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Summary. This paper is concerned with dense output formulas for extrapolation 
methods for ordinary differential equations. In particular, the extrapolated ex- 
plicit Euler method, the GBS method (for non-stiffequations) and the extrapolat- 
ed linearly implicit Euler method (for stiff and differential-algebraic equations) 
are considered. Existence and uniqueness questions for dense output formulas 
are discussed and an algorithmic description for their construction is given. 
Several numerical experiments illustrate the theoretical results. 

Subject classifications AMS(MOS): 65L05; CR: G1.7. 

1 Introduction 

"This is the weak point of extrapolation methods in general ... present extrapolation 
methods do not have a satisfactory interpolation procedure yet ..." 
(P. Deuflhard 1985) 

For non-stiff and stiff differential equations, extrapolation methods are impor- 
tant means for getting an accurate numerical solution. The most popular extra- 
polation method for non-stiff problems is the Gragg-Bulirsch-Stoer method 
(GBS method) which is based on the explicit midpoint rule (Sect. 5). We also 
consider extrapolation of the explicit Euler method (Sect. 2), which is very simple 
and yet gives satisfactory results. For  stiff problems one can use either fully 
implicit schemes (implicit Euler, trapezoidal rule with smoothing) or linearly 
implicit methods, such as those based on the linearly implicit Euler method 
(Sect. 7) or on the linearly implicit midpoint rule. 

All extrapolation methods have in common that they use very large step 
sizes during the integration. To illustrate this, we have applied two extrapolation 
codes to an Arenstorf orbit of the well-known restricted three body problem. 
The equations and the initial values are given in [14, p. 127]. Figure 1 presents 
the discrete points of the numerical solution together with the continuous output 
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Fig. I. Dense output solution for restricted three body problem 

described in this article. The user supplied error tolerance was chosen 
TOL = 10 - 6 .  The pictures nicely demonstrate the necessity of dense output for- 
mulas for extrapolation methods. 

A continuous output is not only useful for graphical representation of the 
solution, but it may also be an important tool for delay differential equations 
[8], [14, Sect. II.5], and for event location problems [24]. 

The first attempt to get a dense output for extrapolation methods is due 
to Lindberg [18]. His approach, which is different from ours, imposes severe 
restrictions on the step number sequence. Shampine et al. [23] provided the 
GBS method with a 3rd order dense output formula. 

We first investigate dense output formulas for non-stiff extrapolation integra- 
tors, namely the extrapolated explicit Euler method (Sects. 2, 3, and 4) and 
the GBS method (Sects. 5 and 6). Thereby we pursue two directions. On the 
one side we study the order conditions of very general interpolation procedures 
and their solution. This leads to existence and uniqueness results (Sects. 3 and 
5) and provides insight into possible restrictions on the step size sequences. 
Independently from these investigations we present in Sects. 4 and 6 explicit 
dense output formulas which allow a simple implementation. Section 7 intro- 
duces a dense output formula for the linearly implicit Euler method, which 
is an attractive integrator for stiff differential equations. Finally, in Sect. 8 we 
study the order of this dense output, when the method is applied to a semi- 
explicit differential-algebraic system of index 1. Several numerical experiments 
illustrate the theoretical results. 

2 Extrapolation of the explicit Euler method 

We consider the system of differential equations 

(2.1) y' =f(x ,  y), y(xo) =Yo, 
where f (x ,  y) and hence also the solution y(x) is assumed to be sufficiently 
differentiable. The explicit Euler method applied to (2.1) reads 

(2.2) yi+l=yi+hf(x i ,  yi), i>O 



Dense output for extrapolation methods 421 

where h is the step size and x i = x o + i h .  We denote y h ( x ) = y ,  for X = X o + n h ,  
choose a sequence of integers n~ < n 2 < n 3 < . . .  and define the corresponding 
step sizes h 1 > h z > h 3 >  ... by hj=H/n~,  where H > 0  is the basic step size. The 
h-extrapolation tableau is given by the formulas 

(2.3 a) 

(2.3b) 

Yj1 =Yhj(Xo + H) 

Since the error yh(Xo + H ) - - y ( x  o + H) has an asymptotic h-expansion, each extra- 
polation eliminates one power of h, so that 

(2.4) Yjk -- Y (Xo + H) = 0 (H k + 1) 

(see [14, Sects. II.8 and II.9]). 
The subsequent analysis relies on the fact that each Yjk can be interpreted 

as the numerical result of a Runge-Kutta scheme of order k. This can be seen 
as follows: for h = H/n the numerical solution of the Euler method at x o + H  
is given by 

n 

yh(Xo + H ) =  yo + H ~_~ bi K i  
i = 1  

(2.5) Ki = f  Xo + ci H, Yo + H air K , i = 1 . . . . .  n 
j = l  

with coefficients 

i - 1  1 1 
(2.6) ci = , aij =- - ,  b i = - .  

tl n n 

Formula (2.5) shows that for any j, Yj~ is the result of an explicit nistage Runge- 
Kutta method of order 1. Since Yjk is a linear combination of Yj-k+ ~, 1 . . . . .  Yj~, 
it can also be written as an explicit Runge-Kutta method. By (2.4) its order 
isk. 

The above algorithm yields a very accurate approximation to the solution 
at x o + H. In order to get a cheap continuous output we consider for 0 < 0_< 1 

n 3 

(2.7) Y ~ l ( O ) = y o + H  ~ b,(O, nj) K i 
i = 1  

with Kj given by (2.5). Our aim is to construct polynomials bi(O, n) in such 
a way that bi(O , n)=0,  bi(1, n)= 1/n (this means Yjl(0)=y o, Yjl (1)= Yj~) and that 
the values Y~k(O), obtained by the recursion (2.3 b) satisfy 

(2.8) y ~ k ( O ) - - y ( x o + O H ) = O ( H  p) for 0_<0< 1 

with p as high as possible. This approach does not use additional function 
evaluations and does not change the Yjk" Therefore the global behaviour of 
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the m e t h o d  is not  influenced. Dense ou tpu t  formulas  of  the type (2.7) are fre- 
quent ly used for explicit R u n g e - K u t t a  methods .  F r o m  the vast  l i terature on 
this topic  we men t ion  the articles [3, 7, 9, 14, 17, 20, 22, 26]. 

3 Existence and uniqueness of dense output for explicit Euler 

Because of (2.4) the best possible p in (2.8) is p =  k + 1. The  following theorem 
gives necessary and  sufficient condi t ions  to obta in  this o rder  for the dense output .  

Theorem 1. Consider a f ini te sequence nl < n2 < . . .  < n~ and let y(x) be the solution 
of  (2.1). Then Yjk(O), given by (2.7) and the recursion (2.3b), satisfy 

(3.1) Yjk (0) -- y (x o + OH) = 0 (H k 

if  and only if  there exist functions e21(0), 
such that 

(3.2) ~ b,(O, n) c~ -1 
0 q 

i = 1  q 

+l) for  l < k < j < K  

e31(0), e32(0),...;e~l(0) . . . .  , e~.~_,(0) 

for  q= 1, . . . ,  K and n~{nl  . . . . .  n~} (ci=(i - 1)In as in (2.6)). 

Before we give the p roo f  of  this t heo rem we discuss the solvabil i ty of  the 
l inear system (3.2). A solut ion can be found recursively as follows: 

In a first step we choose  bi(O, nl) for i =  1 . . . . .  nl such that  (3.2) holds with 
q = 1 and  n = hi. In  the general  step we have  to de te rmine  s imul taneous ly  bi(O, n~) 
for i =  1 . . . .  , nj and  e~l(0) . . . . .  ej.~ l(0) f rom the Eq. (3.2) with q~{1, . . . , j} ,  n=n~ 
and q-- j ,  n~{n I . . . .  , nj-1}.  These are 2 j - 1  condi t ions  for n j + j - 1  unknowns.  
Since n j > j  and the mat r ix  of  this l inear system is Vandermonde- l ike ,  a solut ion 
a lways exists. Fu r the r  we have uniqueness  for nj=j.  Thus  we have p roven  the 
following theorem:  

Corol lary  2. For every step number sequence {nl, n2, . . . ,  n~} there exists a dense 
output formula (2.7) such that the extrapolated values satisfy (3.1). 
For the harmonic sequence { 1, 2, 3 . . . .  , re} this dense output formula is unique. [] 

For  the p roo f  of  T h e o r e m  1 we shall use the following lemma,  which general-  
izes the idea of " s implifying a s s u m p t i o n s "  (see [14, p. 203]). 

L e m m a  3. For the Runge-Kut ta  coefficients (2.6) there exist constants ~:q, such 
that 

(3.3) i - 1  c q - '  ' ai j c~ - [ 1~ > 1 and i = 1, n. - - - T  i,, q, i kn] for all q . . . . .  
j :~  q ,=1 

Proof  We apply  the Euler  m e t h o d  (2.2) with stepsize h =  1/n to the p rob lem 
y , =  x q- 1, y (0 )=  0 whose  exact  solut ion is y (x )=  xq/q. An easy calculat ion shows 
tha t  the numer ica l  solut ion at x = ( i -  1) h = c i is 

i - 1  
q - 1  (3.4) yh(X) = ~ alj cj 

j=l 
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with ai/given by (2.6). In order to prove (3.3) we make use of the asymptotic 
expansion 

(3.5) yn(x)=y(x)+dl (x) h+d2(x) h 2 + .... 

where dt (0) = 0. Inserting (3.5) into (2.2), i.e. Yh (X + h) = Yh (X) + h x q- ~, and compar- 
ing powers of h, yields dl(x)=e, ql x q i for l<q and dr(x)=0 for l>q. Formula 
(3.5) with x = ci together with (3.4) proves the statement of the lemma. []  

Proof of Theorem 1. Sufficiency. In order to prove (3.1) we consider Y~k(0) and 
y(x o + OH) as functions of H, expand them into Taylor series and verify that 
the first terms are equal. This can be done with the use of rooted trees, elementary 
differentials, etc., as explained in [14, Sect. II.2]. 

The q-th derivative of the exact solution y(xo+ OH) satisfies (Theorem II.2.6 
of [143) 

d q 
(3.6) dH q y(xo +OH)lu=o = ~. OqF(t)(xo. Yo). 

t~l, Tq 

where F(t) (Xo, Yo) is an expression composed of derivatives o f f (x ,  y) (elementary 
differentials). L Tq is the set of labelled trees with q vertices. Similarly, for the 
numerical solution Yj~ (0) of (2.7) we have (Theorem II.2.11 of [14]) 

dq nj 

(3.7) dH q Yjl (0)lH=O = E ~(l) E bi(O, nj) ~)i(t) F ( t ) (Xo ,  Yo), 
t~l, Tq i=I 

where Hi(t) depend on the coefficients (2.6) and are recursively defined by 

HAz) = 1 

(3.8) Hi(t)= E aik ' ...aik, Hk~(tl)... Hk~(tm) if t - - [ t l  . . . . .  t,,]. 
kl ..... k~ 

The number 7(0 is given by 7(z)=l ,  7(t)=p(t) 7(tl)...7(tm), and p(t) denotes 
the number of vertices of the tree t. Suppose for the moment that condition 
(3.2) implies 

00(' P"~-1 (1)  t 
el(O, t) (3.9) bi(O, n) H i ( t ) = ~ t )  + 1=1 

i=1 

for ne{n~ . . . . .  n~} and trees t with p(t)<tc. Then we can insert (3.9) into (3.7) 
and extrapolate (k-1)- t imes the q-th derivatives of Yj-k+ 1, 1(0) . . . .  , Yjl (0). This 
yields ~ OqF(t) (Xo, Yo) for q<k,  because the terms el(0, t) (I/n) l are eliminated 

t~LTq 
for l < k - 1  by extrapolation. A comparison with (3.6) shows that the first k 
derivatives of Yjk(0)--y(XO + OH) vanish. This proves (3.1). 

We still have to justify formula (3.9). For  this we shall prove by induction 
on p(t) that 

(3.10) p(t) p,)-l  + ~ el(t)ce,)-t-1 H,(t) = ~ el 
l=l 
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By Lemma 3 this identity then implies 

i-1 cf.) o.)-1 ( 7 .  
;:~(t) c~ "~-~ (3.11) E alj~J(t)~7(t) + / = 1  

j = l  

Formula  (3.10) is obviously true for p ( t ) = l  (i.e. t= r ) .  Consider now a tree 
t = It1, ..., t,,] and suppose that (3.10) and hence also (3.11) is valid for t~ . . . .  , t,,. 
Inserting (3.11) for tl . . . . .  t,, into (3.8) and using again Lemma 3 yields (3.10) 
for the tree t. 

Next we multiply Formula (3.10) by bi(O, n) and sum up from i=  1 to i=n. 
Substituting each occurrence of ~'bi(O, n) c~-1 by our assumption (3.2) we arrive 
at (3.9). i 

Necessity. Assume that (3.1) holds. Application of the Euler method with H = 1 
to y '=x  q 1, y(0)=0  yields by (2.7) 

nj 

(3.12) ~1 (0)= y~ bi(O, nj) c~-' 
i = 1  

Since every q-th order method integrates the above equation exactly, the extrapo- 
lated value Y~q(0) equals the exact solution at 0, i.e. 

(3.13) Yjq(O)= 6q for all j. 
q 

By definition of the extrapolation method, Yjq(0) can be interpreted as Yjq(O) 
= p  j(0) where pj(h) is the polynomial of degree q - 1  which satisfies 

(3.14) pj = Y~ ~ (0) for i= j - -q+  l . . . . .  j. 

The coefficients of pj(h) seem to depend on j. However, by (3.13) the value 
pi(0) does not depent on j, so that two consecutive polynomials take the same 
values at q distinct points at least. Thus they are equal. This implies the existence 
of one polynomial 

oq q-- 1 
p ( h ) = ~ +  ~ eql(O)h' 

q / = 0  

which satisfies Yil (0)=p(1/n~) for allj. This, together with (3.12) and (3.14) oroves 
the statement (3.2). [] 

4 Construction of dense output formulas for explicit Euler 

Theorem 1 provides in principle a means for obtaining dense output formulas: 
one has to solve the linear system (3.2) and extrapolate the values Yjl (0) to 
obtain Yjk(O). If this is done for the harmonic sequence {1, 2, 3, 4 . . . .  }, one 
obtains surprisingly simple formulas from apparently complicated equations. 
This suggests that an elegant idea should be able to lead to the same results. 
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This idea, which has been pointed out to the authors by Ch. Lubich, is the 
following: together with each Yjl we compute sufficiently many finite differences 
at both ends of the integration interval, then we extrapolate them and use 
the so-obtained approximations to the derivatives for Hermite interpolation. 
A similar idea is used by Deuflhard and Nowak [-6] to construct consistent 
initial values for differential-algebraic problems. 

Suppose that the value Y~, obtained with the step size sequence h~>h2 
> ... > h~ has been accepted as numerical approximation to y(xo +H). The dense 
output formula is then given by the following algorithm: 

Step 1. For each j e  { 1 . . . . .  ~c} we compute the approximations to the derivatives 
of y(x) at the left and right endpoints of the interval [Xo, x0 + HI" 

A k -  1 f(o j) V k - 1 f ( j )  
- r(k ) . . . .  ~ for k = l ,  . , j .  (4.1) l~ k' h k- , , j - -Jhk-1 " 

Here .f~(~ = f ( x  o +ihj ,  Yi) is the function value, evaluated during the computat ion 
of Yjl, and A f / = f / + l - f / ,  V f / = f i - f / - i  are the forward and backward differ- 
ences. No additional function evaluation is necessary. 

Step 2. In order to improve the accuracy of these approximations, we extrapolate 
the values Irk k) . . . . .  I~ k) (•--k)-times to obtain l (k). More precisely, we put T~I =l} k) 
for j = k  . . . .  , ~c, extrapolate these values according to (2.3b) and define l (k) by 
11k)= T~.~ k+ 1. In exactly the same way we also compute r (k). 

Step 3. For given 2 and p ( - l < 2 ,  p<~c) we define the polynomial Pxo(O) of 
degree 2 + p + 1 by 

(4.2) 

Pxp(0) = Yo if 2_>_0 

P~p(1)= YK~ if p > 0  

P~!~)(O)=Hkl (k) for k = 1 . . . . .  2 

P).!~)(1)=Hkr (k) for k = 1 . . . . .  p. 

The following theorem shows to which order these polynomials approximate  
the exact solution. 

Theorem 4. I f  2 + p > x - 1 ,  then the error of the interpolation polynomial P~p(O) 
satisfies 

(4.3) 50(0)--  y(Xo + OH)-= O ( H  ~+ 1). 

Proof Since Pzo(0) is a polynomial  of degree 2 + p + 1 > ~:, the error due to inter- 
polation is of size O ( H  ~+ 1). By (4.2) it therefore suffices to prove that the values 
I (k) and r (k) satisfy 

(4.4) 
l(k)=y(k)(Xo)+O(H ~-k+l) for k =  1, ..., 2 

r(k)=y(k)(Xo+H)+O(H~-k+ 1) for k =  1 . . . . .  p. 
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The approximations If ) and r~ k), defined in (4.1) have an asymptotic expansion 
of the form 

(4.5) l~k)= yCk)(Xo) + hj a?) + h~ a~k~ + ... 

(4.6) r~.'3)= y~k)(x o + H)+ hj b ? ' +  h~ b~k) + .... 

Formula (4.5) follows immediately from Taylor  series expansion, while Formula 
(4.6) needs also the asymptotic expansion of the global error of the Euler method. 
Since each extrapolation eliminates one power of h, this proves (4.4). [ ]  

The uniqueness result of Corollary 2 allows us to prove the following theo- 
rem. 

Theorem 5. For the harmonic sequence {1, 2 . . . . .  K} the polynomials P~R(O) are 
identical as long as 2 + p > ~ -  1. 

Proof The proof relies on the fact that each interpolation polynomial P~p(0) 
can be interpreted as the extrapolated value Y~(O) of functions Yj~(0), which 
are of the form (2.7). This follows from the commutativity of the diagram 

yo, Yj,,l~),r~ ) 

~1(0) 

Step 2 ) Y0, YKK, l(k), r~k) 

I Step 3 

extrapolation ~: times 

(4.7) 

We still have to define Yjl(0). Recall that ltk) =p/(0), where p~(h) is a polynomial 
of degree x -  k which is defined by 

pz(n/nj) = l~ k) for j = k . . . . .  to. 

If we put 

q t ( h ) = p ~ ( h ) . ( 1 - ~ ) . . . ( 1  hn~ -x)  

then extrapolation of the values q~(H/nj), j =  1 . . . . .  x, again yields 1 ~k)= qt(O). We 
therefore set Yjl(0) as the polynomial of degree 2 + p + l  defined by (4.2) with 
y~,  ltk), pk) replaced by Yjl, qt(H/nj), qr(H/nj). Obviously, qr(h) and p,(h) denote 

tk) the corresponding polynomials for the rj . The statement is now an immediate 
consequence of Corollary 2. []  

Remark. If 2 and p are non-negative then, by the first two conditions of (4.2), 
this dense output gives a globally continuous approximation to the solution. 
A natural choice would be 2 = [ x / 2 ]  and p = [ ( K - 1 ) / 2 ] .  A solution which is 
globally C 1 can easily be obtained for 2>_1, p > l  if we replace r tl) in (4.2) 
by f (x o + H, Y~K). 

Numerical example. We modified the extrapolation code ODEX from [14] so 
that it is now based on the explicit Euler method, and equipped it with the 
above described dense output  formulas. We call this new code ELEX. A first 
illustration of the performance of this code are the results already shown in 
Fig. 1. For  a thorough study of the obtained errors of the dense output, we 
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Fig. 2. Solution and error of extrapolated explicit huler method 

applied ELEX with step number  sequence {1, 2, 3, 4 . . . .  } and with T O L =  10 -7 
to the non-stiff Van der Pol equation 

YPl = Y2, Y l (0) = 2 

(4.8) y2 = ( 1  __y2) Y2 - -Yl ,  y2(O) =0"  

The upper picture of Fig. 2 shows the dense output solution together with the 
natural output  points. The global error of this solution is plotted in the lower 
picture. 

5 Dense output for GBS method 

The well known GBS method is defined by (x = Xo + n h, with n even) 

(5.1 a) Yl = Yo + h f (xo, Yo) 

(5.1 b) y i + l = y i _ l + 2 h f ( x l , Y l ) ,  i=  1,2, . . . , n  

(5.1c) Sn(x) = �88 + 2 y,  + y,+ 1). 

The value Sh(x) is just the result of one Euler step (5.1a), followed by n steps 
of the explicit midpoint  rule (5.1b), and by a smoothing step (5.1c). For  a 
sequence of even integers n t < n2 < . . .  we again denote the step sizes by hj = H/nj.  
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Since the error Sh(X o + H)-- Y(Xo + H) has an asymptotic h2-expansion, the extra- 
polation tableau becomes 

(5.2a) 

(5.2b) 

Y~ 1 = Sh, (Xo + H) 

(see [25, Sect. 7.2.14] and [14, Sect. II.9]). As in Sect. 2 the value Yja is seen 
to be the result of an explicit (nj+ 1)-stage Runge-Kutta  method (2.5), whose 
coefficients are given by (n = n j) 

(5.3) 

i--1 
C i - -  

n 

f l / (2n)  i = l  or 
bi=(1/ne" " 2<_i<_n 

= n + � 9 4  

[ 1/n j = 1, i even 
| 

aij~12 ~ l~j~i, e l se  i -t-j o d d  

Each extrapolation in (5.2) eliminates two powers of h in the error. Therefore 
Yjk represents a Runge-Kutta  method of order 2k. So as in Sect. 2 we are looking 
for a dense output formula 

nj4- 1 
(5.4) Yjl(O)=yo+H ~ bi(O,n~)Ki for 0_<0<1 

i = 1  

such that (2.8) is satisfied with p = 2 k +  1. 
With these preparations we are able to extend the results of Sect. 3 to the 

GBS method. Theorem 6 and Lemma 7 below are the analogues of Theorem 1 
and Lemma 3, respectively. Since the proofs are similar, we omit details. 

Theorem 6. Consider a sequence n l < n 2 <  ... <nK of even integers. Then Yjk(0), 
given by (5.4) and (5.2b), satisfy 

(5.5) Y~k(O)-y(xo+OH)=O(H z~+a) for l < k < j < K  

if and only if there exist functions eqt(O), dqt(O) such that for all n~ {nt . . . . .  nK} 

"+'  0q t~.- ~ m  / 1 \ 2 ,  
(5.6a) ~ b'(O'n)c~-l=--+ ~ eqt(0)~n) for q=l  . . . .  ,2~c, 

i = 1  q / = 1  

(5.6b) 
n [ ( q -  1 ) /21  [ 1 \ 2 l  

2 b,(O,n) c~- '= 2 dqffO) 
i = 1  l = O  

i e v e n  

for q = l ,  . . . , 2~c-2 .  

The proof is based on the "simplifying assumptions": 
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L em m a 7. For  the R u n g e - K u t t a  coeff icients (5.3) there exist  constants ~,,ql such 
that 

i -  1 cq 

j : l  q 

(5.7) + 

[(q-  1)/2] ( ! ) 2 /  

- - - +  ~ c,~,e, ~ - 2 ' -  
l = l  

eq, q/2 " i f  i e v e n  a n d  q e v e n  

0 else 

jbr  all q > l and i = l . . . . .  n + l. 

For  the proof  of Lemma 7 we apply the GBS method to y ' = x  q - l ,  y(0 )=0  
and make use of the asymptotic expansion of the global error (as in the proof  
of Lemma 3). Since this expansion is different at even and odd grid-points, 
it is not astonishing that we obtain two different formulas. 

Theorem 6 differs from Theorem 1 mainly by the additional Formula  (5.6b). 
The necessity of (5.6b) can be seen by applying the GBS method to 

y'l=x"-3y2, yi=x, y,(0)=y2(0)=0. 

In this case the numerical solution for Yl is 

n j +  1 i-- 1 

Y),(O)---- ~" bi(O, njlc~ -3  ~_~ aimC m 
i=J  m = l  

and has an expansion of the form (5.6a). Inserting (5.7) with q =  2 yields (5.6b). 
Condition (5.7) allows to prove formulas similar to (3.10) and (3.11), whose 

coefficients depend on whether i is even or odd. Thus one needs both conditions 
in (5.6) to prove (5.5). [] 

We conclude this section with some remarks on the solvability of the linear 
system (5.6). Counting the number  of conditions and the number of free parame-  
ters we get: 

number  of conditions: 4 K "2 - -  2 ~: 

number  of parameters:  nl + ... + n ~ + 2 ~ c 2 - ~ .  

This suggests that the step number sequence should satisfy 

(5.8) n l +  ... + n ~ 2 K 2 - - t r  forall  K > I .  

For the standard sequence {2, 4, 6, 8, 10 . . . .  } condition (5.8) is satisfied only 
for ~c<2. Indeed, the linear system (5.6) has a unique solution for •<2, but 
is unsolvable for K > 2  (even {2, 4, 8, ...} leads to an unsolvable system (5.6) 
for ~c > 2). 

If the step number  sequence satisfies n ~ > 4 ~ c - 2  and thus also (5.8), the 
system (5.6) is solvable for all ~:>1 due to its special structure. This is seen 
by recursion, as steping from rc to ~: + 1 yields more new parameters  (G + 1 + 4 
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+ 1) than new conditions (8 K + 2). A natural step number sequence, which allows 
to construct dense output formulas satisfying (5.5) is thus 

(5.9) {2,6, 10, 14, 18,22 . . . .  } 

It is curious to see that a similar sequence has been found useful in the context 
of stiff extrapolation by Bader and Deuflhard [2]. 

Remark. (GBS method without smoothing). Instead of (5.2a) it is also possible 
to use Yjl =yh,(Xo+H), where yh(x)=y, for X=Xo+nh. This saves one function 
evaluation in (5.1b) and thus reduces the number of free parameters to nl + ... 
+ n ~ + 2 x 2 - 2 ~ c .  In this situation the sequence {2, 4 . . . .  } does not allow a dense 
output formula satisfying (5.5), even not for ~c=2. This was already noticed 
by Shampine et al. [23]. The assumption n~ > 4 ~c- 2 again implies the solvability 
of the system (5.6). Here the sequence (5.9) yields a unique dense output. 

6 Construction of dense output formulas for GBS method 

For  the GBS method, the straightforward application of the ideas of Sect. 4 
does not lead to satisfactory dense output formulas, as the one-sided differences 
(4.1) do not have an h2-expansion (see (4.5), (4.6)). Therefore only about half 
of the order is achievable. We shall show here how to overcome this difficulty. 

Suppose that the value Y~ has been computed with the step number sequence 
{nl . . . . .  G}. For  the following construction we need that n; is even and that 
the differences 

(6.1) n j+ l -n j  are multiples of 4, j = l , 2  . . . .  

a property, which is shared by (5.9). 

Step 1. For  each je{1  . . . .  , K} we compute approximations to the derivatives 
of y(x) at the midpoint Xo + H/2: 

~k- 1 f ( j )  
(6.2) d~~ ~i) r](k)------Jnd/2- for k = 1, . 2j. 

i --~, /2,  "J - (2h~) k-I ", 

Again f~;~=f(xo + ih j ,  y~;)), and y~J) is the approximation obtained during the 
computation of Y~x. Further, 6.~ =f~+ ~-f~_ 1 denotes the central difference oper- 
ator. 

Step 2. We extrapolate d}~ - 1) times and d} 2~- ~), d}Zl)(K--l) times. This yields 
the improved approximations d (k). 

Step 3. For  given g ( 0 < # < 2 K )  we define the polynomial P,(0) of degree # + 4  
by 

(6.3) 

Pu (0) = Y0, 

e.(1)= Y~, 
~k)(1/2) = Hk d ~k) 

P,' (0) = Uf(xo,  Yo), 

Pu'(1) =U f ( x o +  H, Y~), 

for k=O . . . . .  ~t. 
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Fig. 3. Solution and error of GBS method 

Since YK~ is the initial value of the next step, this dense output formula 
is globally C 1. We are now ready to discuss its accuracy. 

Theorem 8. / f  the step number sequence satisfies (6.1), then the error of  P,(O) 
satisfies 

(6.4) ~O(H 2~+1) /f n1=4  and #>_2~c-4 
P' (O) - -Y (x~  ! f n , = 2  and ~t>2tc -5 .  

Proof. Since P,(0) is a polynomial of degree ~t+4 the interpolation error is 
of size O(HU+5). This explains the restriction on Ft in (6.4). We next study the 
error of d ~kl. It is well known that the error of Yi possesses an hZ-expansion 
with coefficients depending on whether the index i is even or odd. Since the 
symmetric differences in (6.2) use either only even or only odd indices, d~ k) also 
has an hZ-expansion 

d~k~= ylk)(Xo + HI2) + h 2 a z,k (Xo + H/2) + h~ a4, k (x o + H/2) + . . . .  

The extrapolated values therefore satisfy 

[O(H 2~) 

Hk d(k) __ H k y(k)(X 0 + HI2) = / O (H 2 ~ + 1) 

[O(H 2~+2) 

if k=O 

if k odd 

if k even and k>2 .  

If nl/2 is even, the functions ai, o(X) vanish at Xo so that d ( ~  
= O(H 2~+ ~) in this case. This proves the theorem. []  
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Fig. 4. Work-prec is ion  d iagrams:  []12, 4, 6, 8, I0 . . . .  I, + 't 2, 
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6, 10, 14, 18 .... l 

Numerical results. We have provided the code ODEX of [14] with the above 
dense output  formula choosing t t = 2 K - 3  and the step number sequence (5.9). 
It turned out that, whenever a high order is selected in some step, one can 
observe rather large errors of the dense output in the interior of the correspond- 
ing interval. In [15] it has been shown that these errors are mainly due to 
interpolation. There a new step size strategy is proposed which keeps also the 
interpolation error comparable to the tolerance. We thus included this strategy 
from [15] into ODEX and applied it to the problem (4.8) with T O L =  10 7. 
The result is plotted in Fig. 3. 

Standard implementations of the GBS method usually use step number 
sequences starting with {2, 4, 6, 8, ...}. The above dense output algorithm, how- 
ever, requires condition (6.1) and leads to a sequence like (5.9). There may thus 
arise doubts whether this restriction deteriorates the performance of the code. 
For  this reason we have compared the efficiency of both step number sequences 
in the same implementation on the six test problems of [14, Sect. II.10]. We 
have run these examples with tolerances T O L =  10 - 2 ,  10 - 3  . . . . .  10 - 9 .  Figure 4 
shows the obtained work-precision diagrams (computer time on an Apollo work- 
station against the achieved accuracy at the end point). The results indicate 
that the efficiency of the code is nearly independent of the used step number 
sequences. 

7 Dense output for the extrapolated linearly implicit Euler 

We now turn out attention to a stiff differential equation y' =f(x, y). Our main 
results of this and the subsequent section concern the linearly implicit Euler 
method 

(7.1) (l-hfy(xo, Yo))(yi+l-yi)=hf(xi,yi)+h2fx(Xo, Yo), i>:O. 
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Here, 1 denotes  the identity matrix,  fx and fy are the part ial  derivatives of  
f. The  app rox ima t ions  Yh(X)= y ,  (with x = x o + n h) can be ex t rapola ted  according 
to (2.3). 

The  classical (non-stiff) analysis shows that  the error  of the ex t rapola ted  
values Y~k satisfy (2.4). The constant  symbol ized by the O( . . . ) - te rm,  however ,  
may  depend on the stiffness of the problem.  Fo r  singularly per turbed  p rob lems  
the existence of a per turbed  asympto t ic  expansion,  justifying the ex t rapo la t ion  
of (7.1), has been proven  in [12]. 

In ana logy  to (4.1) it seems natural  to use the ex t rapola ted  values of  

(7.2) l}k) = A k y ~  gk ,,{JI . . . . . . . . . . .  r { k }  - -  
h k r l j  

for the cons t ruc t ion  of dense output  formulas.  To  get a feeling to what  extent  
the quali ty of  these expressions is affected by the stiffness, we begin our  s tudy 
with the p rob lem 

(7.3) e y' = - y + g (x), 

where e > 0 is a small parameter .  The  exact solution of (7.3) then has the a symp-  
totic e-expansion 

y (x) = C e -  x/~ + g (x) - e g' (x) + e.2 g,, (x) - e 3 g,,, (x) + . . . .  

If we take the initial value on the smoo th  solution, i.e. such that  the exponent ia l  
term is not  present,  it becomes  

(7.4) y (X) = g (X) - -  e g '  (X) "{- e 2 g "  (x)  - -  e 3 g ' "  (x )  Jr- . . . .  

Applicat ion of (7.1) to (7.3) gives 

h 2 

This yields the following recursion for the differences y~-g (x i )  

(7.5) Yi + x - g (xi + 1) = P (Yi - g ( x i ) ) -  d g (xi) + (1 - p) h g' (Xo), 

where 

e h 
(7.6) P = h + e '  1 - P = h + e "  

Again we have  used A g(x i )=  g(x  i +1)-g(xl). Solving this recursion we obta in  

i - 1  

Yi = g (xi)-- ~ p ' -  ~- 1 d g (x j) + p'  (Yo - g (Xo)-- h g' (Xo)) + h g' (Xo). 
j = 0  
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If we apply 
identity 

k-times the difference operator A to this equation and use the 

i -=l ~ )) i - 1 
(7.7) A Pl-J-tq)(xJ =piq)(xo)+ Z Pi-J-I  A(p(xj ), 

j j=O 

which follows by induction on i, we get for k > 1 

i - l  ( 
Akyi=dkg(xi) - ~ p l - j -  l Ak+ l g(xj)+ pi (p__ l)k(yo__g(Xo)__hg,(XO)) 

j=O 

- ~ (p--1)k-mAmg(Xo . 
m=l 

Repeated use of the summation by parts formula 

(7.8) 
i--1 i-1 

(1 --D) Z Di-j-1 qo(xj)= qo(xi)--piq)(Xo)-- ~ pi-j  1 A ~o(xj) 
j=O j=O 

gives for k > 1 and e < Const. h 

k+N (k+N 
(7.9) Akyi= m=k ~ (P--1)k-mAmg(xi)--Pix~,(P--1)k-mA"g(XO),,= 

- (p - l)k (Yo --  g (Xo) --  h g' (Xo))) + O (h k + u + 1). 

Because of (7.4) the expression multiplied by p~ is O(h2). Further we have 

(7.10) ( p -  1) k -m dmg(xi) h k =(--e,)m-kg(")(xl)+a]")h+ ... +atu")hN+O(h N+I) 

where the functions a~ ") may depend smoothly on e, and xi. Inserting (7.10) 
into (7.9) and using again (7.4) one finally arrives at 

(7.11) Akyi =ytk)(xi)q'-a I h+ +aNhN+O(hN+l)+o  ~ 
h k . . . .  

The analysis in [12, Theorem 2] shows that for e<Cons t -h  the error of 
Yjl has an hfexpansion with leading perturbation term of size O(e"Jh 2-",). The 
accuracy of the extrapolated solution Yk* is thus O(Hk+l+e"'H2-"') .  Conse- 
quently, for ~:~H, it was suggested to take step number sequences starting 
with nl = 2. In order to get a comparable accuracy for the dense output formula, 
one should use the expression (7.11) only for i > n v  This suggests the following 
construction: 

Step 1. For eachj~{1 . . . . .  ~c} we compute r5 k) of Formula (7.2) for k=  1 . . . . .  j - 2 ,  
where 2E{0, 1}. 

Step 2. We extrapolate r}k)(~: - k -  2) times. This yields the improved approxima- 
tion r (k) to y(k)(Xo + H). 
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Step 3. We define the polynomial P~(0) of degree tc by 

P;.i0)=yo, P~.(1) = Y~, 

(7.12) P;!k~(1)=Hkrlk) for k- -1  . . . . .  tr 

The classical (non-stiff) order result can be obtained along the lines of the proof  
of Theorem 4 and states as follows: 

Theorem 9. For )~  {0, l} the error of the interpolation polynomial P;~(O) satisfies 

p;.(O)_y(xo+OH)=O(H~+l 4). [] 

Remark. This is a purely non-stiff convergence result. The constant symbolized 
by the O(. . . )- term usually depends on the stiffness of the problem. E.g., for 
the model (7.3) it follows from (7.11) that for e__< Const.  h 

(7.13) P~ (O)- y(xo + O H)=O(H~ + l - ~') + O(enl +'~- l H3-nl - ;~). 

For 2 = 1  and e ~ H  the second error-term in (7.13) is of the same size as that 
in the numerical solution Ykk (compare the discussion after Formula  (7.11)). 
However, one power of H is lost in the first term of (7.13). Ideally, 2 should 
be chosen in such a way that both terms are of the same size. 

It is now natural to investigate the error of the dense output formula for 
problems which are significantly more general than (7.3), e.g. singularly perturbed 
problems 

y ' = f ( x , y , z )  

(7.14) ez' =g(x,  y, z). 

For this we need an error estimate for the expressions Aky~/h k which requires 
the knowledge of perturbed asymptotic expansions of yi-y(x~), much more 
detailed than those provided by Theorem 2 of [12]. This seems to be a difficult 
task. We therefore study in the next section the limit case e = 0. 

8 Differential-algebraic systems for linearly implicit Euler 

We consider the differential-algebraic system 

y' = f (x ,  y, z), y(xo) =Yo, 

(8.1) 0=g(x ,y , z ) ,  Z(Xo)=Zo, 

where we assume that the matrix gz has a bounded inverse in a neighbourhood 
of the solution (index 1), and that the initial values are consistent (g(x o, Yo, 
Zo)=0). The linearly implicit Euler method can be applied to (8.1) as follows: 

\ - h g y  - h g z J \ z i + l - z i l  \g(xl,yi,zi)] \gx/ 

where the derivatives f , ,  f~., ... have to be evaluated at the initial value (Xo, 
Y0, Zo). These formulas can be derived by applying the method (7.1) to (7.14) 
and by considering the limit e ~ 0. 
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The asymptotic behaviour of the errors of y;, z i has been studied in [5]. 
Unfortunately, these errors do not have a pure asymptotic h-expansion (as for 
ordinary differential equations) but they can be written as 

M 

(8.3) yi_y(xi)  : ~, hJ(a~(xi)+Tji)+O(hM+ 1) 
j = l  

M 

Zi-- Z(X'i)= E hJ(bj(xi) + flJi) + O(hM + 1) 
j=l 

where a~(x), bj(x) are smooth functions and the perturbations satisfy 

~,~ =0, 

(8.4) 

~2=0, ct3 =0,  f l ] = 0  for i > 0  

flz = 0  for i>  1 

J + l = 0  for i > j - 3  and j > 3  

f l]=0 for i > j - 2  and j > 3  

The proof of a slightly weaker assertion can be found in [5, Theorem 4]. 
Extrapolation of y, ,  z, only eliminates the smooth parts of the error expan- 

sion. The perturbations ct~, fl~ (if non-zero) do not disappear. If we consider 
the harmonic sequence {1, 2, 3, 4 . . . .  }, the extrapolated values Yjk, Zjk satisfy 

(8.5) Y~k--y(xo+H)=O(H'Jk+'),  Z j k - z ( x o + H ) = O ( H  ~,~) 

where the differential-algebraic orders rjk, Sjk are given in Tables 1 and 2, respec- 
tively (see [5, l 1]). For  a step number sequence starting with n I > 2, the estimates 
(8.5) hold with rjk, Sjk given by the tables which are obtained from Tables 1 
and 2 if the diagonals are omitted. 

Table 1. Orders r~k Table 2. Orders S~k 

1 2 
1 2  2 2  
1 2 3  2 2 3  
1 2 3 4  2 2 3 4  
1 2 3 4 4  2 2 3 4  
1 2 3 4 4 5  2 2 3 4  
1 2 3 4 4 5 5  2 2 3 4  
1 2 3 4 4 5 6 5  2 2 3 4  
1 2 3 4 4 5 6 6 5  2 2 3 4  
1 2 3 4 4 5 6 7 6 5  2 2 3 4  

4 
5 4  
5 5 4  
5 6 5 4  
5 6 6 5  
5 6 7 6  

4 
5 4  

Condition (8.5) implies that the global error in both components is of size 
O(H pjk) where Pjk =min(rjk, Sjk). 

For  the differential-algebraic system (8.1) one can define a dense output 
in exactly the same way as it has been done in Sect. 7, Formula (7.12), for 
ordinary differential equations. As the system (8.1) is partitioned into y- and 
z-components, it is convenient to denote the corresponding interpolation polyno- 
mials by P~(0) and Qz(0), respectively. Recall that these polynomials depend 
on ~, which is the number of lines in the extrapolation tableau used for their 
construction. 
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Fig. 5. Solution and error of extrapolated linearly implicit Euler method 

Theorem 10. Let y(x), z(x) be the solution of  (8.1). Suppose that the step number 
sequence satisfies n~ > 2, then the interpolation polynomials satisfv 

(8.6) P ~ , ( O ) - y ( x o + O H ) = O ( H  ~+1 - ;j + O (H r+l ) 

Q ; , ( O ) - Z ( X o + O H ) = O ( H  ~+l ~ 9 + O ( H  ~) 

where r and s are the (• + n i + 2 -  2, K)-entries of  Table 1 and Table 2, respectively. 

Proof Since P~(0), Qz(O) are polynomials  of degree ~:, the in terpola t ion er ror  
is of  size O ( H  K + 1). Insert ing (8.3) into the definition of r!/k~ we obta in  a per tu rbed  
asymptot ic  expans ion  of these expressions. Ex t rapo la t ion  of the smoo th  par ts  
in these expans ion  yields an error  of size O ( H  ~+~ ~). it therefore remains  to 
study the influence of the per turba t ion  term in (8.3). For  the c o m p u t a t i o n  of 
r~ kl only Yi with i > n j - j + 2  are used. Since n j - j > n ~ - I  the values 
Yo . . . .  , Y,, +~ 2 do not  enter  the formulas  for r~ k~. The per turba t ion  of y,~+~_ 
therefore leads to the O ( H  ~+ 1) and O ( H  ~) terms. [ ]  

Numerical example. We have provided the code S E U L E X  of [16] with the 
dense ou tpu t  of this section. We applied it with the sequence {2, 3, 4, 5, 6 . . . .  }, 
with 2 = 0  and with T O L =  10 7 to the pendu lum prob lem in Index 1 fo rmat ion  

(8.7) 

Y'I = Y3, Y l (0) = 1 

Y'2 = Y4, Y2 (0) = 0 

Y 3 = - - Y l  Y5, y3(0) = 0  

Y~.= --Y2 Y5 -- 1, y4(0) = 0  
O = y 2 + y 2 - - y 2 - - y s ,  ys(0)--0 .  

Figure 5 shows the solut ion and the errors  of  the componen t s  Yl and  Y3. 
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Remarks on other methods. E x t r a p o l a t i o n  of  the linearly implicit mid-point rule 
is a fur ther  in teres t ing  m e t h o d  for the so lu t ion  of  stiff differential  equa t ions  
(Bader  and Deuf lha rd  [2]). I t  is an ex tens ion  of the GBS m e t h o d  and the 
ideas of  Sect. 5 can be used to cons t ruc t  dense ou tpu t  formulas.  U nfo r tuna t e ly  
an expans ion  of  the form (8.3) is not  k n o w n  for the numer ica l  so lu t ion  of the 
l inear ly  impl ic i t  m i d - p o i n t  rule. Therefore,  the  a b o v e  p r o o f  can not  be extended.  
One way  to o b t a i n  o rde r  results  is the fol lowing:  cons ider  the e x t r a po l a t e d  
l inear ly  impl ic i t  m i d - p o i n t  rule as a R o s e n b r o c k  m e t h o d  (see [10])  and  verify 
the o r d e r  cond i t ions  whose de r iva t ion  can be found in [21]. Dense  ou tpu t  for 
R o s e n b r o c k  m e t h o d s  has  been cons idered  recent ly in [19]. 

The  g loba l  e r ro r  of  the implicit Euler discre t isa t ion,  app l i ed  to (8.1), has 
an u n p e r t u r b e d  a sympto t i c  h -expans ion  (see [12], [13, T he o re m 3.2], I f ] ) .  
Therefore  a dense  o u t p u t  can  be ob ta ined  exact ly  as in Sect. 4 for the explici t  
Euler  me thod .  

Acknowledgement. We like to thank Ch. Lubich for several hints which gave more insight 
in the results of this article. We are also grateful to G. Wanner for comments on an early 
version of this paper. 
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