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Summary. For  the numerical integration of boundary value problems for first 
order ordinary differential systems, collocation on Gaussian points is known 
to provide a powerful method. In this paper we introduce a defect correction 
method for the iterative solution of such high order collocation equations. The 
method uses the trapezoidal scheme as the 'basic discretization' and an adapted 
form of the collocation equations for defect evaluation. The error analysis is 
based on estimates of the contractive power of the defect correction iteration. 
It is shown that the iteration produces O(h 2) convergence rates for smooth 
starting vectors. A new result is that the iteration damps all kind of errors, 
so that it can also handle non-smooth starting vectors successfully. 
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1 Introduction 

We consider boundary value problems for first order systems of ordinary differ- 
ential equations 

(1.1) y'(x)=f(x, y(x)), xs [0 ,  11, 

b(y(O), y(~))=O 

where f :  [0, 11 x N~" --* IR" and b: IR" x R"  ~IR" are smooth functions. For  these 
problems collocation schemes based on continuous piecewise polynomials have 
been extensively investigated in the numerical literature (e.g. deBoor and Swartz 
[71, Weiss [14], Ascher et al. [11, Ascher et al. [2]). A favourable feature of 
these schemes is the superconvergence property which is obtained if special 
classes of collocation nodes, such as Gaussian or Lobat to  points, are used. 

Since the effort required for the computation of the collocation spline grows 
rapidly with the order of the scheme, techniques for an efficient solution of 
high order collocation equations are of interest. One approach in this direction 
was described by Frank and Oberhuber [91. They observed that the fixed points 
of certain iterated defect correction methods permit a characterization as colloca- 
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tion splines. This result suggested the application of defect corrections for the 
iterative solution of the collocation equations. However, as it turned out, the 
method of Frank and Uberhuber  [-9] produced satisfactory convergence rates 
only in the special case of a collocation scheme with equidistant collocation 
nodes. In other cases, in particular for superconvergent schemes, the method 
worked rather poorly. 

In this paper we present a defect correction method which overcomes this 
drawback. The main idea is to use two different grids, one consisting of the 
collocation points, the other consisting of equidistant points within each colloca- 
tion subinterval. The collocation equations can be reformulated in terms of 
the values on the (piecewise) equidistant grid. This form of the collocation equa- 
tions is used for defect evaluation. The trapezoidal scheme on the piecewise 
equidistant grid is employed as the 'basic discretization'. Our method becomes 
most  attractive if either the order of the collocation scheme or the dimension 
of the differential system is large. In these cases the amount  of computat ional  
work required for the solution of the collocation equations is considerably 
reduced. As with other iterative methods, the application of our method also 
increases the flexibility of the numerical solution process. The difference from 
other defect correction methods becomes most striking if Gaussian collocation 
points are used for defect evaluation. In that case we can achieve a final order 
of accuracy twice as high as standard defect correction methods with a compara-  
ble amount  of work for each iteration step. 

An outline of the paper  follows. In Sect. 2 we recall some known properties 
of collocation schemes. Section 3 contains the description of our method and 
a brief demonstrat ion of its efficiency. An error analysis of the method is given 
in Sects. 4 and 5. For  the sake of simplicity we confine ourselves in these sections 
to linear boundary  value problems 

(1.2) Ly ,=y ' - -Ay=g,  By,=Bo y(O)+B~ y(1)=f l  

where A(x), B o, B~ elR" • g(x),/3elR". Using standard linearization techniques, 
the results can, however, be generalized to the nonlinear case. In Sect. 6 we 
present some numerical results obtained for nonlinear problems. An important  
topic not discussed in this paper  is 'defect updating' ,  i.e. the use of varying 
defect operators,  the orders of which are increased during the iteration. It should 
also be mentioned that our  method is not suited for extremely stiff problems. 

The error analysis given in Sects. 4 and 5 is based on estimates of the contrac- 
tive power of the defect correction iteration using Sobolev norms of various 
orders. To obtain realistic results, in particular for smooth starting vectors, 
a lower order Sobolev norm of the current iteration error must be estimated 
by a higher order norm of the previous error. Thus Sobolev norms of higher 
and higher orders have to be introduced during the iteration. An interesting 
effect occurs when the Sobolev order exceeds the order of the collocation scheme. 
Due to a saturation property of these norms, a global O(h2)-bound on the 
contractivity can be established for symmetric collocation schemes. Thus we 
can ensure that high order Sobolev norms of the iteration errors are decreased 
by an O(hZ)-contraction factor per step, independently of the starting vector. 
Hence the success of the iteration does not depend on special properties of 
the starting vector, showing a certain robustness and flexibility of the method. 
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We stress that this paper has gained from the ideas presented in Stetter 
[13], Frank and Oberhuber  [9], B6hmer [4] and B6hmer et al. [5]. Contractiv- 
ity results have also been obtained by Christiansen and Russell [8] and Skeel 
[12] for variants of the deferred correction procedure of Lentini and Pereyra 
[10] and by Auzinger and Monnet  [-3] for a defect correction method for second 
order boundary value problems. However, to our knowledge no at tempt has 
been made so far to take advantage of particular properties of the ' target  meth- 
od '  as we do by exploiting superconvergence. 

2 Collocation schemes 

Throughout  the paper we assume that problem (1.1) possesses a (locally) unique 
solution z and that the functions f and b are sufficiently smooth. 

Let 

& = { 0 = x 0 < x , < . . . < x N = l }  

be a grid in [-0, 1] with stepsizes 

hi=xi+ 1 --Xi,  h = m a x  h i . 
i=0 ..... N - 1  

Further let, for some k > 0, a fixed set of points 

0 ~ 1  < ~ 2 < . . . < ~ k ~ l  

be given and set the collocation points as 

xlo:=xl + hi' ~j, i = 0 . . . . .  N - -  1, j = 1 . . . . .  k. 

The C~ scheme is defined as follows: Find a continuous function 
p: [0, 1] -~N." which (componentwise) reduces to a polynomial of degree < k  
on each subinterval [xi,  xi+ l] and satisfies 

(2.1) p'(xi i)=f(xi,j, p(xi,j)) for i=0 ,  ... ,  N - -  1, j =  1 . . . . .  k, 

b(p(O), p(1)) = 0. 

We call a collocation scheme symmetric, if the collocation nodes ~j are symmetri- 
cally distributed in [0, 1] (i.e. if ~i = 1 - ~k-j+ 1). 

It is well-known (see e.g. deBoor and Swartz [7]) that the collocation scheme 
(2.1) is globally convergent of order k: 

( 2 . 2 )  p ( x ) - z ( x ) = O ( h  k) forall  xe [0 ,  1], h-+0.  

For special classes of collocation nodes ~j a superconvergence effect is achieved 
at the breakpoints x i~Ah:  If, for some />0 ,  the polynomial  

N(~) = (~ - r  (~ - ~ )  
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satisfies the orthogonality relations 

1 

N ( O . P ( ~ ) d ~ = O  
0 

for all polynomials P of degree < l, then 

(2.3) p (xi) - z (xi) = 0 (h k + 1). 

K . H .  Schild 

In particular, the schemes based on Gaussian points are superconvergent of 
order 2k, those based on Lobat to  points of order 2 ( k - l ) .  These schemes are 
also symmetric. 

It will be convenient to use the formulation of collocation schemes as projec- 
tion methods, as presented in deBoor and Swartz [7]. We introduce the spaces 

Cm(&),=C"[Xo,  xl]  x . . .  x C"[xN_ ,, xN] 

P"(Ah)'=P"[Xo, xl]  x ... x P " [ x u - 1 ,  XN] 

where cm(I) denotes the space of m-times continuously differentiable functions 
from the interval I into •", P"(I)  the space of (componentwise) polynomials 
of degree not exceeding m on I. If q5 is an element of C"(Ah) or Pro(An), then 
q~=(~b 0 . . . . .  ~bN_l)  where each piece ~b i is an element of Cm[Xi, Xi+l] or 
P"[x i ,  xi+ 1]. Operations on C"(Ah) or P"(Ah), such as addition, multiplication 
or differentiation, are defined by applying the operation to each piece. For 
example, the differentiation operator ~b~b '  maps Cm(Ah) onto C"-I(Ah)  and 
p m ( A h )  onto P " -  1 (dh)" 

We also introduce the space 

pk'O ( Ah) := pk(Ah) C~ C [0, 1] :={pe pk( Ah): pi(xi)= Pi-1 (Xi), i= 1 . . . . .  S -- l} 

and the interpolation operator  

(2.4) Qh: C~ ~ pk -  ~(Ah) 

(Qh q~)i = interpolation polynomial of q~i with respect to x~. t . . . . .  xi,k. 

Obviously the collocation problem can now be formulated in the equivalent 
form: Find pepk'O(Ah) such that 

(2.5) Qh(p ' - f ( ' , p ) ) - -O ,  b(p(O), p(1)) =0.  

We equip C"(Ah) with the Sobolev norm 

(2.6) ]l qS ]l,, -'= ~ max max [~b!U)(x)[ 
,u=O i = 0  ..... N--1 xe[xi,xi+l] 

where 1. [ denotes a fixed norm on IR". The norms (2.6) will also be used on 
the spaces Pk-l(Ah) and Pk'~ 
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The following estimates are easy to prove: 

(2.7) I I Q h ~ l l ~ C  I1r O < m < k - 1 ,  

(2.8) II(Qh-l)~H~Chm-tll~llm, l < m < k ,  O < l < m  

for all ~)~cm(Ah), where C is independent of q5 and A h. Furthermore, ifpepk(Ah) 
then 

< C 
(2.9) max [pltl(x)l= L~m IlPllm, O<m<k,  m < l < k .  

xe[x,,x, ~ 11 hi 

3 Defect corrections for the solution of the collocation problem 

We introduce a further grid 

(3.1) Fh.'= t i ,~:=xi+hi.~:j=O . . . . .  k, i = 0  . . . . .  N--1  , 

i.e. F h is derived from dh by inserting k + 1 equidistant points into each subinterval 
[xi, xi+ 1]. The stepsizes of Fh will be denoted by hi:=hi/k. 

For  gridfunctions Yh: Fh~N" we write Yi,j instead of yh(ti,j). Since ti,o 
= t~_ 1,k---- xi, the gridfunctions are assumed to satisfy 

yi,O=Yi_l,k, i=1 . . . . .  N--1 .  

Note that we now deal with two different grids, the 'x-grid'  consisting of the 
collocation points and the piecewise equidistant ' t-grid'  Fh. 

There is a one-to-one relation between the gridfunction space 

Eh:=-{yh: Fh--* ~"} 

and the spline function space pk'O(Ah), given by 

(3.2) Ph: Eh ~ Pk'~ 

(Ph Yh)i'=interpo lation polynomial of(ti,0, Yi,o), ..., (ti,k, Yi,k). 

This suggests that the collocation scheme possesses an equivalent formulation 
in terms of a discretization method on Fh. In fact, if pepk'~ then yh,=Plr, 
satisfies 

Yi, j--  Yi , j -1 1 t,.j k 
~[i hi ~ p'(t) d t =  Z wj, t .p '(xi ,  l) 

t i . j  1 I = 1 

where the wj,~ are interpolatory quadrature weights, formally defined by 

j/k 
(3.3) wj, z,=k ~ Lt(~ ) d ~, Lt,=/-th Lagrange polynomial w.r.t. ~ . . . . .  ~k" 

(1 - -  1 ) / k  
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Hence,  if p solves the col locat ion equat ions  (2.1), then Yh satisfies 

k 
(3.4) Yi,j-- Yi,j- 1 ~i -- ~ Wi't'f(xi't' (~Yh)(Xl,t)), 

l = l  

i = 0  . . . . .  N - l ,  j = l  . . . .  ,k .  

Conversely,  if Yh is a solut ion of these equat ions  and P:=~Yh, then we may  
go back th rough  the above  t r ans fo rmat ion  to arr ive at 

k 

wj, t(p' (xi.t)- f (xi,,, p(xi,,)))= O, 
/ = 1  

i = 0  . . . . .  N - - l ,  j = l  . . . . .  k. 

N o w  it is e lementary  to verify tha t  the matr ix  W..=(wj, t)~,~_ ~ ..... k is nonsingular .  
Hence  p must  solve the col locat ion equat ions.  Thus  we have proved  

Theorem 1. pepk'O(Ah) is a solution of  the collocation problem (2.1) /f and only 
if Yh :=Pith satisfies the Eqs. (3.4) and the boundary condition b (Yh (0), yh(1))= 0. 

Remark. If  we allow Ph to be any l inear ope ra to r  f rom Eh into Pk(dh) (i.e. if 
we d rop  the in te rpola t ion  condi t ion  on Ph), then s tar t ing f rom (3.4) we arrive 
at a scheme of the form 

p'(xij)--f(xi , j ,  (Php)(xi,.i))=O, i = 0  . . . . .  N - -  1, j =  1 . . . . .  k. 

It  has been p roved  by Norse t t  and  W a n n e r  [11] tha t  these ' p e r t u r b e d  col locat ion 
schemes '  compr ise  all ( interpolatory)  Runge  K u t t a  schemes. This would suggest 
some general izat ions of  the following analysis which, however ,  will not  be dis- 
cussed in this paper .  

T h e o r e m  1 shows tha t  the col locat ion spline can be identified with the solu- 
t ion y* of  the equa t ion  

(3.5) 
where 

(3.6) 

F'y*=0 

F*: Eh ~ ff~h 

(F* Yh)o :=b(yh(O), yh(1)) 

k 
, Yi,j-- Yi , j-  1 

(F~, Yh)i.j'-- ffi ~ Wj, t ' f  (xi,,, (Phyh)(Xl, t)) 
/ = 1  

( i = 0  . . . . .  N - -  1 , j =  1, . . . ,  k) 

with Eh.'= { Oh = (0o ; 0o, 1 . . . . .  0o, k, .--, 0N- 1, 1, -- ' ,  ON - 1, k) : 00, 0i, j e ~"} .  (The com-  
ponen t  0 o cor responds  to the b o u n d a r y  condit ion.)  

By const ruct ion,  the ope ra to r  F* has a form very similar to the discret izat ion 
ope ra t o r  of  the t rapezoidal  rule on Fh: 

A 
(3.7) Fh: Eh--* E h 

(Fh Yh)0 := b (Yh (0), Yh (1)) 

. ) Y i , j - -Yi , j -1  1 
(FhYh i,j '= ~i 2 ( f ( t i ' J ' Y i ' J ) d - f ( t i ' j - l ' Y i ' j - 1 ) )  

( i = 0  . . . . .  N - - I , j =  1 . . . .  , k). 
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This suggests considering the iterative solution of (3.5) by means of the defect 
correction process (Stetter [13], B6hmer [4]) 

(3.8) L h ( y ~ , _ y ~ - l ) = _ F , y , ~  1, m = l , 2  . . . .  

where 
, O Lh := F/, (Yh) 

is the derivative of F h at y0. The starting vector yO may be chosen as the solution 
of 

(3.9) Fhy~ 

however our analysis will, to a certain degree, be independent of this choice. 
If we assume that L~ ~ exists, then (3.8) is well-defined and its fixed points 

coincide with the solutions of (3.5). Hence, if (3.8) is convergent, the iterates 
will tend to a vector representing the values of the collocation spline on the 
grid F h. 

Remark. The process (3.8) is an application of the general defect correction 
principle, as explained e.g. in B6hmer et al. [5]. This version of defect corrections, 
also known as the 'linearized version of defect corrections' or the 'discrete 
Newton method' ,  is due to B6hmer [-4]. We might take other versions into 
consideration, for example 'version B' of Stetter [13] 

(3.10) Fh y~' = Fh y'~- I _ F~ y'~- I 

which differs from (3.8) mainly in the treatment of nonlinearities. In our case 
the linearized version (3.8) has the advantage, that it requires evaluations of 
the right hand side f on the 'x-grid '  only, whereas (3.10) would require function 
evaluations both on the 'x-grid'  and the 't-grid'. Since our numerical experi- 
ments indicate no significant difference between the behaviour of (3.8) and (3.10), 
we shall deal only with (3.8) in this paper. 

To give a brief demonstration of the efficiency of (3.8), we consider a linear 
boundary value and compare the effort of a direct solution method for the 
collocation equations to that of the iterative method (3.8). Using the Runge- 
Kutta formulation of the collocation problem results in a linear system of dimen- 
sion ~ N kn. When this system is solved by Gaussian elimination, the leading 
term in the operational count becomes 

(3.11) ~ N k3 n 3 

(el. Weiss [14]). Now consider the iterative solution of the collocation problem 
by means of (3.8), (3.9). The computation of y0 from (3.9) requires roughly �89 N k n 3 
operations. We shall prove below that ( k - 1 )  iterations suffice to solve (3.5) 
up to an error of size O(h2k). Straightforward implementation of the defects 
in the form (3.6) requires for each iteration the evaluation of p:=Phy"~ -~ at 
the collocation points xi,j ( ~  N k 2 n operations), the computation of (A p -  g)(xg.j) 
(N k n 2 operations) and the evaluation of the sums in (3.6) (N kZn operations). 
The effort for evaluating A(xg.j), g(xg.j) is not counted, since these values can, 
at least in principle, be saved. Once the defect F* y~'-~ is available, the solution 
of (3.8) for y~' takes roughly 2 N k n 2 operations, assuming that the LU-factoriza- 
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tion of Lh has been stored. The leading term in the operational count for solving 
(3.9) and performing k -  1 iterations (3.8) thus becomes 

(3.12) N(�89 k n 3 q- 2 k 3 n + 3 k 2 nZ). 

Since the exponents of k and n in (3.11) sum up to six, but those in (3.12) 
to four, the application of (3.8) will be advantageous if either k or n is large. 

4 Convergence of the defect correction iteration 

We consider the case of a linear boundary value problem of the form (1.2). 
In that case F h and Fh* become affine-linear operators and we denote their 
linear parts Lh and L~, respectively. The recursion for the iteration error is 

m ~g 7 m -  
y h _ Y h = M h ( )  h 1 y,~). 

where 

(4.1) Mh .'=(Lh)-' (Lh -- L*). 

Thus the convergence of the iteration (3.8) is determined by the 'contractivity'  
of Mh and our aim in this section is the derivation of norm bounds on M h. 
These bounds will be given by means of Sobolev norms: For  m eN ,  eh~E h 
let 

(4.2) ]] eh I[,, := [I Pa eh II re" 

It is easy to verify that II'H,, is equivalent, uniformly in h, to the 'discrete'  
Sobolev norm 

(4.3) ( ( eh) ) , .=  ~ m a x  m a x  leh[ti,~, . . . ,  t l . j+u][ 
. = o ~ = O  ..... N - l ~ = o  ..... k - .  

where [-, . . . , ' ]  denotes divided differences. Note that the divided differences 
in (4.3) involve only function values taken from the same subinterval [xl, xi+ 1] 
(no 'overlapping'). Thus, our definition differs somewhat from the usual defini- 
tion of discrete Sobolev norms. 

The following saturation property of [{'Ilk is trivial, but worthy of mention: 
I f m > k ,  then Ilehllm = IlehHk. 

Theorem 2. For the 'error amplification operator '  M h of  (3.8) the following esti- 
mates hold 

(4.4) [IMhehl[,,<<_Ch lleh[Im, 1 <_m<_k, 

and 

(4.5) ItMheh{Im < C h 2  Itehltm+ 1, l < m < k - - 1 .  

I f  the collocation scheme is symmetric,  then 

(4.6) II M h ehllk ~ C h z Ilehllk . 
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Note  that the estimates of this theorem are valid without any smoothness 
conditions imposed on the grids. The only restriction is that the grid Fh must 
be equidistant within each subinterval [xi, xi+ 1]. 

Before we turn to the proof  of Theorem 2 we give an immediate 

Corollary 1. For the spectral radius p(Mh) of M h the estimate 

(4.7) p(Mh) = O(h) 

holds. I f  the collocation scheme is symmetric, then 

(4.8) p(Mh) = O(h2). 

Proof. To obtain (4.7) we may choose any m in the range 1 _<m_< k and apply 
(4.4). The result for the symmetric case is a consequence of (4.6). [] 

Remark. Numerical experiments indicate that the O(h z) estimate for p(Mh) is 
indeed valid only in the symmetric case. Furthermore,  Sobolev norms of order 
less than k do not seem to reflect the O(h 2) behaviour ofp(Mh). 

For  the proof  of Theorem 2 we need two lemmas. The first one contains 
a stability estimate and will later be used to treat the Lh I factor in M h. The 
second lemma, which contains the crucial and most laborious part  of the proof, 
gives estimates for the (Lh-- L*) factor involved in M h. To formulate these lemmas 
we must extend the definition of Sobolev norms to the 'defect spaces'  /~h: If 
OheE h, then let r be the unique element of pk ~ (Ah) which satisfies 

k 

~Wj,  l.r(xi,l)=Oi,j, i = 0  . . . . .  N - - l ,  j = l  . . . . .  k 
l = l  

and set 

(4.9) ]b0hH,, '= Hrq],,+ Ifl[ 

where fi:=0o is the boundary  condition component  of Oh. Existence and unique- 
ness of r are immediately clear from the nonsingularity of the matrix W. We 
recall that 

k 1 t, .j  
(4.10) ~ w j ,  t.r(xi,t)= ~ ~ r( t )dt  forall  rePk-l(Ah). 

t = l  t~. j  1 

Lemma 1. Let 1 <m<_k. There exists an h o > 0  and a bound S such that .for 
all h < ho 

(4.11) [1% I],, < S. ILL* ehllm- 1 

./'or all eheEh. 

Proof The proof  uses a similar technique as developed in deBoor et al. [6], 
relating the stability bound of the 'discrete '  problem to that of the ' cont inuous '  
problem. 

Let eh~E h. Set Oh:=L*he h and let rGpk-l(Ah) and flelR" be defined as in 
(4.9). In view of our definition of the norms, we have to show that for p'=Pheh 
the estimate 

Ilpll,,<S'(llrll,,-1 + Ifll) 
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holds. Theorem 1 shows that p satisfies the collocation equations 

QhLp=r ,  Bp=f l .  

Since Qa p '= p', we see that p solves the boundary value problem 

L p = r + ( Q h - - I ) A p ,  Bp=f l .  

Let G be the Greens operator for (L, B) and Y the fundamental system of L 
that satisfies B Y =  I. Then 

(4.12) p =  Y fl + Gr + G ( Q h -  I) A p. 

Since G is the inverse of a first order differential operator, we have 

IIGrll , ,<Kl Hrll,,- 1 
and, using (2.8), 

IIG(Qh--I)Ap[I, .< K ,  C h IIAPlI,, 

<h  K 1 C  IiAIIm" llpllm 

where II AII,, denotes the norm of the multiplication operator A" C m (A h) ~ C"(A h), 
~0 ~ A q~. Furthermore 

Il Y flllm< K2 lflb. 

The constants K j, K2 depend only on the given boundary value problem. Substi- 
tuting these estimates into (4.12), we get 

]IPHm'(I - h K 1  C ][AHm)=< K1 I[r]l,,_ x + K  2 {fl[. 

This proves (4.11) for sufficiently small h o. []  

Lemma 2. The following estimates hold 

(4.13) [[(Lh--L*)ehll,,_l<Chrleh[[,., l<m<_k,  
and 
(4.14) N(Lh--L~)ehH,n_I <=Ch 2 Ileh]l,,+l, l<_m<--k--l .  

I f  the target collocation scheme is symmetric, then also 

(4.15) H(Lh-- g*)ehllk-1 <= C h 2 IPehll~. 

The validity of (4.14) and (4.15) seems to be restricted to the case where the 
ti, j, j = 0 . . . . .  k are equidistant (i.e. we may not allow that ti,j = xi + hl z j, zj +j/k). 

Proo f  We shall prove only (4.14) and (4.15), since the verification of (4.13) is 
completely analogous. We have 

k 

( ( L h -  L*) eh)i,j = ~', Wj, z.cp (Xi, z ) -  �89 (q~ (ti,j) + (0 (ti,j- 1)) 
/ = 1  

where 
(o:=A'(Pheh). 
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Let raP k 1(An) be defined by 

k k 

�89 + qo(tij_ l ) )-  ~, wj3" q0 (xi,,)= ~, wj.,. r(xi, l) 
l = 1  1 = 1  

Then ][(Lh--L*h)ehH,,_l=llr][,,_l and to obtain (4.14), (4.15) it is sufficient to 
show that  

(4.16) [Ir]l.,-, <=Ch 2 II~OIIm+ 1, tk - 1 in the non-symmetr ic  case 
1 < m < k in the symmetr ic  case ' 

since 11 q~ [I,, + 1 < II A I1 ~ + 1 11 e h  ]1 m + 1 and by the saturat ion property,  11 eh H k + 1 = [I en I[ k. 
We first treat the case ~p6pk'O(Ah). An application of  the Euler -MacLaur in  

formula then yields 

1 t , . j  k t , . j  

(4.17) -2 ((p(ti'J)+q)(ti'2-1))=~i ~ q)(t)dt+ ~ c~,h~ ; ~ (plu)(t)dt 
t , . j  1 , u = 2  h i  t , . s -  t 

with appropr ia te  constants  c,  (c, = 0 for odd 10- On the other  hand 

(4.18) 
k 1 t , j  1 '"J 
EWJ, I'(f)(Xi,I)=~:: f q~ E~ ~ (Qh - I )  q~(t)dt" 

I = 1  I t i . j . _  1 I t i . j _ l  

Taking the difference of  (4.17) and (4.18) we obtain 

(4.19) ~ (~p(tij) + (p(tij- 1))- ~ wj,,. (D(Xi,l)= 
I = l  

where 
s. '=(I - Qh) q) 

"J 1 'ti~ q(t) dt + ffi s(t) dt 
t t , j  1 ti . j  - 1 

and q =(qo,  ..-, qN-1) is defined by 

k 

qi(t) := ~, cuhUq~ t6[xi, xi+ 1]" 

Since q)epk'~ q is clearly an element of Pk-I(An). If s were also in 
Pk-I(Ah), then, by (4.10) and (4.19), r could be represented as r = q + s. However ,  
s is given by 

s i ( t )=( t -x i  1)... ( t - x i  k) q)Ik) t~[xi, 1] , , k !  ~ X i +  

and thus has degree k in general. To circumvent  this difficulty we define 

a 
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Then ffePk-X(dh) and the right hand side of (4.19) remains unchanged, if s 
is replaced by g: 

1 "~ S( t i j ) - -S( t i j_ l )  1 '"~ 
I g( t )d t= Ei - ~  I s(t)dt.  

t i , j  1 tl,J I 

We conclude that r = q + K 
To prove (4.16), we treat the two terms q and ff separately. Since qoEpk'~ 

the estimate (2.9) can be used to obtain 

k - v  C 

~ Ic, I hl' ~(--~ I[qoll~+2~Ch 2 ]lq0H~+2 
# = 2  

for O < v < k - 2 .  Hence 

(4.20) Ilqll,~_l~Ch2ll~ollm+~, l ~ m ~ k - 1 .  

Formula  (2.8) shows that the same estimate is valid for s: 

(4.21) ]lsHm_, ~ C ha IIqollm+ ~, l < _ m < k - l .  

This estimate carries over to g, since the definition of g immediately implies 
El gl[,,- 1 < C El s II,,- 1, 1 < m < k. Combining (4.20) and (4.21), we obtain the desired 
estimate (4.16) for 1 < r e < k -  1. 

Now consider the symmetric case. Since q~k- l~_ O, the estimate (4.20) trivially 
extends to the case m=k,  independently of the symmetry. The validity of the 
corresponding estimate for ~ is less evident. We claim that, due to the symmetry, 
gePk-Z(Ah). Since si(t) is a multiple of (t--xi,1)...  (t--Xi,k) , the symmetry of the 
collocation points implies that si is an even (odd) function with resp. to the 
midpoint  ~(xi+xi+O, whenever k is even (odd). From the definition of ,~ we 
conclude that the same holds for sl. Consequently, ge pk-2 (rib) and 

]lgllk_l =lISHk_ 2 ~ C  tlSHk_2~Ch 2 II(pl]k. 

This completes the proof  in case ~oepk'~ 
If ~or176 then we perform the above considerations with (p replaced 

by P"=PhtP. Writing Raq) for the r corresponding to (p and Rap for the one 
1 corresponding to p, we then have Ra(q~-p)=-Qa(q~-p)  (since ~[~0(tlj) 

+ (P(tij- 1)] = l [ p  (tij) + p( t i j -  1)]). The desired estimates now follow from 

Raqo=Rap+Qa(p--tp). [] 

Proof of  Theorem 2. The stability estimate of Lemma 1 for L* carries over to 
L a, i.e. there is an ho > 0 and a bound S such that for h < ho 

(4.22) II eh H., < ~. [(Lh eh H,.- 1, 1 <_ m <_ k 
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for all ea~Eh. This is an immediate consequence of Lemma 1 and Lemma 2 
(4.13): 

][ehl]m<= S" HL*hehll,,- I <=S(llLhehllm-1 + H(L*-- Lh)ehllm-1) 

<=S HLheh[],,_ 1 + S C h  Heh]l, . .  

For sufficiently small ho we obtain (4.22). 
The estimates of Theorem 2 for Mh = (Lh)- 1 (Lh-- L*) now are easily derived 

from (4.22) and the corresponding estimates of Lemma 2. []  

Theorem 2 clearly ensures that, for sufficiently small h, the iterates will con- 
verge to y~. Corollary 1 would suggest that the iteration errors are decreased 
by constant contraction factors of size O(h) in the nonsymmetric case and O(h 2) 
in the symmetric case. However, this gives only a very crude description of 
the ' rea l '  numerical behaviour of the process. A more realistic description is 
contained in the following theorem. 

Theorem 3. For the first  k -  i iterations of  (3.8) the estimates 

(4.23) Ily'~-y*lLl <Ch2mHy~ l < m < k - 1 ,  

hold (independently of  the symmetry).  For subsequent iterations we have 

2m 0 <~[Ch_ ]]Yh--Y*l]k in thesymmetr iccase  m>_k. 
(4.24) 

I] )"~-- Y~ Ib l = ( C hk+" I lIyO--y~l[k in the non-symmetric case' 
/ 

Proof. For  the first k -  1 iterations we get from (4.5) 

I l y ~ ' -  y~'ll ~ < C h  2 I l y~ ' - '  - y*l[2 < . . .  < C h 2"  I l y ~  1. 

If m > k, the orders of the Sobolev norms on the right hand side exceed k and 
the results now depend on whether the collocation scheme is symmetric or 
not. In the symmetric case we obtain for m > k, using (4.6), 

Ily~'-y*llx <-... < C h 2(k 1) i l y~n- (k -  l)__ yf f l lk  

< C h 2k I lY~ ' -k- -y*l lk  < . . .<=Oh 2" I l y ~  

and in the non-symmetric case, using (4.4) for m = k, 

Ily~'-y*lll< . . .  <= C h 2 ( k - l )  ][y~ (k- ~)-- y*llk 

�9 ( C h  2k a l l y ' ~ - k _ y * l l g N . . . < C h  k+m-I Ily~ . [] 

We stress that the estimates (4.23) and (4.24) give a rather precise prediction 
of the behaviour of the iteration observed in practice. Note that for m < k  a 
quite complicated situation may arise, since the Sobolev norms appearing on 
the right hand side of (4.23) depend on m. For  example, if the starting vector 
is very smooth (say Hy~ for all m) then two powers of h may 
be gained with each iteration step. However, if the starting vector is rough 
(say ] l y~  then each step may yield only one power of h. The 
situation gets clearer after the first k - 1  iterations have been performed. Since 
the Sobolev order occuring on the right hand side of (4.24) remains constant, 
we now gain one or two powers of h per step, depending on the symmetry, 
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but independent of the starting vector. Roughly speaking, after the first k - !  
iterations have been performed, the error reduction proceeds as described by 
the estimates for p(Mh) given in Corollary 1, while in the initial phase the behav- 
iour is also determined by the smoothness of the starting vector. 

5 Order results 

In the previous section we were concerned with the convergence of the iterates 
y~' to the fixed point y*. We now consider convergence to the exact solution 
z of the problem. The error of the m-th iterate can be decomposed into 

(5.i) y"~-- Zh=(y'~-- y*)-l-(y*-- Zh), Zh :=Zlr~ . 

For  small h, the effect of the iteration is to decrease the first term, the iteration 
error y'~--y*, so that the accuracy of the iterates will increase until the level 
of the second term, the discretization error y*--Zh of the target collocation 
scheme, is reached. 

We consider in more detail the case where the starting vector yh ~ is obtained 
from (3.9) as the solution of the trapezoidal scheme. We shall prove below 
that in this case 

(5.2) 

and 

(5.3) 

Hy~ l <_m<_k--1 

o . fO(h z) for symmetric collocation schemes 
Yn - Yh k = ~O (h) for non-symmetric collocation schemes" 

Inserting these estimates into (4.23), we obtain 

(5.4) [ y'~ (xi) - z(xi) l < l y'ff (xi) - y* (xi)[ d-- [yff (xi) - -  Z(Xi) [ 

~O(hZ(m+l))+O(hk*), l < _ m < k - 2  
and 

k - I ~ ( O  (h  E k) q_ 0 (h k*) f o r  symmetric collocation schemes 
[Yh (Xi)--ff(Xi)l=~O(h2k-l)q_o(hk,) for non-symmetric collocation schemes 

where k,  is the order of (super-)convergence of the target collocation scheme. 
Since k,  < 2 k and k,  = 2 k is achieved only for the (symmetric) Gaussian scheme, 
we get 

Theorem 4. I f  the defect correction iteration (3.8) is started from the solution 
y~ h of the trapezoidal scheme (3.9), then for the error at the breakpoints xi~Ah 
the estimate 

(5.5) y~(xi)--Z(Xi)=O(hmin(2(m+l)'k*)), r e = O ,  1, . . .  

holds, where k ,  is the order of (super-)convergence of the target collocation 
scheme. In particular, for the method based on Gaussian points 

(5.6) y,~(xi)_z(xi ) = O(h2t,,+ 1)), m= 0 . . . . .  k -  1. 
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Proof. It remains to verify (5.2) and (5.3). Since Fhy~ F ' y *  =0 ,  we have 

Lh(yO_y,)=Fh o , , , , yh--FhYh =Fi, Yh--Fhyh. 

Replacing L h -  L*h by F h -  F* in the p roof  of  Lemma 2, we obtain an estimate 
of the form 

I]F*y*--Fhy*llm l<=Ch2]lAp+gll,,+l, l < m < _ k - 1 ,  

where P:=PhY* is the col locat ion spline. F r o m  the stability estimate (4.22) we 
conclude that 

IlY~ Ilpll,,+ 1 + Ilgll,,+ 1). 

Using Lemma 1, it is easily verified that  I[PI],,+I is bounded,  independently of 
h. This proves (5.2). The verification of  (5.3) is analogous.  [ ]  

With  a ' n o r m a l '  collocation scheme no superconvergence effects occur and 
k , = k  in (5.5). The O(h k) bound  thus obtained for the last successful iterate 
is a typical result for defect correction procedures based on k-th order  defect 
evaluations (see e.g. F rank  and (~lberhuber [9], B6hmer  [4]). However,  with 
our method,  a final order  of  accuracy twice as high can be achieved, if the 
defect evaluat ion is based on Gaussian points. To put it another  way, our  method  
allows for a reduct ion of  the degree of  the interpolating polynomials  to half 
of that  required by s tandard  defect correct ion methods.  

6 Numerical examples 

To illustrate the numerical  behaviour  of our  method,  we consider the simple 
test problem 

(6.1) Y'I =Y2, Y'2 = --Y2--Y 2+e-2x,  

y l ( 0 ) =  1, y l ( 1 ) = e  -1 

with exact solution Zl (x) = - z 2 (X) = e -  x. 
We present the results obtained by using the defect opera tor  (3.6) with k = 6 

Gaussian points  on uniform grids Ah(h=hi=l/N) .  The starting vector  yO is 
chosen as the solution of  the trapezoidal  scheme and the iterates are computed  
from the linearized version (3.8) of  the method.  (The results are not  qualitatively 
different for the more  expensive version (3.10).) The entries in the following 
table show the maximal  errors of  the iterates at the points xleA h. Each column 
corresponds to a fixed iteration level, each line to a fixed grid. Behind each 
column we list estimates for the orders of  accuracy,  which are obtained by 
forming the quotients  of  the errors on two consecutive grids. 

N 0-th iterate 1-st iterate 2-nd iterate 3-rd iterate 

2 0.39E--03 0.57E-06 0.13E--08 0.55E- 11 
4 0.96E--04 2 . 0 0  0.36E-07 4.00 0.20E-- 10 5.99 0.22E-- 13 7.97 
6 0.43E - 0 4  2.00 0.71E-08 4.00 0.18E-- 11 6.00 0.86E- 15 7.99 
8 0.24E-04 2 . 0 0  0.22E--08 4.00 0.32E- 12 5.98 0.86E- 16 8.00 
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N 4-th iterate 5-th iterate 6-th iterate 

2 0 .32E- 13 0.88E- 15 0.86 E-- 15 
4 0.33E-- 16 9.90 0.21 E-- 18 12 .05  0.23E-- 18 11.86 
6 0.59E-- 18 9.97 0.16E--20 11 .95  0.18E--20 12.00 
8 0.33 E-- 19 9.99 0.51 E--22 1 2 . 0 0  0.57E--22 11.99 

The  s t a tements  of the p rev ious  sect ions  are  clear ly confirmed.  Each i terate  
yields an  O(h z) i m p r o v e m e n t  unti l  the o rde r  of  the ta rge t  co l loca t ion  scheme 
is reached.  Of course,  after tha t  no e r ror  r educ t ion  is obse rved  (while the i te ra t ion  
cont inues  to converge  to y~'). The  figures may  also be c o m p a r e d  to those given 
in Chr i s t i ansen  a n d  Russel l  [8] for the same example ,  using deferred correct ions .  
I t  turns  ou t  tha t  ou r  m e t h o d  can ob t a in  results  wi th  a sixth o rde r  defect eva lua-  
t ion equiva len t  to  those  of  a s t a n d a r d  m e t h o d  which uses, at least  in the final 
stage, twel th  o rde r  defect eva lua t ions .  

W e  now ini t ia te  the i t e ra t ion  with a rough  s ta r t ing  vector,  ob t a ined  by 
add ing  to the so lu t ion  of  the t r apezo ida l  scheme a p e r t u r b a t i o n  of  abso lu te  
value  1, a l t e rna t ing  in consecut ive  gr idpoin ts .  Since for this s ta r t ing  vec tor  Ily ~ 
-y~llm=O(h-")(O<m<k), the es t imates  (4.23), (4.24) predic t  that  y"~(x~) 
__2(xi)=O(h2m-tm+ 1))=O(hm-1) for 1 <_m<_k- 1 and y~(xi)- 2(xi)=O(h 2m-k) 
for m > k, 2 m - k < k , .  W e  o b t a i n e d  

N 0-th iterate 1-st iterate 2-nd iterate 3-rd iterate 4-th iterate 

2 0.10E+01 0.13E+01 0.13E-01 0.50E-03 0.11E-05 
4 0.10E+010.00 0.12E+010.05 0.55E-021.23 0.11E-032.20 0.78E--073.78 
6 0.10E+01 0.00 0.12E+01 0.04 0.43E--02 0.63 0.46E-04 2.16 0.16E-07 3.85 
8 0.10E+01 0.00 0.12E+01 0.03 0.46E-02 0.27 0.25E--04 2.15 0.54E--08 3.87 

N 5-th iterate 6-th iterate 7-th iterate 8-th iterate 9-th iterate 

2 0.29E--07 0.18E--09 0.12E--I1 0.38E- 14 0.83E- 15 
4 0.13E-084.49 0.26E--116.08 0.40E--148.22 0.46E--17 9.71 0.22E--18 11.86 
6 0.23E--094.23 0.22E--126.08 0.15E--158.04 0.72E--1910.23 0.17E--2012.00 
8 0.70E--104.15 0.39E--136.06 0.15E--168.05 0.31E--2010.99 0.55E--2211.98 

A l t h o u g h  the p red ic ted  o rders  for the second  and  four th  i tera te  are  not  
very precisely a t t a ined  ( they w o u l d  be m o r e  precise, if we would  list the first 
o rde r  n o r m s  flY'S-Zhllt ins tead  of  max  [yh(Xi)--Z(Xi){), we note  tha t  p roceed ing  

i = 0  . . . . .  N 

f rom the first to the  fifth i t e r a t ion  yields four  o rde rs  of  accuracy ,  while p roceed ing  
f rom the fifth to the n in th  i t e ra t ion  yields e ight  o rders  of  accuracy.  Thus  the 
average  convergence  fac tor  is O(h) in the ini t ial  phase  and  O(h 2) in the final 
phase.  N o t e  tha t  this conf i rms the s t a tement  on  the g loba l  O(hZ)-contract ivi ty  
of  the i te ra t ion .  A l so  no te  tha t  ou r  theo ry  a l lows for a r a the r  precise p red ic t ion  
of  the n u m b e r  of  successful i t e ra t ion  steps, given some in fo rma t ion  a b o u t  the 
smoo thnes s  of  the  s ta r t ing  vector.  
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To give a more realistic example, we consider the motion of a satellite in 
the earth-moon gravitational field. In a barycentric, rotating coordinate system 
the motion is described by 

y+# x--Ia' 
( 6 . 2 )  Y = x + 2 ) ~ - - p '  ((X+l~)2+y2)3/2 tz ((x_#,)2+y2)3/z 

Y Y 
y = y - 2 2 - # '  ((X q_ jj)2 q_ y2)3/2 ~ ((X__ #,)2 q_ y2)3/2 

where #=0.0123, # ' =  1 - #  and the position of the earth is near (x, y)=(0, 0), 
that of the moon near (x, y)=(1, 0). We want to find a solution subject to the 
'free' boundary conditions 

x(0)=-0.1, y(0)=0 

x(T)=  1.05, y(T) = 0, 22(T) +)~2(T) = 1 

where T is unknown. We reduce (6.2) to a system of first order differential 
equations, introduce the new independent variable T= t/T, and add the trivial 
differential equation T=0. This leads to a boundary value problem of the form 
(1.1) in n = 5  dependent variables. We solved this problem with method (3.8), 
(3.9) using the collocation scheme with k = 7  Gaussian points. The solution of 
the trapezoidal scheme was obtained by Newton's method. The starting vector 
for Newton's method and the initial grid were obtained by solving the initial 
value problem for (6.2) with some estimated values for 2(0), 9(0) and T. The 
numerical results indicate that the problem has several (isolated) solutions. 

The following table lists the corrections y ~+ly ~ .  Due to the rather rapid 
convergence of the iteration we may consider these numbers to be estimates 
for the errors zh-y"~ as long as the order of the target collocation scheme 
has not been reached (i.e. for m = 0  . . . . .  k - 2 ,  cf. Theorem 4). Note that this 
procedure gives no error estimate for the last iterate y~-1, although this iterate 
may still yield a gain in accuracy. 

N = 13 0-th 1-st 2-nd 3-rd 4-th 5-th 6-th 
iterate iterate iterate iterate iterate iterate iterate 

Estimated 0.16.10 ~ 0.79.10-2 0.25.10 -2 0.40.10-3 0.97.10 -4 0.18.10 -4 ?? 
errors 

We now attempt to achieve a final accuracy of 10 -8 by refining the grid. 
The new grid is determined by an error equidistributing procedure. The informa- 
tion on the error functions is obtained from the estimates (corrections) on the 
old grid. 

N = 24 0-th 1-st 2-nd 3-rd 4-th 5-th 6-th 
iterate iterate iterate iterate iterate iterate iterate 

Estimated 0.39-10-1 0.55.10 3 0.46.10 - 4  0.20.10-s 0 . 1 2 . 1 0  - 6  0.62.10-8 ?? 
errors 
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Here again, the i tera t ion was started from the solut ion of the trapezoidal  
scheme. Since the success of our  method  does no t  depend on special propert ies 
of the s tar t ing vector, we may  as well ini t iate the i terat ion with a s tar t ing vector 
ob ta ined  by extending the final iterate on the old grid to the new grid. Using 
the in te rpo la t ion  opera tor  Ph on the old grid for the extension, we obta ined  

N = 24 0-th iterate 1-st iterate 2-nd iterate 3-rd iterate 

Estimated errors 0.33.10 -4 0 . 4 2 . 1 0  -6  0.98. l0 7 ?? 
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