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Summary. For the numerical integration of boundary value problems for first
order ordinary differential systems, collocation on Gaussian points is known
to provide a powerful method. In this paper we introduce a defect correction
method for the iterative solution of such high order collocation equations. The
method uses the trapezoidal scheme as the ‘basic discretization’ and an adapted
form of the collocation equations for defect evaluation. The error analysis is
based on estimates of the contractive power of the defect correction iteration.
It is shown that the iteration produces O(h?) convergence rates for smooth
starting vectors. A new result is that the iteration damps all kind of errors,
so that it can also handle non-smooth starting vectors successfully.
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1 Introduction

We consider boundary value problems for first order systems of ordinary differ-
ential equations

(1.1) Yx)=f(x y(x),  xel0, 1],
b(y(0), y(1)=0

where f: [0, 1] xR"—>IR" and b: R” x R" - IR" are smooth functions. For these
problems collocation schemes based on continuous piecewise polynomials have
been extensively investigated in the numerical literature (e.g. deBoor and Swartz
[7], Weiss [14], Ascher et al. [1], Ascher et al. [2]). A favourable feature of
these schemes is the superconvergence property which is obtained if special
classes of collocation nodes, such as Gaussian or Lobatto points, are used.
Since the effort required for the computation of the collocation spline grows
rapidly with the order of the scheme, techniques for an efficient solution of
high order collocation equations are of interest. One approach in this direction
was described by Frank and Uberhuber [9]. They observed that the fixed points
of certain iterated defect correction methods permit a characterization as colloca-
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tion splines. This result suggested the application of defect corrections for the
iterative solution of the collocation equations. However, as it turned out, the
method of Frank and Uberhuber [9] produced satisfactory convergence rates
only in the special case of a collocation scheme with equidistant collocation
nodes. In other cases, in particular for superconvergent schemes, the method
worked rather poorly.

In this paper we present a defect correction method which overcomes this
drawback. The main idea is to use two different grids, one consisting of the
collocation points, the other consisting of equidistant points within each colloca-
tion subinterval. The collocation equations can be reformulated in terms of
the values on the (piecewise) equidistant grid. This form of the collocation equa-
tions is used for defect evaluation. The trapezoidal scheme on the piecewise
equidistant grid is employed as the ‘basic discretization’. Our method becomes
most attractive if either the order of the collocation scheme or the dimension
of the differential system is large. In these cases the amount of computational
work required for the solution of the collocation equations is considerably
reduced. As with other iterative methods, the application of our method also
increases the flexibility of the numerical solution process. The difference from
other defect correction methods becomes most striking if Gaussian collocation
points are used for defect evaluation. In that case we can achieve a final order
of accuracy twice as high as standard defect correction methods with a compara-
ble amount of work for each iteration step.

An outline of the paper follows. In Sect. 2 we recall some known properties
of collocation schemes. Section 3 contains the description of our method and
a brief demonstration of its efficiency. An error analysis of the method is given
in Sects. 4 and 5. For the sake of simplicity we confine ourselves in these sections
to linear boundary value problems

(1.2) Ly=y—Ay=g, By=B,y(0)+B,y(1)=p

where A(x), By, B;elR"*", g(x), BeR". Using standard linearization techniques,
the results can, however, be generalized to the nonlinear case. In Sect. 6 we
present some numerical results obtained for nonlinear problems. An important
topic not discussed in this paper is ‘defect updating’, i.c. the use of varying
defect operators, the orders of which are increased during the iteration. It should
also be mentioned that our method is not suited for extremely stiff problems.
The error analysis given in Sects. 4 and 5 is based on estimates of the contrac-
tive power of the defect correction iteration using Sobolev norms of various
orders. To obtain realistic results, in particular for smooth starting vectors,
a lower order Sobolev norm of the current iteration error must be estimated
by a higher order norm of the previous error. Thus Sobolev norms of higher
and higher orders have to be introduced during the iteration. An interesting
effect occurs when the Sobolev order exceeds the order of the collocation scheme.
Due to a saturation property of these norms, a global O(h*)-bound on the
contractivity can be established for symmetric collocation schemes. Thus we
can ensure that high order Sobolev norms of the iteration errors are decreased
by an O(h®)-contraction factor per step, independently of the starting vector.
Hence the success of the iteration does not depend on special properties of
the starting vector, showing a certain robustness and flexibility of the method.
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We stress that this paper has gained from the ideas presented in Stetter
[13], Frank and Uberhuber [9], Bohmer [4] and Bohmer et al. [5]. Contractiv-
ity results have also been obtained by Christiansen and Russell [8] and Skeel
[12] for variants of the deferred correction procedure of Lentini and Pereyra
[10] and by Auzinger and Monnet [3] for a defect correction method for second
order boundary value problems. However, to our knowledge no attempt has
been made so far to take advantage of particular properties of the ‘target meth-
od’ as we do by exploiting superconvergence.

2 Collocation schemes

Throughout the paper we assume that problem (1.1) possesses a (locally) unique
solution z and that the functions f and b are sufficiently smooth.
Let

A4, ={0=xo<x;<...<xy=1}
be a grid in [0, 1] with stepsizes

h=X;11—X;, h:_ max h;.

Further let, for some k>0, a fixed set of points
0 <dr<. <l
be given and set the collocation points as
X p=x;+h- &, i=0,..,N—-1, j=1,...,k
The C°-collocation scheme is defined as follows: Find a continuous function

p: [0, 17— R" which (componentwise) reduces to a polynomial of degree <k
on each subinterval [x;, x;, ;] and satisfies

(21) p/(xi.j):f(xi,j’ p(xi.j)) for l=0’ "'7N_19 ]:1, '-'ak:

b(p(0), p(1))=0.
We call a collocation scheme symmetric, if the collocation nodes ¢; are symmetri-
cally distributed in [0, 1] (i.e. if £;=1—&,_ ;4 ).

It is well-known (see e.g. deBoor and Swartz [7]) that the collocation scheme
(2.1) is globally convergent of order k:

(2.2) p(x)—z(x)=0(H" forall xe[0,1], h-O0.

For special classes of collocation nodes £; a superconvergence effect is achieved
at the breakpoints x;e 4,: If, for some />0, the polynomial

N@O=(—&) - (E=&)
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satisfies the orthogonality relations
1
[ N©)-P(dE=0
0

for all polynomials P of degree </, then
(2.3) px)~z(x)=0(H").

In particular, the schemes based on Gaussian points are superconvergent of
order 2k, those based on Lobatto points of order 2(k—1). These schemes are
also symmetric.

It will be convenient to use the formulation of collocation schemes as projec-
tion methods, as presented in deBoor and Swartz [7]. We introduce the spaces

C™(4,):=C"[xq, 11 x ... x C"[xpy_, xx]
P7(4y)=P"[xg, x1] % ... x P"[xy -1, Xy]

where C™(I) denotes the space of m-times continuously differentiable functions
from the interval I into R", P™(I) the space of (componentwise) polynomials
of degree not exceeding m on I. If ¢ is an element of C™(4,) or P™(4,), then
d=(¢y, ..., dx_,) where each picce ¢; is an element of C™[x;, x;,,] or
P™[x;, x;41]. Operations on C™(4,) or P™(4,), such as addition, multiplication
or differentiation, are defined by applying the operation to each piece. For
example, the differentiation operator ¢ — ¢’ maps C™(4,) onto C™~'(4,) and
P™(4,) onto P™~'(4,).
We also introduce the space

P50(A,)=P*(4,) " C[0, 1]:={pe P*(4,):pi(x)=p;—1(x), i=1, ..., N—1}
and the interpolation operator
(2.4) Qy: CO(4,) = P71 (4,)
(Q), ¢);=interpolation polynomial of ¢; with respect to x; , ..., X; .

Obviously the collocation problem can now be formulated in the equivalent
form: Find pe P*%(4,) such that

(2.5) 0u(p'—f(-,p))=0,  b(p(0), p(1))=0.
We equip C™(4,) with the Sobolev norm

(2.6) I@plim=3  max max | ¢ (x)|

u=0 i=0,....N—1 xe[x;,x;+1]

where |-| denotes a fixed norm on R". The norms (2.6) will also be used on
the spaces P*~'(4,) and P*°(4,).
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The following estimates are easy to prove:
2.7 1Ck @lm=C lPllm 0smsk—1,
(2.8) Q=D P SCh" | Pllm, 1=m=k, 0<I<m

for all e C™(4,), where C is independent of ¢ and 4,. Furthermore, if pe P*(4,)
then

(2.9) max |p{(x)| <

I—m
xe[xy,x; 4 1] hi

Pl O<m=<k, m<I<k

3 Defect corrections for the solution of the collocation problem

We introduce a further grid
(3.1 I},::{ti,jzzx,-—rhri:jzo, vk, i=0, ..., N~1},

i.e. I, is derived from 4, by inserting k + 1 equidistant points into each subinterval
[x;, x;+ 1] The stepsizes of I}, will be denoted by h;:=h,/k.

For gridfunctions y,: I, »IR" we write y,; instead of y,(f; ;). Since t;,
=t;_, =X, the gridfunctions are assumed to satisfy

Yio=Yi-tp i=1,...,N—1L

Note that we now deal with two different grids, the “x-grid’ consisting of the
collocation points and the piecewise equidistant ‘¢-grid’ I,
There is a one-to-one relation between the gridfunction space

Ep={yy: [,>R"}
and the spline function space P*°(4,), given by
(3.2) B: E,— P*°(4,)
(B, yy);:=interpolation polynomial of (¢; o, y;.0), ---» (£i.10 Vik)-
This suggests that the collocation scheme possesses an equivalent formulation

in terms of a discretization method on I,. In fact, if pe P*°(4,), then Ve =D,
satisfies

Vij—Vij-1_ 1 %
J 7 i1 _ j‘

i

k
pdt= 2 wj,l'p,(xi,l)

i tij—1 1=1
where the w; , are interpolatory quadrature weights, formally defined by
Jk

B3)w; =k | Li(&d&  L;=I-thLagrange polynomial w.r.t.&, ..., &.
(=
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Hence, if p solves the collocation equations (2.1), then y, satisfics

() T = S f G B =0, N= 1 j=1, k.
=1

i

Conversely, if y, is a solution of these equations and p:=B,y,, then we may
go back through the above transformation to arrive at

k

> wia(p (X )= (xip p(x; ) = i=0,...,N—1, j=1,..., k

=1

Now it is elementary to verify that the matrix W:=(w;); -, is nonsingular.
Hence p must solve the collocation equations. Thus we have proved

Theorem 1. pe P*°(4,) is a solution of the collocation problem (2.1) if and only
if yn:=pr, satisfies the Eqs. (3.4) and the boundary condition b(y,(0), y,(1))=0.

Remark. 1f we allow F, to be any linear operator from E, into P*(4,) (ie. if
we drop the interpolation condition on B), then starting from (3.4) we arrive
at a scheme of the form

pl(xi,j)—f(x,-,j, (B,p)(xw))=0, l:O, ey N—l, jzl, ceay k

It has been proved by Norsett and Wanner [ 11] that these ‘perturbed collocation
schemes’ comprise all (interpolatory) Runge Kutta schemes. This would suggest
some generalizations of the following analysis which, however, will not be dis-
cussed in this paper.

Theorem 1 shows that the collocation spline can be identified with the solu-
tion y¥ of the equation

(3.5) Fryr=0
where
(3.6) E*. E,—»E,

(F¥ yu)o:=b(y4(0), y4(1))

— P k
(B yih =L L 3wy f (o (B i) (50)
1=1

(i=0,..,N—1,j=1,...,k

with E,:={6,=(80; 0. 1> -+ Loxs -++» En—1.1> ---» ex— 1.0 €0, & ;€IR"}. (The com-
ponent é, corresponds to the boundary condition.)

By construction, the operator F;* has a form very similar to the discretization
operator of the trapezoidal rule on I

(3.7) F: E,—E,
(Fu yn)o=b(y4(0), yx(1))
Vi i Y- 1
(Fy yh)i,j‘_T“E (f@ip yi )+ i1 Vij-1)

(i=0,..,N—1,j=1, ..., k.
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This suggests considering the iterative solution of (3.5) by means of the defect
correction process (Stetter [ 13], Bohmer [4])

(3.8) Lyyw—y H=—FEfyp"!, m=12 ..

where
Ly:=F,(y?)

is the derivative of F, at y. The starting vector y2 may be chosen as the solution
of

(3.9) Fyyn =0,

however our analysis will, to a certain degree, be independent of this choice.
If we assume that L; ' exists, then (3.8) is well-defined and its fixed points
coincide with the solutions of (3.5). Hence, if (3.8) is convergent, the iterates

will tend to a vector representing the values of the collocation spline on the
grid 1.

Remark. The process (3.8) is an application of the general defect correction
principle, as explained e.g. in Bohmer et al. [S]. This version of defect corrections,
also known as the ‘linearized version of defect corrections’ or the ‘discrete
Newton method’, is due to Bohmer [4]. We might take other versions into
consideration, for example ‘version B’ of Stetter [13]

(3.10) Eyw=FEyn '—Fryp !

which differs from (3.8) mainly in the treatment of nonlinearities. In our case
the linearized version (3.8) has the advantage, that it requires evaluations of
the right hand side f on the ‘x-grid’ only, whereas (3.10) would require function
evaluations both on the ‘x-grid’ and the ‘t-grid’. Since our numerical experi-
ments indicate no significant difference between the behaviour of (3.8) and (3.10),
we shall deal only with (3.8) in this paper.

To give a brief demonstration of the efficiency of (3.8), we consider a linear
boundary value and compare the effort of a direct solution method for the
collocation equations to that of the iterative method (3.8). Using the Runge-
Kutta formulation of the collocation problem results in a linear system of dimen-
sion ~ N kn. When this system is solved by Gaussian elimination, the leading
term in the operational count becomes

(3.11) INK*n?

(cf. Weiss [14]). Now consider the iterative solution of the collocation problem
by means of (3.8), (3.9). The computation of yj from (3.9) requires roughly N k n?
operations. We shall prove below that (k—1) iterations suffice to solve (3.5)
up to an error of size O(h%¥). Straightforward implementation of the defects
in the form (3.6) requires for each iteration the evaluation of p:=Eyy~! at
the collocation points x; ; (& N k? n operations), the computation of (4p —g)(x; ;)
(N kn? operations) and the evaluation of the sums in (3.6) (N k* n operations).
The effort for evaluating A(x; ), g(x; ;) is not counted, since these values can,
at least in principle, be saved. Once the defect F;* yy ™! is available, the solution
of (3.8) for y takes roughly 2 N kn? operations, assuming that the LU-factoriza-
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tion of L, has been stored. The leading term in the operational count for solving
(3.9) and performing k— 1 iterations (3.8) thus becomes

(3.12) NGkn®+2k3n+3k*n?).

Since the exponents of k and n in (3.11) sum up to six, but those in (3.12)
to four, the application of (3.8) will be advantageous if either k or n is large.

4 Convergence of the defect correction iteration

We consider the case of a linear boundary value problem of the form (1.2).
In that case F, and E¥ become affine-linear operators and we denote their
linear parts L, and L%, respectively. The recursion for the iteration error is

Vi = k=M, =)
where

(4.1) M,:==(L,)™ (L, — L}).

Thus the convergence of the iteration (3.8) is determined by the ‘contractivity’
of M, and our aim in this section is the derivation of norm bounds on M,.
These bounds will be given by means of Sobolev norms: For meN, ¢,€E,
let

(4.2) lenlim:= 1 B enllm-

It is easy to verify that |-|,, is equivalent, uniformly in h, to the ‘discrete’
Sobolev norm

4.3) {ephm= >, ~ max max |e,[;j .oostijeull
u

=0 1=0,..., N—-1 j=0,..., k—

where [-, ..., ] denotes divided differences. Note that the divided differences
in (4.3) involve only function values taken from the same subinterval [x;, x;4 ]
(no ‘overlapping’). Thus, our definition differs somewhat from the usual defini-
tion of discrete Sobolev norms.

The following saturation property of | -|, is trivial, but worthy of mention:
If m>k, then [le,|l,, = [lexlls-

Theorem 2. For the ‘error amplification operator’ M, of (3.8) the following esti-
mates hold

4.4 IMyelln S Chlleyl s 1E=m<k,
and
4.5) IMyer|nSCh*lleyllmer, 1SmZk—1

If the collocation scheme is symmetric, then

(4.6) HMheh”k§Ch2 llenll-
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Note that the estimates of this theorem are valid without any smoothness
conditions imposed on the grids. The only restriction is that the grid I}, must
be equidistant within each subinterval [ x;, x; . ].

Before we turn to the proof of Theorem 2 we give an immediate

Corollary 1. For the spectral radius p(M,) of M, the estimate
4.7) p(M,)=0(h)

holds. If the collocation scheme is symmetric, then

(4.8) p(M,)=0(h?).

Proof. To obtain (4.7) we may choose any m in the range 1 Em =<k and apply
(4.4). The result for the symmetric case is a consequence of (4.6). [

Remark. Numerical experiments indicate that the O(h?) estimate for p(M,) is
indeed valid only in the symmetric case. Furthermore, Sobolev norms of order
less than k do not seem to reflect the O(h?) behaviour of p(M,).

For the proof of Theorem 2 we need two lemmas. The first one contains
a stability estimate and will later be used to treat the L,' factor in M,. The
second lemma, which contains the crucial and most laborious part of the proof,
gives estimates for the (L, — %) factor involved in M,. To formulate these lemmas
we must extend the definition of Sobolev norms to the ‘defect spaces’ E,: If
¢,€E,, then let r be the unique element of P*~'(4,) which satisfies

k
Z wirCa) =65, i=0,..,N—1, j=1, ..,k

and set
(4.9) Nenllm:=Irllm+ 81

where f:=é, is the boundary condition component of é,. Existence and unique-
ness of r are immediately clear from the nonsingularity of the matrix W. We
recall that

(4.10) Zw L r(x )= ; [ r(yde  forall reP*=(4,).

L SRR

Lemma 1. Let 1<m<k. There exists an ho>0 and a bound S such that for
all h<h,

(4.11) lenllm=S- 1 L% enllm—1

Jor all e e E,,.

Proof. The proof uses a similar technique as developed in deBoor et al. [6],
relating the stability bound of the ‘discrete’ problem to that of the ‘continuous’
problem.

Let e,cE,. Set ¢,:==I%e, and let reP*"'(4,) and feR" be defined as in
(4.9). In view of our definition of the norms, we have to show that for p:=Be,
the estimate

Ipllm=S-(Irlm-+15D
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holds. Theorem 1 shows that p satisfies the collocation equations
QO.Lp=r, Bp=4§.
Since @, p'=p’, we see that p solves the boundary value problem
Lp=r+(Q,—D)Ap, Bp=§.

Let G be the Greens operator for (L, B) and Y the fundamental system of L
that satisfies BY=1. Then

(4.12) p=YpB+Gr+G(Q,—D)A4p.
Since G is the inverse of a first order differential operator, we have

1GHln =Ky lrlm-1
and, using (2.8),
1G(Qy—DAplln <K, Ch|lApl,

ShK, ClAlL ol

where | A]|,, denotes the norm of the multiplication operator A: C™(4,) —» C™(4,),
@ — A . Furthermore

1Y pln=K; 151

The constants K,, K, depend only on the given boundary value problem. Substi-
tuting these estimates into (4.12), we get

Pl (1 —h K, CliAl) = Ky firl,- 1+ K 1Bl

This proves (4.11) for sufficiently small h,. []

Lemma 2. The following estimates hold

(4.13) I(Ly— L3 epllm—1 SChlleyll,, 1=m=k,
and
(4.14) Ly — LY eyllm- 1 SCH* |leglmrr, 1EmSk—1.

If the target collocation scheme is symmetric, then also
(4.15) ”(Lh_‘L’;)eh”k-1§Ch2 lenls-

The validity of (4.14) and (4.15) seems to be restricted to the case where the
ti;»J=0, ..., k are equidistant (i.e. we may not allow that ¢; ;= x; +h; 7}, T;%j/k).

Proof. We shall prove only (4.14) and (4.15), since the verification of (4.13) is
completely analogous. We have
k
(La—L¥)en:i ;= 3 w0 )—3- (ot )+ ot ;- 1))
=1

where
@:=A-(EFey).
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Let re P*~!(A,) be defined by
k k
o )+olt - )= Y wirebg)= > w;,-rlx)
1=t =1

Then |[(L,— L¥)eullm—1=lIrllm—: and to obtain (4.14), (4.15) it is sufficient to
show that

k—1 inth - i
@4.16) 1y SCh?* |@llmsr, 1=ms i the non-symmetric case
k in the symmetric case

since @/, + 1 Sl Allm+ 1 lenllm+ 1 and by the saturation property, [le,|l;+ 1 =yl
We first treat the case ¢ P*°(4,). An application of the Euler-MacLaurin
formula then yields

1 15
@i ot rol-=r | owdir T okt | omnd

L P n=2 Pyt

m\ -

with appropriate constants ¢, (c,=0 for odd u). On the other hand

t,

k 1, 1
{4.18) ij.l'(p(xi,l) h j (P(t)dt+hf j (@ —De)de

ltlj 1 't,u,_~1

Taking the difference of (4.17) and (4.18) we obtain

1 k 1 t.; 1 t,,
(4.19) B (p(t; )+ ot - ))— > Wj.l'(P(xi,z)z‘E‘_' f ‘I(t)dl‘"’ﬁ j s(t)dt
=1 it Lt

where

s=(I—Qy e
and g=(qq, ---, gy 1) is defined by

k
qi{t)= 2 (u) te[x;, X411

Since @eP*°(4,), q is clearly an element of P*~!(4,). If s were also in
P~ 1(4,), then, by (4.10) and (4.19), r could be represented as r=q-+s. However,
s is given by

(P(‘k)
si(t)y=(t—x; 1) ... (t—X;4) ke telx;, x;4 1]

and thus has degree k in general. To circumvent this difficulty we define

0= B0, S0=]sdx

EL_—’_,
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Then 5eP*~'(4,) and the right hand side of (4.19) remains unchanged, if s
is replaced by §:

1 Ly A .. by
— =S(tl.1) ;(tl,j—‘):l § S(t)dt.

iti.j,l i ilLJ*l
We conclude that r=g+35.

To prove (4.16), we treat the two terms ¢ and § separately. Since @& P%%(4,),
the estimate (2.9) can be used to obtain

k—v

la (=] X c. ¥ ot (1)
p=2

C

k~v
<Y e, bt T loll,+2<Ch*lloll, 4,
p=2 !

for0<v=<k—2. Hence

(4.20) 1@lmes SCR | @lnsrs  ISm=k—1.
Formula (2.8) shows that the same estimate is valid for s:
(4.21) Islm-1 SCR [@llpsr, 1Ts=m=k—1

This estimate carries over to §, since the definition of § immediately implies
e 1 SClIslu—1, 1 £m=<k. Combining (4.20) and (4.21), we obtain the desired
estimate (4.16) for I<m<k—1.

Now consider the symmetric case. Since g%~ V=0, the estimate (4.20) trivially
extends to the case m=k, independently of the symmetry. The validity of the
corresponding estimate for § is less evident. We claim that, due to the symmetry,
se P~ %(4,). Since s;(t) is a multiple of (t—x; ;) ... (t—x; ), the symmetry of the
collocation points implies that s; is an even (odd) function with resp. to the
midpoint 4(x;+x;, ), whenever k is even (odd). From the definition of § we
conclude that the same holds for §;. Consequently, §e P¥~?(4,) and

1511 =18le-2 S C sl = Ch* llp],-

This completes the proof in case e P*°(4,).

If @¢P*°(4,), then we perform the above considerations with ¢ replaced
by p:=B ¢. Writing R, ¢ for the r corresponding to ¢ and R,p for the one
corresponding to p, we then have R,(¢—p)=—Q,(¢—p) (since ol
+o(t; ;- )1=%[p(t; )+ p(t; ;- 1)]). The desired estimates now follow from

R,o=R,p+Q,lp—o) O

Proof of Theorem 2. The stability estimate of Lemma 1 for Lf carries over to
L,, ie. there is an hy>0 and a bound S such that for h<h,

(4.22) lealn<S-l[Lyepllm-1, 1Sm=sk
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for all e,eE,. This is an immediate consequence of Lemma | and Lemma 2
(4.13):

lenllm=S- 115 enllm— 1 =SULyepllm-1 + 1 (L5 — L) eyllm-1)
=S |Lyeyllm—1+SChlleylm.

For sufficiently small h, we obtain (4.22).
The estimates of Theorem 2 for M, =(L,)” ' (L,— L¥) now are easily derived
from (4.22) and the corresponding estimates of Lemma 2. []

Theorem 2 clearly ensures that, for sufficiently small h, the iterates will con-
verge to yf. Corollary 1 would suggest that the iteration errors are decreased
by constant contraction factors of size O (k) in the nonsymmetric case and O (h?)
in the symmetric case. However, this gives only a very crude description of
the ‘real’ numerical behaviour of the process. A more realistic description is
contained in the following theorem.

Theorem 3. For the first k— 1 iterations of (3.8) the estimates
(4.23) e =yl SCR™ 1y = yilme,  1SmSk—1,

hold (independently of the symmetry ). For subsequent iterations we have

m=k.

Ch*™[ly2 — v, in the symmetric case
424) [y —yFl, < ,
(424 -l =wwhy “{C Hrm= Y y9 — y¥||l,  inthe non-symmetric case
s

Proof. For the first k— [ iterations we get from (4.5)
lyr =kl SCR yp ™ =yl S SCRP™ 1 = yE -

If m=k, the orders of the Sobolev norms on the right hand side exceed k and
the results now depend on whether the collocation scheme is symmetric or
not. In the symmetric case we obtain for m =k, using (4.6),

Iy =yl S SCRE D yp® 70—y,

SCR* |y =yl = ... SCH™ |y — viFll
and in the non-symmetric case, using (4.4) for m=k,

=yl S SCh2E D ym= oDy,

SCR* 1 ypr k¥ < SCH " v —yile. O

We stress that the estimates (4.23) and (4.24) give a rather precise prediction
of the behaviour of the iteration observed in practice. Note that for m<k a
quite complicated situation may arise, since the Sobolev norms appearing on
the right hand side of (4.23) depend on m. For example, if the starting vector
is very smooth (say ||y —y¥|l.+1=0(1) for all m) then two powers of h may
be gained with each iteration step. However, if the starting vector is rough
(say |y —y¥|,.=0(h"™), then each step may yield only one power of h. The
situation gets clearer after the first k—1 iterations have been performed. Since
the Sobolev order occuring on the right hand side of (4.24) remains constant,
we now gain one or two powers of h per step, depending on the symmetry,
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but independent of the starting vector. Roughly speaking, after the first k—1
iterations have been performed, the error reduction proceeds as described by
the estimates for p(M,) given in Corollary 1, while in the initial phase the behav-
iour is also determined by the smoothness of the starting vector.

5 Order results

In the previous section we were concerned with the convergence of the iterates
yi to the fixed point y¥. We now consider convergence to the exact solution
z of the problem. The error of the m-th iterate can be decomposed into

(5.1) V== =)+ —z  zZe=zyp,.

For small h, the effect of the iteration is to decrease the first term, the iteration
error yp—yf, so that the accuracy of the iterates will increase until the level
of the second term, the discretization error yf —z, of the target collocation
scheme, is reached.

We consider in more detail the case where the starting vector yj is obtained
from (3.9) as the solution of the trapezoidal scheme. We shall prove below
that in this case

(5.2) Iy =y lla=0Mh%, 1=m<k—1
and

0(h* for symmetric collocation schemes
S ! !

O(h) for non-symmetric collocation schemes

Inserting these estimates into (4.23), we obtain

(54 LVi (e — 2Cep T S 1y () — i Ge |+ Ly () — 2 (x3) |

<O V)4 O, 1<m<k—2
and
wr*u»—dmng{

O(h*")+O0(h™) for symmetric collocation schemes
O(h** )+ 0(h*>) for non-symmetric collocation schemes

where k, is the order of (super-)convergence of the target collocation scheme.
Since k, <2k and k, =2k is achieved only for the (symmetric) Gaussian scheme,
we get

Theorem 4. If the defect correction iteration (3.8) is started from the solution
vd of the trapezoidal scheme (3.9), then for the error at the breakpoints x;e4,
the estimate

(5.9) Y (x)—z(x)= O (RN =0, 1, ...

holds, where k, is the order of (super-)convergence of the target collocation
scheme. In particular, for the method based on Gaussian points

(5.6) w(x)—z(x)=0hr*"*D),  m=0, .. k-1
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Proof. It remains to verify (5.2) and (5.3). Since F, y? =0, F* y¥ =0, we have
Ly(yh —y¥)=Fu i — iy yik = FF v — B,k

Replacing L,— L% by F,— F¥ in the proof of Lemma 2, we obtain an estimate
of the form

1B k= Fu i lm— 1 SCH | Ap+glpsy,  1Smsk—1,
where p:=F, y} is the collocation spline. From the stability estimate (4.22) we
conclude that

1R = Vil S SC (Al 1Pl 1+ 181t o).

Using Lemma 1, it is easily verified that |pfl, ., is bounded, independently of
h. This proves (5.2). The verification of (5.3) is analogous. [

With a ‘normal’ collocation scheme no superconvergence effects occur and
k,=k in (5.5). The O(h*) bound thus obtained for the last successful iterate
is a typical result for defect correction procedures based on k-th order defect
evaluations (see e.g. Frank and Uberhuber [9], Bdhmer [4]). However, with
our method, a final order of accuracy twice as high can be achieved, if the
defect evaluation is based on Gaussian points. To put it another way, our method
allows for a reduction of the degree of the interpolating polynomials to half
of that required by standard defect correction methods.

6 Numerical examples

To illustrate the numerical behaviour of our method, we consider the simple
test problem

(6.1) Yi=Ya  Ya=—va-yite
y1(O=1, y(Hh=e'
with exact solution z,(x)= —z,(x)=e™".

We present the results obtained by using the defect operator (3.6) with k=6
Gaussian points on uniform grids A4, (h=h;=1/N). The starting vector yj is
chosen as the solution of the trapezoidal scheme and the iterates are computed
from the linearized version (3.8) of the method. (The results are not qualitatively
different for the more expensive version (3.10).) The entries in the following
table show the maximal errors of the iterates at the points x;€4,. Each column
corresponds to a fixed iteration level, each line to a fixed grid. Behind each
column we list estimates for the orders of accuracy, which are obtained by
forming the quotients of the errors on two consecutive grids.

N O-th iterate 1-st iterate 2-nd iterate 3-rd iterate
2 0.39E-03 0.57E—06 0.13E—08 0.55E—11
4 096 E-—04 2.00 0.36 E—07 4.00 0.20E—105.99 0.22E—13797
6 0.43E ~04 2.00 0.71 E—08 4.00 0.18E—116.00 0.86 E—157.99
8 0.24 E—04 2.00 0.22E—-08 4.00 032E—-12598 0.86 E-—16 8.00
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N 4-th iterate 5-th iterate 6-th iterate

2 0.32E—13 0.88 E—15 0.86E—15

4 0.33E—169.90 0.21E—18 1205 0.23E—1811.86

6 0.59E—189.97 0.16 E~2011.95 0.18 E—20 12.00

8 0.33E—19999 0.51E—22 12.00 0.57E—2211.99

The statements of the previous sections are clearly confirmed. Each iterate
yields an O(h?) improvement until the order of the target collocation scheme
is reached. Of course, after that no error reduction is observed (while the iteration
continues to converge to yf). The figures may also be compared to those given
in Christiansen and Russell [8] for the same example, using deferred corrections.
It turns out that our method can obtain results with a sixth order defect evalua-
tion equivalent to those of a standard method which uses, at least in the final
stage, twelth order defect evaluations.

We now initiate the iteration with a rough starting vector, obtained by
adding to the solution of the trapezoidal scheme a perturbation of absolute
value 1, alternating in consecutive gridpoints. Since for this starting vector | y§
—Villm=0Mh"")(0=m<k), the estimates (4.23), (4.24) predict that yp(x,)
—z(x)=0M*" "N =0h" 1) for 1<m<k—1 and yJ'(x)—z(x)=0(h*™ %)
formzk,2m—k=<k,. We obtained

N O-th iterate 1-st iterate 2-nd iterate 3-rd iterate 4-th iterate

2 0.10E+01 0.13E+01 0.13E—-01 0.50E—03 0.11E—-05

4 010E+01000 012E+010.05 055E-02123 011E—-03220 0.78E—073.78
6 010E+010.00 0.12E+01004 043E—02063 046E—-04216 0.16E—073.85
8 0.10E+01000 0.12E+01003 046E—02027 025E-04215 0.54E-—08 3.87
N 5-th iterate 6-th iterate 7-th iterate 8-th iterate 9-th iterate

2 029E-07 0.18E—09 0.12E— 1t 0.38E—14 083E—15

4 0.13E-08449 O026E—11608 040E-—-14822 O046E—17 971 022E—1811.86
6 023E—-09423 022E—12608 0.15E-15804 072E—191023 0.17E—-2012.00
8 070E—104.15 039E—-13606 O0.15E—16805 031E—201099 0.55E—2211.98

Although the predicted orders for the second and fourth iterate are not

very precisely attained (they would be more precise, if we would list the first
order norms | yi' —z,]| instead of max |y,(x;) —z(x;){), we note that proceeding
i=0,..., N

from the first to the fifth iteration yields four orders of accuracy, while proceeding
from the fifth to the ninth iteration yields eight orders of accuracy. Thus the
average convergence factor is O(h) in the initial phase and O(h?) in the final
phase. Note that this confirms the statement on the global O(h?)-contractivity
of the iteration. Also note that our theory allows for a rather precise prediction
of the number of successful iteration steps, given some information about the
smoothness of the starting vector.



Gaussian collocation via defect correction 385

To give a more realistic example, we consider the motion of a satellite in
the earth-moon gravitational field. In a barycentric, rotating coordinate system
the motion is described by

y+u x—p

6.2 X = 29—y —
(©2 T T G W

.. . , y y
= —2 — —
R (T R ik
where 1=0.0123, 4'=1—u and the position of the earth is near (x, y)=(0, 0),

that of the moon near (x, y)=(1, 0). We want to find a solution subject to the
‘free” boundary conditions

x(0)=—0.1, y(0)=0
x(T)=105, y(T)=0, **(T)+7*(T)=1

where T is unknown., We reduce (6.2) to a system of first order differential
equations, introduce the new independent variable t=¢/T, and add the trivial
differential equation T=0. This leads to a boundary value problem of the form
(1.1) in n=35 dependent variables. We solved this problem with method (3.8),
(3.9) using the collocation scheme with k=7 Gaussian points. The solution of
the trapezoidal scheme was obtained by Newton’s method. The starting vector
for Newton’s method and the initial grid were obtained by solving the initial
value problem for (6.2) with some estimated values for x(0), y(0) and T. The
numerical results indicate that the problem has several (isolated) solutions.

The following table lists the corrections y* ! — yf. Due to the rather rapid
convergence of the iteration we may consider these numbers to be estimates
for the errors z,—y} as long as the order of the target collocation scheme
has not been reached (i.e. for m=0, ..., k—2, cf. Theorem 4). Note that this
procedure gives no error estimate for the last iterate y¥~!, although this iterate
may still yield a gain in accuracy.

N=13 0-th 1-st 2-nd 3-rd 4-th 5-th 6-th
iterate iterate iterate iterate iterate iterate iterate

Estimated 0.16-10° 0.79-107% 025-107% 040-107% 097-10"* 0.18-107* 2?
EITorsS

We now attempt to achieve a final accuracy of 10~ 8 by refining the grid.
The new grid is determined by an error equidistributing procedure. The informa-

tion on the error functions is obtained from the estimates (corrections) on the
old grid.

N=24 0-th 1-st 2-nd 3-rd 4-th 5-th 6-th
iterate iterate iterate iterate iterate iterate iterate

Estimated 0.39-10"' 0.55-10°> 046-10™% 020-107° 0.12-107° 0.62-10"% 27
errors




386 K.H. Schild

Here again, the iteration was started from the solution of the trapezoidal
scheme. Since the success of our method does not depend on special properties
of the starting vector, we may as well initiate the iteration with a starting vector
obtained by extending the final iterate on the old grid to the new grid. Using
the interpolation operator B, on the old grid for the extension, we obtained

N=24 O-th iterate 1-st iterate 2-nd iterate 3-rd iterate
Estimated errors 0331074 042.10°° 0.98-1077 7
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