
Numer. Math. 66:465-492 (1994) 
Numerische 
Mathematik 
(~) Springer-Verlag I994 

Symplectic integration of Hamiltonian wave equations 

Robert McLachlan 

Program in Applied Mathematics, Campus Box 526, University of Colorado at Boulder, Boulder, 80309- 
0526, USA 

Received June 16, 1992/Revised version received April 20, 1993 

Summary. The numerical integration of a wide class of  Hamiltonian partial dif- 
ferential equations by standard symplectic schemes is discussed, with a consistent, 
Hamiltonian approach. We discretize the Hamiltonian and the Poisson structure sep- 
arately, then form the the resulting ODE's.  The stability, accuracy, and dispersion 
of different explicit splitting methods are analyzed, and we give the circumstances 
under which the best results can be obtained; in particular, when the Hamiltonian can 
be split into linear and nonlinear terms. Many different treatments and examples are 
compared. 
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0. Introduction 

Symptectic integrators have a remarkable capacity for capturing the long-time dy- 
namics of Hamiltonian systems correctly and easily. Invariant sets and orbit statistics 
converge even if the orbit is not followed with pointwise accuracy (MacKay (1992), 
McLachlan and Atela (1992), Candy and Rozmus (1991)). Indeed, if one wants to 
compute u(T) accurately for fixed T then conventional methods may do better be- 
cause they can have smaller local truncation errors. This is not an appropriate test 
for symplectic integrators: one should concentrate instead on phase space structures 
(e.g. the shape of  a traveling wave) and not on temporal errors (its speed). Whether 
or not accumulating phase errors (e.g. of angles on invariant tori) corrupt the dynam- 
ics depends on the particular system studied, and on the measured property being 
structurally stable in the space of Hamiltonian systems. 

The potential of symplectic integrators is even greater for partial differential equa- 
tions. Now the equations are s t i f f -  they contain widely different time-scales. Hence 
(when the Courant number is order 1) a non-conservative scheme wilt introduce a lot 
of dissipation in the high modes; but standard conservative schemes (Crank-Nicolson, 
3-time-level leapfrog) can have undesirable attributes such as implicitness, parasitic 
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waves, or low order. Hamiltonian methods have no parasitic waves, extend easily to 
any order, and are often explicit. 

The recent literature has many examples of ad hoc methods developed for par- 
ticular Hamiltonian PDE's, with an emphasis on proofs of convergence of u(x, T) 
for fixed T and of stability with respect to initial data. Whether such proofs can be 
carried through depends on the precise form of the nonlinear terms. There are energy- 
conserving schemes (Fei and V~isquez (1991), the sine-Gordon equation; Glassey 
(1992), the Zakharov equations; Gtassey and Schaeffer (1991), a nonlinear wave 
equation) and unconditionally stable schemes (Dai (1992), the variable-coefficient 
Schr6dinger equation; de Frutos, Ortega and Sanz-Serna (199 t), the Boussinesq equa- 
tion; Ivanauskas (1991), nonlinear Schr6dinger equations). Only this last is symplectic 
- it is just the midpoint rule (see Sect. 2). De Frutos and Sanz-Serna (1991) discuss 
the (implicit) midpoint rule and extensions. 

Here we take a more general approach and study the characteristics of a wide class 
of methods applied to general Hamiltonian PDE's. Instead of discretizing the PDE 
directly, we discretize both the Hamiltonian function and the Hamiltonian (Poisson) 
structure, then form the resulting ODE's. This is the approach taken, for example, 
by Feng and Qin (1987) for the linear wave equation, and by de Frutos, Ortega, and 
Sanz-Serna (1990) for the Boussinesq equation. As long as the Hamiltonian structure 
is canonical (see e.g. Eq. (1.1)) and the symmetries of the derivatives are preserved in 
the difference operators, then standard methods will arise in this way (as in Sect. 5); 
so this approach is only strictly necessary in the non-canonical case (see examples 2 
and 3, and Sect. 7). 

Section 1 outlines the structure of Hamiltonian PDE's and Sect. 2 reviews sym- 
plectic integration as needed here. We concentrate on the the splitting methods of 
Ruth (1983), Suzuki (1991), and Yoshida (1990). These may be applied when the 
Hamittonian is separable (H = T(p) + V(q), "P-Q" splitting), but the best methods 
are possible when the Hamiltonian is a sum of linear and nonlinear terms, each of 
which can be integrated exactly ("L-N" splitting). Wave equations (Strauss, 1989) 
(linear equations with periodic solutions, to which a nonlinear term is added) are 
often of this form. Proposition 1 proves sufficient conditions for the more accurate 
Runge-Kutta-Nystr6m methods to apply without modification to this linear+nonlinear 
splitting. Local truncation errors are easily computed using Poisson brackets of the 
parts of the Hamiltonian. 

The behavior of the high-frequency modes is central, and affects the stability of 
a method and dominates dispersion errors. In contrast to stiff dissipative systems (the 
heat equation) these modes must almost always be temporally resolved for successful 
calculations. Schemes which try to avoid doing so either lose accuracy or are not 
efficient. Section 3 compares the stability, accuracy and dispersion of the different 
symplectic integrators, particularly with regard to P-Q splitting. Section 4 deals with 
L-N splitting: If the equation is linear in its highest derivatives, dispersion errors 
are almost eliminated. We prove that (under the right conditions) two time-steps per 
period of the fastest wave are sufficient for stability; in many examples they turn out 
to be necessary as well. 

We give examples throughout and compare the Hamiltonian approach to other 
published schemes. Examples (all wave equations) are the Boussinesq, Korteweg-de 
Vries, Zakharov, and sine-Gordon equations; three more are treated in greater depth 
in Sects. 5-7. Section 5 illustrates spectral discretization on a nonintegrable nonlinear 
wave equation and compares different symplectic schemes. We show how aliasing 
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errors may be eliminated to any desired degree within the Hamiltonian framework, and 
how this can help in marginally-resolved calculations. We also compare symplectic 
schemes to an energy-preserving one - it turns out that reversibility is more important 
than exact energy conservation. 

Section 6 deals with the (integrable) nonlinear Schr6dinger equation. Ablowitz 
and Herbst (1990) have studied this equation and concluded that an integrable spatial 
discretization is essential in following orbits close to homoctinic. Instead, we find that 
sufficient spatial resolution and symplectic time-stepping are the essential ingredients 
for a successful long-time integration; accuracy and integrability are not crucial. 

Section 7 compares three different fourth-order symplectic integrators applied to 
the Korteweg-de Vries equation, with regard to accuracy and speed. 

1. Hamiltonian partial differential equations 

Olver (1986) is a good introduction to the structure of Hamiltonian ODE's  and PDE's.  
Here we give a brief overview. A Hamiltonian dynamical system consists of  a triple 
(M, {., .}, H)  where M is a smooth manifold (the phase space), H : M --~ R is the 
Hamiltonian function, and {., .} is a Poisson bracket, a bitinear, skew-adjoint operator 
C ( M )  x C(M)  ---+ ~', satisfying the Jacobi identity 

{ F , { G , H } } + { G , { H , F } } + { H , { F , G } } = O  VF, G , H : M ~  

and the Leibniz rule 

{F, G H }  : {F, G } H  + {F, H } G  VF, G, H : M --~ ~. 

The bracket can be written in coordinates x~ as 

{ F, G} = (VF)T j ( x ) ( V G )  

where J is called the Poisson tensor. A change of  variables x --+ X = r  induces 
a bracket in the new variables by 

{For ={F,G}.or 

or, in coordinates, 
(D:~qS)J(x)(D~:O) y = ,I(X). 

If, in addition, X E M (i.e. r is a map of  phase space into itself, such as the time-step 

in a numerical integrator) then it is natural to require J (x)  = J(x);  in this case r is 
called a Poisson map. The time-map of the Hamiltonian dynamical system 

J: = {x, H} = J ( x ) V H ( x )  

is a Poisson map. A symplectic (or Poisson) integrator is one for which a time step is 
a Poisson map. Casimirs are functionals C such that {C, F}  = 0 VF, hence integrals 
of the motion for any H. (Thus they might be called kinematic, rather than dynamic 
invariants.) The number of  Casimirs is corank(J). 

When the phase space is infinite dimensional, we write the triple as (,//Z, {., .), 
.~7r and the Poisson operator as ~ .  Typically .~//, consists of sets of  smooth 
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functions on a finite dimensional space Z, e.g. with periodic boundary condi- 
tions, ./fd = CT('lFn,~m). An element in ,//~ is u(x), x c Z. The Hamiltonian 
Je5' :,///g --+ l~ is a functional on this space, and the bracket can be written as 

z 6.:~ 5:r 

where 6 ,~ / 6u  is the variational, or Gateaux, derivative defined by 

F [ u  + ev] - ~ v dx.  
/ c=0 

When , ~  is constant on ~,Ed, the Jacobi identity is trivially satisfied, and one need 
only check skew-adjointness. There are three primary examples to which we shall 
refer. First, the nonlinear wave equation (NLW), for which u = (q(x), p(x)) T, f f  is 

the canonical Poisson _ and , ~  i 2 1 2 dx operator [ 01 1] = f (~p +~(q~) +V(q)) giving 

rise to dynamics 

0 =  {q, a ~  } - : p  
6p 

(1.1) 6 , ~  
J = {P, . ~ }  - - q~z - V'(q) 6q 

One might take Z = the circle ~1 and ,//~ = c r ( z ,  ~2), bearing in mind that for 
some u E .//~ (depending on V(q)) the solution might not exist for all time. Second, 
the nonlinear Schr6dinger equation (NLS), , ~  is - i  times the canonical one, %b and 
%b* are canonically conjugate variables (regarded as independent) and .g',5~(~b, %b*) = 
f ([g&l 2 + [r dx, giving 

(1.2) i~  = - -  = Cx~ + 21r162 
6,0* 

and its complex conjugate. (Note that real canonical variables are (q,p) = (x/2~P, 
v/2~r Third, the Korteweg-de Vries (KdV) equation: , ~  = 0:~ and . ~  = f ( - u s + 

-~(~) : )  d~: 

( 1 . 3 )  /L = 0 x ( - - 3 U  2 - -  uzx). 

In general, we are not interested here in the integrability or otherwise of the PDE's; 
given ~j.~, we wish to consider the widest possible class of Hamiltonians. 

To reduce a Hamiltonian PDE to a set of Hamiltonian ODE's which can be sym- 
plectically integrated, our approach is to discretize .,~ and .~,'Y separately and then 
form the resulting dynamical system. (This is in contrast to reductions of integrable 
PDE's, which are usually found by the method of inverse scattering, the Hamiltonian 
structure then being found by inspection.) . ~  is an integral which can be discretized in 
any (suitably accurate) way, being careful to maintain the symmetry of any derivatives 
in ,-~d'. If  ~.~ is constant, it may be discretized by replacing the differential opera- 
mrs by any (matrix) difference operator D, for example, central or pseudo-spectral 
differences. In what follows D will be any appropriate matrix difference operator. 
Some points to remember are that OzO~ = 0,~ usually breaks down when discretized, 
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.~'~ may be integrated by parts as necessary to get compact differences, and that for 
equations involving odd derivatives we may get 1-point-more-compact differences 
using staggered grids. 

Example 1..'~,f; = - f (u~)  2 dx = f UU~x dx may be discretized as H = ~ i , j  u i D i j u j  

giving (VH)~ = ~ j ( D i j  + Dj i )u j .  This approximates ~ = 2Uxx only if Dij  = D j i ,  
i.e. the matrix D must be symmetric. So Chebyshev-spectrat or finite differences 
skewed at boundaries are not suitable. 

There are some non-constant operators for which the same procedure works, ex- 

[ 0 OxUl I " and ,77 = uOxu. (Here the operator 0z acts to the amples being ,,~ = ~ ulOx 0 ~ �9 

right, i.e. ~ v  = u(uv)x in the latter case.) In these cases the same change of  variables 

which makes ,7  constant also works for the discrete versions ((q,p) = (u2, e x p - ~ )  

makes ~ canonical in the first case, and q = �89 2 gives ~;7 = Ox in the second). But 
for many other operators a straightforward discretization of  derivatives does not work, 
i.e. the resulting J does not satisfy the Jacobi identity, so the discrete system is not 
Hamiltonian. For example, one can show that ~" = uO~ + O~u (which arises in a dif- 
ferent formulation of  KdV) has no Hamiltonian finite-difference approximations. One 

can try and change variables to make J constant (v = ~ ~ ,,~ = 0~ does the trick 
here if u > 0), but whether this can be done in general is unresolved at present (see 
Olver (1988)), and may be unwieldy even if it is possible. Thus, finite-dimensional 
truncations of non-constant ~ " s  remains an important problem. 

Henceforth we restrict our attention to constant jT ' s ,  primarily the canonical 
one and , 7  = 0~, and periodic boundary conditions. Finite differences introduce 
excessive dispersion and will usually be inadequate, although of theoretical interest 
to compare to known integrable systems formed with finite differences. We therefore 
need spectral methods. There are four choices: first, a full spectral method, multiplying 
out the nonlinear terms in . ~  and truncating the introduced high frequencies; second, 
replacing 0~ by the pseudo-spectral matrix D; and each method in Fourier or real 
space. The time-continuous dynamics are the same whether one works in Fourier or 
physical variables; usually the choice is made to minimize the number of  Fourier 
transforms required per time-step. Details of  particular spatial discretizations will be 
deferred to Sect. 5. 

2. Symplectic integration 

Suppose the Hamiltonian may be split into two parts - the "P-Q" splitting: 

H = T(p) + V(q). 

Later we will also consider "L-N" splitting 

H = L(u) + N ( u )  

where L has linear dynamics and N is nonlinear. Let X T  = J V T ,  etc., be the 
associated vector fields, and e kX be the time-k flow of  the vector field X.  If  J = 
[o  ~ _ K  T then the following map is an explicit, first-order approximation of  the 

true flow e aXH (Ruth (1983)): 
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(2.1) 

which is computed as 

In (2.1), 

(2.2) 

and 

(2.3) 

e k X T e k X v  = e kX 

= - k ( ( q n ) )  , q~+l = qn + k (KT'(pn+l)) . 

X = X T + X v + Jg[XT, X V ]  + 0( ] ;  2) ~ ,]~(7H 

= H + Ho + O(]~2), H 0 = - ]g{ r ,  V} 

where the error (due to the noncommutativity of T and V) is expanded using the 
Campbell-Baker-Hausdorff (BCH) formula, and (2.3) follows because [XT, Xv]  = 
- X { r , v }  (ArnoVd (1978)). The series in (2.2) is only an asymptotic series in k - it 
does not generally converge, although it will for linear systems for small enough k. A 
Hamiltonian whose flow is strictly equal to e kX must be nonautonomous in general 
(MacKay (1992), McLachlan and Atela (1992)). Despite this problem, one might call 
H0 the "autonomous Hamiltonian truncation error" (Yoshida (1991)). 

The leapfrog ("LF2") method extends the method (2.1) to second order: 

1 1 ~(k) = e~kXTekXve~ kXT =_ ekX~, 

]r 
(2.4) /~ = H + ~ (2{V, {T, V}} - {T, {T, V}}) + O(k 4) 

It is symmetric, that is, ~(k )~ ( -k )  = 1. Suzuki (1991) and Yoshida (1990) use this 
property to construct schemes of arbitrary order by composing (2s+ l) leapfrog stages 
and preserving the symmetry: 

(2.5) 9~(w.~k)... r k)9~(wok)9~(wl k ) . . .  9~(w.~ k). 

where w0 = 1 - 2(Wl + . . .  + ws). Particular schemes are given in Table 1. A fourth- 
order scheme which has been rediscovered many times (Candy and Rozmus (1991), 
Suzuki (1991), Yoshida (1990)) is LF4a, which has s = 1 (see Table 1). However, this 
method takes a large backwards step of 1.70k, leading to poor accuracy and stability. 
A better fourth order method LF4b (Suzuki (1991)), whose largest step is -0.66k, has 
s = 2, and one can show that this is close to the most accurate fourth-order method of 
this type. (All such methods of higher than second order must take a backwards step, 
Suzuki (1991).) The best sixth-order method, LF6a, is Yoshida's Method A which 
has s = 3. 

If T(p) is quadratic (i.e. one may write ~ = f(q)), one can do significantly better 
by simply composing several stages of (2.1): ~ = I]~=,~ ea~kXTeb'kXv. This is an 
example of a partitioned Runge-Kutta method, equivalent to a Runge-Kutta-Nystro~h 
(RKN) method if p is eliminated. The most accurate 4th- and 5th-order methods (in 
the sense of minimizing the Hamiltonian truncation error at constant work) are due to 
McLachlan and Atela (1992); the 4th-order one, LF4c, has s = 4 stages. Okunbor and 
Skeel (1992) give sixteen 8-stage, 6th-order methods. Although symmetric, they are 
not formed by composing leapfrog steps, which allows more freedom in the choice 
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I. Gene ra l  m e t h o d s  

~ ( w s k ) . . .  ~ ( w l  k)~(wok)~(wtk) .  .. r , 

w h e r e  ~ ( k )  is any  s y m m e t r i c  me thod ,  usual ly  e i ther  l eapf rog  

LF2  : e�89189 kxA H =  A + I 3  

o r  t h e  m i d p o i n t  m e t h o d  

M 2  : 

LF4a ,  M 4 a :  s = 1 , 

LF4b ,  M 4 b :  s = 2 ,  

LF6a ,  M 6 a :  s = 3 , 

W 0  = 1 - -  2 ( W l  + . .  �9 + W s )  

wt  = ( 2 - 2  t /3 )  I 

wl  = w 2  = ( 4 - 4  I /3 )  I 

w l  = - 1 . 1 7 7 6 7 9 9 8 4 1 7 8 8 7 ,  w2 = 0 . 2 3 5 5 7 3 2 1 3 3 5 9 3 5 7 ,  

w3 = 0 . 7 8 4 5 1 3 6 1 0 4 7 7 5 6  

R u n g e - K u t t a - N y s t r S m  Methods ,  ~ = Y I l = s  i1. ea+kXTeb,+kXv 

LF4c :  s = 4, 

L F 6 b :  ,s = 8, 

a j  = 0 . 5 1 5 3 5 2 8 3 7 4 3 1 1 2 2 9 3 6 4  

a2 = - 0 . 0 8 5 7 8 2 0 1 9 4 1 2 9 7 3 6 4 6  

a3 = 0 . 4 4 1 5 8 3 0 2 3 6 1 6 4 6 6 5 2 4 2  

a4 = 0 . 1 2 8 8 4 6 1 5 8 3 6 5 3 8 4 1 8 5 4  

bl = 0 . 1 3 4 4 9 6 1 9 9 2 7 7 4 3 1 0 8 9 2  

b2 = - 0 . 2 2 4 8 1 9 8 0 3 0 7 9 4 2 0 8 0 5 8  

b3 = 0 . 7 5 6 3 2 0 0 0 0 5 1 5 6 6 8 2 9 1 1  

b4 = 0 . 3 3 4 0 0 3 6 0 3 2 8 6 3 2 1 4 2 5 5  

a l  = - 1 . 0 1 3 0 8 7 9 7 8 9 8 8 1 7 6 4 7 1 2  

a 2 = t . 1 8 7 4 2 9 5 7 3 8 0 2 7 4 2 6 3 4 6 8  

a3 = - 0 . 0 1 8 3 3 5 8 5 2 0 9 5 6 4 6 4 6 1 9 3  

a4 = 0 .34399425728108( t29845  

a~ =a9-+, i = 5 , 6 , 7 , 8  

bl = 0  

b2 = 0 . 0 0 0 1 6 6 0 0 6 9 2 6 5 0 9 3 9 8 2 5  

b3 = - 0 . 3 7 9 6 2 4 2 1 4 2 7 4 4 1 6 2 1 8 9 3  

/)4 = 0 . 6 8 9 1 3 7 4 1 1 8 6 2 8 0 9 2 5 2 7 4  

b5 = 0 . 3 8 0 6 4 1 5 9 0 9 7 0 1 9 5  13586 

b+=blo-~, i = 6 , 7 , 8  

of the a+'s and b~'s. Their method 13 (LF6b) has the smallest truncation error, about 
0.02 times that of  LF6a. 

If both XL and the nonlinear vector field XN can be integrated exactly, then one 
may use the same composition methods with L-N splitting (~; = ekXLekXu, etc.) This 
will usually be superior in that more (or all) of the derivatives in H will be treated 
exactly, and for weak nonlinearities, the truncation error will be much smaller. Such 
is the case for both NLW and NLS, which we consider below. Furthermore, the more 
accurate RKN methods may still sometimes be used: 

l- () / C 1  

Proposition 1. Let J =  ~ ~I( T 0 t '  whereKisconstant ,  a n d H =  L(q,p) + N(q), 
L ~ 

where L is a quadratic polynomial in p and q. Then any explicit canonical Runge- 
Kutta-Nystr6m method of order five or less, or any symmetric method of order six or 
tess, maintains its order of accuracy when applied to this splitting. 
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Proof The special requirement of  RKN for the splitting H = T(p)+V(q) is that certain 
terms in the expansion of  ea*kXTe bikxv . . .  contain a factor T "t and hence vanish 
identically. We compare these terms to those appearing in the expansion via the BCH 
formula, namely higher-order commutators (~  Poisson brackets, see (2.2,2.3)) of  

OT OV 
{T, V}  : - W j T j ,  Tj : Opj' : Z " 

i 

The first vanishing term is at O(k4),  which corresponds to a 4th-order method. It 
is {V, {V, {T, V}}} = TijkWiWjWk.  If now the same method is applied to L-N 
splitting this term is L~jkWiWjWk which is also identically zero (although OL/Oq 
does enter in the other terms). At fifth order, the two zero terms (in P-Q) are the two 
commutators of  this one with T and V, hence also zero in L-N. At sixth order this 
simplicity breaks down: the twelve terms in the BCH expansion reduce to eight for 
both the P-Q and the L-N splitting. These eight contain five distinct terms in the P-Q 
case but eleven in the L-N case (the extra terms containing OL/Oq, etc); hence the 
order conditions in the two cases are different. But if the method is symmetric, the 
sixth-order terms are identically zero (Yoshida (1990)), so the RKN methods do then 
carry over to the L-N splitting. [] 

(Note: Because the theorem is not true for all orders, a proof must involve looking 
at the error expansion; but we do not need the entire BCH series, just the knowledge 
of  which terms can appear at each order, namely, the commutators of T and V (or L 
and N)  of  that order.) 

Integrals of  the system are conserved if they are integrals of  each part of  the 
Hamiltonian separately. This is clearly the case for linear integrals (conserved by any 
consistent scheme anyway) and for bilinear integrals under both the P-Q and L-N 
splittings. When J is constant, Casimirs are linear functions and hence conserved. 

Example 2. De Frutos, Ortega and Sanz-Serna have given two treatments of  the 

[0 00 ], = Boussinesq equation ,~,~ = 0x 

first method (de Frutos et al. (1991)) is unconditionally stable; this is achieved by 
time-averaging the stiffest (D4q) term: 

(2.6) (qn+~ _ 2qn + q n - 1 ) / k 2  = _ ~ D4(qn+l + 2qn + qn-1)  + D qn  + D((q'~) 2) 

where superscripts denote time-levels and D is the pseudo-spectral difference operator, 
but could just as well be the (diagonal) spectral difference operator or even 0x. 
Rearranging terms, this can be written as a map qo: 

k 2 
pn+�89 = p,~-�89 + k(I  + ~ D 4 ) - I ( - D 3  q n + Dq n + D(qn) 2) 

(2.7) _ p~-�89 + k E N(q n) 

qn+1 = qn + kDpn+�89 

showing that stability is achieved by braking the high modes severely - the temporal 
frequency w of  a spatial wavenumber m is reduced to w/(1+k2m4/4) through the term 

E.  In fact the highest frequency wave has wavenumber 1 / v / ~ ,  showing that k /h  2 ~ 1 
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is in fact required to capture a positive fraction of  the waves as h --, 0. Secondly, a 
direct calculation of  ~ J c p  'T shows that ~ is a Poisson map iff E N  ~ = N ' E ,  which 
is not true here. It is true if N(q)  is linear; in this case the method is equivalent to 
leapfrog with the high modes braked in the Hamiltonian. (A similar method of gaining 
unconditional stability is used in Dai (1992) for the variable-coefficient SchrOdinger 
equation.) 

Their second method (de Frutos et al. (1990)) is equivalent to (2.7) with E = I.  In 
our framework this is P-Q splitting with time-stepping ekXTe k x v ,  which is second- 
order if the unknowns are staggered in time (qn, p~-l /2) .  They prove convergence 
and nonlinear stability for this method. Consider instead LF2, which is equivalent 
if the initial data for the staggered method are given by the mapping e - k x v / 2  (i.e., 

Po 1/~ = Po - �89 The Hamiltonian truncation errors (2.4) for the P-Q and L-N 
splittings are 

P-Q: 24 -PPzx  + p2 + 2qp2 + 2(-q~:c + q + q2)2 dx 

L - N :  2 4  2qp2 + 2q4 ' dx  

or their corresponding discretizations. For strong nonlinearities, both are  O ( q 4 ) ;  for 
q ~ p ~ l, L-N has two terms against nine, and no derivatives (which can be larger); 
and for weak nonlinearities (q ~ p << 1), L-N is O(q 3) whereas P-Q is O(q2). In 
addition, one may use the optimal RKN integrators; and the L-N splitting gains a 

in the stability criterion. factor 

Example 3. 

(2.8a) 

(2.8b) 

Glassey (1992) considers the one-dimensional Zakharov equations 

iE  + E:~.~ = qE 

where E is complex (compare to NLS (1.2)) and proves nonlinear stability of  
a tridiagonally-implicit second-order scheme for the Zakharov equations - Crank- 
Nicolson on (2.8a) (equivalent to the midpoint rule, see below) and 

(q,~+l _ 2qr~ + qn- l ) / k2  _ DZ(q,~+l + q~- l ) / 2  = D2(IE~t2 ) 

on (2.8b), where D 2 represents central differencing of 0.z.~. (This method conserves 
a discrete energy but is not symplectic - see the discussion of analogous methods 
for NLW, Sect. 5). But the L-N splitting is symplectic, explicit, has much smaller 
truncation errors and extends easily to any order: Let 

. ; 7 =  0 , 
0 i 

. ~ =  ~ '  +. J r ' ,  

%= f tExl2+~(q2+p2)dx, ./fS= f qtEI2dx 
(the spatial truncation is straightforward). Then e kXL is given by trigonometric func- 
tions, and e kxN can also be solved exactly: 
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: 0  } { qn+l =qn 
p __([Ei2)x =~ p,~+~ __pn + k(iS~12)x 

i[~ =qE E ~+l = exp(-iq~ k)E '~ 

If  e kXN c a n n o t  be found, or if H is not separable into parts which can be con- 
veniently integrated, then an explicit symplectic integrator is usually not available. 
Instead one turns to the midpoint rule M2 (see Table 1). A generalization of M2 is that 
the Gaussian Runge-Kutta (GRK) methods (which have s intermediate unknowns and 
order 2s) are also symplectic. Furthermore, they are also symplectic with respect to 
any constant Poisson matrix J ,  of  any rank (MacKay (1992)). Thus they are suitable 
for discretizations of , ~  = 0x. Finally, they preserve quadratic integrals of  the system, 
preserve reversibility with respect to linear involutions (i.e. SM2(-k)SM2(k) = 1, 
where S 2 = 1) and are symmetric. Therefore the above Yoshida-Suzuki methods all 
work if we replace a single leapfrog stage by second-order Gaussian Runge-Kutta, 
which is just the midpoint rule. This gives the methods M4a, M4b, and M6a. (M4a 
was independently discovered by Sanz-Serna and Abia (1991).) Ivanauskas (1991) 
proves convergence and stability with respect to initial conditions of the midpoint 
rule M2 applied to nonlinear Schr6dinger equations. 

3. Behavior of P-Q splitting 

With finite differences, P-Q splitting would normally be used, because computing 
e kxL requires a Fourier transform. Even with L-N splitting, there is still the question 
of how the splitting acts on any derivatives remaining in N.  For a straightforward 
analysis of this, we consider the linear wave equation c) = p, p = qxx with P-Q 
splitting, and investigate the above methods with regard to stability, dispersion and 
distortion. The time-stepping is identical if one works in real or in Fourier space; 
choose the latter, so that the modes uncouple, and a change of scale reduces each to 
a linear oscillator: 

q = p ,  ib= - q .  

Analysis of this system will apply to any linear Hamiltonian PDE with a nondegenerate 
elliptic fixed point (i.e. all eigenvalues are on the imaginary axis and all Jordan blocks 
of the Jacobian are 1 • 1). Write one time step of the method as an explicit linear 
map 

(,) () pl = A ( k )  p0 = ( A l l ( k )  A12(k)'~ qO 
Azl(k) Azz(k) J pO 

For the basic Ruth step eakXTe bkXv we have 

and for leapfrog LF2, 

A = ( 1 - kk2/2 k(1-k2/4)'~ 
- 1 - k2/2 ;" 

For the midpoint rule, one solves a 2 • 2 system to find 
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A = ( 1 - k e / 4  k )  1 
- k  1 - k 2 / 4  1+k2/4" 

For the higher-order Gaussian Runge-Kutta's one must solve larger systems. 
GRK4, one finds 

144 -- 60k 2 + k 4 12k(12 --  k 2) 

144+ 12k2+k 4 and A12 = -A2~ = 144+ 12k2+k 4" All = A22 = 

For GRK6, 

and 

For 

AI 1 : A22 = 
14400 - 6480k 2 + 264k 4 - k 6 

14400 + 720k 2 + 24k 4 + k 6 

24k(600 - 70k 2 + k 4) 
A12 = -Z21 = 

14400 + 720k z + 24k 4 + k 6" 

For methods formed by composition, A is a product of such matrices (which we 
do not write out here), and we have by induction in the number of stages that All  
and A22 are even polynomials in k and A12 and Azl are odd. For symmetric methods, 
writing out the symmetry condition shows that A1~ = Aez. Because the methods are 
symplectic, det A = 1. 

The exact solution for the linear oscillator is 

A 0 = (  cosk s i n k )  
- s ink cosk 

The matrix for a method of order p will agree with this up to terms of order kP; 
thus the first wrong term in trA is of order k p+2 for even-order methods. This error 
is available immediately for the explicit methods and can be found by Taylor series 
for implicit methods. 

The method is stable if solutions remain bounded for all time. The eigenvalues of 
A are 

trA • i 1 - 
,X= T 

trA 
= exp(• where cos(0) = 

2 

Thus we have stability for a particular k iff ItrA(k)l _< 2. Figure 1 shows cos(0) for 
each method, in comparison to the exact value cos(k); this shows the accuracy of 
each method for small k, and the stability for large k. This result can now be adapted 
to the original system: 

Proposit ion 2. Consider q = qxz discretized with time-step k, spatial mesh size h, 
periodic boundary conditions and a symplectic integrator with matrix A(k) defined 
above. Let k* be the least positive root of )rA(k)[ = 2. Then the stability criterion, 
depending on the spatial discretization, is 

k 1 
(a) Pseudo-spectral differences: h <- -Tr k* 

(b) Second-order finite differences: k < l k , 
h - 2  

(c) Fourth-order finite differences: k_ < x/3k.  
h -  4 
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Fig. 1, Stability & accuracy for explicit P-Q splitting. (a, top) �89 for five explicit methods applied to 
the linear oscillator; the true solition is cos k. The �9 shows the stability limit for each method. LF4c and 
LF6b are indistinguishable here. (b, middle) Relative phase speed for each method; (c, bottom) relative 
phase speed with magnified axis 
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Fig. 2. Implicit P-Q splitting As for Fig. I, six implicit methods compared 

Proof For the spectral discretization with Fourier modes - ~  + 1 < m < ~ ,  we 
require stability for each oscillator (/]~ = -mZq, ,0  separately; rescaling leads to 
mk < k* for 0 < m < M Then M = 27r/h gives (a). For finite differences, 
yon Neumann stability analysis reduces to this case with m 2 = s, where s is the 
Fourier symbol of the finite difference: s --- 4 s i n 2 ( - ~ ) / h  2 for the central difference 

h - 2 [ l , - 2 ,  l]u, and s = (4sin2 ~ +-~ sin 4 ~ ) / h  2 for the fourth-order difference 

( 1 2 h 2 ) - I [ - 1 ,  1 6 , - 3 0 ,  t 6 , - 1 ] u .  We require stability for all wavenumbers m, and 
thus for the maximum value of s: 4 and ~ respectively. This gives (b) and (c). [ ]  

Example 4. For leapfrog, trA/2 = 1 - k2/2 so k* = 2. We therefore have stability 
2 ~ 0.6366. LF4a is worse: we find 2k .2 in the spectral approximation for k/h < -~ = 

12 - 6(w + w 2) + 3v /Z-8+2w+4w z, where w = ,~'2; k* ,-~ 1.5734 and we need 
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T a b l e 2 .  Stability criteria, P-Q splitting, k/h is the stability criterion 
for  spectral differencing of  the linear wave  equation;  a is the first 
(O(kP)) term in the expansion o f  the phase speed error; do is the first 
term in the expansion of  the distortion 

Method  k* k/h Phase error  a Distortion do 

Explicit  methods:  
LF2 
LF4a  
LF4b 
LF4c 
LF6a  
LF6b 

Implicit  methods:  
M2 (=GRK2)  
M 4 a  
M 4 b  
G R K 4  
M 6 a  
G R K 6  

2 0 .6366  - -4 .2  • 10 - 2  0.25 
1.5734 0 .5008 6 .6  x 10 - 2  - -7 .6  x 10 - 2  
2 .7210  0.8661 9.3 X I0 4 - -7 .2  x 10 - 3  
3 .0389  0 .9673 1.1 X 10 - 4  9.3 x I0 4 
2.2691 0 .7223 - -3 .8  x 10 - 3  4 .0  x 10 - 3  
3 .0674  0 .9764  - -1 .3  x 10 - 6  7.1 x 10 - 5  

8.3 x 10 - 2  
6 .6  • i0  - 2  
9.3 x 10 4 
1.4 • 10 - 3  
2 .0  • t0  - 3  

9 .9  x 10 - 6  

k/h <_ 0.5008. Gaussian Runge-Kutta is unconditionally stable, which this example 
confirms because tAltl < 1. 

For the other methods the roots of the polynomials must be found numerically, and 
the corresponding stability criteria are given in Table 2. Notice that they are quite 
good - for non-symplectic methods (e.g. three-time-level leapfrog), one typically 
needs Courant numbers k/h near t with finite differences, and near 1/Tr with spectral 
differences. The results apply to any linear PDE with P-Q splitting: if the time- 
continuous problem has eigenvalues io-,,~, then the stability criterion is kCrm < k*. 

No general time-integrator can be free of dispersion in general. Historically this 
has led to schemes which introduce artificial dissipation of the high modes to prevent 
"wiggles". Indeed Crank-Nicolson (equivalent to the midpoint rule for a linear PDE) is 
often frowned on for just this reason. Now we have expressly disallowed numerical 
dissipation. Does dispersion mean that we cannot expect good long-time behavior 
from symplectic integrators? Certainly it does in the case of the linear wave equation, 
for which any initial condition will eventually disperse into its constituent modes as 
all phase accuracy is lost. However, for nonlinear and particularly for near-integrable 
equations, we can hope that phase locking inherent in the system will prevent this. 
(Consider the ODE case of coupled oscillators, for example.) In addition, it turns out 
that some integrators (e.g. LF4c) and L-N splitting have negligible dispersion errors. 

We take k < k* and calculate the eigenvectors of A; separating real and imaginary 
parts, show that the phase space is foliated by similar invariant ellipses, of which one 
is 

0 
\ s i n a /  \ c o s 0 - A l l  s i n 0 /  \ s i n a / "  

Applying the map to this ellipse and using det A = 1 gives 

(cosa '~  = B(COS(a-O)~ 
A B \ s in  a /  \ sin(a - O)J" 



Symplectic integration of Hamiltonian wave equations 479 

Thus the map moves a point an angle 0 around the ellipse each time-step, giving a 
dispersion relation 0. The exact map has 0 = k, and we are only considering a single 
wave, so the most natural error measure is the relative phase speed of  that wave, 
c = O/k. Because cos 0 = cos k + ak p+2 + O(k p+2) for even-order methods, we have 
c ~ 1 - ak p for small k (see Table 2). At k = k*, c = yr/k*. Figures 1 and 2 show 
c for different methods. Despite being unconditionally stable, implicit  methods are 
not superior here, and phase accuracy is lost completely if  they are used with large 
values of  k /h .  

Finally, the invariant circles of the oscillator may become eccentric and tilted in 
the discrete system. We call this property distortion. If the ellipse has semi-major axis 
a and semi-minor axis b, then the energy q2 + p2 in this mode can change during the 
integration by up to a factor of  (a/b) 2. So we define the distortion as d = 1(~)2 _ 1t" 
Because the ellipse can be rotated, this is tedious to calculate in general. However,  
for symmetric methods, cos0  = Al l  so the matrix B is diagonal. So 

distortion d = (1 - A l l )  2 1 

and the leading term is shown in Table 2. Because GRK methods conserve the energy 
q2 + p2, they have zero distortion. 

4. Stability of L-N splitting 

There are two approaches to the linear stability of splitting methods. Firstly, one can 
make general statements based on the generic bifurcations of  symplectic vector fields 
and maps, giving sufficient conditions for linear stability. Secondly, the eigenvalues of 
the t ime-map can be computed explicitly for particular examples; the generic sufficient 
conditions turn out to be often necessary as well. 

Here we are thinking of  integrating H = L + N with one of the composit ion 
methods in Table 1 with the resulting map ~ linearized about some steady state. Now 

k X A  
= e H = C is linear and hence is the time-k map of  some autonomous linear 

Hamiltonian ~r which can be found directly: H = u T B u  where C T B C  = B.  In this 
case the asymptotic series 

(4.1) ~I = H + k P H o  + . . .  

(cf. (2.4)) will converge to H for k small enough. However, one cannot use the series 
to examine stability because near the onset of instability, typically all its terms are the 
same order in k. Examining the first term in (4.1) can determine when the conditions 
of  the following proposition are not satisfied, and can help in choosing a good splitting 
of H .  Then (roughly, if dispersion errors are o(1) as k ~ 0) two time-steps per period 
of the fastest wave are sufficient for stability: 

Proposition 3. Suppose X H  haspure imaginary eigenvalues {+iCrra}M=v a l  _< . . .  <_ 
~TM, any multiple eigenvalues have positive signature, and any zero eigenvalues are 
associated with zeros o f  both X L  and X N .  Let k ---, 0 with kaM = k* held fixed, and 
assume that in this limit ~ is a small perturbation of  qo = e k x g .  (One may need to 
rescale the independent variables to get qo ~ i first.) Then, for  M sufficiently large, 
the method ~ is generically linearly stable for  k* < yr. 
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Proof We are investigating the stability of  the fixed point at the origin to small sym- 
plectic perturbations. The nonunit eigenvalues of ~ a r e  e ikcrm which are are bounded 
away from - 1  if k* < 7r. Because the eigenvalues of the vector field have positive 
signature, so do those of  its time-k flow. These are just the requirements for generic 
stability of  the origin when ~ is perturbed to ~ (ArnoVd (t978), MacKay (1986, 
1992). Finally, if zero eigenvalues of XH come from zeros in XL and XN, then 
there is a corresponding zero in Xff ,  so the +1 eigenvalues of W are fixed and do not 
split. []  

Notes: 
t. If  H = T(p) + V(q) is separable, eigenvalues are guaranteed to have positive 

signature (MacKay (1986)). 
2. At -+-kcrm = 7r, qp has a double eigenvalue at - 1 .  In the perturbed map ~ this 

generically splits into a real pair, signaling loss of  stability in this mode. It may 
be a bubble of instability or a permanent loss. 

3. If nonzero frequencies in L and N cancel out to give a zero eigenvalue in XH, 
then this may indeed be falsely split by the integrator. 

4. If  the O(k p) term in (4.1) is not subdominant to H then the above hypotheses 
cannot be satisfied. For example, take J canonical, L = �89 + maq2) where m is 
the mode number, and N = �89 2 (after linearizing around some steady state). 
That is, L is a linear wave equation with a derivatives of  q, and N has b derivatives 
of  q. Then the condition for subdominance is just b < a, i.e. the (originally 
nonlinear) term must have fewer derivatives than the linear term. Indeed, a direct 
calculation shows that the proposition applies to NLW (1.1), and to the Boussinesq 
equation (Example 2), with L-N splitting. For the linear wave equation with P- 
Q splitting, all terms are the same order, and in fact in the high modes, the 
perturbation to ~ is O(1) - hence the stricter stability conditions found in Sect. 3. 

Example 5. Nonlinear Wave Equations. Sine-Gordon ~ / -  qxx + sin(q) = 0 linearized 
about q = 0 is Klein-Gordon. Consider LF2 with L-N splitting on this equation: each 
mode decouples into a linear map 

_l kXL_kXN_l kXL A = eL ~ ~ 

\( cos(ink/2) s in(mk/2) /m~ 1 k 0 cos(ink/2) sin(mk/2)/m 
- m s i n ( m k / 2 )  c o s ( m k / 2 ) ]  ( - 1 ) (  - m  sin(mk/2) c o s ( m k / 2 ) ]  

cos(ink) - ~ sin(ink) 2kt2 (cos(ink) - 1) + s in (mk) /m "~ 

= - -k(cos(mk)  + 1) -- m sin(ink) cos(ink) - k sin(ink) // 

(4.2) cos 0 = ~trA = cos(ink) - sin(ink) 

The stability limit for large m is indeed m k <  7r, but beyond this there are 
bubbles of  instability. Consider k small with m k =  x held fixed, so �89 = cos x - 

�89 Solving by series for x near 17r shows that this is larger than 1 in 

absolute value for x E (17r - k2/lrc, lTr). However, these instabilities are unlikely to be 
triggered as they are only k/17r times as wide as the spacing between modes, hence 
one can easily choose k so as to avoid them. The maximum growth rate in the bubbles 
is only k2/27r. 
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Numerical experiments show that the formal stability limit can indeed be exceeded 
by a factor of three or four without the nonlinear terms triggering any instability, even 
for strong nonlinearities. 

Expanding (4.2) for small k and any m gives the numerical dispersion relation: 

k 2 
O/k = x/1 + m 2 + + O ( k  4)  

24x/1 + m 2 

which is O(k 2) away from the true relation, uniformly in m. This, and the smaller 
truncation errors, are the great advantages of the L-N splitting. 

5. Application 1: the nonlinear wave equation 

Consider the wave equation NLW 

(5.1) (t=P, [9 = -q z z  - V'(q) 

on [0, 27r] with periodic boundary conditions. After a Fourier transform :j,7 is canon- 
ical. (In fact it is multiplied by 1/27r; we absorb this factor in , ~ . )  The canonically 
conjugate variables are the Fourier coefficients q~ and P-re.  The Hamiltonian be- 
comes 

1 fo  2~- cxD 

- o r  m=--oo 
m#O 

The discretization consists in dropping all but a finite number of  modes; the integral 
is replaced by the trapezoidal rule; and, with F representing the discrete Fourier 
transform, we get 

M - 1  

Z V( (F- :q ) j )  
j=o 

1 
H = ~p~ + Z (PmP-m + m2qmq--m)+ 

-M/2+I<m<M/2 

with Hamilton's equations 

Om = P.~ 
~0.~ = - m 2  qm - ( F V '  ( F -  : q)).~ 

With the restriction that q(x) be real, we can identify q.~ and q'm, getting an M 
degree-of-freedom Hamiltonian system in canonical form. This is equivalent to the 
standard pseudo-spectral truncation, but makes apparent the aliasing errors in the 
nonlinear term. These may be removed to any desired degree within the Hamilto- 
nian formulation: take M + > M,  let pad zero-extend a vector to length M +, and 
chop truncate the M + - M high frequencies. The nonlinear term in H becomes 

1 ~ "~M+- 1 M---: z-~j=0 V (F- 'pad(q) j )  with derivative chopFV'  (F- lpad(q)) .  Quadratic non- 

linearities will be completely anti-aliased with M / M  + = ~ (the "two-thirds rule"); 

higher powers (qS) by M / M  + = 2 (if we also drop the "odd man out" mode 
m = M / 2  when s is odd). Complete anti-aliasing is equivalent to the full spectral 
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method in which nonlinearities are multiplied out; but for non-power terms (e.g. sin ~) 
this is not practical, so it 's better to stick to the above treatment. 

We take V(q) = q4/4 for some numerical tests. This equation is discussed at 
length in Strauss (1989): if the initial data are C ~ then the solution stays C ~ for all 
time; it also is known to have spatially odd, time-periodic solutions. (These may be 
easily computed by finding fixed points of  a Poincar6 map.) We ran numerical tests 
and confirmed the following properties of  symplectic integrators on this equation: 
(a) the energy error did not increase secularly with time; (b) with initial conditions 
near an elliptic periodic orbit, the orbit did not drift away from it or towards it over 
extremely long times (many thousand periods); (c) the bilinear momentum integral 
fpq:~.dx ( ~ r n p m q _ ~  for the ODE's)  was conserved within round-off error; and 
(d) the above accuracy and stability analyses were confirmed (nonlinear terms could 
destabilize the calculation only when the solution was extremely poorly resolved 
spatially). 

Next we compare the L-N and P-Q splittings. Throughout we use LF4c, the 
optimal fourth-order integrator, so that both methods use the same amount of work. 
For small tql (i.e. weak nonlinearity) the relative truncation error of  the P-Q scheme 
( H o / H )  is O(1), against O(q 2) for L-N, so there is no comparison in this case. Fig 3 
shows the maximum energy error for the two schemes with initial conditions p~) = 0, 
q0 = a cosx  and M = 32 for two different amplitudes a. (The last mode qt6 is 
dropped). The energy error did not grow with time for any stable k. The P-Q splitting 
was stable for c = k / h  < ~  0.94 (cf. Table 2) and the L-N for c < ~  14 at a = 0.5 and 
for c < 3 at a = 2 -  L-N has no linear stability limit here. Clearly the L-N splitting is 
preferred wherever it is feasible. 

Although anti-aliasing is often used in large-scale simulations of  fluids, it is not 
clear why aliasing the high-frequency interactions is worse than simply setting them 
to zero, as the full-spectral method does. Perhaps the extra work of  anti-aliasing would 
be better used to increase resolution? This is true for spatially resolved integrations, 
but not necessarily for marginally-resolved ones (such as most fluid problems). The 
following example, in which a full-spectral truncation converges much more regularly, 
illustrates this. 

Solutions with initial conditions p0 = 0, q0 = a cos x are unstable to odd perturba- 
tions for a >,-~ 1.85; this makes a sensitive test case. Figure 4 shows the complicated 
structure of the instability through 1500 periods of  the primary cosx  mode (t is in 
units of  the fundamental period 27r). We took q0 = a cos x + 10 -12 sin x and mea- 
sured the growth of  this instability for different spatial truncations (see Table 3; all 
results are converged in time). With full-spectral, even M = 8 gives good results; 
with pseudo-spectral, convergence is erratic, although when M is large enough both 
have similar accuracy. Also striking are the methods' completely different relative 
behavior for slightly different initial conditions. 

In the literature there is an emphasis on deriving schemes which conserve a discrete 
analog of  the energy exactly. Such schemes are generally not symplectic, due to the 
result of  Ge (1988) on non-conservation of  energy in symplectic integrators. Here we 
consider one such scheme, which does turn out to have good long-time properties 
- not because of  its conserved quantity, but because it is reversible. Glassey and 
Schaeffer (1991) study the second-order implicit scheme 

(5.2) , qn+l _ 2qn + q~-I  D2q n 
G(q,~+l qn-1, qn) __ k 2 - + N(q)  = 0 
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Fig. 3. Energy error for NLS, P-Q and L-N splittings compared 

= - 6  
~o _o 

Table 3. Full- vs. Pseudo-spectral methods. The sin x 
mode initially has amplitude 10-12; the entry gives 
the IOglo of its amplitude at t = 2007r for two dif- 
ferent initial amplitudes of the cos x mode 

Amplitude a = 2.0: 
M Full-spectral Pseudo-spectral 
16 -2.3 -1.8 
32 -2.3 -2.3 

Amplitude a = 1.9: 
8 -9.6 -12.2 
16 -9.  I -6.6 
32 -9.1 -9.1 

where D 2 represents central differencing of q:~:c and 

N(q) = ~(q~+l + qn-1)((qn+I)2 + (qn I)2) 

which conserves a discrete energy but is not symplectic. (One may introduce pn+�89 = 
(qn+l _ q~)/k  to write this in our standard form). By comparison, LF2 with central 
differences and P-Q splitting can be written in the form (5.2) with N(u)  = (qn)3 and 
is explicit with smaller truncation error. 

There is a traveling wave solution q(x, t) = 9(x - et) = g(r/) where 

71-F(3) 2 
F 1 1 5 1 

= 2 t ( g ,  2 '  ; 2994) g' = 
4 c( )2 = 2(c2- 

This may be used to generate starting values for (5.2), and to check accuracy - 
phase errors are easily subtracted out by comparing Fourier amplitudes, giving the 
"shape error" ll Iqmt - ex.ct  q,~ tl" The results are that both schemes (LF2 and (5.2)) 
show similar qualitative behavior: the position of the traveling wave is wrong by 
O(tk 2) but errors in the shape of the wave do not grow with time. LF2 is more 
accurate due to the extra o(kZq 3) truncation error in (5.2). A numerical calculation 
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with c = 1.5 showed LF2 to be 13.5x more accurate in shape and 17.5x in wave 
speed. However, note that any difference equation of  the form (5.2) is reversible if 
G(q,~+l, q,~-l, q~) = G ( @ - l ,  q~+~, q~), as here. We observed the same qualitatively 
good results for other reversible discretizations, energy-preserving or not (e.g., for 
N ( u )  = J _n+l g(q + qn 1)(qn)2). By contrast, the introduction of  any (even O(k4)) 
asymmetry in (5.2) causes the shape error to grow linearly with time. 

Reversible systems inherit many of the properties of Hamiltonian systems near 
their symmetry plane (here, p = 0), for example, they have a KAM theorem, and 
eigenvalues of  symmetric fixed points have the same restrictions as do fixed points 
of  Hamiltonian systems (Roberts et al. (1991)). However, away from the symmetry 
plane they may have attractors and repellers, which are undesirable in a numerical 
method for a Hamiltonian system. (It is possible that (5.2), while not symplectic, 
could be made symplectic by a change of variables. Equivalently, it might preserve a 
Poisson bracket, but the wrong one. While not as attractive as preserving the correct 
one, the method would then have many of  the same properties as standard symplectic 
integrators. This is unlikely but we have not been able to rule it out.) 

Although the traveling wave is not symmetric, its symmetric partner is just itself 
shifted by 7r, so the above eigenvalue results extend to this case. Therefore we believe 
that any good long-time behavior of  (5.2) is due to its reversibility, not its energy- 
conservation. 

6. Application 2: the nonlinear Schr6dinger equation 

Consider the focusing nonlinear Schr/3dinger equation, 

(6.1) i~  + ~ x  + 2I@I2g ) -= 0 

with periodic boundary conditions ~(0, t) = ~(L,  t); the symmetric case has, in ad- 

dition, ~b(:c, t) = ~ (L  - z, t) enforced Vt. The plane waves ~b = e2iia12ta, a C C, 
form a two-dimensional set of  periodic orbits. These orbits can be unstable, though, 
and in the symmetric case have an Nh = [lalL/Trj dimensional homoclinic manifold 
connecting periodic orbits with the same tal but different phase. Orbits with initial 
conditions close to the plane wave will trace out different pieces of  this manifold, but 
Ablowitz and Herbst (1990, and other references therein), using integrable and non- 
integrable discretizations, have found these orbits difficult to calculate numerically. 
The problems became progressively more severe as Nh increases. For the standard 
central difference approximation (the "diagonal discretization") and adaptive Runge- 
Kutta-Merson time-integration they observe 
a) a rapid flow of energy into the high frequencies ('spatial chaos'), or 
b) temporal chaos in the time-series ~(z0, t), or 
c) for the unsymmetric problem, sudden loss of  symmetry and increase in temporal 

chaos. 
They emphasized that an integrable discretization, with its own (perturbed) homo- 
clinic structure, was necessary to integrate NLS, and a comparison of  the diago- 
nal discretization with a second-order integrable discretization showed that the latter 
avoided problem (a) and was generally more reliable. However, for larger Nh ( > ~  4) 
it too faced the same problems. Some of  these have been analyzed in terms of  the 
inverse-scattering eigenvalues of the PDE. Instead, here, we emphasize the intrinsic 
numerical characteristics of the equations which must be dealt with for a successful 
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integration. In our view integrability is not essential: the splitting of  stable and unsta- 
ble manifolds due to a nonintegrable discretization is generally exponentially small 
in the perturbation and is insignificant in a well-resolved calculation. A method that 
addresses the numerical characteristics of  the l inear equation i~b + ~b~x = 0 will also 
cope with NLS. The following are the three crucial factors: 
i) The homoclinic orbits have fine spatial structure - at least 4 0 N h  grid points are 

needed just to represent them smoothly. Problem (a) is caused by insufficient 
spatial resolution; the perturbation from the PDE is then no longer small and all 
accuracy is lost. The formation of  'wiggles'  near sharp fronts is well known in 
both finite-difference and spectral calculations. In addition, here this is accom- 
panied by breakup of the homoclinic structure. Forest et al. (t992) saw similar 
behavior in a discretized Sine-Gordon, which showed a transition to chaos at the 
onset of instability in the PDE. From our point of view, it would be more correct 
to say that chaos is expected if the true solution is not smooth on the grid - the 
perturbation from integrability in then no longer small. 

ii) The problem is numerically stiff because the linear part of (6.1) has eigenvalues 
2,~ and m is large), thus we expect to need k#2~ < rr am = i~ 2 (where #m = m Z- 

just to resolve the fast waves temporally. Some numerical methods may allow 
this limit to be exceeded; one should not be surprised if this allows errors to build 
up in time. 

iii) A symplectic integrator must be used for the time-integration. In particular, stan- 
dard Runge-Kuttas are strongly dissipative below their stability limit (e.g. the 
standard fourth order RK damps waves by 0.5 per time-step at k / h  ~., 0.75) 
which leads to substantial errors in the known integrals of the PDE. 

We outline the numerical properties of  a symplectic, pseudo-spectral scheme. We 
follow Ablowitz and Herbst (1990) and use L = 4,,/2re throughout. L-N splitting works 

here: e kXL  = eik/~2~m is performed in Fourier space, and e kXN = e-2ilzp312kffaj in 
real space. Anti-aliasing is not economic because the nonlinear part would need to be 
integrated in real space on the finer grid. Linearized around ~b = 0, the splitting gives 
the exact solution. Linearizing around the plane wave ~b0, i.e. ~b = ~b0(1 - c  cos #ma:) 
gives 

(6.2) ~ = i#2~e + 4ilat2~e 

(Note: until the last paragraph in this section we are dealing with symmetric NLS.) 
Separating real and imaginary parts and applying LF2 gives (similarly to (4.2)) 

1 
~trA = cos(k#20 + 2 1 a 1 2 k  sin(k# 2 )  

and a series expansion shows that the time-discrete system has instability for 
#m < 21al - 21a[Sk2 + O(k4). The numerical growth rate, cr,~,~ = ln(A)/k where 

the eigenvalue A =  �89 + , / ( ~ t r a )  2 -  l is v z 

anum = # m , J 4 I a l  2 - # ~  - k 2 2IaI4#3~ + O(k 4) 
u 3 , / 4 t <  2 - 

so we expect good results in the linear regime if 4ta[ 2 - # 2  is not small, i.e. if a 
mode is not marginally unstable. 
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However, as for sine-Gordon, there are bubbles of instability. Essentially the true, 
low-frequency instability aliases onto the high frequencies if fewer than two time- 
steps per period are taken. The first bubble is at k#  2 E (Tr, 7r+4[a12k). The frequency 
spacing near here is about 2k#,~ (#m large) so the bubble may be avoided. However, 
in the full nonlinear system we do observe a weak instability in the marginally stable 
wave with k#2~ = 7r. Hence one should stick to k # ~  < 7r for safety. 

We use the second-order LF2 for illustration. In general, one expects no energy 
drift if the time-step is sufficient small; here, this means sufficiently small with respect 
to the period of the fastest waves. Indeed, although k#2~ ~ 7r turns out to be sufficient 
for spatially well-resolved calculations, k needs to be smaller than this if there is less 
resolution - i.e. it is then necessary to integrate the high frequencies more accurately. 
A corollary is that near the stability limit, one should not expect a higher order method 
(e.g. LF4b) to be more accurate, and it is not. In fact higher-order methods are even 
more sensitive to k being too large. Secondly, the energy may be well conserved for a 
certain time and then jump. This can happen when the orbit enters a particularly steep 
region of phase space (i.e. all the energy concentrated in one unstable mode). Again, 
smaller time-steps ameliorate this problem. Thirdly, as an example of  the sensitivity 
of  this system, we found that in single precision it was impossible to stop the energy 
error increasing each time around the homoclinic manifold. 

Another diagnostic is conservation of an integral of  NLS, 

L P 

15 -- J0 14xxI2 + 21416 - 614x1214t2 - ((1412)x)2 dx 

which, after H,  is the next-most complicated amplitude integral. (The first integral, 

f0 c [412 dx, is conserved exactly by LF2). The pseudo-spectral approximation of  I5 is 
not an integral of our ODE's,  but we observe that it does not drift in a sufficiently- 
resolved (in time and space) calculation. As k --, 0, relative errors in /5  are the same 
order as the last Fourier mode 14M/a[. If  this is large enough, or if the time-step is too 
large,/5 may jump in regions of phase space where the solution is particularly steep. 
Figure 5 compares well- and marginally-resolved calculations for the case Nh = 2 
(the initial condition is 4 = a(1 - 0.1 cos x)). If the above guidelines are followed, 
increasing Nh presents no further difficulties: Figure 6 shows results for Nh = 8. Note 
that we are not claiming that this shows the exact solution, only that it is qualitatively 
correct, e.g. the orbits stays near the homoclinic manifold and its temporal spectrum 
has rapid decay. 

High accuracy, such as that of  the pseudo-spectral method, is not crucial to a suc- 
cessful integration. Qualitatively similar results are obtained with the (nonintegrable, 
second-order finite difference) diagonal discretization with the same number of  grid 
points. Hence we conclude that resolution (so that discretization errors are uniformly 
small) and symplectic time-integration are the essential factors here; accuracy and 
integrabitity are not as important. 

The unsymmetric problem is more subtle, and we find that further resolution is 
needed to capture the dynamics even qualitatively. Problem (c) above is caused by the 
introduction of  tiny asymmetry from round-off error which then grows catastrophically 
and soon becomes O( 1 ). We have introduced a small asymmetry (4  = a ( 1 - 0 . 1  cos x)+ 
10 -8 sin x) and watched it evolve (see Fig. 7). Although it is supposed to grow, the 
problem is that in poorly-resolved regions of  phase space, the asymmetry grows much 
too quickly (the sudden growth for M = 64 is triggered by a sharp spike in 4). The 
reason is that in the unsymmetric problem, the eigenvalues of the linearized flow (6.2) 
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become double, a property which is not structurally stable. If the evolution is sensitive 
to the false splitting of  this eigenvalue pair, then one cannot hope to get good results 
without actually fol lowing the whole solution accurately. This applies to any non- 
structurally-stable flow. We note that recent work of  Ablowitz  et al. (1993) indicates 
that for even more unstable modes (Nh ~ 8), even spatially resolved calculations (with 
resolution that makes the spatial truncation errors as small as they are in the successful 
calculations above) show a spurious odd-mode instability, apparently related to round- 
of f  error. 
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Fig.6. Near-homoclinic orbit of symmetric NLS with Nh = 8 unstable modes, a = 1.5, M = 512, 
k.crM/2 = 71-. (a) max I~12 against time - maximas show loops of the homoclinic orbit, minimas (all near 
the same level) show return to near the fixed point. There is no drift away from the fixed point. (b) Profiles 
of Ir 2, only local maximas are shown. (c) Error in fifth integral stays small; also IAH/H I < 10 -s  for 
the whole run. (d) Temporal Fourier spectrum of r 4000 samples. The decay by a factor of 103 
indicates non-chaotic behaviour. The slowly-decaying tail is caused by the finite sample 

7. Application 3: the Korteweg-de Vries equation 

Lastly we consider  an equat ion for which one must  use implici t  methods  - KdV,  (1.3). 
This  been considered by de Frutos and Sanz-Serna  (1991), who found that M 4 a  could  
have  better pointwise  accuracy than (non-symplect ic)  leapfrog. The  nonl inear  vector  

2 field ~/~ = ~ Diju j  cannot  be solved exactly so L-N splitting is not  applicable.  (Note  
that one can ~olve the corresponding continuous problem by characterist ics,  but this is 
of  no use in der iv ing a symplect ic  map  for the discrete problem).  One  might  replace 
e k x n  by an approximat ion (e.g. the midpoint  rule) of  the same order  as the method,  
but this has no clear  advantage in accuracy. Thus for fourth-order  methods  there are 
three choices,  all implicit :  GRK4,  M4b,  and M4a. In each case the l inear part o f  the 
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unstable modes but  has z515/I5 ~ 1. For  the symmetr ic  case,  M = 64 would  be jus t  sufficient 

equations may be moved on to the left-hand side of  the iteration; this requires solving 
a 2 • 2 system for GRK4. With u = L(u)  + N ( u )  the iteration is 

2 

1 - �89 + ~ ( k z ) :  ~=x 

4 - -  , and z is an where cl = 1 - kz, c2 = 1 + kz, A = ( a i j )  = 1 ,/~ i 
~+ 

(imaginary) eigenvalue of  the linear operator L; for KdV on [0, L], z = i(27rn/L) 3. 
This iteration should be converged to round-off error to preserve symplecticity, and 
then the value of  u at the new time-step is u + k ( f l  + f2)/2.  The two real FFTs needed 
to compute N here may be done as one complex FFT; in practice we found GRK4 
to be only slightly slower to converge than the second-order midpoint rule M2. 

Thus the work requirements per iteration for the three methods GRK4, M4b, and 
M4a are in the ratio 1 : 5 : 3; taking into account their different convergence rates 
(due to different internal t ime-steps) the total work was in the ratio 1 : 2.5 : 2.25; and 
for a one-soliton solution (see de Frutos and Sanz-Serna (t991)),  the energy errors 
were in the ratio 1 : 10 : 100. (The difference in truncation errors is not this extreme; 
a possible explanation is the simple form of the nonlinearity in KdV). So the energy 
errors at constant work are in the ratio 1 : 390 : 2560. We conclude that GRK4 is the 
best method, although not as easy to program as M4b. 

We saw in Sect. 5 that for some equations and some initial conditions, reversible 
schemes are sufficient for good long-time behavior. With .)7 = 0x, the involution 
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wh ich  reverses  t ime  is x ~ - x .  If  one  is us ing  finite d i f fe rences  then  the  fo l lowing  
type  o f  s c h e m e  is O(kh, k 2, h 2) and  revers ib le  (Kruska l  1972, unpubl i shed) :  

1 n+, 1 ,~+x f~+l  + f ~  f ~ -  1) 

= u(nh, jk) and f)~ = OH/Ouj at t ime level  n .  Its advan t age  o v e r  M 2  is where  uj 
that,  a l though  implici t ,  it has  rapid  conve r gence  w h e n  swept  f rom left  to right.  It can  
be  made  symmet r i c  (and  O(k 2, h2)) by  add ing  a second  stage wi th  x reversed,  w h i c h  
would  be  swept  f rom r ight  to left. T he  order  cou ld  n o w  be  inc reased  to four  by  com-  
pos ing  severa l  steps (as in (2.5)). However ,  because  still four  sweeps  per  ( symmet r i c )  
s tep would  be  needed ,  this  app roach  has  no  c lear  advan t age  ove r  m idpo in t -ba sed  
me thods ,  cons ide r ing  that  symplec t ic i ty  has  been  abandoned .  
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