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Summary. Classical iterative methods for the solution of algebraic linear systems 
of equations proceed by solving at each step a simpler system of equations. 
When this system is itself solved by an (inner) iterative method, the global 
method is called a two-stage iterative method. If this process is repeated, then 
the resulting method is called a nested iterative method. We study the conver- 
gence of such methods and present conditions on the splittings corresponding 
to the iterative methods to guarantee convergence for any number of inner 
iterations. We also show that under the conditions presented, the spectral radii 
of the global iteration matrices decrease when the number of inner iterations 
increases. The proof uses a new comparison theorem for weak regular splittings. 
We extend our results to larger classes of iterative methods, which include itera- 
tive block Gauss-Seidel. We develop a theory for the concatenation of such 
iterative methods. This concatenation appears when different numbers of inner 
iterations are performed at each outer step. We also analyze block methods, 
where different numbers of inner iterations are performed for different diagonal 
blocks. 

Subject  classi f ications: AMS(MOS): 65F10; CR: G1.3. 

1 Introduction 

We consider here certain iterative methods for the solution of the algebraic 
linear system of equations 

(1) A x = b ,  
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where x and b are vectors, and A is a square nonsingular matrix. It is customary 
to view classical iterative methods as the repeated solution of 

(2) MXk+ l = b +  N x k  

where A = M - - N  is called a splitting of the matrix A, M is nonsingular, and 
Xo is given. Varga [25, 26] pioneered the study of such methods; see also Young 
E29] and Ortega and Rheinboldt [21]. These methods are especially important 
in building algorithms for parallel computers; see [2, 19], and [-23]. 

The method (2) is a natural formulation for systems arising from discretiza- 
tions of differential equations and it is generally assumed that the system 

(3) m v = g  

can be solved with considerably less computional effort than (l). Here we consid- 
er the iterative solution of the system (3), called the inner iteration, at each 
iteration of (2), the outer iteration. Again, the customary way of looking at 
the inner iteration is by the splitting M = B -  C and the repeated solution of 

(4) Bv~+ 1 =g  + Cvj.  

These are often called two-stage iterative methods [-11, 18]. There is a wide 
range of application for these methods, and, in particular, our theory applies 
to block iterative methods [26]. In fact, our theory applies to iterative methods 
which can be described by an error propagation equation of the form ek + ~ = Tek, 
where ek is the error at step k of the iteration and T, the iteration matrix, 
is convergent; see Sect. 2. 

Two-stage methods, also called inner/outer methods, have been applied to 
fictitious components and to domain decomposition methods; see [-9, 24] and 
the references given therein. Golub and Overton [11, 12] have considered two- 
stage methods when the outer iteration is the Chebyshev or the Richardson 
method. For  nonlinear systems of equations, methods with outer nonlinear itera- 
tion and linear inner iteration have been extensively studied and have been 
applied to different areas of science and engineering; see e.g., Bank and Rose 
[1], Dembo et al. [-6] or Diaz et al. [7]. 

Nichols [18] studied two-stage methods for the solution of (1) with general 
inner iteration methods. She showed that if the outer and the inner iterations 
are convergent then, for a large enough number of inner iterations, p, the two- 
stage method is convergent; see also Wachspress [27]. In Lemma 2.3 we note 
that a very general class of iterative methods can be represented by correspond- 
ing (unique) splittings and thus, without loss of generality, both the outer and 
the inner iterations are represented by splittings. In Theorem 4.2 we set condi- 
tions on the splittings so that convergence is guaranteed for any number of 
inner iterations. Moreover, under these conditions, we show that the spectral 
radii of the global iteration matrices decrease when the number of inner iterations 
increases. This last intuitive result is an initial step for a strategy to find an 
"opt imal"  number of inner iterations, but may not hold if the conditions of 
our theorem are violated; see Sect. 5. 

The conditions we set relate to regular and weak regular splittings. These 
arise naturally in many applications and have been widely studied [3, 20, 26, 
29]. Our proofs are based on the theory of nonnegative matrices, the Perron- 
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Frobenius theorem and also on comparison theorems; see the mentioned refer- 
ences and also [5]. In Sect. 3 we strengthen a comparison theorem for weak 
regular splittings which we use to develop our theory of convergence for the 
iterative methods studied here. 

We note here that, except for the trivial case of one inner iteration, a two- 
stage method of the form (2 4) does not adequately describe the Block Gauss- 
Seidel method [3,.26, 29] when the diagonal block equations themselves are 
solved iteratively. This fact is often overlooked in the literature; see, e.g., Rod- 
rigue [24]. Consider A = D - - L - - U ,  where D is block diagonal, L is strictly 
block lower triangular and U is strictly block upper triangular. For  the purpose 
of illustration, consider the matrix A partitioned into q x q blocks, i.e., 

lo v llx 1Iblt Ax---L 1 0.2 x,2, b,2 

The block Gauss-Seidel method is 

for k = 0 ,  1 .... 
for i=0 ,  l . . . . .  q 

i ~ k + l  L"i j "~'k + 1 
j < i  j > i  

which can be represented as 

(5) (D--L) Xk+ 1 = b +  UXk, 

where it is understood that the solution at each step proceeds one block at 
a time. Comparing (5) with (2) and applying the philosophy of two stage methods, 
one would have to solve, at each step of (5), a linear system by splitting 
(D-- L) = V - W, say. This is not how blocks methods are solved and, in addition, 
it would be an expensive iteration. The usual approach, instead, is to use an 
iterative method for the solution of the systems corresponding to each diagonal 
block Di. To study the usual block Gauss-Seidel method, we write (5) as 

(6) DXk+ 1 = b +  U X k ' q -  L X k  + I ,  

and one can think of it as an implicit method, where at each step we solve 
a system of the form 

(7) D x = r ( x k ,  Xk+ 1, b), 

in which r is a function of the known iterate Xk, the iterate to be determined 
Xk+ 1, and b, a given vector. Of course, due to the block triangular structure 
of D - L ,  the system (7) is not truly implicit, since the needed components  of 
Xk+l are always available. The solution of (7) by an iterative method can be 
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represented by a splitting of the block diagonal matrix D = F - -G ,  i.e., each 
diagonal block has a splitting Di = F~- G~. This produces the following 

Algorithm 1.1 (Iterative Block Gauss  Seidel). 

f o rk=O,  1 . . . .  
Yo = Y = (y~l~, y~2) . . . . .  y~q~)r = x~ 
for i =  1 t o q  

for j = 0 to Plk-- 1 
Fiy}~ 1 = (b + U Xk + L Xk + l)tl) + Gi y}i) 

~ r ( i )  _ _  , , ( i )  
" ~ k  + 1 - -  Y P i k  

The notion of composite splittings enables us to study methods such as block 
Gauss-Seidel, or SOR (with ~ < 1). In Sect. 4 we study nested iterative methods 
where, e.g., the solution of the system (4) is itself solved by another iteration, 
and this recursive idea is repeated for a certain number  of levels of nesting. 
For  these methods and for iterative block Gauss-Seidel our global convergence 
results also apply; see Sect. 4. Furthermore,  the monotonicity result also holds; 
namely, under certain conditions, if two nested methods have inner iteration 
matrices whose spectral radii compare in one direction, say p(RO<p(R2) ,  then 
the global iteration matrices compare in the same direction; see Sect. 5. 

In dynamic nested iterative methods the number  of inner iterations may 
change at each outer iteration. This amounts  to concatenating different iterative 
methods and, since the product of two matrices with spectral radius less than 
unity may have spectral radius greater than one, the resulting method might 
not be convergent. In Sect. 6 we address this problem and show that, under 
a slightly more restrictive hypothesis, dynamic nested iterative methods are con- 
vergent. Finally, in Sect. 7 we study convergence and monotonicity results of 
block methods. 

The theory presented herein is a first step toward the development of parallel 
block chaotic relaxation methods [-2, 4, 15, 23] in which the linear systems 
corresponding to diagonal blocks are solved by iterative methods. 

2 Prel iminaries 

In this section, we give some notation, present some basic results and review 
some definitions; see further [-3, 20-22, 26], and [29]. By p(B) we denote the 
spectral radius of the matrix B. We say that a matrix B is convergent if p(B) < 1. 
We say that a vector x is nonnegative, denoted x > 0, if all its entries are nonnega- 
tive. Define x > 0  as x > 0  with each component  x i + 0  for all i. Similarly, a 
matrix B is said to be nonnegative, denoted B > 0, if all its entries are nonnegative 
or, equivalently, if it leaves invariant the set of all vectors with nonnegative 
entries. We compare  two matrices A >B,  when A - - B > 0 .  By 1,, we denote the 
m x m identity matrix and when the order of the identity matrix is clear from 
the context, we simply denote it by I. 

We define A = M - - N  as a splitting of A when M is nonsingular. We say 
that the splitting is convergent if p ( M - 1 N ) <  1; regular if M - 1  > 0  and N > 0 ;  
and weak regular if M - l >  0, M - a N  > 0 and N M - 1 >  O. Obviously, a regular 
splitting is a weak regular splitting but the converse is not always true. We 
define A = M - - N  1 - N 2  as a composite splitting of A when M is nonsingular. 
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We say that A = M - N ~  --N2 is a convergent regular composite splitting if both 
M1 . ' = M -  N2 and A = M 1 -  N~ are convergent regular splittings. 

In the following lemma we collect several results on splittings and nonnega- 
tive matrices. The proofs can be found, e.g., in [3] and [22]. 

Lemma 2.1. Let  A = M - - N  be a weak regular splitting. Let  T>O.  Then the 
following hold: 

(a) A is nonsingular and A -  1 >= 0 if  and only if p ( M -  1 N) < 1. 
(b) p (T) < 1 if and only if  (I - T ) -  1 exists and (I - T ) -  1 > O. 
(c) I f  there exists z > O, z JeO and a scalar ~ > 0  such that ~z  <= Tz,  then ~ < p( T). 
(d) I f  there exists x > 0  and a scalar ~ > 0  such that T x < ~ x ,  then p(T)<ct .  

The following example shows that the condition of strict positivity of the 
vector x is essential. 

Example 2.2. 

T=[11 00] , x=[01], p ( T ) = l  and Tx<=ax, forall  ~>0.  

The following result, although straightforward, plays an important role in 
our analysis. 

Lemma 2.3. Given a nonsingular matrix A and T such that ( I -  T ) -  1 exists, there 
exists a unique pair o f  matrices M,  N,  such that T = M - 1 N  and A = M - N ,  
where M nonsingular. 

Proof. Consider M = A (I - T) -  1 and N = M -  A. Then M -  l N = M -  1 ( M -  A) 
= I - - ( I - - T ) A - 1 A  = T. For  the uniqueness, let A = ] ~ - - N  be a splitting of A 
such that T = M - 1 I V .  Then M I T = M - - A  and thus ~ I = A ( I - T )  - I = M .  [] 

In the context of Lemma 2.3 we say that T induces the unique splitting 
A = M - - N .  

3 Comparison theorem 

In this section we present a comparison theorem between weak regular splittings 
of the same matrix. It strengthens some comparison theorems in Varga [26], 
Csordas and Varga [5] and Elsner [8]; see also Miller and Neumann [16]. 

Theorem 3.1 (Comparison Theorem). Let  A = M - -  N = ~I  -- N be convergent weak 
regular splittings such that 

(8) ] ~ - 1 ~ M - 1 ,  

and let x and z be the nonnegative Frobenius eigenvectors of  T = M - a  N and 
= MI- 1 ~ ,  respectively. I f  N z > 0 or if N x > 0 with x > O, then 

(9) p(T)_~p(T) .  
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Proof. If p(T)=O then the theorem is trivially true; we shall therefore only 
consider p(T)4:0. Assume that N z > 0 .  We have that ~z=A4 I N z = p ( T ) z ,  
which implies that 

M z =  Nz.  

Hence 

A z =  ~t  ( I -  ~r) z=  1 -  p(Tr) ~ z >_ O. 

From (8) it follows that 

(I-- ~ ) z=lVI - t  Az>=M-t  A z = ( l -  T)z, 

therefore Tz=p(~F)z<= Tz and by Lemma 2.1(c), p(T)<=p(T). The proof for the 
case N x  >__ 0 with x > 0 is analogous. [] 

The proof of Theorem 3.1 is similar to that in [17, Lemma 2.2], where the 
comparison is done between splittings of two different matrices A~ and A2; 
see also the recent paper by Marek and Szyld [14]. 

Varga [26] showed that if A = M--  N = M - / V  are regular splittings, 

(10) N < N  

implies the result (9). Csordas and Varga [5] and Wo~nicki [283 proved the 
same result with the weaker hypothesis (8). Some still weaker conditions were 
set in [5, 16] always requiring the splittings to be regular. Elsner [8] proved 
the following 

Lemma 3.2. Let A -  I >_ O and let A = M - N  = M - N  be weak regular splittings. 
I f  (1 O) holds, then p (A/I- 1 ~)  < p (M - ~ S). 

He also showed that (8) with either N >_-0 or N > 0 imply (9). Here we have 
shown that even if the matrices N or ]V do not map the entire set of nonnegative 
vectors into itself, the result (9) holds if N or N map particular nonnegative 
vectors into that set. Moreover, all splittings we consider in this paper satisfy 
the conditions of Theorem 3.1, namely that if v is the Frobenius eigenvalue 
of T---M-~N,  then Nv>O; see Theorem 5.1. 

4 Convergence of  two-stage and nested iterations 

The most general method of solution of (1) considered in this paper is nested 
block iterations. Iterative block Gauss-Seidel (Algorithm 1.1) is a special case 
of the following algorithm, where A = M - - N 1 - - N 2  is partitioned into q • q 
blocks, and M = F - G  is block diagonal. 

Algorithm 4.1 (Nested Block Iteration). 

for k = 0, 1, ... 
Yo = Y =(ytl), y(2) ,  . - - ,  ytq)T : Xk 

for i : 1 to q 

for j = 0 to Pig-  1 
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fi  Y~i)+ l = (b + N1 XR + N2 Xk +1)~') + G, y}i) 
( 1 1 )  .~tl) _ ,,,) 

"~k + 1 - -  Y P ~ k  " 

In most practical applications the matrix N2 is lower block triangular. In this 
case, the step (1 1) is explicit, since the needed components of Xk+l are all known. 
For  general composite splittings A = M - N 1 - - N  z, the step (11) is truly implicit 
and usually does not appear  in practice. For completeness, we present our results 
for general matrices N1 and N2, since all convergence theorems apply to this 
general case. 

In this section we first consider Two-stage Methods, i.e. the case q =  1 and 
p l k = p  for all k. The convergence results for the two-stage method are used 
later to analyze nested iterative methods and in Sect. 7 to study the general 
case. We first compute the global iteration matrix and then study the conver- 
gence properties of this method. We begin by replacing the loop ove r j  (Eq. (11)) 
with the equation 

p - I  

y~= ~ ( F - 1 G ) i F  ' ( b + N l x k + N 2 x l , + , ) + ( F - ' G ) P y o  
i - O  

= ( I - - H P ) ( I - - H ) - I  F - ~ ( b +  N1 Xk + N2 x~,+ O +  HPyo,  

where H = F -  ~ G is the iteration matrix of one step of the inner iteration and 
p 1 

we have used the identity ( I - H P ) ( I - H ) - I =  ~ (F 1G)i. We may therefore 

rewrite (11) with the equation: i-o 

V ( I - H)( I  - HP) -1 yp = b + U 1 xk + N2 Xk + l -}- F ( I  -- H)( I  -- H p) -1 HP yo" 

Let B : = F ( I - - H ) ( I - - H P )  -1 and C : = F ( I - - H ) ( I - - H P ) - I H  p. We represent (11) 
a s  

(12) 

Byp=b+NiXk+N2Xk+l-FCyo; i.e., 
BXk+ I = b +  Nl X k - ~ - N  2 X k +  1 - ~ - C x  k .  

In the context of Lemma 2.3, B and C are the unique matrices induced by 
the iteration matrix R = H p = B -  1 C on the matrix M = ( F -  G)= B -  C. The itera- 
tive method (12) corresponding to the splitting M =  B - - C  is not generally used 
in actual computations. This is a convenient device to study two-stage methods. 
Furthermore,  the fact that we consider an inner iteration with iteration matrix 
of the specific form R = (F-  i G)p is not used in our analysis. In the remainder 
of the paper we often use the concept of a splitting induced by a given iteration 
matrix R. 

Although the method (12) is implicit, the iteration matrix is clearly 

(13) T = (B -- N2)-~ (C + N0 

and the (unique) matrices induced by T on A are 

(14) M r  .'= B--U2 = M (I - R ) -  ' - N2 

(15) NT.'= C + N1 = m ( I  -- R ) -  1 R + N~. 
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The case N 2 = 0  was studied by Nichols [18], and (13) becomes 

(16) T = n -  1 N1 + R = R + S-- RS = I - ( I -  R)(I--S), 

where S = M - 1 N a ,  M =  B- -C  and R = B - 1 C .  It should be noted, however, that 
the two-stage method studied here encompasses a larger class of methods. In 
particular, iterative block Gauss-Seidel cannot  be represented by an iteration 
matrix of the form (16). 

Theorem 4.2. Let A = M - - N  1 - N  2 be a convergent regular composite splitting 
and let R>O, p ( R ) < l .  I f  the (unique) splitting M = B - C  such that R = B - 1 C  
is weak regular, then the iterative method defined by 

(17) A=MT- -NT ,  M T : = M ( I - R ) - I - - N 2 ,  and N r , = M ( I - - R ) - I R + N 1 ,  

is convergent. Moreover, A = M r - N T  is a weak regular splitting. 

Since the use of the induced splitting M = B - - C  is a technical device, condi- 
tions on it are not expected to be directly verified. We see later that certain 
iterative methods, including the two-stage method, induce splittings satisfying 
the hypothesis of the theorem. 

Proof of Theorem 4.2. Since B -  1 > 0, N 2 > 0 and M -  1 N2 is convergent, the in- 
equality M - 1 N2 = (I - R) -  1 B - 1 N2 ~ B - 1 N2 => 0 implies that B - 1 N2 is a conver- 
gent nonnegative matrix. Therefore, since B -  1 > 0 and N1 > 0, 

T=(B--N2) -  I(C W N1)=(I--B-1N2)-1(R + B-1N1)>O. 

Let S = (M - N2)- 1 N1, then 

( I  - -  T ) - I  = A -  1 M r  = ( M - -  N1 - -  N 2 ) -  1 ( M ( I  - -  R ) -  1 _ N2 ) 

= ( I - -  S ) -  1 ( M -  N 2 ) -  1 M ( ( I  - -  R ) -  1 _ M - 1  N2) 

= ( I - S ) - I ( I - M - a N 2 ) - I ( ( I - R ) - '  R + I - M - 1 N 2 )  

= ( I - -  S)- 1((1-  M -1N2)-  1(1--R) - 1 R  + I)=>0. 

Therefore, by Lemma 2.1 (b), T is convergent. Furthermore,  

M~. 1 = ( I - - B - I  N2)-' B -1>0.  

Since p ( N2 B-  1) = p ( B - 1 N2) < 1, and since C B - 1 > O, 

NT M ~. ' = (M (I-- R) -  I R + N,)(I--(I--  R) M -  ' Nz)- ' (I-- R) M -  ' 

= M ( I - R ) - I  R ( I - B - 1 N 2 ) - I  B - I  + N I ( I - B - 1 N 2 ) - I  B -1 

= C ( I - B - 1 N 2 ) - '  B -1 + NI( I - -B  -1Nz)-  1B -1 

= C B - I ( I - N 2 B - 1 ) - I + N 1 ( I - B - 1 N 2 ) - I B - I > O .  [] 

Note  that the splitting A = M r - N T  is not necessarily regular since Nr may 
have some of the negative entries that may have been in C. In the remainder 
of this section we apply Theorem 4.2 to practical iterative methods. In the follow- 
ing corollary we present conditions for convergence of two-stage methods inde- 
pendent of the number  of inner iterations, p. 
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Corollary 4.3. Let  A =  M - N  1 - N 2  be a convergent regular composite splitting 
and let p be a nonnegative integer. I f  M = F - G  is a weak regular splitting, 
then the two-stage iterative method is convergent, and its induced splitting is weak 
regular. 

Proof. To apply Theorem 4.2 it suffices to show that M = B - - C  is a weak 
regular splitting with B = M ( 1 - - ( F -  1 G)p)- 1 and C = B -  M. First note that 

B - 1 = ( I  - -  ( F -  1 G ) p )  M - 1 

p - 1  

= ( I - - ( F  -1G)P) ( I - (F  - '  C)) - 1 F - ' =  ~ ( F - '  G)iF - '  >=0. 
i = 0  

Since M = F - G  is a weak regular splitting F-1C~O and C F - I > O .  Thus 
B-  1 C = (F-  1 G)p > 0, and 

C B -  ' = M (I -- ( F -  1 G ) O -  ' (F - - 1  C) p (I - -  ( F - 1  C)v) M -1 

=M(F-1G)PM-I=(CF-~)P>__O.  [] 

The following example shows that the hypotheses of Corollary 4.3 (and 
by extension those of Theorem 4.2) can not be weakened. Let Tp be the iteration 
matrix for a two-stage method with p inner iterations. 

Example 4.4. 

[ 1.25 - l  0.25] 

A =  - 1  1.5 1.25] l 0 . 2 5 - 1  --1 , 
M =  -- .5 1 -- .5 , F =  I, 

- 0 . 5  
N 2 ~--0, 

M - I  N I = R = G =  
[ !  0"5 i ] [--01"25 1 --~'251 

.5 0 .5 , T~ = F -  I NI + R = --0.5 . 
0.5 L - 0 . 2 5  1 -0 .251  

Thus, A = M--  N 1 is a weak regular splitting and M = F -  G is a regular splitting. 
In this example p (M-1N1)= p (R)= 0.71 and thus the inner and outer iterations 
are both convergent; but p(T0--1.9 and the two-stage iteration with 1 inner 
iteration is not convergent. Thus in this example a convergent iteration within 
a convergent iteration is divergent. 

Rodrigue [24, Theorem 4.1] showed that when N2=0, p =  1 and both the 
outer and the inner iterations correspond to regular splittings, then the overall 
method is convergent and, in particular, induces a regular splitting. For the 
case p > 1 and the same hypothesis, as the following example shows, the global 
induced splitting may not be regular. 

Example 4.5. 

1 0 2 
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The fact that Nr2 has negative entries also implies that the conditions in the 
comparison theorem by Eisner [8] are not satisfied either; see Sect. 3. 

The theory we are developing can be extended to the case of recursive inner 
iterations. We call these Nested Iterative Methods. Consider the solution of 
the system A x = b  by a two-stage method with the outer iteration defined by 
the composite splitting A =  M - N ~ - N  2. Then, instead of solving the system 
M x = r ( x k ,  Xk+ 1, b) by an iterative method, it is solved by a two-stage method, 
and so on. This implies the specification of a new composite splitting, with 
iteration matrix R, R = F - X G ,  M = F - G ,  and the number of iterations (p) at 
each level. One could interpret M = F - G  as (14-15). Of course, at the last 
(innermost) level, the system is solved by an iterative method, say with M = B -  C. 
After the formal recursive definition below, we show that under conditions simi- 
lar to those in Corollary 4.3, nested iterations are convergent independent of 
the number  of iterations at each level. 

Definition 4.6. Consider the system A x = b. Let A = M - N ~ -  N2 be a composite 
splitting and p be a nonnegtive integer. In a Nested Iteration the equation 
M x-~ b + N1 Xk + N2 Xk + I is solved by either, 

1. p steps of an iterative method (note that the effect of this is to solve A x = b 
by a two-stage iteration), 

or ,  
2. p iterations of the Nested Iteration with iteration matrix R (replace A by 
M and b by (b + N1 Xk + N2 Xk + 1) and apply the definition again). 

Corollary 4.7. At each level let the redefined A = M - N  l - N  2 (i.e. in part 2 of 
the definition) be a convergent regular composite splitting and at the innermost 
level let M = B - C  be a weak regular splitting (i.e., in part 1 of  the definition). 
Then the corresponding nested iterative method is convergent. 

Proof. By induction on the number  of levels of nesting. The method with one 
level of nesting is the two-stage method, and Corollary 4.3 applies. For the 
inductive step, assume that the induced splitting of R on M = B - - C  is weak 
regular. Then, using arguments similar to those in Corollary 4.3,/? = M (I - R p)- 1 
and G = M(I- -RP)  - ~ R p from a weak regular splitting. Therefore, by Theorem 4.2 
the method is convergent and if T is the iteration matrix, A = M T , - N  r is a 
weak regular splitting, where M T =  A(I - -  T ) -  ~. [] 

Consider the particular case of nested iteration, where only one step of the 
first inner iteration is performed. We show in the following theorem that such 
a method can be represented by a two-stage method corresponding to a particu- 
lar composite splitting. Moreover,  the result can be extended, by a simple induc- 
tion argument,  to show that if there are multiple levels of nested iteration with 
one inner iteration at every level (except the last) then the whole iteration reduces 
to a two-stage method. This is a natural situation, and the theorem shows 
that no matter  how many levels of one iteration are used, the nested method 
can be viewed simply as a two-stage method. 

Theorem 4.8. Consider the solution of A x  = b by a nested iteration with A = M 
- N  1 - - N  2. Assume that the (outer) system M x = b +  N l Xk + N2 Xk+ I is solved 
by only one step of the (inner) two-stage iteration corresponding to the composite 
splitting M = M -  ]~ - 1 ~  z. Assume further that the corresponding (inner) system 
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is solved with p iterations of the method corresponding to the splitting ]fl= F -  G. 
Then the resulting iterative method is given by the composite splitting A = M - N ~  
-- N2 where N~ = N, + !91 and N2 = N2 + ]Q.2. 

Proof. Let R = F  1G. From Eq. (13) we have that the inner iteration matrix 
is T~=(FI-b?2) ' ( G ~ + G ) ,  where FI-'GI=RP=(F-'G)P. Thus M r  = G - N 2  
and Nr ,  =G1 +/VI. The iteration matrix for the global (outer) iteration is T2 
= ( F  2 - -N2)-1  (G2-I--N1) , where M =F2- -G2 is the splitting corresponding to the 
inner iteration, and F2=MT, and Gz=Nr~. Therefore Tz=(FI--IVz--N2) I(G 1 
+]VI+N0.  The theorem follows by substituting N~=NI+/V1 and N2=N2 
+N2. []  

5 Monotonicity 

In the previous section we gave sufficient conditions for the convergence of 
nested iterative methods. In this section we show that, under the same conditions, 
if the spectral radius of the inner iteration matrix decreases (e.g., increasing 
the number of inner iterations) then, so does the spectral radius of the global 
iteration matrix. For  example, in the case of two-stage methods, the spectral 
radius of the global iteration matrix, p(Tv), is a monotonically decreasing func- 
tion of p. This result is intuitive but, as we see later, if the conditions shown 
are not satisfied, the result may not hold. The main tool in our proofs is our 
comparison theorem, Theorem 3.1. 

Theorem 5.1. Let A = M - N  1-N2 be a convergent regular eomposite splitting. 
Let M = F - - G = F - - G  be weak regular splittings and let ~=f f -a~j ,  and 
= p  a ~. Consider, as in Theorem 4.2, the iterative method defined by 07)  with 
corresponding global iteration matrices T and 7". I f  p(R)<=p(R) and /7-1 >__ff-i 
then p(T)<=p(T). 

Proof. Let x be the Frobenius vector for a global iteration matrix T and let 
~ = p ( T ) , ~ = p ( T ) , a n d ~ = p ( T ) . S i n c e  T = ( I - F  1N2) 1(R + F l S l )> R, then, 
p(R)<-_~. Consider first the case ~=p(/~). Then, ~ = p ( / ~ ) < p ( / ~ ) < ~  and the theo- 
rem is proved. If, on the contrary, p(/~)<~, or in our generic notation p(R)<~,  
then, (~I - -R)  1 exists and is nonnegative. Thus, 

ctMr x = N T x  
~(M(I--R)  - I - N 2 )  x= M ( I - R )  - 1 R x  + Nlx  

c~(I-R) I x = U - R  ) 1 R x + M - 1 ( N 1 + ~ N z ) x  
( I -  R)- 1(c~I-- R) x = M - '  (N1 + ~Nz)x 

( I - -R)  -1 x =(c~l--R) -1 M -  I(N 1 + ctNz)x. 

We may now replace the ( I - R ) - ~ x  factor in Nrx as follows: 

NT X = M ( I - R ) - I  R x  + N1x 
= M R ( ~ I - R ) - I  M ~(Nl +c~N2)x+Nix 
=GF-  I ( ~ I - G F - 1 ) -  I (N1 + ctN2) x + N1 x >O. 

Finally, since/7 - 1 > F - 1,/~tr i = (I - / 7  - 1 N2 ) - 1/7 - 1 > (I -- F -  1 N2 ) - l F - 1 = ]~ r  1, 
and thus, by Theorem 3.1, 02<~. []  
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The following corollary shows that p(Tp) is a monotonically decreasing func- 
tion of p. The corollary applies, in particular, to two-stage methods, and to 
iterative block Gauss-Seidel. 

Corollary 5.2. Consider the solution o f  A x = b  by a nested iteration (Definition 
4.6). Le t  at each level A = M - - N  1 --N2 be a convergent regular composite splitting 
and at the innermost level let M = B - - C  be a weak regular splitting. Let  q and 
p be nonnegative integers. Consider two nested iterations, differing only in the 
number of  inner iterations at the outer iteration, p in one case and q in the other. 
I f  q > p ,  then p(Tq)<p(Tp). 

Proof. If there are only two levels of nesting, i.e., the iteration is a two-stage 
method, with inner splitting M = B -  C, then define R = B-  1 C. Otherwise, define 
R as the iteration matrix for the inner nested iteration. From Corollary 4.7 
it follows that R is convergent. Clearly p(Rq)<p(RP).  Consider the splittings 
induced on M by R p = Fe-- 1 Gp and R q = Fq- 1 Gq ; see Lemma 2.3. Then, 

Fq- 1 = ( M  ( I - -  Rq) - a)- 1 = ( I - -  Rq)( l - -  R ) -  1 F -  1 

q - 1  p - 1  

= ~ g iF - l>= ~. R i F - 1 = ( M ( I - R P ) - a ) - I = F p  -1 
i = 0  i = 0  

Therefore by Theorem 5.1 p(Tp)>p(Tq). [] 

As we pointed out, this corollary applies in particular to two-stage methods. 
Intuition indicates that if more inner iterations are performed, i.e., if we have 
a better approximation to be exact solution of (2) at each outer step, then 
the method should converge faster. A closer look at Example 4.4 reveals that 

[0.25 0.25 0.25] 

T2=10.25 0.50 0.25 / 
L0.25 0.25 0.25_1 

[--0.125 0.75 --0.125-] 
T3= / 0.75 --0.25 0.75 / 

L -0 .125  0.75 -0.125_1 

and p(Ta)=0.85, p(T3)=l.3.  Thus if the conditions of Theorems 4.2 and 5.1 
are violated, not only might there not be convergence for a small number of 
inner iterations, but the spectral radii of the iteration matrices may not be 
monotonically decreasing. 

In the final result of this section, which follows directly from Lemma 3.2, 
we extend the point Stein-Rosenberg theorem [26] to the methods studied here. 
The name of the theorem is inspired by the following observation. If/V2 = 0, 
we have an iterative (block) Jacobi type method, while the case N2 4=0 yields 
an iterative block Gauss-Seidel type method. 

Theorem 5.3 (Nested Stein-Rosenberg). L e t  A = M - -  N1 - N z  = M - -  1~ 1 - N 2  be 
convergent regular composite splittings. Consider the solution o f  A x  = b by a nested 
iteration. Assume that the inner systems M x = r(Xk, Xk + t, b) are solved by a nested 
iteration with iteration matrix  R and induced splitting M = F - G .  Let  the corre- 
sponding iteration matrices be T = (F - N2) - 1 (G -~ N1) and 7" = (F - A72) - 1 (G + b)l). 
I f  N2 >=b?2 then p (T )  < p ( ~ ) .  
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6 Dynamic nested iteration 

In this section we study Algorithm 4.1 in the case where Pik=Pk for all i. We 
call this algorithm Dynamic Nested Iteration. The main result of the section 
is Theorem 6.4, where we show that under certain conditions, this method is 
convergent. Dynamic nested iteration can be viewed as the concatenation of 
different nested methods, each with a different iteration matrix Tpk. Thus, for 
r outer iterations, the global iteration matrix for the dynamic nested iteration 
is the product Tpr Tpr_ ,. . .  T m. The difficulty in analyzing this method is that 
the product of convergent matrices may not be convergent. The following defini- 
tion and lemmas provide the background material for Theorem 6.4 and strength- 
en a result in [23]. 

It is well known, that for any matrix, A, there exists a permutation matrix 
P such that L = P A P  r is block lower triangular, i.e. L = (Lij), i, j = 1 . . . . .  q, where 
Lii is an s i x s i  block either irreducible or a 1 x 1 null matrix and Li~=0 for 
j > i .  This form is called the reduced normal form of A and it is unique, up 
to permutations within the diagonal blocks and of the ordering of certain diago- 
nal blocks, see, e.g., [3, 10, 13], or [26]. 

Definition 6.1. Let P be a permutat ion matrix for A, such that P A P  r is in 
reduced normal form. We say that B is Triangular Conformable with A under 
P, if LB = P B P  r is such that (LB)ij = 0 for j > i. 

Lemma 6.2. Let  P be a permutation matrix Jor the nonnegative matrix A, such 
that L = P A P  r is in reduced normal form and let pb=p(Lbb), b = l , 2 ,  . . . , q .  I f  
.for exactly  one block, say a, p ( A ) = p , = m a x  pb, then the Frobenius vector for  

b wq) T, where v, is the Frobenius L has the form w = (0, 0 . . . . .  0, va, wa + 1, w,  + 2 . . . . .  
vector f o r  La,. 

Proof. Clearly (LW)b=(p, W)b for all b<=a. For b > a  assume inductively that 
(Lw)c=(p,  w)c for all c < b .  Since P,>Pb,  it follows that (p , l - -Lbb) -  1 exists and 

b - I  b 

is nonnegative. Therefore Wb =(paI-- Lbb)-12 L b i  W i is such that ~ L b i  W i 

= Pa Wb" [ ]  i= I i= 1 

Lemma 6.3. Let  T > O, and let { Ti} be a collection of  convergent nonnegtive matri- 
ces such that T i is Triangular Conformable to T under P for  all i, with L = P T P  r 
and IJ,=PT~ pT. Let va be the s,-dimensional Frobenius vector of  L , , ,  with p, 
= p (Laa) < 1, f o r  every a. I f  f o r  every i, IJ,, v, <- Laa v, = Pa Va then, for  any f i x ed  
set {il . . . . .  it}, p(Y~)= P(Th T~2 ... T0_-< max P ]<  1. 

Proof. Since p ( ~ ) = p ( p y ~ p r ) = p  PT/ jP  r = m a x p  /JaJ, , there are two 

cases to be considered. If L,~ = 0 then I ] / J ~ ,  = 0. If L , ,  + 0 then Laa is irreducible 
j = l  

and therefore v~>0. It follows that f i / J~Va<=p]v ,  and therefore, by Lem- 
j = l  

ma2.1(d) ,p  IJ, Ja, < = Y , < l f o r e v e r y a .  Thusp(Y~)<=max,  p~,<l. [] 
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Theorem 6.4. I f  A = M - - N  1 --N2 is a convergent regular composite splitting and 
M = F - - G  is a regular splitting, then the Dynamic Nested lterative Method with 
r iterations is convergent for every r. Moreover, the method is no slower than 
the case when pk=l, k = l  . . . . .  r. In other words, p ( ~ ) < p ] < l ,  where V~ 
=Tp Tpr_,...Tp, , Tpk is the iteration matrix (13) corresponding to Pk, and p~ 
=p(T1). 

Proof. We have proved in Corol lary  5.2 that  p(TO>p(Tp) for all p. Let P be 
a permuta t ion  matrix such that  PT 1 pr  is in reduced normal  form. The proof  
proceeds in two parts. First we show that Tp is tr iangular conformable  to TI 
under  P for all p. Then we show that  if p, ,  va is such that  p,, v, = L , ,  va, then 
for every i, IJaaV~<p~v . and by L e m m a  6.3 p(~)=p(TpTp~_,. . .Tp,)<maxp] 
= p ] < l .  

Part I �9 First consider T a . Let R = F -  1 G, 

(18) T I = ( I - F - 1 N 2 ) - I ( F - '  N1 +R) 

=F-~ N1+R + ~ (F-1N2)I(F-1NI +R). 
i = 1  

Therefore, since F-1N1, R, and F ~N2 are nonnegative,  no cancellation can 
occur. It follows then that 

(19) R, F-  1 N1 ' (F- 1 N2)~F-, N,, (F- ' Nz)'R 

are t r iangular  conformable  to T~ under  P. N o w  consider Tp. Let 

p - - I  

Qp=(I_RP) M - I = ( I _ R P ) ( I _ R ) - I F - 1 =  ~ R,F 1, 
i = 0  

(20) 

then 

Tp = (I - Qp N2) - ~ (Op N1 + R p) 

= I-- RiF -1 R i F - 1 N I + R  p 
. =  i = 0  ~ 0 

and since every instance of  (F-1N2) i is followed by either F-1N, or  R i ( i , j>  0) 
it follows from (19) and the fact that  t r iangular  conformabil i ty is closed under  
multiplication and addit ion that Tp is t r iangular  conformable  to T~ under  P. 

Part 2: Consider  the splitting induced by Tp on A=M(p)--N(p) ,  with M(p) 
= Q~- 1 _ N2 and N(p) = NI + Qp- 1 R p ; see L e m m a  2.3. Then, 

(21) M ( p ) - l = ( l - Q p N 2 ) - l Q p = ( l  - p - 1  )-1p-1 E R'F 'N2 Z e'v-1 
i = 0  i = 0  

> ( I _ F - 1 N z ) - I  F - I  = M ( 1 )  -1. 
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There are two cases to consider. If L . . - -0 ,  for some a, then by Part 1, L~. = 0 
for all p, and therefore (PY~Pr)..=0. We therefore assume that La,,4:0 for all 
a. Let p.,  v. such that La,,v.=pav..  By Corollary 4.3 7"1 is convergent, thus 
p a < l  for all a. Define q diagonal matrices E(a), a = l ,  2 . . . .  , q, called scaling 
matrices, where Eb(a) is the sb • Sb matrix e(a, b)Is~, b= 1, 2 . . . . .  q, and e(a, b) 
is defined by 

e(a,b)=l ,  if pb<pa or b = a  

P. . . . . .  Pa  

Pb otherwise. = P " +  2 ' 

Consider E(a) PT1 pT, E(a) has the effect of scaling the b TM block row of P T  l pr  
by e(a,b)< 1. Every diagonal block with a spectral radius less than pa is 
left unchanged. Every diagonal block, b, with a spectral radius greater than 

is scaled by e(a,b) giving a new spectral radius e(a,b) p b = ( p b + l ) ~ < p . .  P. 

Thus p(E(a) PT1pW)=maxbp((E(a)PTiPr)bb)=p. .  Let w. be the Frobenius 
eigenvector of E(a) PT~ pT, i.e., corresponding to po. Since all diagonal blocks 
except the a th block have spectral radius less than p., then, by Lemma 6.2, 
w.V=(0,0 . . . .  ,O,v.,(wa).+l . . . .  ,(w.)q) r.  Since M = F - - G  is a regular splitting, 
N(I)=N~ + G > 0  and thus 

E(a) P T  1 pT wa= p. w. 

E(a)PM(1)  ~N(1)pTw.=pawa 

N(1) pTW~ = p .  M(1) pTE(a)-  ~ w~ 

1 
PM(1) PT E(a)- ~ w . = - -  PN(1) pTw~>=O. 

Pa 

We wish to show PAPTE(a) - ~w~>=O. 

pApT  E(a) - ~ w. = (PM(1) pT E(a)- ' -- PN(1) pT E(a)- 1) wa 

= ( 1  PN ( 1 ) P T - p N  (1)pTE(a)-1)  Wa 

where the last inequality follows from 1 >e(a, b)>p(a) for all a, b. From (21) 
it follows that PM(p)-  1 p r >  PM(1) -  1 pT, thus 

P M  (p)- 1 p r  (pApT E(a)- 1 wa) >= PM(1)-  1 pT (pApT E(a)- i wa ) 

Pro(p)-  1ApTE(a)-  1 w. > PM(1)-  1ApTE(a)-  1 w. 

P(I -- Tp) pT E(a) -1 w. > P(1-- T 0 pT E(a)- i w. 

P T  1 pT E(a)- aw.> PTppT E(a)- lw. .  

Since (PTppTE(a) - IL .=L~ . ,  and since w., j=0, for .j<a, (PTppTE(a) l w.). 
L~. v. it follows that pa v. = L. .  va > I?.. v. for all a. []  
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7 Nested block iterative methods 

In this section we consider Algorithm 4.1. We first present conditions for conver- 
gence and for a monotonicity rule for the simpler case p~k=-p~, for all k using 
the results from the previous sections. Later we show convergence for the general 
case. 

Since F, G are block diagonal, Ri = Fi- 1 Gi, where as before R = F -  ~ G. The 
equation to update a given component,  i.e., the loop over j, may be represented 
as  

(22) x(i) = ( I s , -  R~ '~) M F ~ (b + N 1 Xk + N2 Xk + 1) (0 + R~ '~ x~ i) 
k + l  ' - 

Let ~ = {Plk, PZk, - " ,  Pqk} and define 

] (I~,--RP")M-~ 1 0 ... 0 ] 
(O~k) 0 (I~ -- R~ '~) M2-1 ... 0 

. . . . �9 , 

L o 0 ... ( ~ ~  R~,~ M;' 

(23) 

[ R~'~ 0 ... ~1 

1_0 0 ... R ~  

(24) 

from where it follows that .~(~)=(I--~(~a~k))M-1. With these definitions it easy 
to see that the iteration matrix for the nested block iteration is given by: 

H (~)..= (I - ~ (~)  N2)- ' (~ (~)  N1 + ~ (~)). (25) 

By Lemma 2.3, 

MH (~)  = ~ (~k) - -  1 - -  N2 ' Nn ( ~ )  = ~ (~O~k)- 1 O~ ( ~ )  + N1 

define the unique splitting satisfying A = M H ( ~ ) - - N H ( ~ ) ,  and H ( ~ ) =  
M n ( ~ ) - 1 N n ( ~ ) .  In the following two theorems we assume Pik=Pi, for all i, k. 

Theorem 7.1. I f  M = F - - G  is a weak regular splitting, and A = M - N 1 -  N2 is 
a convergent regular composite splitting, then p ( H ( ~ ) )  < l, where H ( ~ )  is defined 
in Eq. (25). 

Proof. The matrices M n ( ~ )  and N n ( ~ )  have the same form as MT and NT 
(Eqs. (14) and (15)), respectively, with ~ ( ~ ) - l  replacing F and ~ ( ~ ) - 1 ~ ( ~ )  
replacing G. We will show that M = ~ ( ~ )  -1 0 ~ ( ~ ) - 1 ~ ( ~ , )  is a weak regular 
splitting and the theorem will follow from Theorem 4.2. Clearly ~(J ' ) ,  and ~ (~ ' )  
are nonnegative, so it remains to show that ~ ( ~ ) - 1 ~ ( ~ ) ~ ( . r  

( ~ ) -  1 ~ (~) ~ (~)  = M (I -- ~ (~))-1 ~ (~) (I -- ~ (~)) M -~ 

= M ~  (~)  M - I  = F ~  (~)  F-1  

= 0 (G2F~)P~ ... >0.  []  
�9 . . , ~ - -  

o 0 ... ( ~  Fq-')~%l 
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Theorem 7.2. Let  ~ = { P , , P z  . . . . .  pq} and ~--{/~1,/~2, ...,/92} where p,<O, f o r  
all i. I f  M = F -  G is a weak regular splitting, and A = M - NI -- N2 is a convergent 
regular composite splitting then p ( H  (~)) <= p (H  (~)). 

Proof. Since ~ ( . ~ ) > ~ ( , ~ )  and p ( ~ ( ~ ) ) < p ( ~ ( ~ ) )  the theorem follows from 
Theorem 5.1. [ ]  

We consider now the convergence of the nested block iterative method  in 
the general case. The proof  is analogous  to that  of Theorem 6.4. 

Theorem 7.3. Let  M = F - - G  be a regular splitting and A = M - N 1 - N 2  be a 
convergent regular composite splitting. Algorithm 4.1 is convergent and no slower 
than the case when Pik =1,  i = l  . . . .  , q, k =  1, . . . ,  r. In other words p ( ~ ) < p ]  < 1, 
f o r  all r, where ~ = H ( ~ )  H(~ ,_  1)... H ( ~ ) ,  and pl  =p(T1). 
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