
Numer. Math. 66, 123 137 (1993) 
Numerische 
Mathematik 
�9 Springer-Verlag 1993 

A nodal spline interpolant for the Gregory rule 
of even order 

J.M. de Viiliers 
Department of Mathematics, University of Stelienbosch, Stellenbosch 7600, South Africa 

Received July 28, 1992/Revised version received February 1, 1993 

Summary. The Gregory rule is a well-known example in numerical quadrature of 
a trapezoidal rule with endpoint corrections of a given order. In the literature, the 
methods of constructing the Gregory rule have, in contrast to Newton-Cotes 
quadrature, not been based on the integration of an interpolant. In this paper, after 
first characterizing an even-order Gregory interpolant by means of a generalized 
Lagrange interpolation operator, we proceed to explicitly construct such an inter- 
polant by employing results from nodal spline interpolation, as established in 
recent work by the author and C.H. Rohwer. Nonopt imal  order error estimates for 
the Gregory rule of even order are then easily obtained. 
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1. Introduction 

Let n be a positive integer, and, for a given interval [a, bl on the real line IR, 
consider the uniform partition {~i; i = O, 1 . . . . .  n} given by 

b - a  
(1.1) ~i=a+iH, i = 0 ,  t . . . . .  n, H =  

n 

For a function feC[a,b], and with the notation I[f]:=Sbf(x)dx and 
f~ :=f(r i = O, 1 . . . . .  n, we use the symbol Q[f] to denote, for a given set {w,,i; 
i = 0, 1 . . . . .  n} of weights, a quadrature formula of the form 

(1.2) Q[f] = ~ w.,zf~, 
i=O 

whereas the symbol E [ f ] : =  I [ f ] -  Q[f] will be used for the corresponding 
quadrature error. Both Q[f] and E[f] will, whenever necessary, be suitably 
indexed in order to distinguish between different quadrature formulas. 
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For a given nonnegative integer k, we write IP k for the set of polynomials of 
degree < k. Also, we employ the usual notation Hgll~:= max, < x _< btg(x) t for the 
maximum norm of a function 9~C[a, b]. 

In recent years, some attention in the literature (see, e.g., F6rster (1987), Solak 
and Szydelko (1991)) has been devoted to the Gregory rule, which, for integers k > 0 
and n > k, will be denoted here by CR = Qk,,[f],  and was shown in Brass (1977, p. 210) 
to be expressible in the form 

(1.3) Qa,.[f] = H f i  q- [ ( - -  1) i + t  Lj+ 1] I f / + L - i ]  , 
i=0  i=0 j=i 

where the Laplace coefficients {L1, L2, L3 . . . .  } can be computed from the recur- 
sion formula 

u Lv 1 
(1.4) y - v = l / t - v +  1 / ~ + 1 '  # =  1 , 2 , . . .  , 

as given in Martensen (1973, p. 70). We call GR Qk, ,[ f]  the Greyory rule of order k, 
which is a symmetric quadrature rule in the sense that (1.3) can be written in the 
form (t.2), with the weights satisfying the symmetry condition 

(1.5) w , , i = w , , , - i ,  i = 0 , 1  . . . . .  n .  

Note in particular from (1.3) and (1.4) that the case k = 0 yields the trapezoidal rule 
Q TR[/];  we have 

(1.6) GR TR Q, I f ]  �89 + f l  +f2  + + f , - 1  + �89 Qo, , [ f ]  = = H I  . . .  . 

It is clear from (1.3) and (1.6) that the Gregory rule can be interpreted as a trap- 
ezoidal rule with endpoint corrections of order k. 

Whereas, for general nonnegative order k, the exactness condition 
GR Ek,, [p]  = 0, p e IP k, holds, an elementary result for symmetric quadrature rules, as 

proved in Brass (1977, Theorem 42), yields the improvement ~R E2, , , , [p]  = 0 ,  
pelP 2m+1, m = 1, 2 . . . . .  for the Gregory rule of even order 2m, as is also implied 
by the optimal-order error estimate 

(1.7) GR l Ez , , , , [ f ]  I < (b - a)L2m+zH 2"+2 IT/~Zm+2)ll~, fEcZm+Z[a, b], 

m = 0 , 1  . . . . .  

the proof of which is given in Martensen (1964, pp. 161-163). 
Further notable features of the Gregory rule is that GR Qk,, [ f ]  is asymptotically 

optimal in a sense made precise in Babuska (1966) and L6tzbeyer (1972); also, in 
contrast to the composite Newton-Cotes and Romberg quadrature formulas, the 
integer n need not satisfy some given divisibility condition. 

For  a given quadrature formula Q [ f ] ,  the availability of an approximation 
f *  o f f  for which Q [ f ]  = I [ f * ] ,  often provides a useful aid in the study of the 
properties of Q[f] .  For  example, exploiting the resulting fact that 
E l f ]  = I [ f - f *  ], the error analysis for Q[f ]  can then be conducted by using 
possibly known expressions (or estimates) for the approximation error f - f * .  
Whereas the Newton-Cotes (and the related Gauss) quadrature formulas are 
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usually defined as the definite integral of the corresponding Lagrange polynomial 
interpolant, which then immediately yields such an approximation f*  of f, the 
construction in the literature of the Gregory rule has been based either, as in 
Ralston and Rabinowitz (1978, p. 140), on replacing the endpoint derivatives in the 
Euler-Maclaurin formula (see (2.2) below) by forward and backward differences up 
to a given order, or, as in Brass (1977, p. 210), by means of a certain polynomial 
identity. Neither of these two methods seems to suggest an obvious approximation 
f*  o f f  for which ~R Qk.,[f] = l [ f*  ]. 

In this paper, after proving, in Sect. 2, a fundamental existence and uniqueness 
theorem for corrected trapezoidal rules, we proceed in Sect. 3 to characterize, in 
Theorem 3.1, a generalized Lagrange interpolation operator G: C[a, b] ~ C[a, b] 
which is assumed to have certain approximation properties, and which yields an 
interpolant for the Gregory rule of even order in the sense that, for given integers 
m > 1 and n > 2m, the desired relation G~ = = Q2, , . , [ f ]  = I[Gf]  holds, with Gf inter- 
polating f on the partition (1.1). 

Next, in Sect. 4, we verify that the nodal spline interpolation operator which was 
developed in a sequence of papers by De Villiers and Rohwer (1987, 1991, 1992) 
and De Villiers (1992), and for which a fundamental existence and uniqueness 
theorem was proved by Dahmen, Goodman and Micchelli (1988, Theorem 4.2.1), 
actually satisfies, in the case of even-degree splines and uniformly spaced knots, the 
properties assumed in Theorem 3.1 of G, and thus yields an explicit even-order 
Gregory interpolant Gf In similar work, Schoenberg and Sharma (1971), for 
a specific order, and Delvos (1986), for general order, constructed a sptine inter- 
polant for the Euler-Maclaurin quadrature formula. 

Finally, in Sect. 5, we employ Jackson-type estimates for the nodal spline 
interpolation error, as established in De Villiers and Rohwer (1992), to derive 
nonoptimal order error estimates for the Gregory rule of even order 2m when 
applied to the integration of functions f~C~[a,  b], l = 0, 1 . . . . .  2m + 1. Analog- 
ous error estimates for Newton-Cotes and other quadrature formulas have been 
established by Stroud (1966; 1974, Sect. 3.12 and Appendix B). 

Although the above-mentioned work by De Villiers and Rohwer on nodal 
spline interpolation was not restricted to even-degree splines, we observe that, in 
the case of splines of odd degree >3,  the corresponding nodal splines have 
non-symmetric support intervals (see De Villiers and Rohwer (1987, equations (3.8) 
and (3.20)), so that Theorem 3.1 below is not applicable. 

Also, it should perhaps be remarked that, since nodal spline interpolation 
was developed for arbitrary knot spacings, the resulting nodal spline quad- 
rature formula could, in the case of even-degree splines, be regarded as a generaliz- 
ation (to partitions which are not necessarily uniform) of the even-order Gregory 
rule. 

2. A fundamental existence and uniqueness theorem 

As has already been pointed out in Sect. 1, the Gregory rule can, according to (1.3) 
and (1.6), be interpreted as a corrected trapezoidal rule, for which we now give the 
following precise definition. 

Definition 2.1. For  given integers k > 0 and n > k, a quadrature rule of the form 
(1.2) will be called a trapezoidal rule with endpoint corrections of order k, and 
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denoted by QC, [ f ] ,  if and only if it has the form 

k 
(2.1) cx Qk, n[ f ]  = Q~R[U] + H ~ O~k,i(fi + L - i )  , 

i=O 

for a coefficient s e t  {O~k,i" ~ i = 0 ,  1 . . . . .  k} in which each ~k,i is independent ofn. 
We proceed to state and prove, for even-order k, a fundamental existence and 

uniqueness theorem for QkC~,[f], according to which the coefficient set {~k,i; 
i = 0, 1 . . . . .  k} in (2.1) is uniquely determined by the demand of exactness on the 
polynomial class IP k. Although our result is immediately derivable from a more 
general theorem by Brass (1977, Theorem 116), we nevertheless give the complete 
proof there, since our specialization allows some significant simplifications. 

We shall need the Euler-Maclaurin formula, which, according to Atkinson 
(1978, equation (5.93)), can be expressed in the form 

(2.2) E T R [ f ]  = __ ~y. zi j rr<  j_ 1)(b ) _f(2j- ,)(a)]H2J 
j : ~  ( 2 j ) !  " ~  

(b - a)B2r+ 2 H2r+ 2 f(2r+ 2)(~ ) 
(2r + 2)! 

for f 6C2r+2[a ,b] , r=O,  1,2 . . . . .  where ( is a point in [a,b], and with 
{ B z j , j  = 1,  2 . . . .  } denoting the Bernoulli numbers of even order. In (2.2), as 
throughout the paper, we adopt the convention 

• b j = 0  i f r < m .  
j=ra 

Theorem 2.1. Let m and n be integers with m > 0 and n > 2m. Then there exists 
a unique trapezoidal rule with endpoint corrections of order 2m, CT Q 2m,n I f ] ,  satisfying 
the exactness condition 

(2.3) CT ]p2m E2m, n[P]= O, pE . 

Proof Let p~lp2rn. Then, from (2.1) and (2.2), 

(2.4) EC~,,[p] = _ ~ B2j [p(Zj- j=x ( ~ .  1)(b) - P(EJ-1)(a)]H2J 

2m 

- H ~, c~2m, i[P(~i) + P(~,-i)] �9 
i=O 

Noting from (1.1) that { , - i  = b - ill, we next use Taylor expansions to obtain 

(2.5) 2,n 2m 1 (-1)JP(J) I~o 1 
Z CX2m, i[P(~i) + P(~n-i)] = E f i  [ptJ)(a) + (b)]  iJO~2m, i H j , 

i=0  j=O i 

after having also changed the summation order. It is understood that 0 ~  1 
in (2.5). 
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Next,  we divide the sum o v e r j  in (2.5) into even and odd powers  of H, and then 
insert the resulting expression into (2.4) to find 

(2.6) CT E2m,,[p] = L [P(2J-I~(b) -- P(2~-l)(a)] - -  H2i 
i=1 i=o (2j)! 

[ 2--~0 i2J 1 -- [p(Ej)(a) + P(2J)(b)] @ O~2m, i HE J+ 1 
j=0 i= 

Hence the exactness condit ion (2.3) is satisfied for a coefficient set {~2m, i; 
i =  0, 1 . . . . .  2m}, with each a2,..i independent  of n, if and only if {a2m, i; 
i = 0, 1 . . . . .  2m} solves the (2m+ 1) • (2m+ 1) linear system 

2m [ Bj+ I 
(2.7) ~ iia2m, i = j +  1'  j =  1,3 . . . . .  2 m - -  1 , 

i=o 0, j = 0 , 2  . . . . .  2m , 

where the "only if" part  can be shown by choosing p(x) = (x - a)2m, for which, 
in (2.6), the factors [p(2j- l ) (b  ) _ p ( 2 j -  l~(a)],j = t, 2 . . . . .  m, [ptZJ)(a) + ffzJ)(b)], 
j = 0, 1 . . . . .  m, are nonzero and independent  of n, and then recalling that  (2.3) 
must  hold for all values of  n(= (b - a ) /H)  > 2m. 

The result of the theorem now follows by recognizing the coefficient matr ix  

(2.8) 

m 
1 1 

0 1 

A =  0 1 

0 1 

m 
1 --.  1 

2 -.- 2m 

22 ... (2m) 2 

22,, ... (2m) TM 

m 
corresponding to the linear system (2.7) as the t ranspose of a Vandermonde  matrix,  

2m with det (A) = YL=o r! # 0. [] 

Hence, recalling also (1.3), (1.6), Definition 2.1 and (1.7), we immediately deduce the 
following result. 

C o r o l l a r y  2.2. The unique quadrature rule implied by Theorem 2.1 is precisely the 
Gregory rule o f  order 2m, 6a �9 Q 2m,, [.1 ], as defined by setting k = 2m in the representa- 
tion (1.3). 

GR Setting m = 1 in Corol lary  2.2 yields the Lacroix rule Q L A [ f ]  := Q2.n[ f ] ,  which, 
according to (1.3) and (1.4), is given by 

(2.9) Q L A [ / ]  = Q T , [ f ]  + H [  -- -~ (f0 + f , )  + 16(f1 + f , -  1) -- 2-~(f2 + f , - 2 ) ]  

(n >= 2), 

or, alternatively, 

3 7 23 
(2.10) Q L A [ f ] = H  ~ ( f o + f . ) + g ( f l  + f . - 1 ) + ~ ( f 2 + f . - 2 ) +  f (n_>_5). 

i 
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The following relationship between the even-order Gregory and Newton-Cotes 
quadrature formulas should also be noted at this point. Suppose the integer m > 1, 
and define the Newton-Cotes quadrature formula Nc . Q 2 , n [ f ]  .= / [ P 2 , n ' ] ,  with p 2 , n 6  

IP 2ra denoting the (unique) Lagrange polynomial interpolant of f satisfying the 
interpolation conditions P(r i, i = 0, 1 . . . . .  2m. Since both QE,,.Z,,[f]GR and 

NC QErn[f] have the form (1.2) with n = 2m, and are exact on IP TM (as well as on the 
larger class lp2"+l), we can appeal to a standard uniqueness result in Davis and 
Rabinowitz (1984, p. 74) to deduce the relation 

(2.11) cR Nc Q2m[f], m =  Q 2,,,2,. [ f ]  = 1 , 2 , . . . ,  

which already provides a useful insight for the work of the next section. 

3. Characterization of an even-order Gregory interpolant 

In order to construct, for a given f e  C[a, b], an approximation f*  of f for which 
Q2cR , I f ]  = I [ f * ] ,  we first note from (2.11) that, in the case n = 2m, the required 
approximation f *  would have to be identical to the Lagrange polynomial inter- 
polant P2m which was used in the definition, as given in the argument leading to 
(2.11), NC of QEm[f]. We shall now show how the uniqueness aspect of Theorem 2.1, 
together with Corollary 2.2, can be exploited to characterize a generalized 
Lagrange interpolation operator G: C[a, b] ~ C[a, b] from which the desired ap- 
proximation f *  can be obtained by setting f*  = Gf. 

For  given integers m _>_ 1,n > 2m, we define the Lagrange interpolation oper- 
ators L: C[a, b] ~ ~2rn and L: C[a, b] ~ ]p2m by the conditions 

(3.1) (Lf) (r =f~, ] 
(~,f)(~._,) = f , - , ,  i = O, 1 , . . . ,  2m, feCEa, b],  

so that L and Z can be represented by the formulas 

(3.2) 

with 

(Lf)(a + Ht) = ~ li(t)fl, 
i = 0  

2m 

(~Lf)(a + Ht) = • l,(n - t)f ,-i ,  
i = 0  

0 < t < n, f e C [ a , b ] ,  

2m /7 - -  k 

(3.3) /i(t):= /-[ i - k" 
k=O,k ~ i 

Also, we dearly have the polynomial reproduction properties 

(3.4) Lp = p, p6]P 2m, Lp = p, p 6 l P  2'n . 

We shall employ the usual symbol 6ij for the Kronecker delta, whereas Z will 
denote the set of integers. 

The following characterization theorem then holds. 
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Theorem 3.1. Let the 
~,.~C(IR) such that: 

(3.5) 

(3.6) 

(3.7) 

integer m > 1, and suppose that there exists a function 

~bm(t) = 0, t q ~ [ - - m - - l , m + l ] ;  

~bm(t) = t~m(--t), t~[ - -m- -  1, m + 1] ; 

~bm(t -- i)p(i) = p(t), t~]R, p~IP 2m . 

Then, if n > 2m, the generalized Lagrange interpolation operator G defined for 
f eC[a, b] by 

F(Lf) (a+Ht) ,  O < t < m ,  

(3.8) (Gf)(a+Ht)=li=~otPm(t- i ) f / ,  m < t < n - m ( n > Z m +  1),  

/ ^ 

[ . ( c f ) ( a  + / - / t ) ,  n - -  m _< t _< n ,  

with L and L given as in (3.2), maps C[a,  b] into C[a,  hi, and provides an interpolant 
Gf for the Gregory rule of even order 2m in the sense that 

(3.9) (Gf)(~,) =f(~,) ,  i = 0, 1 , . . . ,  n, ] 
feC[a,  b] 

(3.10) I[G f ]  GR J = Q2m. , [ f ] ,  

Proof. (a) To  prove (3.9), we fix j~{ - m ,  - m + 1 . . . . .  m} and then choose, in the 
reproduct ion  proper ty  (3.7), 

p(t) = Ij(t), talR , 

with lj~lP 2" defined as in (3.3). Now set t = m in the resulting equat ion to deduce 

2 m  

(3.11) b, o = tj(m) = ~ lj(i)t~(m - i)= ~,,(m -- j ) ,  
i = 0  

where the summat ion  limits are obta ined by virtue of the fact that  ~ , , ( t ) =  0, 
It[ > m + 1, as is evident from (3.5) and the continuity condit ion ~,.eC(IR). It then 
follows from (3.11) that  ~,, satisfies the nodal proper ty  

(3.12) fire(j) = 5oj, j e 7 l ,  

f rom which, together  with (3.8) and (3.1), the desired interpolat ion proper ty  (3.9) is 
easily shown. 

(b) The  proper ty  G: C[a, b] ~ C[a, b] can now be shown by exploiting the 
nodal  p roper ty  (3.12) of ~O,,, together  with the fact that  O,,eC(1R), to deduce from 
(3.8) that  

lim (Gf)(x) = lira (Gf)(a + Ht) = f,, = (Gf)(~,,) , 
x ~  + t ~ m  + 

having noted also (3.1), and similarly at the point  x = ~._,.. 
(c) Next ,  setting n = 2m, we see f rom (3.1) and (3.8) that  G = L = L, and thus 

l [Gf]  I [Lf]  NC m. = = Q 2 m [ f ]  = Q2m, zm[f] , 

by virtue also of  (2.11), and therefore yielding (3.10) for n = 2m. 
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(d) For the rest of the proof, we assume that n > 2m + t. Observing from (3.4), 
(3.5), (3.7) and (3.8) that the reproduction property 

(3.13) Gp = p ,  p E I P  2m , 

holds, we shall, in paragraphs (e) and (f) below, show that l [ G f ]  yields, in the sense 
of Definition 2.1, a trapezoidal rule with endpoint corrections of order 2m, 

(3.14) IEGf] cv = Qz, , , , [ f ] ,  f~C[a ,  b] ,  

for which then, according to (3.13), cr Ez,, , ,[p] = l [p  - Gp] = 0, p~IP 2". The desired 
result (3.10) then follows by appealing to the uniqueness statement of Theorem 2.1, 
as well as Corollary 2.2. 

(e) Hence, we proceed to verify the result (3.14). Using (3.8) and (3.2), we derive 
the expression 

I [ G f ] = H ~ ( G f ) ( a + H t ) d t = H  i f / +  ~ 7 i ( f i + f . - i )  , 
0 i =  i = O  

(3.15) 

with 

(3.16) 

(3.17) 

n - m - i  

fli := ~ Om(t)dt, i = O, 1 . . . . .  n ,  
m--i  

Yi:=~li(t)dt, i = O ,  1 . . . . .  2m,  
0 

and where, in (3.16), the symmetry property 

(3.18) f l , _ ,= f l , ,  i = 0 ,  t , . . . , n ,  

can easily be verified by means of (3.6). 
Now restrict the integer n further by the inequality n > 4m + 2. Then (3.15) can 

be rewritten, by virtue of (3.18), in the form 

(3.19) I [Gf]  = H ~ fllfl + ~ (fli + Yi)(f + f . - i )  �9 
i = 2 m + l  i = 0  

Since the integration limits in (3.16) satisfy 

m-- i<_  - - m - - l ,  1 -- 2m + 1 < i <  n - - (2m  + 1), 
n - - m - - i > m + l ,  

it follows from (3.5) that 
m + l  

(3.20) f l i= S t~m(t)dt, i = 2 m +  1 . . . . .  n - ( Z m +  1). 
- - m - - 1  

But 
m + l  m I 1 m + l  

(3.21) ~ t~( t )d t  = ~ ~ ~.,(t + j )d t  = S ~ O,.(t - j ) d t ,  
- m - I  j = - m - 1  0 O j = - m  

and since the choice p(t) = 1, t e N ,  in the reproduction property (3.7) gives, together 
with (3.5), the value 

m + l  

~,,(t - j )  -- 1, O _ < t _ < l ,  
j =  - m  
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it follows from (3.21) that 

m + l  

(3.22) ~ ~b,,(t)dt = 1 . 
- m - i  

Compar ing  Definition 2.1 with (3.19), (3.20) and (3.22), we see that, to prove the 
relation (3.14) for n > 4m + 2, it remains to show that, for these values of n, the 
coefficients fl~ and 7~ are independent of n for i = 0, 1 . . . . .  2m. In the case of ill, we 
note in (3.16) that 

n - m - i > ( 4 m + 2 ) - m - 2 m = m + 2 ,  i = 0 , 1  . . . . .  2m,  

and thus, from (3.5), 

m + l  

fli = ~ q;m(t)dt, i = O, 1 . . . . .  2m  , 
m - i  

which is clearly independent of n, whereas, for 7~, the desired independence of n is 
an immediate consequence of (3.17) and (3.3). 

(f) Finally, we show that (3.14) also holds for 2m + 1 < n < 4m + 1, by proving 
that, in (3. t 5), 

fi~f,-= f~+  ~ 6~(f~+f._~), 2 m + l < _ n < _ 4 m + l ,  
i = O  i = 0  i = 0  

(3.23) 

with 

(3.24) 
m - i  

6g:= -- ~ ~m( t )d t ,  i = O ,  1 . . . . .  2 m .  
--m t 

A careful inspection of (3.23) reveals that  it will suffice to verify, for a fixed integer 
k~{1, 2 . . . . .  2m + 1}, and for n = 2m + k, the relations 

(3.25) I 
I~i, i = 0 ,  1 . . . . .  k -- 1 , 

f l i - -  1 = 6 i + 6 2 , , + k - i ,  i = k , k +  1 . . . . .  2m  ( k < 2 m ) ,  

bZm+k-i, i = 2m + 1, 2m + 2 . . . . .  2m + k . 

But, from (3.16) and (3.24), 

m + k - i  m + l  

- 6i = O m i t ) d r =  O m ( t ) d t ,  i = O, . . . . .  k - l ,  
- - m - - i  - - m - - i  

having used also (3.5), and the top line of  (3.25) follows from (3.22). Similarly, for 
k = 2m, we get 

(3.26) fig - 6i - 62 , ,+k- i  = 

where, from (3.24), 
- m - k + i  

(3.27) - 6 2 , , + k - i  = 
- - m - - 1  

m + k - i  

~9,,(t)dt - -  (~2m+k-i, i = k . . . . .  2 m ,  
- - m - - i  

m + l  

t p m ( t ) d t =  ~ ~gm(t)dt, i =  k , .  . . , 2 m  + k ,  
m + k - i  
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by virtue of (3.6), and the middle line of (3.25) follows by combining (3.26), (3.27) 
and (3.22). For the bottom line of (3.25), we note from (3.16) and (3.27) that 

m + l  m + l  

f l , -  b2m+k-,----- ~ ~O,n(t)dt = ~ Om(t)dt, 
r a - i  - m - 1  

i = 2 m +  1 . . . . .  2 r e + k ,  

from (3.5), and then employ (3.22) once again. [] 

Remarks. (a) In the case n = 2m we have, as noted in paragraph (c) of the proof 
above, the equalities G = L = L, whereas if n > 2m + 1, the approximation oper- 
ator G is, in the sense of(3.8), a continuous extension of the Lagrange interpolation 
operator, where, according to (3.9) and (3.13), the Lagrangian properties of inter- 
polation and optimal order polynomial reproduction (cf. (3.1) and (3.4)) have been 
preserved by G. 

(b) The function ~m can be associated with the concept of a superfunction, in 
accordance with the usage by Strang and Fix (1973, pp. 141-143). 

(c) The bounded support property (3.5) of t#,, ensures that the approximation 
operator G is local in the sense that, for fixedje{0, 1 , . . . ,  n - 1}, the value of Gfat 
a point x~[~j, ~j+l] depends on the values of at most 2m neigbouring values of 
f on the point set {~i, i = 0, 1 . . . . .  n}. 

(d) It can easily be verified that the interpolation property (3.9) of G holds if  and 
only if the function 0m satisfies the nodal property (3.12). 

4. A nodal spline interpolant 

In this section we proceed to demonstrate constructively the existence of a poly- 
nomial spline satisfying the properties assumed of 0,, in Theorem 3.1, and thus 
generating a generalized Lagrange interpolant Gfof  the type (3.8) for the Gregory 
rule of even order. 

First, to introduce some notation for polynomial splines, we consider, for 
positive integers k and n, the uniform partition Ak,,:= {x~; i = 0, 1 . . . . .  kn} of 
[a, b], as given by 

b m a  
(4.1) xi = a + ih, i = O, 1 . . . . .  kn, h - 

kn 

Hence, comparing (4.1) and (1.1), we see that 

(4.2) ~i=Xki, i = 0 , 1  . . . . .  n, H = k h .  

In the context of the work on nodal spline interpolation by De Villiers and Rohwer 
(1987, 1991, 1992) and De Villiers (1992), the points of {~i, i = 0, 1 . . . . .  n} were 
called primary knots, whereas the points of the set Ak,,I{~i; i = 0, 1 . . . . .  n} were 
referred to as secondary (or additional) knots. 

For a given set A of distinct points in IR, and for k a positive integer, we denote 
by Sk(A) the set of polynomial splines of order k + 1 (degree < k) and with simple 
knots, so that Sk(A) c C k- 1. In particular, we define Sk,, := S~(Ak,,) and Sk :-=-- Sk(TI.). 
We employ the symbol Nk for the normalized B-spline in Sk, which, according to 
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Schumaker (1981, p. 135), has support interval [0, k + 1], and is given by the formula 

1 k + l  ( k + l )  
(4.3) Nk(Z) = ~  i=o y'  (--1)i i ( z -  i) k, z~IR 

in terms of the truncated power function defined by 

f O, z < y ,  ( z - - y ) k : =  (z -- y)k, Z >= y . 

The following connection between nodal spline interpolation and the Gregory 
rule can now be proved. 

Theorem 4.1. For a given positive integer m, let the nodal spline S2mES2m be defined 
by the B-spline series 

m - 1  2 m - 1  

( 4 . 4 )  S2m(t) = E E 
j = - " - i  r = 0  

where 

(4.5) 

with 

(4.6) 

Then, in 

aj, rNz,.(2m(t - j )  - r), t e l R ,  

v t + r  
1 + - -  

1 , . - 1  2 m  

- Z 17 l - j  aj'r (2m)! l <vt<2,.;l~M':vtdistinctt=-m-l,( 4:j 

M r:= { - m -  1 , - m  . . . . .  m - t}k{j } . 

Theorem 3.1, the choice t)" = S2m is an admissible one, such that, in 
particular, G: C[a, b] ~ Szm,n ~ C 2m- i [a, b], and which yields a nodal spline inter- 
polant Gf in the sense of(3.9) and (3.10),for the Gregory rule of  even order 2m. 

Proof. Appealing to the results of De Villiers and Rohwer (1987, p. 110; 1991, 
Theorem 2.1 and Corollary 2.2) and De Villiers (1992, Theorem 3.1), we conclude 
that the nodal spline sz", which belongs to $2,, ~ C :m- l(IR), satisfies the properties 
(3.5) and (3.7), with ~"  replaced (in both cases) by s2"; also, with the choice 
O, ,=s2, ,  in (3.8), the approximation operator G maps C[a,b]  into 
Szm, n ~ C Z m - l [ a ,  b]. Hence, according to Theorem 3.1, it remains to verify the 
even function property 

(4.7) S2m(t ) = Szm(--t), t~IR . 

First, we note that the B-spline coefficients in (4.4) satisfy the symmetry relation 

(4.8) aj, r = a - j - 2 , 2 m _ l _ r ,  r = O ,  1 , . . . , 2 m - -  1, 

j =  - m -  1, - m  . . . . .  m - l ,  

which is proved by using (4.5) to obtain 

1 Z 
(4.9) a-~-2, z , , -1-r  - (2m)! 1__< . . . . .  =< 2",-l-/~M-~-2,~-,-2eis,,ct 

[(2m + 1 -- v - l - z ]  + r 
" -1  l +  

2m ~"" ' ,% 

1-] l - - j  ' l = - m - l , l ~ j  
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yielding the desired relation (4.8), where, compar ing  (4.9) and (4.5), we have 
observed that  the propert ies  - I - 2 e M _ j _ 2  and IeM~ are equivalent  by virtue of 
the definition (4.6), and also that  the symbol  v - t - 2  in (4.9) can clearly be replaced, 
th roughout  that  equation,  by v~ to argue the equivalence of 
1 < ( 2 m +  1 ) - - v _ l _ z < 2 m a n d  1 < v l < 2 m .  

Now substitute (4.8) into (4.4) to find that, for telR, 
m - 1  2 r n - 1  

sz,,(t) = ~ ~ a~.rN2m(2m + 1 + 2m(t + j) + r), 
j = - m - - 1  r = 0  

so that  the desired relation (4.7) follows by applying the symmet ry  proper ty  
N2,,(2m + 1 -- z) = N2,.(r), re lR,  of  the B-spline N2,,, as can easily be established by 
means of the s tandard  recursion formula 

~Nk(r ) + (k + 1 -- r)Nk(r -- 1) 
N , + I ( Z ) =  , relR,  k =  1,2 . . . . .  

k 

obta ined from Schumaker  (1981, p. 136). [] 

Setting m = 1 in the formulas  (4.4), (4.5), (4.6) and (4.3) above,  we calculate (cf. De 
Villiers and Rohwer  (1991, p. 208)) that, on its suppor t  interval I - -2 ,  2], the 
quadratic nodal spline szeS2 is given by the formulas  

(4.10) 

4 - 7 t  2, 

1 l ( t  - 1 ) ( 5 t  - 7 ) ,  

sz(t) = 4 [ ] ( t  -- 1)(3t -- 5), 

k - (t - 2) 2, 

s2(t) = s2(- t), 

0 < t <  1 , 

� 8 9  , 

l _ < t _ < ~ ,  

~ _ < t _ < 2  , 

- 2 < t < O ,  

having used also (4.7). Note  that, in accordance with (3.12), the nodal  proper ty  
s2(i) = 6oi, i eZ ,  is clearly illustrated by the representat ion (4.10). An illustrative 
graph of s2 is drawn in Fig. 1. 

I 

-2 -1 

1 

I 

0 1 2 

Fig. 1. The quadratic nodal spline s 2 
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If we now choose, for the case m = 1 in the definition (3.8) of the opera tor  G, 
the function ~ = s2, with s2 given by (4.t0), we have obtained, according to 
Theorem 4.1, an interpolant Gf for the Lacroix rule LA Q, [ f ] ,  as given by the 
formulas (2.9), (2.10). 

5. Nonoptimal  order error estimates 

Whereas the opt imal-order  error  estimate (1.7) for the even-order Gregory  rule 
mR Q z,,,, [ f ]  holds for feC 2m+ 2 [a,  hi, we next exploit the availability of the Gregory  

interpolant Gf of Theorem 4.1 to establish nonoptimal order error estimates of the 
form 

(5.1) I GREz,.,.Ef] [ < (b - ,[cme)(f;/ kmH), f~CEa, b] ,  
all c,,,zHt II,f")ll~f, fECt[a, b], 1 = 1, 2 . . . . .  2m + t , 

with c,,, km and c,,,~ denoting positive numbers which are independent of n, and 
where the modulus of continuity co is defined as usual by 

~,)(g; 6) := sup { 1 g (x) - 9(y)] ; x, ye  [a, b], [ x - Y l < 6 } . 

Since clearly 

(5.2) ~R IE2m,,[f][ = t I [ f - G f ] I < ( b - a ) l l f - G f ] ] ~  f~C[a,b],  

we now recall from De Villiers and Rohwer (1992, Theorem 4.3) the Jackson-type 
estimates 

(5.3) 11 f - -  Gf tt~ < [ ]]Gll,~co(f; (2m + 1)H), f~C[a,b]  

(1 + ElGIt~)c,,.zHlttf~t~l{~, f eC[a, b] , 

l =  1,2 . . . . .  2 m +  1 , 

where the positive numbers c,,.~ are bounded by 

I [Tt(2m + 1)]t(2m + 1 - l)! I = 1,2, 2m 
221(2m + 1)! . . . . . .  

(5.4) Cm.l < 
(2m + 1) 2"+1 

24"+1 (2m + 1)!'  l = 2m + 1 . 

In (5.3), it G tt~ denotes the Lebesgue constant of the nodal  spline opera tor  G, as 
defined by I1 a 116 :=  sup { It aT t1| f~CEa, b], IIfIl~ < 1}, and which, according to 
De Villiers and Rohwer (1992, Theorem 4.1), is bounded above by 

(5.5) II G tt6 < (2m + 2)(2m) 2m . 

Combining (5.2) . . . . .  (5.5) then yields the desired estimates (5.1). 
Moreover ,  it was shown by De Villiers and Rohwer  (1992, Corollary 5.2) that, 

in the quadratic case m = 1, the rather crude (general-order) estimate (5.5) can be 
sharpened considerably by means of explicit calculations to yield the quadrat ic  
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Lebesgue constant  [IG II~ = 1.25. Hence, from (5.2), and setting also m = 1 in the 
bounds  (5.3) and (5.4), we find, for the Lacroix rule Q LA [ f ] ,  the error  est imates 

t E ~ A [ f ]  [ <= (b - a) 

4 
~o(f; 3H), fGC[a ,  b] , 

9~z 
~-6HJlf'llo~, f G C ' [ a , b ] ,  

27~z H E ,, ~ f ~  Itf  I]~, fGC2[ a, b] , 

2 ~ 6 H 3 1 I f ' " H ~ ,  fGC3[a,b]  , 

whereas (1.7) and (1.4) gives 

[E ,LAEf ] [<=(b - - a )  7~0H4l]f(i~)[[~, fGC4Ua, b] . 

The nonop t imal  order error  est imates for E GR r e 7  2m.nLJl, as given above,  can be 
sharpened by employing a me thod  which, instead of using (5.2), is based on the 
Peano  kernel theorem, as proved in Davis  and Rabinowitz  (1984, pp. 286-287), in 
conjunct ion with the explicitly constructed Gregory  interpolant  Gf of 
Theorem 4.1. This approach  will be pursued in subsequent  work. 

Finally, it is interesting to note that, for fixed m, the convergence result 

G R  Ezm, n[f  ] ~ O, n ~ ~ ,  fGC[a ,  b] , 

as implied by an appl icat ion of the P61ya theorem (see Davis  and Rabinowitz  
(1984, p. 130)), can alternatively be deduced directly from the est imate 

G R  I Ezm.n[f] t  <= (b - a)(Zm + 2)(2m)2"co(f; (2m + 1)H), fGC[a ,  b ] ,  

which is obta ined by combining (5.2), the top line of (5.3) and (5.5). 
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