) pTs( t )DP = S(t). 

Lemma 4 applied to the two parallel, gregarious ASVD paths 

E (t) = (X (t)PL)'S (t)( Y (t)D P ) T = X (t)S (t) Y (t) T 

shows that there exist Z (t) c ~ and a collaborator Z L (t) E ~L,  ~ such that 

2 ( 0  = X(t)PLZL(t) 
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and 
Y(t) = Y( t )DPZ( t ) .  

These last two equations are equivalent to (20) and (21). [] 

For completeness we summarize the discussion of  the previous two sections 
in a theorem, which displays exactly what is determined by the underlying path 
E(t) and what can be freely chosen. 

Theorem 6. The matrix E(t) E ~m,n has two equivalent ASVD's, 

(24) E (t) = X(t)S (t) Y (t) T = X(t)S (t) Y (t) T , 

i f  and only i f  there exist Q L ( t )  E ~llm, m and Q(t) E dlln, n such that 

Y(t) TY(t) = Q(t) = ( D P Z ( t ) p T D )  , 

X ( t ) T X ( t )  = QL(t )  = (PLZL(t)P T) 
(25) 

(26) 

and 

(27) S(t) = PLPTS( t )DppT  L), 

where P E ]R n• and P c ~nxn are constant permutation matrices, PL and PL 

are the corresponding collaborators o f  a P-equivalence, D E ~n,n and s E ~n,n 

are constant diagonal matrices of  +l's,  p T S D P  ---- ~ T ~  is gregarious, and 

Z(t) E ~P~SDP = Y ) ~ ' d ' f  and ZL(t) E ~L,  PVLSDP = ~ L , ~ [ ~  are the 

collaborators of  a Z-equivalence. 

Proof The proof is similar to the proof  of Theorem 5. [] 

2.4 ASVD interpolation 

In the following interpolation theorem, we show that ASVD's are flexible 
enough to interpolate any initial condition at a generic point and "almost" 
interpolate a final condition. The derivation of  the Euler-like numerical method 
in Sec. 3 depends on this property. 

We say that an ASVD E(t) = X(t )S( t )Y( t )  T interpolates the SVD initial 
condition E(to) = U Z V  T at t = t o if X(t0) = U, S(to) = E and Y(to) = V. 

Theorem 7. Suppose that t o and t 1 , t o # t 1, are generic points of  E(t) E ~,n,n" 

I f  E(to) = UoZo VT and E(tl) = UIZ 1V T are gregarious, constant SVD's, 

then there exists an ASVD E(t) = X(t)S(t) Y (t) T, diagonal orthogonaI matrices 
D E G ~m,m CI tiffin,m, D R G ~n,n C1 ~[n,n, and D 1 E ~n,n CI ~n,n and a pair of  
permutation collaborators PI E ~n and PEt E ~rn such that 

(28) X(to) = Uo, S(to) = Zo, Y(to) = V o 

and 

(29) X ( q )  = U1PL1DL, S(tl) = PTlYqD1P1, Y(tl) = V1D1P1D R . 
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P r o o f  By Theorem 1, there exists an ASVD E(t)  = X ( t ) S ( t ) Y ( t )  T. Theorem 6 

applied to the constant SVD's E(to)  = X(to) 'S(to)~'( to)  T and E(to)  = UoZoV0 T 
shows that there exist constant permutation collaborators P0 E #n and 
PL0 E ~m, a constant diagonal orthogonal matrix D o E ~n , .  n Cn, .  and 
constant orthogonal collaborators Z o E Mx0 A dlln, n and ZL0 E :~L, z0 N d[ln, n 
such that 

E 0 = PToS( to )DoPo,  

and 

U 0 = X( to)PLoZLo 

V O =- Y ( t o ) D o P o Z  0 . 

Note that because t o is generic, 

~ Z o  = ~p~o-gDoPo 

and 

Hence, 

~ L ,  Z 0 -~- ~L ,  PTo'SDoP 0 " 

Z T o P T o S ( t ) D o P o Z o  = pTLoS(t)DoP 0 

is diagonal for all t. Because Po, PL0, Do, Zo and ZLO are constant, 
E(t)  = ff((t)~S(t)Iz(t)T is an ASVD that interpolates (28) where 

~c(t) = ~ ' (0PL0ZLo,  

S(t)  = P T o S ( t ) D o P  o 

and 
i ~ (t) = ~ (t)DoPoZo. 

Repeating the above construction on the constant SVD's E ( t l )  = U1Z1Vi  T 

and /~(q) = X ( q ) S ( t l ) ( z ( t ~ )  T at the generic point tx, we conclude that for 
appropriately chosen D 1 E ~@n,n ("ld~n,n, permutation collaborators P1 E ~n and 
PL 1 E ~m and constant orthogonal collaborators Z 1 E M~ and Z L~ E ~L,  ~, 

S(tl)  = PTlZ lD1P1 ,  

ff((tl) ~-~ U1PL1ZL1 

and 
~'(tl) = V1D1P1Z 1 . 

Choose D L = diag(+l) E @re,m, so that, with 

WLI =def DLZL1 E "~L,S Od[Zm,m 

partitioned as in (13), each diagonal block of WL1 has determinant equal to 1. 
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Note that D L E "~LS CI dJ[m,rn. So, D L has a collaborator D R. Define 

W 1 c ~ n ~#m,m by 

Wl "~---'def DRZ1 C , .~ .  

It is easy to check that W 1 E , ~  N ~n,n is a collaborator of  WLI. The 
collaborators W 1 and WL1 have the block structure of (12) and (13). It follows 

that if S has no singular value that is identically zero, then the diagonal blocks 
of W 1 have determinant 1. If  S has some identically zero singular values, then 
there is some freedom in the last few diagonal positions of  D R that can be 
used to make the final diagonal block of  W I = DRZ 1 have determinant 1. 

By construction, the diagonal blocks of WL1 and W 1 have determinant 1. 
Hence, there are real skew-symmetric matrices K L = ln(W L 1) and K --- In(W1) 
such that K L E ~L,  S and K E , ~ ,  exp(KL) = W L z and exp(K) = W 1. Define 

Z (t) E d//,, n N ~ n ,  n and Z L (t) E ~m, m O "-%r rn by 

and 

{[" t - t ~  K ZL(t)----exp ,lkt _t%J L] 

\ k q - t o ]  / 

The block structure, K L c ~L,  ~ and K E ~$,  implies that ZL(t ) c ~L,  ~ and 

Z(t) c ~$. Because t 1 is generic, 

and 

~S = ~P-~lz~D1P1, 

~L,  ,~ = ~L,  pT! ZlD1P1 

Z L (t) S (t)Z (t) T = ~ (t) 

is diagonal for all t. Moreover, 

Z(to) = In, Z(tl)  ----- WI, ZL(t0) ---- Ira, 

With 
X(t) = X(t)ZL(t) T, 

S(t) = S(t) 

and 

Z L ( t l )  = WL 1" 

Y(t) = Ir(t)Z(t) T 

the ASVD E(t) = X(t)S(t)Y(t) T satisfies both (28) and (29), because 

DLS(t)D R = $(t). [] 

The hypothesis that the tj's are generic points is needed in Theorem 7 to 
guarantee the existence of  an ASVD that interpolates an arbitrary SVD (28) 
and essentially a permutation of a second arbitrary SVD (29). If  the assumption 
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is dropped, then there may be no such ASVD. For example, there is no ASVD 
of 

that interpolates the SVD 

[ 4/5 3/5 
,31) E(0)=  [--3/5 4/5]  [00 00] [10 01] " 

If (28) and (29) lie on ASVD's, then the conclusion of Theorem 7 holds 
regardless of whether t o and t t are generic or not. 

2.5 Minimum variation paths 

Theorem 6 displays the degrees of freedom in the choice of an ASVD. This 
section resolves the freedom of choice to give a particular ASVD that is well 
suited to numerical computation. 

Define the total variation (or arc length) of X(t) E qlm, m n Clm,m over the 
interval [a, b] by 

b 

Vrn(X(t)) = / I I dX /d t l l  dt. 
a 

We establish here the existence and uniqueness of ASVD's in which Vrn(X(t)) is 
minimal. The numerical methods of Sec. 3 track such minimal variation paths. 
The approach retains the flavor of Rheinboldt's [15] "least change possible" 
approach without using a fixed reference SVD. 

The following lemma shows the existence of a unique gregarious ASVD 
which satisfies an initial condition and whose orthogonal factors have a minimal 
variation property. 

In order to construct this ASVD we need the projections onto the spaces 
of block diagonal matrices ~s  c tin, n and ~L, S C din,,, defined in Section 
2.3.2. We use ~s(') to denote the projection in the Frobenius inner product 
(., .) from ~r onto ~s.  The projection from ~r onto ME, s is denoted by 
~L, s (')- The projections ~s (') and ~L, s (') operate by simply setting the entries 
outside the relevant block diagonal to zero. The orthogonal complements are 
given by ~ -  (X) =def X -- ~s (X) and ~• S (X) =def X -- ~L, S (X). 

If ZL(t ) , WL(t ) E ~L, S and X(t) E R re• then the projections onto ME, s 
and orthogonal to ~L, S obey 

(32) 

and 

(33) 

(I)L, S (WL (t)X(t)ZL (t)) = W L (t)~L, S (X(t)))ZL (t) 

(I) / L, S (WL (t)X ( t )Z  L (t)) = W L (t)((I)L &, S ( X ( t ) ) ) Z  L ( t) .  
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Lemma 8. I f  

(34) E(t) = X(t)S(t) Y (t) T 

is a gregarious ASVD on [a, b], then there is a unique, parallel, equivalent ASVD 
E(t) = X(t)S(t) Y (t) T such that X(to) = X(to) = Y (to), 

( E(t) = X(t)S(t)Y(t) T is an ASVD ] 
Vrn(X(t)) = min ~ Vrn(X(t)) parallel to (34) I (35) 

and 

(36) Vrn(Y (t)) = min { Vrn(Y (t)) E(t) = X(t)S(t) ~" (t) T is an ASVD "~ 
parallel to (34) subjet to (35) J " 

Proof As shown in Lemma 4, all parallel, gregarious ASVD's  are of  the form 

(37) E (t) = (X(t)Z L (t))S (t)(Y (t)Z (t)) T 

for some ZL(t ) E ML, S' The total variation of  the left-hand factor of  (37) is 

b 

Vrn(X(t)ZL(t)) = J XZL(t  ) + X ( t ) Z L ( t  ) dt 
a 

b 
= / X(t)Tx(t)ZL(t) +.ZL(t) dt. 

a 

We have, 

HX(t)Tx(t)ZL(t) + ZL(t)II 2 

= IlOL, S(X(t)Tx(t)ZL(t) + ZL(t))II 2 + ~L ~ S(X(t)Tx(t)ZL(t) + 2L(t))ll: 

= IIOL, s(X(t)Tx(t))ZL(t) + ZL(t) II 2 + q ~  s(X(t)Tx(t))tl 2 

Therefore, 

Vrn(X(t) m L (t)) 

= ) r  r s (X ( t )T j ( ( t ) )ZL( t )+ZL( t )  2 + ] r  
a 

(38) 

(39) 

b 

a 
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We now show that there exists a choice of  Zm(t ) E ~L, S C~qlm,m ~ m , m  which 
achieves the minimum by annihilating the first term under the square root in 
(38). Observe first that, because X(t) is orthogonal, 

0 - d ( x T x )  -- J~(t)Tx(t) + X(t)Tj((t).  
dt 

Thus, X(t)Tx(t)  is skew symmetric. 
Consider the initial value problem 

(40) ZL (t) = -- (I)L, S ( X  (t)T j ( ( t ) )  Z L (t) 

Z L  ( to )  = I m . 

The matrix ~L,S(J~( t )Tx( t )]  is analytic and so, a fortiori, (40)satisfies a 
\ / 

Lipschitz condition. Therefore, a unique, analytic solution ZL (t) exists, at least 
in a neighborhood of the initial condition [11, p. 2]. The solution ZL(t) is 
orthogonal, because 

d (ZL(t)TZL(t)) �9 . 
dt = ZL(t)T2L(t) + ZL(t)T2L(t) 

= ZL(t)T(I)L, S (X( t )Tx ( t ) )ZL( t )+  ZL(t) T ((I)L, S (X(t)  TX( t ) ) )TZL( t )  

=ZL(t)T*L,S (J~(t)Tx(t)-b ('(t)Tx(t))T)ZL(t) 
= 0 ,  

where the last equation follows from the skew symmetry of X(t)Tj((t). The 
orthogonality of  ZL(t ) now follows from the initial condition ZL(t0)T2L(t0) : 
Im. This implies that the right-hand-side of (40) is analytic and bounded, so 

the solution ZL(t ) extends to the entire interval [a, b]. 
Note also that the solution ZL(t) lies in "~L, S for all t 6 [a, b], because the 

initial condition ZL(t0) = I m and the derivatives lie in ~L, S" 

Choosing X'(t) = X(t)ZL(t ) annihilates the first term in (38). Therefore, 

.~(t) = X(t)ZL(t) minimizes Vrn(X(t)) over all ASVD's by achieving the lower 
bound (39). The uniqueness of  X'(t) is guaranteed by the uniqueness of the 
solution 2 L of  the initial value problem (40). 

Having chosen 2 L 6 ~ s ,  L, we must now choose Z 6 ~ s  to collaborate 

with ZL and thus choose Y(t). From (12) and (13) it is clear that the choice 

of  ZL(t) determines 2 ( 0  except for the trailing mk-by-rn ~ block. (If there is no 

identically zero singular value, then rn k = 0 and 2 ( 0  is entirely determined 
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by ZL(t).) Using a construction similar to that for ZL(t) we can determine a 

unique choice of Z(t) and Y(t) = Y( t )Z( t )  that minimizes (36). [] 

The following corollaries are used in Sect. 3. 

Corollary 9. I f  E(t) = X( t )S ( t )Y ( t )  T is a gregarious A S V D  on [a, b] and 

E(t) = X( t )S( t )  Y (t) T is the unique, parallel, minimum variation path that satisfies 
the initial condition E(to) = X(to)S( to)Y( to)  "r at the generic point t o, then 

X (t) = X ( t )ZL  (t ) where ZL(t ) E ML, S solves the initial value problem 

(41) ZL(t) (1)L, S ( X ( t ) T x ( t ) )  ZL(t), ZL(t0) = lrn" 

Proof  The result follows directly from the proof of Lemma 8. [] 

Corollary 10. I f  E(t) E ~r b]) has two parallel, gregarious, minimum 

variation paths, E (t) = X( t )S( t )  Y (t) T = X(t)S( t )  Y (t) T, then there are constant 

collaborators Z L E ML, S and Z E M s such that X(t) = X(t)Z L and Y(t)  = 

?(t)z. 
Proof  Let t o be a generic point in [a, b]. By Lemma 4 applied to the two 
constant SVD's 

E(to) = .~(t0)S(t0) Y (to) T = X'(t0)S(t0) Y (to) T , 

there are a pair of orthogonal collaborators Z L E ML, Slto) and Z E MS(to ) 

such that X'(to) = X'(to)Z L and Y(to) = Y( to )Z  L. Obviously, Z c and Z can he 
chosen to be constant. Because t o is generic, ML, S(to) = ME, S and MS(to ) = M s. 

Hence, z T s ( t ) Z  = S(t) for all t E [a, b]. For constant orthogonal matrices Z c 

and Z,  V r n ( X Z )  = Vrn(Y() and Vrn(~ 'Z)  = Vrn(Y) .  Hence, 

is a minimum variation ASVD that agrees with E(t) = f f ( t )S ( t )Y ( t )  at the 
generic point t 0. The uniqueness part of Lemma 8 implies that ~(t)  = ~'Z u 

and Y(t) = YZ. [] 

The following theorem is the main result of this section. It shows that 
there is a uniquely defined minimal variation ASVD that interpolates any 
initial constant SVD at a generic point. The numerical methods of Sect. 3 are 
designed to compute this ASVD. 

Theorem 11. Suppose that E(t) c ~r b]) and to ~ [a, b] is generic. I f  

E(to) = UY.V T is a given, constant SI/'D, then there exists a unique A S V D  on 

t E [a, b], E(t) = X ( t )S ( t )Y ( t )  T such that X(to) = U, S(to) = E, ~'(to) = V, 

(42) Vrn(X(t))  = min{Vrn(X( t ) ) lE( t )  = X( t )S( t )  r (t) T is an ASI/'D} 
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and 

(43) Vrn(Y(t)) = m i n { V r n ( Y ( t ) ) ]  
E(t) = 2 ( t ) S ( t ) r ( t )  v ) 

is an AS VD 
subject to (42) 

Proof Let P E ~n and PL E ~m be constant permutation collaborators 

and D E ~n,n N qin, n be chosen such that (UPL)(P~EDP)(VDP) T = ~ . ~ T  
is a constant, gregarious SVD. By hypothesis, t o is generic, so by Theorem 
7 there is a gregarious ASVD E(t) = X(t)S(t)Y(t)  T such that X(to) = UPL, 
S(to) = P~EDP and Y(to) = VDP. By Lemma 8, this ASVD may be chosen to 

satisfy (42) and (43) and this choice is unique. If  X = XP~,  S(t) = PLS(t)pTD 

and Y(t) = y p T D ,  then E(t) = X(t)S(t)Y(t)  T is an ASVD such that X(t0) = U, 

S(t0) = E and Y(t0) = V. Because PL, P and D are constant, orthogonal 
matrices, Vrn(X(t)) = Vrn(X(t)) and Vrn(Y (t)) = Vrn(Y (t)), so (42) and (43) 
are satisfied. 

Uniqueness follows from Lemma 8. [] 

3 Numerical methods 

We now develop a numerical procedure for tracing the minimal variation 
ASVD that interpolates a given initial condition. It is impossible to use a 
general initial value problem solver directly on Corollary 9, because the term 
~I~, s(X(t)Tx(t))  in (41) involves the left-hand factor of an unknown a priori 
ASVD. Moreover, a general numerical integration procedure cannot guarantee 
the orthogonality of the numerical solution approximating X(t) in (41). 

In this section we derive a method which uses Corollary 9 to approximate 
a minimal variation path without an a priori ASVD. In essence, the method 
operates as follows. Given an SVD at t = t o, E(to) = XoSoYo T, the method 
approximates the minimal variation ASVD at t = t 1 = t o + h, by the SVD 

E(h ) = A'ISIYf, in which X1 minimizes the distance IIA" 1 - X 0 [  I over all 
possible left-hand factors X 1. Any (constant) SVD of E(q) gives a "basis" 

for the possible factors. Using such a "basis", the computation of 21 can be 
reduced to solving several small orthogonal Procrustes' problems. 

This approach is similar to Euler's method for approximating the solution 
to (41). Like Euler's method, the global discretization error is O(h), but 
extrapolation can be used to increase the order of accuracy. 

In principle the same approach could be used in conjunction with a 
higher-order difference approximation to (41). (The construction of such 
approximations is currently under investigation. Some preliminary work has 
appeared in [10].) 

A detailed derivation of this Euler-like approximation to (41) and its local 
truncation error appears in the next subsection, and computational algorithms 
appear in the following subsection. The convergence as the step size h tends 
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to zero is established in Sect. 3.3. The procedures are then extended to the 
computation of an analytic spectral decomposition of  a symmetric matrix in 
Subsect. 3.4. The final subsection lists the results of  a few numerical tests. 

3.1 An Euler-like method at generic points 

Suppose t o is generic and 

(44) E(to) = U0Z 0V0 T 

is some gregarious, constant SVD. Let E(t) = X(t)S(t)Y(t) x be any gregarious 
ASVD that interpolates the initial condition (44). Corollary 9 shows that if 
ZL(t) C ME, s, solves the initial value problem 

(45) ZL(t) = ~L, s(X(t)Tx(t))ZL(t) ,  ZL(t0) = Ira, 

then the left-hand, orthogonal factor, X(t), of the minimal variation ASVD 
E(t) = X(t)S(t)Y(t)  T that interpolates (44) is given by 

(46) .~(t) = X (t)ZL (t ) . 

Expanding Z L (t) in a Taylor series about t o gives 

Z L(t o + h) 

= ZL(t0) + hZL(tO) + O(h 2) 

(47) = ZL(t0) + h@L, sIX(to)TX(to))ZL(tO) + O(h 2) 

= I m + h @  L ( ( X ( t ~ 1 7 6  2) 
,s h 

= ~L, s(X(to + h)TX(to)) + O(h2) �9 

In the penultimate equation, we have used the initial condition ZL( t0 )  = Im. 
Thus, 

(48) X(t 0 + h) = X(t  o + h)ZL (t 0 + h) ~ X(t  0 + h)(I)L, s(X(t  0 + h)T X(to)) 

is an O(h 2) accurate Euler-like approximation to X-(t 0 + h). 
Equation (46) implies 

X(to q- h)~L, S (X(to q- h)T X(to)) 

2(to q- h)ZL(to + h)T~L, S (ZL(t0 + h)f((to + h)Tfd(to)ZL(tO) T) 

= )((t 0 -t-h)*L, s (~((t 0 q-h)TX(t0)) �9 

The last equality follows from (32), the initial condition in (45) and the 
orthogonality of  ZL(t ). Thus, the approximation (48) is independent of  the 
particular choice of the a priori ASVD. Therefore, we may use (48) with any 
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ASVD that interpolates the initial condition (44) - even an ASVD that depends 
on h - to obtain an O(h 2) accurate approximation of ~'(t 0 + h). 

To evaluate the right-hand-side of (48), we need X(to) and X(t o + h). The 
a priori ASVD interpolates (44), i.e., X(to) = U o. Thus, only X(t o + h) needs 
to be chosen. Suppose that t o + h is generic and 

(50) E(t o + h) = Uh~h VT 

is a constant gregarious SVD. (For practical purposes, (50) may be obtained 
from any good numerical method, e.g., [4,5,6,7, 16].) By Theorem 7, there 
exists an "almost" interpolating ASVD 

(51) 

such that 

(52) 

and 

E (t) = X h (t)S (t) Yh (t) T 

X h ( t o )  = to, 
S(to) = Yo, 

Yh(tO) = V O, 

Xh(t o + h) = UhPLhDLh, 

(53) S(t  o -t- h) = PTh~,hDhPh, 

Yh(tO + h) = VhDhPhDRh , 

where Dh, DRh E ~n ,n ,  DLh E ~m,m are diagonal matrices of +__l's and 
Ph E ~n and PLh E ~m are permutation collaborators. (All ASVD's that 
interpolate the initial condition (52) are parallel, because t o is generic. Hence, 
the diagonal factor in (51) does not depend on h.) If  a suitable permutation 
matrix PLh and an orthogonal, diagonal matrix DLh can be found, then 
X(t 0 -}- h) = Xh(t 0 -1- h) = UhPLhDLh may be used in (48). 

For small enough h, suitable permutation matrices PLh are identified by 
the property O~,s(P~hU~Uo) ---- O(h). This can be seen as follows. Lemma 
4 implies that there exists an orthogonal matrix ZLh(t ) E ~L, S such that 

Xh(t ) = X(t)ZLh(t). Thus, 

_L T T T f~_L (ZLh(to+h)T~(to+h)T~[(to)) .  r UO) = L,S 

It follows from the orthogonality of ZLh(t),  DLh E ~L, S and (32) that 

I[~,  s ( PTh UT Uo) ,, = l O~, s ( S~ ( to -t- h) T_~ (to) ) = O (h) . (54) 

Equation (54) may not identify PLh uniquely. However, if PLh and PLh are 

permutation matrices that each satisfy (54), then PLh = PLh W for some 

W E ~L,  S n ~r,.  Substituting PLh in place of PLh is equivalent to substituting 
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the left-hand, orthogonal factor, X(t) in (48) by one from a parallel ASVD. As 
noted above, both choices yield the same approximation to .g(t 0 + h). 

Because t o is generic, ~• = q)• so the information needed to choose L, S L, X 0, 
PL h is available from the initial condition (44) and the constant SVD (50). 

T Determining a suitable choice PLh from (54) is easy. Partition U h U o as 
U[ U o = [U 1 , U 2, U 3 . . . . .  Uk] where Uj E R"xm; and mj is the multiplicity 
of the j-th group of multiple singular values of S(t). Equation (54) shows that 
exactly mj rows of Uj contain entries of magnitude greater than O(h). The 
permutation matrix PLh may be any permutation matrix that interchanges 

these largest rows with rows (1 + ~=-11 m t) through (~]=1 ml)" 

With the above choice of PLh, the approximation (48) becomes 

X(t  o + h) ~ UhPLhDLhf~L,S (DThPTh U T Uo) 
(55) 

= Uh PLh~L, S (PTLh U~ U o) 

with local error 

2 ( t  o + h) -- UhPLhOL,s(PThUTUo) = O ( h 2 ) .  

We do not need to make an explicit choice of DLh , because, as shown by (55), 

DLh cancels out of the final approximation of X(t 0 + h). 
Although 2 ( t  o + h) is an orthogonal matrix, the approximation (55) is not 

in general orthogonal. Thus, it may be improved (at least qualitatively) by 
replacing it by the nearest orthogonal matrix. Recall the following special case 
of the orthogonal Procrustes problem. 

Lemma 12. I f  A E N nxn and A = U Z V  T is a conventional, constant SVD with 
nonnegative singular values, then UV  T is an orthogonal matrix nearest to A in 
the Frobenius norm, i.e., Q = UV  T is a solution to the orthogonal Procrustes 
problem 

I IA-QII=  min IIA-WII.  
W EOlln,n 

I f  A is nonsingular, then the nearest orthogonal matrix is unique. 

Proof. [7, Chap. 12.4] [] 

We use f](A) to denote the orthogonal matrix nearest to the nonsingular 
matrix A. 

An Euler-like approximation to ~'(t 0 + h) that is also an orthogonal matrix 
is 

~'(t o + h) ~ "~1 =def ~')(UhPLht~L, S (PE T Uh r Uo)) 

(56) = UhPLh~(dPL,S (PTh UT UO)) " 

If h is small enough, then (54) implies that OL,s(PLXh U[Uo) is nonsingular and 
(56) is uniquely defined. 
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The local error of  (56) is also O(h2). To see this, recall that ~'(t 0 + h) is 
itself orthogonal, so 

I[X(t o + h) T T -- ~(UhPLh ffPL,S (PLh Uh UO)[] 

< [[.X(t o + h) - UhPLhgPL,s(PThUTUo)[I 

+ IIUhPLh~L,s(PThUTUo) T T -- ~-~(UhPLh OL,S (PLh Uh UO))[I 

211X(t 0 + h) - UhPLh C~L,S (PT h U T UO)II 

= O ( h 2 ) .  

The following lemma summarizes the above discussion. 

Lemma 13. Suppose E(t) = ff(t)S(t) Y(t) T is the minimal variation ASVD that 
interpolates the gregarious initial condition 

E(to) = X(to)S(to) Y (to) T = UoEo VT 

at the generic point t o. Suppose t o + h is generic and 

E(t o + h) = Uh ~~,h VT 

is a constant, gregarious SVD. Let PLh E ~m be such that 

lion, s (PTh UT Uo)I] = O (h). 

Define X1 by 

(57) 21 = UhPLhn(%,s  (e?h UO)) . 

I f  h is small enough, then 

(58) II~(t 0 + h) - ~'1 II = O(h2) �9 

Given the approximation ~'1, consider the problem of finding the approximation 

Y1 ~ Y(t0 + h). Let E(t o + h) = UhEh VT and PLh be as in Lemma 13, and let 
ZLh E ~L,S be the matrix 

Z L  h = ~-~((I)L, S ( PTh UT Uo) ) " 

Thus, "~1 = UheLhZLh and, from (53) Y1 must be of  the form 

(59) Y1 = VhDhPhDRhZh 

where Z h is a collaborator of  ZLh, Ph is a permutation collaborator of PLh 
and Dh, DRh = diag(__+l) E Nn,n F1 qln, n. 

The permutation Ph is determined by PLh, but D h and possibly the final 
diagonal block of  Z h remain to be chosen. Reasoning as above, D h and Z h 
should be chosen to minimize IIVhDhPhDRhZ h --V011. This is equivalent to 
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choosing Z h and s = P] DhPhDRh to minimize II Zh(VoX VhPh) I)h-- l I, It. Note 

that b h is also a diagonal matrix of  +l 's .  
If  E(t o + h) has no identically zero singular values, then Z h is determined 

by Z L h" Therefore, the sign of the diagonal entries of  b h should be chosen to be 
the same as the signs of  the corresponding diagonal entries of Z h V~ VhP h. (If 

some diagonal entry of  Z h V f V h P  h is zero, then the approximations produced 
by Euler's method are not likely to be very accurate. In this case, the step size 
h should be reduced.) 

Suppose now that E(t o + h) has m k > 0 identically zero singular values. 

The trailing mk-by-m k diagonal block of Z h must be chosen as well as b h. 
The trailing mk-by-m k block of Z h affects only the final m k diagonal entries of 

ZhVorVhPhDh, SO the initial n -  m k diagonal entries of b h should be chosen, 
as above, to agree with the signs of the corresponding diagonal entries of 
Z h V f  VhP h. It is easy to check that ultimately, the signs of the final m k diagonal 

entries of b h cancel out of the final approximation Y~, so they may be set 
arbitrarily to 1. If g/'k E ~[mk ,mk is the trailing mk-by-m k principal submatrix 

of  V TVhPh, then the final mk-by-m k block of Z h, T k should be chosen such 
that 

(60) lIT T - Wkll = min{llQ - Wk[I IQ ~ dffmk,mk}. 

Lemma 12 may be used to determine T k. 
It can be shown using Theorem 6 and Lemma 12 that (57) minimizes the 

Frobenius norm distance to U 0 over all left-hand, orthogonal factors of SVD's 
of  E (t o + h), i.e., 

E(t o + h )  = X S Y  T, } 
(61) [121 -- Uoll = min I I X -  goll ( x ,  S ,  Y)  E ~[m,m X ~m,n X ~ n " 

Similarly, it can be shown that for the above choices of Ph,Zh and 

D h = PhDhP] in (59), 

[[Y1 - V0H = min { HY - VoHlE(to § h) = f s  T , ( S ,  Y )  E "@m,n • ~ �9 

3.2 Computational considerations 

Lemma 13 uses (I)L, s = ~L,Z0 and ~XL,s = (I)d-L,E0 to determine ~'1 ~ X-(t0 + h). 

To aid convergence at nongeneric points, it is better to use OL,Zh and �9 • L,Zh 
instead (see Sect. 3.3). This is done as follows. From (53), we obtain 

(62) PLhS(to § h)pT Dh ---- 2 h . 

Both E 0 and S(t) are gregarious, so (62) is essentially just a reordering of  the 
groups of  multiple singular values. This corresponds to reordering the diagonal 
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blocks of  ~L,S,  because 

PLh~L,spTh =def { PLhZL PThIZL E "~L,S} 

= ~L,PLhSpTDh 

Therefore, for any W E IR re• we have 

PLh f~L,S (W)P?h = ~L,Z h (PLh W P?h), 

and 
PL h O~, S (w)PTh -- d~• -- L,Zh(PLhWP?h). 

In particular (54) becomes 

(63) Ii~b{, ]g h (U{  UoPTh) I[ = O(h) 

and (57) becomes 

f f  (t o + h) .~ -~1 = ~)(Uh t~)L,~2 h (UT UoPTh)PL h) 

(64) = Uhf2(CbL,~h (UT UoPTh))PL h " 

The advantage of  (63) and (64) over (54) and (57) is that the best 
approximation property (61) holds even if t o and /o r  t o + h are not generic. 

For computational convenience the algorithms below calculate the constant 
SVD (50) through the "preprocessed" SVD 

UTE(to + h)V o = U~,h VT . 

Thus, U h = UoU and (63) and (64) become 

T T f~lL,Y_.h (U eLh) = ~,Y~h (PLhU) T = O(h) 

and 
~( t  o + h) ~. X1 = UoU~-~(f~L,Zh (PLhU))T PLh" 

The following algorithm calculates on step of  the Euler-like method described 
above. 

Algorithm 1 

Input: a constant, gregarious SVD E 0 = UoE0 VT, and a constant matrix 
E l E ~mxn 

Output:  a constant gregarious SVD E 1 = ~'1 $1 ~T that approximates one point 

on the minimal variation SVD through E 0 = U0Z 0 V T 
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1. Obtain any gregarious, constant SVD U~E 1V 0 = UZ l V T from any good 
method, e.g., [4, 5, 6, 7, 16]. 
2. Determine the multiplicities of the singular values of Z 1. 
3. Select a permutation matrix PL that minimizes I[OLX zl (PLU)II. Let P e ~ ,  
be its permutation collaborator. 
4. Use Lemma 12 to evaluate Z L = f~(q)L,~'~ (PLU)) T" 
5. Find a collaborator Z c ~L,~I ~ If E1 is full rank, then Z is determined 
by Z L. Otherwise, the final block T k of Z is given by (60), where W k is now 
the trailing mk-by-m k principal submatrix of pT V. 
6. Set D ~-- d i a g ( 1 )  chosen to make the diagonal entries 
nonnegative. 

7. Set X1 +-- UoUZLPL ; S t ~ P T z 1 P  D; Y1 ~- VoV Z P D. 

Computational details" 

Step 2: 

Step 4: 

The following algorithm is 
minimal variation SVD. 

of V Z P D  

Rounding errors can make this step difficult and delicate. To allow for 
rounding errors, it is reasonable to consider "small" singular values 
to be zero and to consider singular values whose relative difference is 
"small" to be equal. An ad-hoc, interpretation of "small" is "less than 
c[IEl It~" where c is an empirically determined O(1) constant and e is 
the precision of the arithmetic. 
It is more efficient to assemble the SVD of OL, z 1 (PL U) from the SVD's 
of the diagonal blocks (which may be as small as 1-by-l) than to treat 
it as a general m-by-m orthogonal Procrustes problem.) 

a simple Euler-like method for tracking a 

Algorithm 2 

Input: An initial gregarious SVD E(to) = XoS0 Y0 T of E(t) E ~r at a generic 
point t 0, a step size h, and the number of steps desired, N. 

Output: SVD's E(t o + jh) = XjSj  Y~ that approximate values of the minimal 

variation SVD through initial condition E(to) = _~0S0 Yo T at points t = t o + jh. 

- For j = 1 ,2 ,  3 . . . . .  N apply Algorithm 1 with inputs E~ = E(t o § jh) and 

E o = E(t o + (j - 1)h), U 0 = - ~ j - 1 ,  ~"0 ~- Sj-1 and V 0 = r j - 1  to obtain the 

output SVD E(t o + jh) = XjSj  Yr .  

We show in Sec. 3.3 that as h tends to zero, the approximations of Algorithm 
2 converge to the minimum variation ASVD through the initial condition 
E(to) = ~'0SoY0 T. However, like Euler's method, the global error is only O(h), 
so it converges too slowly to be an attractive numerical procedure. 

A more rapidly converging procedure is obtained by applying extrapolation 
[11, Chapter 6]. The following algorithm is an example of  an O(h 3) extrapolated 
Euler-like method. We use it combined with a simple halving/doubling variable 
step size strategy to compute the numerical examples in Sect. 3.5. 
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Algorithm 3 

Input: An analytic function E(t) E d,n,n a step size h, an initial gregarious 

SVD E(to) = XoS0 Y0 T at a generic point t 0. 

Output:  An SVD E(t o +h) = X~S~Y~ that approximates a value of  the 

minimal variation ASVD, E(t) = X(t  o + h)S(t o + h)Y(t  o + h) T, through initial 

condition E(to) = ~'0S0 Y~, and an error estimate 

6 ~ II.~(t 0 + h )  - ~'t II + IlY(t0 +h )  - Y~II 

1. For l = 1, 2, 4, apply Algorithm 2 with input E 0 = XoS0 Y0 T step size h/l 
and number of  steps l to get output SVD E 1 = Xh/tS l Y~r  

2" Xl ~--~')(8Xh/4--~h/2§ ; ]rl ~"-~') (SYh/4--6Yh/2+Yh3 ) 

1 f "X 
3. ~ ~ ~ , [ll3gh/2 --2Xh/4 --gh[ ] + 113Yh/2 --2Yh/4 -- Yh I]) 
Computational Details: 

Step 1 : In exact arithmetic, if h is small enough, then each call to Algorithm 2 
produces the same diagonal factor S 1. Rounding errors may cause the computed 
diagonal factors to differ by a modest multiple of  the machine precision times 
IIE(t 0 + h)l[. 
Step 2: The orthogonal Procrustes function f~ is used in Step 2 to insure that 
~'1 and Y1 are orthogonal. Its use in Algorithm 1, Step 4 is now redundant 
and may be safely omitted. 

Provided higher order approximations to OL,S(Jfo(t)TX(to)) in (47) can 
be obtained, it is likely that one-step numerical methods for integrating 
ordinary differential equations including Runge-Kutta methods, can replace 
Euler's method in (47) to give higher order one step methods for tracking 
minimum variation ASVD's. A direct formula for Jr(t) in terms of  E(t) would 
be the best of  all such approximations. Recently, [10] provided such a formula 
for bases of  the kernel and cokernel of  E(t) in the special case that E(t) has 
constant rank. This formula could in principle be extended to compute Jr(t) at 
generic points. At this writing, we do not know how to extend the formula to 
nongeneric points. 

3.3 Convergence 

The following theorem shows that the approximations obtained from Algorithm 
2 converge to .Y(t) as the step size h tends to zero. This is the same kind 
of  convergence required of  numerical methods for the solution of  ordinary 
differential equation [11]. 

Theorem 14. Suppose that E(t) E affm,n[a, b] and E(t) = X(t)S(t)Y(t)  T is the 
minimum variation path through the initial condition 

(65) E(t o) = XoSo Yo T 
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at the generic point t o. For any tf e [a, b], i f  Xj(h) and Yj(h) are approximations 
produced by Algorithm 2 at generic points tj = t o + jh, j = 1,2,  3 . . . . .  N, with 
initial condition (65), then 

lim " ~ u  ( ( t f  - -  to)/N ) = 2(t f )  
N - - ~  

and 
lim Yu((tf -- to)/N ) = Y(tf). 

N---~ oe 

Proof Let h = h N = (tf -- to)/N, and let the error at step j be denoted by 

t~j =def 112(t j) - 2fih)II �9 

Observe that for all integers N > 0, tf = t N. We must, therefore, show that 
lim N __, ~ 6 N = 0. 

By Theorem 11, for each j = 1 ,2 ,  3 . . . . .  N, there exists a minimum 

variation ASVD E (t) = Wj(t)S (t)O.j (t) T which interpolates the initial condition 

E(tj) = Xj(h)S(tj)Yj(h) T. Corollary 10 implies that there are constant, 
orthogonal, block diagonal matrices ZL. j E ~L,S and Zj r ~ s  such that 

(66) 2 ( 0  = Wj(t)ZL,j  

and 
~'(t) = Oj(t)Zj. 

The matrix Zc, j - I m is a measure of the error made by following the minimal 

variation path Wj(t) which passes through the "incorrect" initial condition 

Wj(tj) = )(,j(h). 
In terms of  this notation, we can b o u n d  •j+l in terms of 6j by 

(~j+l = I l X ( t j + l )  - 2j+1(h)l[ 

< I IX( t j+x) -  Wj(tj+l)ll + I lWj ( t j+ l ) -  2j+x(h)ll 
A 

= ZL j -Imll  + I lWj( t j+O-Xj+l(h)H 

= IIX(tj) - Wj(tj)ll + IlWj(tj+l) - 2j+ ~(h)ll 

The last step is a consequence of  (66). The initial condition of  Wj(t), was 

Wj(tj) = 2j(h). Consequently, 

A 

(67) 6j+ 1 ~ tSj -I- I[ Wj(tj+ 1) - -  Xj+ l(h)II �9 

A A 

The matrix Xj+l(h  ) is the Euler-like approximation to Wj(tj+ 1) given by (57) 

with W(t) in place of ~'(t) and tj in place of  t 0. Equation (58) gives 

I l W ( t j + l )  - . X j + l ( h ) l l  = O(h2 ) .  
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With (67), this implies 

~Sj+l ~ r + O(h2). 

An easy induction shows 

f s  < 60 + NO(h2) = 60 + (tf--  to)O(h ). 

It follows that l imu_ ,~6  s = 60. Then initial condition X-(t0) is known 

exactly from (65), so 6 o = 0. The convergence for Y u ( ( t f -  to)/N ) is proved 
analogously. [] 

If t o is not generic and the initial condition E (to) = E 0 = XoS o Y~ does not 
lie on an ASVD, then the methods converge to the minimum variation SVD 
path E(t) = )f(t)S(t)Y(t) x such that 112(t 0) - s  0 II is minimal. For example, if 
t o = O, E(t) is given by (30) with initial condition (31), then Algorithms 1,2 
and 3 track the ASVD 

Suppose that E(t) = X(t)S(t)Y (t) T is a gregarious, minimum variation path 
through E(to) = XoSo ~T where t o is generic and S(t) is as in (11). Suppose 
further that t 1 = t o + h is nongeneric and for some i 4= j, si(q) = sj(tl). 
Algorithm 1 applied to E I = E(tl) will "over cluster" by treating the two 
singular subspaces corresponding to si(q) and sj(q) as one singular subspace 

of  higher dimension. Algorithm 1 uses (64), so 21 is a minimizer of (61). Thus, 

O(h) = IIS(to + h) - -~oll --> 1121 - 2011 �9 

This implies that 

112(t 0 + h) -- 21 II ~ IIS(to + h) -- 2 o Iq + 1120 - x l  II 
= O(h)  

Although -~1 may not be part of  any ASVD of E(t), it does lie distance O(h) 
from its desired value of  X(t 0 + h). It follows that a numerical method based 

on Algorithm 1 that converges to 2(t)  at generic points, also converges at 
nongeneric points. 

The point t 1 = t o + h would also be nongeneric if some singular values of  
S(t) had a root at t 1. This case is similar to the case of intersecting singular 
values. 

It is probably impossible to overcome this confusion of singular subspaces 
entirely using finite precision arithmetic. The theorem of the gap [13, p. 225] 
shows that an arbitrarily small perturbation of E(t) in a neighborhood of the 
nongeneric point t 1 can make large changes in the two singular subspaces. 
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3.4 Extensions 

With minor modifications, the numerical procedure described in Sect. 3.2 
extends to calculating an analytic spectral decomposition of a symmetric 
matrix. If A(t) c l l  nxn is an analytic symmetric matrix then [8, pp. 70-71, 
120- 122] shows that there exist an analytic matrix X(t)  E ~ n and an analytic 

diagonal matrix of eigenvalues S(t) E ~ , ~  such that A(t) = X( t )S ( t )X( t )  T. By 

our definitions A(t) = X( t )S ( t )X( t )  T = X( t )S ( t )Y ( t )  T is also an ASVD, but 
the symmetric eigenvalue problem requires Y(t)  = X(t) .  Even if the initial 
condition A(to) = X0S 0 Y0 v meets the restriction Y0 = 20, Algorithm 1 does 

not necessarily set Y1 = 21. 
Fortunately, this difficulty is easily repaired by the following modified 

version of Algorithm 1. Define a gregarious symmetric spectral decomposition 
A(t) = X( t )S ( t )X( t )  T, X(t)  E ~ n CI ~r S(t) E ~n,n N d n ,  n to be one such 
that S(t) is in the form of (11) except that two diagonal entries of S(t) may be 
negatives of one another. The following is a version of Algorithm 1 modified 
for the symmetric spectral decomposition. 

Algorithm 4 

Input: a constant, symmetric, spectral decomposition A 0 = 20S02 ff and a 
constant matrix A 1 = A~ E ~nxn 

Output: a symmetric, spectral decomposition A 1 = 21S 12~ that approximates 

a point on the minimal variation path through A 0 = XoS0207 

1. Obtain a gregarious, constant spectral decomposition 2~A120 = V A V  x by 
any good numerical method, e.g., [4, 5, 7, 16]. 
2. Determine the multiplicities of the eigenvalues of A. 
3. Select a permutation matrix PL that minimizes F[~, A(PLV) I[. 

4. Use Lemma 12 to evaluate Z L = f~(~i~, A(PLV)) T. 

5. Set 21 ~ X o V Z L P L ;  S 1 ~ P ~ A P  

A particular case of the symmetric eigenvalue problem is the dual of the 
singular value decomposition 

[0 
(68) A(t )= E(t) x . 

The singular value decomposition of E(t) could be constructed from the 
eigenvalue-eigenvector decomposition of A(t). So, to treat X(t)  and Y(t)  more 
symmetrically one can adapt Algorithm 4 for the computation of the analytic 
spectral decomposition of (68). 

If only one orthogonal factor or the basis of only some singular subspaces 
of E(t) is required, then Algorithms 1,2 and 3 can be made more efficient by 
storing and updating only the one factor or only the appropriate columns of 
X o r  Y. 
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3.5 Numerical experience 

To demonstrate the procedure, we tested Algorithm 3 augmented with a simple 
halving/doubling variable step size strategy on several examples. We used the 
error estimate in Algorithm 3 to adjust the step size so that in any one step, the 
estimated error was less than 10-7. We also restricted the step size so that at 
any call to Algorithm 1 the output orthogonal factors and the input orthogonal 
factors differed in norm by no more than the ad-hoc constant 1/2. In each case, 
we sampled values of  a minimum variation ASVD at 101 equally spaced points 
over the interval [ -  1, 1], and calculated central difference approximations to 

the first and second derivatives of  S(t), X(t) and Y(t). The experiments were 
run under MATLAB [19] on an Olivetti M24 (PC/XT compatible) with math 
co-processor. The unit roundoff  was approximately 10-16 

3.5.1 Example 1 

The first example is Example 1 from the introduction with initial condition at 
t 0 =  - 1  given by 

[ cos,_,, s~n, 1,] [4 ~ 0it cos, 1, s~n, 1,] 
E ( - - 1 ) =  --sin( 1) c o s ( - 1 )  2 I - - s i n ( - 1 )  cos( 1) " 

Due to minor rounding errors, the computed values of  the minimal variation 
path differed from (1) by no more than 10-14. Note that these errors are 
almost as small as the errors that would occur by rounding the exact minimum 
variation path to finite precision. 

3.5.2 Example 2 

This is Example 2 from Sect. 2 with initial condition at t o = - 1 given by 

~-,,= [10 7] [~0 ~ [~ ~ 
Although t = - 1 is a nongeneric point, the initial condition lies on an ASVD, 
so there is a minimum variation SVD that interpolates the initial condition. In 

this toy problem, no rounding errors corrupted the computed values of  ~" and 

3.5.3 Example 3 

This is Example 3 from Sect. 2 with initial condition at t o = - 1 given by 

rco~-l, -sin~ ,,] [e0' ] 
E ( - - 1 ) =  L s i n ( _ l )  c o s ( - 1 )  [ 1 ]. 
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There is no ASVD of  E(t) that goes past t = 0, so this is a severe test of  
the procedure. The computed values of  the minimal variation differed from 
(9) by no more than 10-14 until the minimum allowed step size was reached 
approximately at t = - .03 and the integration process was abandoned. The 
extremely small step size is an indication that an ASVD does not exist. 

3.5.4 Example 4 

This is Example 5.6 from [9]: 

2 - t  0 0 t ] 

0 1 0 0 

E ( t ) =  0 0 1 0 t/2 

~ ~ 1 7 6 1 7 6 1 7 6  0 0 0 0 

with initial condition E ( -  1) = UEV T where 

iioooi] 0 1 0 

U =  1 0 0 , 

0 0 1 

0 0 0 

E = 

-3.1623 0 0 0 0 

0 1.1180 0 0 0 

0 0 1.0000 0 0 

0 0 0 0 0 

0 0 0 0 0 

and 

V = 

0.900487 0 0 0.3162 0 
0 1 0 0 

0.8944 0 0 0.4472 

[--0.03162 0 0 0.9487 0 
-0 .4472  0 0 0.8944 

Two singular values of E(t) are identically zero; one singular value is greater 
than 1.4 (on [ -  1, 1]); one singular value is identically equal to one; and one 
singular value is slightly greater than one and is tangent to the line y = 1 at 
the nongeneric point t = 0. The nonzero singular values are displayed in Fig. 1. 
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Fig. 1. Nonzero singular values from Example 4 
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Fig. 2. Errors in .~(t) from Example 4 

In the minimal variation ASVD through this initial condition, X(t) is 
constant The calculated values of X-(t) differed from the initial condition 
by less than 1 6 • 10-11. This is well under the requested local truncation 
error of 10 -7, but larger than the rounding errors in the previous examples 
The computed values of ~'(t) remain constant to within an error of 10 -14 
until t approaches the nongeneric point t = 0. The singular subspaces become 
increasingly illconditioned as t approaches 0, because two singular values 
approach each other [13, p 225] The effect of rounding errors on the computed 
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values of  ~" and Y become greater and greater. Until the two converging 
singular values are close enough to be clustered as a double singular value, there 
is nothing the extrapolated Euler procedure can do to remove the rounding 
error generated perturbations in these subspaces. Once t has passed through 

the region of  illcondition, the computed values of ~'(t) settle back to an 
approximate constant. 

Figure 2 is a graph of the errors in the computed values of IlX(t)tl at the 
101 test points. Note the scale of the ordinate. The peak around t = 0 is the 
effect of  rounding errors on the ill-conditioned singular subspaces near the 
nongeneric point t = 0. The local truncation error of  the numerical method 
contributes only to the error at t = 0. 
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Fig. 3. IIdY/dtl] from Example 4 

Figure 3 is a graph of  the approximations to lid ~'/dtll obtained by a central 
difference approximation at the 99 interior test points. Despite rounding errors, 
multiple singular values and integration through the nongeneric point at t = 0, 

the empirical observation that IId Y /d t l f  is smooth agrees with the theoretical 
expectation. 

3.5.5 Example 5 

To force the numerical method to resolve a nontrivial amount of nonuniqueness 
at every step, this example has multiple singular value paths and nongeneric 
points t = - 1, 0, 1. The matrix E(t) is constructed from the ad-hoc ASVD 
E(t) = X(t)S(t)  Y(t) T where Y(t)  = I, 

s ( t )  = 

00 ] 
0 - t  0 
0 0 t 2 

0 0 0 t 2 
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X(t) = exp(tK) and K E ~.4x4 is the skew symmetric matrix 

K = 

[010 j 
--1 0 2 

0 --2 0 

0 0 --3 

We use initial condition E( - 1) = UZ, V T where U = exp( - K), E = S( -- 1) 
and V = I. Although t -- - 1 is not generic, the initial condition lies on an 

ASVD, so there exists a minimal variation ASVD, E(t) = X(t)S(t)Y(t) through 
E ( - -  1) = U Z V  y. 

Corollary 9 implies that 

-~(t) = exp(tK) exp((t + 1)L T) 

and 
(t) = exp((t + 1)L T) 

where L E ]g 4• is the skew symmetric matrix 

- 1  0 0 
L =  0 0 0 " 

0 0 --3 

The orthogonal factors of  the minimum variation ASVD have variations 

Vrn(X(t)) = 5.65 and Vrn(Y(t)) = 8.94. The orthogonal factors of  the original 
ASVD have variations Vrn(X(t)) = 10.58 and Vrn(Y(t)) = O. 

The values of  2 ( 0  computed by our program differed from the exact 
values by less than 1.6 x 10-  10. The error estimate in Algorithm 3 tends to be 
conservative, so we are not surprised that the observed errors are significantly 
smaller than the requested local truncation error of  10-  7. Because this example 
has multiple singular values, the local truncation error o f  the numerical method 
dominated the rounding errors. 

4 Conclusions 

A real analytic singular value decomposition (ASVD) of a path of  matrices 
E(t) is a real analytic path  of  factorization E(t) = X(t)S(t)Y(t) T where X(t) 
and Y(t) are orthogonal  and S(t) is diagonal. I f  E(t) E ~,nx,. is analytic on 
[a, b] and 

(69) E(to ) = XoSo yT  

is any singular value decomposit ion at a generic point t = t 0, there is a unique 

ASVD E(t) = X(t)S(t) Y(t) that interpolates (69), minimizes 

b 

a 
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and  minimizes Vrn(Y (t)) subject to (70) being min imum.  For some values of t, 
the diagonal  entries of S(t) may be negative and may not  be in nonincreas ing  
order. 

An extrapolated-Euler- l ike method  that  treats the computa t ion  of the 
min imal  var ia t ion SVD as the solut ion of  a differential equat ion  has proven to 
be an effective method  of  t racking the min imal  var ia t ion SVD. 

The techniques used for the s ingular  value decomposi t ion  extend to the 
symmetr ic  eigenvalue problem. 
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