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Summary. A uniform f ramework for the study of  upwinding schemes is devel- 
oped. The s tandard finite element Galerkin discretization is chosen as the refer- 
ence discretization, and differences between other  discretization schemes and 
the reference are written as artificial diffusion terms. These artificial diffusion 
terms are spanned by a four dimensional  space of element diffusion matrices. 
Three basis matrices are symmetric, rank one diffusion operators  associated 
with the edges of the triangle; the fourth basis matrix is skew symmetric and 
is associated with a ro ta t ion by g/2. While finite volume discretizations may 
be written as upwinded Galerkin methods,  the converse does not  appear  to 
be true. Our  approach  is used to examine several upwinding schemes, including 
the streamline diffusion method,  the box method,  the Scharfet ter-Gummel discre- 
tization, and a divergence-free scheme. 
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1 Introduction 

We consider the model  convect ion diffusion problem 

(1) - V . ( V u + f l u ) = O  in f 2 c ~  2 

u = u  o on ~Y21 

( V u + f l u ) . n = O  o n  ~ ' - 2 - ~  1 . 
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Here 8 = V t p  and ~keocg~(12). We assume that g2 is polygonal and that 0f2t 
is composed of one or more edges of Og2. The function uo is assumed constant 
on each contiguous set of Dirichlet boundary edges. The outward normal direc- 
tion n is defined edgewise. 

The weak form of (1) is: find u~ffn such that 

(2) 

for all 4)~ ~o,  where 

a(u, q~)= ~ (Vu+ Su). V dp dx  d y = 0  

~ed= {U~f  ~1 (t2) and u=u o on af21) 

~o = { u ~ g l  (f2) and u =0  on at21}. 

Let 5- be a shape regular, although not necessarily quasi uniform, triangula- 
tion of f2, characterized by a small parameter h indicating the size of the elements. 
Let 6a h be the space of continuous piecewise linear polynomials with respect 
to ~,, and define 

~ =  { u ~  and u = u  o on ~f21} 

6e 0 = {u e Seh and u = 0  on at21}. 

Here we are assuming that each point at which the type of boundary condition 
changes from Dirichlet to Neumann is a vertex in the triangulation 52. Also, 
we will assume that 8=17 ~, where ~bera,. In the practical application that 
we have in mind, Eq. (1) is a current continuity equation from the semiconductor 
device model and 8 is the gradient of the electrostatic potential, which itself 
is obtained as part of the solution of a coupled system of partial differential 
equations [2]. 

The classical Galerkin finite element method for approximating (2) is: find 
usered such that 

(3) a(u,, ~)=0  

for all ~beS~o. The classical method roughly corresponds to the use of centered 
differences in the finite difference context, and is well known to be unstable 
when 181 h is large. 

This has led to the use of upwind finite element techniques [4-9], which 
are analogous to the use of upwind differences in the finite difference arena. 
In this paper, we develop a uniform framework for the study of general upwind- 
ing schemes. We choose the standard weak Galerkin form (3) as the reference 
discretization. Then differences between other discretization schemes and the 
weak Galerkin form are written as artificial diffusion terms; that is, we seek 
to write all schemes in the form: 

(4) ah(u, qb)=a(u, ~b)+ ~ S h,(p Vu). Vq~ dx  d y = 0 .  

Here p = p, is a 2 x 2 diffusion matrix, defined elementwise and is characteristic 
of the particular scheme, and h, is a measure of the size of T, for example, 
its diameter. Normally, one might tend to think of p as a symmetric, positive 
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semidefinite matrix, but this will not be the case with many of the methods. 
The bilinear form ah ( ' , ' )  formally corresponds to the perturbed equation 

- V.((I+h,p) Vu+flu)=O 
for ~ .  

For  piecewise linear triangular elements, the diffusion term h,p is contained 
in a four dimensional space of element diffusion matrices. Three basis matrices 
for this space are symmetric, rank one diffusion operators that can naturally 
be associated with the edges of the triangle. The fourth basis matrix is skew 
symmetric and is associated with a rotation by re/2. 

In this paper, we will first consider the streamline diffusion method, proposed 
and analyzed by Hughes et al. [5, 6] and Johnson et al. [8], among others. 
As this is a standard approach, we do not make a formal derivation of the 
method, but rather refer to the existing literature. 

We then consider the box scheme [1] and the Scharfetter-Gummel scheme 
[2], two finite volume discretizations. Our recasting of these schemes in the 
form (4) may be regarded as an extension of [1], in which only self-adjoint 
problems were considered. Interestingly, while finite volume discretizations may 
always be written as upwinded Galerkin methods, the converse does not appear 
to be true, since the skew symmetric elementary diffusion operator seems to 
have no analogue in the standard finite volume framework. 

Finally, we consider the new divergence free upwinding scheme proposed 
by the authors [3]. In some instances, the artificial diffusion introduced by 
this method resembles that of the streamline diffusion method. In other cases, 
it can lead to very nonsymmetric and indefinite artificial diffusion matrices. 
In extreme cases, the overall diffusion matrix I +h,p can have one positive 
and one negative eigenvalue. Nevertheless, the method appears to be extremely 
robust and stable, and remains so even in unfavorable situations where other 
upwinding schemes fail [3]. 

The remainder of this paper is organized as follows: In Sect. 2, we describe 
the triangular element geometry and elemental stiffness matrix. In addition, 
the element diffusion matrices and there properties are presented. The next four 
sections are devoted to discussions of the various upwinding schemes in terms 
of these elemental matrices. We make some concluding remarks in the final 
section. 

2 Preliminaries 

Let {~b~}7= 1 denote the standard nodal basis functions for 5Co . Then the global 
stiffness matrix A corresponding to (3) is given by 

(5) A,i = ah(~bj, q~,). 

The global stiffness matrix may be decomposed in terms of element stiffness 
matrices A, as 

A = ~ . A ~  

where ,~a" 
(Ar)~j = aM, j, 4',) 

a~(q~j, ~i)= ~ (I + h~p) V ~)j. i7 ~i-~- fl ~ j  . V qbi d x d y. 
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3 

1 lata 2 1 la na 2 

Fig. 1. Parameters  associated with the triangle 

Since there are only three nonzero basis functions on each element, we can 
characterize At by a dense 3 x 3 element matrix. Without loss of generality, 
or by virtue of a local coordinate renumbering, we assume that our canonical 
element T has vertices v]=(x i, Yi), for 1 < i<  3, and corresponding nodal basis 
functions {~b,}3= 1. 

We define {n~}3=1 to be the unit outward normal vectors for z, {ti}3=1 to 
be the unit tangent vectors for the three edges, {/~}3=~ to be their lengths, and 
{h~}~=l to be the perpendicular heights (see Fig. 1). Let ~ be the point of intersec- 
tion for the perpendicular bisectors of the three sides of z. Let I s / d e n o t e  the 
distance between ~ and side j. If T has no obtuse angles, then the sj will be 
nonnegative; otherwise, the distance to the side opposite the obtuse angle will 
be negative. 

There are many relationships among these quantities; in particular we note 
the following: 

(6) I~h~=2lzl, 1 < i < 3  

(7) V ~b, = - ndh,, 1 < i < 3 

(8) ~bl + ~ b 2 + ~ 3 =  1 

(9) V~b 1 -+" V(~2 + 17r ~-..~- 0 

(10) 11 t1+12 t2+/3 t 3 = O  

(11) 12 t i |  I r e ,  V4~2 V4~3] = 0 - 
3 t~J -- 1 

(12) sx = -I~1 l, IZq5 2. V~b 3. 

Equation (12) is valid cyclically for s2 and s3. A hint for verifying (12) is to 
recall that, if the angle at vertex cl is 01, then the angle at 5 between the 
lines joining 5 to v2 and 5 to v3 is 201. 

The affine mapping of the reference element f, with vertices (s P l )=(  0, 0), 
(s 92)=( 1, 0), and (s 0, 1), to our canonical element �9 is given by 

,13, 

with 
(14) J = [13 t3 --  12 t2] 
and 
(15) S - ' = [ V r  Vr 
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The function 17 u defined on z is transformed to J - t l~  fi defined on the reference 
element ~. The local basis functions on the reference element are 

61 --- 1--:~--3~ 

62 ~-~ 

G =Y. 

Assuming the fl is constant on z, as will be the case when f l= 17 ~b for g ' ~ h ,  
the element stiffness matrix for the standard Galerkin method is given by 

(16) 
[v41.v41 v41.v42 v4,.v431 

I V4l.V4~ v4~.v4~ v4~ v4~! 
, , [f l" V~b11 

+31&V42|{11 1]. 

The first matrix on the right hand side of(16) corresponds to the contribution 
to A, from the Laplace operator. This matrix is symmetric, positive semi-definite 
and has rank two. Its kernel is spanned by the vector (1 1 1) t, a reflection of 
(9). The second matrix corresponds to the convection term and has rank one. 
Note that the column sums of both matrices are zero. 

In the general setting, the contribution to the element stiffness matrix from 
an artificial diffusion term will be a 3 x 3 matrix with zero row sums and zero 
column sums (reflecting the fact that Vc=O for a constant c). It is a straightfor- 
ward calculation to see that this represents five independent constraints on 
the nine coefficients in such a matrix. A basis for the remaining four dimensional 
space of element diffusion matrices is given by 

(17) 

- 1 v G J  

(18) --1000 = ~ [ V c~ t2 | t 2 tt2 [ V c~ ' V c~ 2 V fb s cys j 

(19) 1 - 1  1 = /v~,~| 
I~1 o o L v 4 5 J  

c2o) 011 i| 1 o - = | v , ~ |  r v , h v C , ~ v ~ ; I .  

- 1 L v G J  
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The 2 x 2 diffusion matrices 

(21) p , = ~  t, t~ 

for 1 < i < 3 ,  are symmetric, rank one diffusion operators which can naturally 
be associated with the three edges of z. The skew symmetric operator 

A 0 

(23) 

where 

corresponds to a rotation by n/2. 
If D is a 2 x 2 diffusion matrix, then we may expand D in terms of this 

basis as 

3 

i = l  

oq = --Izl V ~b2.( D2Dt--) V qS3 

(cyclically for ~2 and ~3), and 

_ D  t 
~ts ~s= D 2 

These coefficients can be computed directly using (6)--(t5). 
As an example, the diffusion operator corresponding to the Laplace operator 

- A  is the 2 x 2 identity matrix, which can be decomposed as 

(24) 

where 

(25) 

3 

I2~2 = ~ Li/)i 
i=1  

L,= -I'cl V ~PE" V ~3 
Sl 

l l "  

The scalars/-,2 and L 3 are defined cyclically. 

3 The streamline diffusion method 

The streamline diffusion is one of the more widely used upwinding schemes 
in the finite element arena. Since derivations of the method are widely available 
in the literature [6, 5, 8], we will merely summarize the method within the 
current framework. 
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Fig.  2. The  box  b i 

For the streamline diffusion method, the element stiffness matrix is 

(26) As=A,+C!~I.h~[~ IV(all / a. a. v 3] 
vq~3] 

where C is a positive constant. 
The artificial diffusion term is a symmetric, positive semidefinite matrix of 

rank one, corresponding to the diffusion term 

C 
(27) Ps = T~///~' '  

This rank one matrix adds artificial diffusion in the streamline direction (in 
the direction of/~). 

In analogy with (24), the diffusion may be expanded in terms of only the 
edge diffusion matrices ~ ,  1 < i < 3 as 

3 

ps = Z O~i~i, 
/=1  

where 

~1=-1/31 
and ~2 and ~3 are defined cyclically. 

Upwinding in the crosswind direction involves contributions perpendicular 
to the streamline direction. These terms are also symmetric and therefore involve 
only the edge diffusion operators. Thus both the streamline and the crosswind 
upwinding terms do not involve the skew symmetric operator given by (22). 

4 The box method 

The box method is formally derived as a finite volume approximation of (1). 
Assume, for the moment, that 9- is such that all triangles have interior angles 
that are not obtuse. This is nonessential to the definition, but will simplify 
our initial derivation. Indeed, once the box method has been cast in the form 
(4), such a restriction will obviously not be required. In any event, for each 
vertex v~, we can associate a box bi, generated by the perpendicular bisectors 
of the triangle edges incident on that vertex, as illustrated in Fig. 2 (although 
we could allow a more general definition of boxes, as in [1]). 
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A given triangle z contains parts of three boxes; thus one can easily develop 
the concept of an element stiffness matrix for the box method. This matrix 
will contain the contributions to the global matrix arising from integrals on 
the portions of box boundaries lying within z. See [1] for a complete discussion 
of this point with respect to the Laplace operator. 

We now integrate Eq. (1) over the box b~, and then apply the divergence 
theorem to get 

(28) - -  S (Vu+f lu) .nds=O 
Ob~ 

where n is the outward normal for the box b~, defined edgewise. 
Let t h be the index set of vertices in J -  connected via a triangle edge to 

vertex vi. Then (28) is approximated by 

(29) 

where 

Z U i --  l, ij Sij t ~ O, 

k = ~ .  if B.n~j<O 
if B.n~j>=O 

u~ is the approximate solution at vertex v~, lij is the length of the triangle edge 
connecting vertices v~ and v j, and s o is the length of the box edge corresponding 
to the perpendicular bisector of the edge connecting v~ and vj. The normal 
directions nii for the box b~ correspond to (plus or minus) tangent directions 
for triangle edges. 

To simplify our indices, we will write fl.nf i Uk as 

--fl'n,juk=�89 ui--�89 uj 

so then (29) becomes 

(30) uf - -  u j  u i + u j  

It should be noted that the effect of the upwinding is to add a diffusion term 
to each triangle edge of strength �89 o I r" n,jI. 

A straightforward calculation shows that the element stiffness matrix for 
the box method is given by 

l+ /2 , t~ . t2 , \  ~ 1 0 - 1  
(31) Ab = - -  0 

}-~1 --1 2 ]12 _~  0 

[ i ~ !] o o j  Lo 1 

0 0 0 + s 3 f l ' t 3  1 1 . 

- 1  0 --1] 2 [ 0 0 
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The element stiffness matrix has zero column sums, with nonnegative diago- 
nal and nonpositive off diagonal entries, if we assume no obtuse angles for 
each element. For elements with vertices on the boundary, the rows and columns 
corresponding to Dirichlet vertices are ignored in computing the global stiffness 
matrix. Thus, the global stiffness matrix will be an irreducible, diagonally domi- 
nant M-matrix with respect to its columns. This leads to a number of desirable 
properties, including a discrete maximum principle associated with the columns. 
We remark that the assumption of no obtuse angles is necessary for the condition 
of nonnegative diagonal and nonpositive off diagonal entries to hold element 
by element. It is not a necessary condition (but certainly sufficient) for the global 
stiffness matrix to inherit these properties [10]. 

The first three terms on the right hand side of (31) correspond to the Laplace 
term and the upwinding, which can be written as 

[VqS]] { 3 L~l~lfl'tilc3t}[17qb~Vdp2Vc~3] I 21L,:,  2 
v+~J ' 

where we have used (17)-(20), and (24)-(25). 
The last three terms of (31) correspond to the centered difference approxima- 

tion to the convective term by the finite volume method. To analyze these 
terms, we begin by defining 

(32) fl, = 1__ li si t,. fl 

12 Li ti" fl. 
I~1 

With this definition, we have, from (24) and (25) 

3 

(33) fl = ~ fli tl. 
i = l  

This decomposes fl into components lying along the tangent directions of each 
edge of z. Using (11), we next observe that [11 ] 

1 1 =(e2--el)(e 1 +e2) t 
0 0 

t3(e, +e2)', 
LV,~J 

where el is the i-th column of the 3 x 3 identity matrix. 
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Thus, the last three terms of (31) can be written as 

:i]  l,ee+e3'+ t2,e3+el,+  3,el + e2,', 

Our next task is to compute the form of the artificial diffusion associated 
with the box method, and then to recast the box method in the form (4). We 
begin by finding the matrix corresponding to the upwinding (relative to the 
standard Galerkin method) given by A b -  Ag. To simplify the resulting expres- 
sions, we will need 

(34) - 3 = -  (e2-e l  + e 3 - e 0  

V< ;1 
t2) 

6 LVqS~j 

1/v  /d , _--] 
LV@~J 

The vectors d2 and d3 are defined cyclically. Thus using (32)-(34), as well as 
(24), we have 

(35) _1~1 , t~+fli t i~ [vt~ 1Vcb2 V~b3]. h b - h s - - - f  Vc~2 ~=tlilfl~lti 

Note that fli = O (I fl I) and di = O (he). Thus 

3 

(36) he Pb = �89 ~ li [ fl, [ tl t~ + fl, ti d~ 
i = 1  

is the artificial diffusion term (4) for the box method. Note that there are two 
types of terms on the right hand side of (36). The first type comes from upwinding 
along a single edge; these terms contribute symmetric, positive semidefinite artifi- 
cial diffusion terms to h,p~. The second set of terms arise from the differences 
in approximating the convection term using centered differences; the box method 
considers only approximations along each edge, while the standard Galerkin 
method develops approximations within the triangle as a whole. This generally 
contributes a nonsymmetric artificial diffusion term to the overall upwinding. 

Having defined the form of the artificial diffusion, we can now interpret 
the box method as a finite element method, which remains well defined even 
when some elements have obtuse angles, and when fl is no longer assumed 
to be constant on each dement. 
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5 The Seharfetter-Gummel method 

A second finite volume scheme, similar to the box method of Sect. 4, but making 
explicit use of the assumption that fl = V ~k, is the Scharfetter-Gummel discretiza- 
tion. Originally proposed for the one dimensional discretization of the current 
continuity equation in the semiconductor device model, it has been generalized 
to two dimensions, and is a widely used discretization in contemporary device 
simulators [2]. The Scharfetter-Gummel discretization is an exponential upwind- 
ing scheme which will produce the exact values at the vertices for a one dimen- 
sional problem in the special case where ~ is linear. 

We define the Bernoulli function &(x) by 

x 
(37) ~(x) = eX - 1 " 

We will use the identity 
, ~ ( - x )=~(x I+  x 

in the forms 
x 

~(x)=(~(x) 2 

x 
~ ( - x )  = ~e(x) +~-, 

where 
~ ( x ) + ~ ( - x )  Ixl 

(38) ~ ( x ) -  2 = ~ ( I x l ) + - ~ -  �9 

Along the triangle edge connecting vertices vl and v2 in element z, the flux 
term 

-(Vu+ flu).n= -e -*  V(e* u).n 

is approximated along the box boundary by 

e_~, (e ~' Ul - e  ~ u2~ (39) \ l 3 ] '  

where ~k/= ~k(vi). The value of ff is given by [23 

) 
= e ,  ~ _ e # 2  �9 

This allows us to write (39) as 

(40) 13 

Assuming that ~k is linear, we have 

r 



196 R.E.  B a n k  et  al. 

Setting r 3 = ~(fl- t  3/3), o u r  flux approximation becomes 

Notice that the second term in (41) is identical to the corresponding term for 
the box method. 

Using this approximation to the flux, the element stiffness matrix for the 
Scharfetter-Gummel discretization can be found in a fashion, completely analo- 
gous to (28)-(31), to be 

(42) 
[ v4,',] 3 

A~g = lz l 
v 4~ J 

+~- 17~I fllt,(e2+ea)'+fl2t2(e3+eO'+fl3t3(el+e2)'}. 

Similarly, the upwinding operator P,s can be found, by forming A~g--A,, 
to be 

3 

(43) h~ p~ = ~ L, (~i - 1) ~, + fl, ti d~, 
i = !  

where the di are defined as in (34). 
We point out here that the term c ~ - I  is formally of order O(h 2 IflL 2) as 

h~ fl ~ 0, whereas the corresponding term in the standard box method is (9 (h, I fl I). 
Thus, while in some regimes we can expect the two discretizations to behave 
quite similarly, there can be cases where are significant differences. 

6 Divergence-free upwinding 

Our new discretization I-3] is defined in terms of a single element z and the 
corresponding element stiffness matrix A d. Let the current J be defined by 

(44) • =  17u+flu 
so that (2) becomes 

(45) S J "  17~b d x  d y = O  
D 

for all ~be~o. 
Since fl = 17 ~k, we may write (44) as 

(46) J = e  -# V(e*u). 

For the case ~k ~6ah, we can replace e • by e •162 where v'=(x y). 
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For  our approximation, we seek a discrete current o/h in the form 

(47) ~ = e - *  V(e~tl) 

= V tl + fl th 

where t/ is a linear polynomial in z. Over all of t2, t/ will be a discontinuous 
piecewise linear polynomial. 

The consistency of our approximation is determined by the edge conditions 

Oj Oj 

(48) S e* j . d s -  ~ e~'Jh.dS 
Vi  ~)i 

where v i and vj are two vertices of ~. Since the integrations can be carried 
out exactly, we may write (48) as 

(49) e*~ u(vy)--e~V') u(vi)= e~VJ) q (V j)-- e*r q(vi). 

Although there are three edge conditions, only two represent independent con- 
straints on q. In any event, the edge conditions imply that 

(50) t /= Uh + Ct Y (e - q'), 

where Uh is the finite element solution, ~ is a scalar, and ~r is the linear 
polynomial interpolating e -*  at the vertices of z. Note that since UheS:h, the 
discontinuities in ~/ can arise only from ct having different values in different 
elements. 

The scalar a, and the stability of the discretization, is determined by the 
divergence condition 

(51) 

on z, which implies, for ~ eS:h, 

(52) 

Setting z = J (e-~'), we have 

(53) 

where 

(54) 

V . A = 0  

ft. V uh 
ft. V,~ (e-q') " 

A . v r 1 6 2  

ft. V uh 
=(V uh + fl Uh)" V 4 ' - - T V -  i- (V z + l~ z) V r 

= ( V uh + fl Uh) " r e +  V uh " (fl d') V 4~, 

d= V z + f l z  
- f l .  Vz " 
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The first term on the right hand side of the last line in (53) corresponds 
to the standard Galerkin method; thus the artificial diffusion for the divergence- 
free upwinding scheme is 

(55) h, Pa = fl d' 

which is a generally nonsymmetric, rank one diffusion matrix. 
By noting that 

we can set 
V e-*  + [l e -*  =O 

e = e - * - J ( e - • )  

=e-~_z 
and write (54) as 

Ve+fl~ 
(56) d = 

& ~ - * + ~ . w  " 

Since e is the interpolation error for linear interpolation of e -~', we can see 
(formally) that Idl = r 

An interesting special case occurs whenever fl is perpendicular to one of 
the edges of z. Then d and fl are parallel vectors, and the divergence-free upwind- 
ing scheme is similar to the streamline diffusion method, in terms of the added 
artificial diffusion. However, unlike the streamline diffusion method, there is 
no constant to be adjusted; in effect, the constant was chosen to satisfy the 
divergence condition. 

For the case ~keS:h, the element stiffness matrix for the divergence-free 
upwinding scheme is given by 

(57) 
[17~bt 'd ]  

Ad=Ag+lzl/V,  'd/Ca'V< fl" 17 2 fl" 17 3]. 
tvo3.d_l 

An important consideration for the divergence-free upwinding scheme is 
the question of whether it is always well defined. In particular, we must examine 
conditions under which fl-IZz=0, since this term is in the denominator of (54). 
We can begin by observing that 

- 1 3 . V z = , 8 . B e - *  + ,O-ve 

=1/312 e-r +O(lfll  2 h, e -'t') 

> 0  as h~-*O 

so that the method is certainly well defined for h sufficiently small. On the 
other hand, it is possible on a coarse mesh, with proper element geometry 
and a certain element orientation with respect to fl, that - f t .  Vz <= O. 
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To see how this can occur, assume for the moment that our element z 
has vertices v~ =(00), v~=(1 0), v~=(:~ 37), and that ~b~Se~h. The Jacobian matrix 
J for this element is 

Let 

Then 

and 

37~[ -~ - i  J 

J' fl-[q~] 
--[q31 " 

z = ~ t  + e-O2 q~z + e-q3 dp3 

V z=(e -q~- 1) V ~bz +(e -q~- 1) Vq~a. 

Without loss of generality, assume that q2 ~ q3 > 0 and q2 > 0. Then let 

Clearly 

and 

- V z . B =  

q3 

q2 

e - q 3 -  1 

s = ~ 2 _ f .  

O ~ r ~ s ~ l  

q2(e-q2-1) [~2 +~72 
37 2 [-1 r] _ - 1 ]  [ls]. 

The condition - Vz. 8 = 0  implies 

or  

(58) 

~2+372 ~(r+s)+rs= 0 

-2 [- r+s\2 [ s - - rV  
y + i x - T ) = I v ) '  

Equation (58) is the equation of a circle with center ((r+s)/2, 0) and radius (s 
- -  r ) / 2 .  

The properties of this upwinding scheme have a nice geometrical interpreta- 
tion as illustrated in Fig. 3. The outer circle C1 separates acute from obtuse 
triangles. All triangles with (~, 37) lying outside this circle are acute, those with 
(~, 37) inside are obtuse, and those with (2, 37) lying on C~ are right triangles. 

The inner circle Co, corresponding to (58), always lies inside the circle C~, 
and separates triangles of positive and negative - 8 "  Vz. Triangles with (~,)7) 
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Fig. 3. Geometrical interpretation of upwinding term 

lying outside this circle have - ft. F z > 0. Clearly, - P z- fl =< 0 requires z to have 
an obtuse angle. 

For triangles with (2,)7) lying on this circle, ft. Fz=O, and the discretization 
is not defined. The chance of this condition being met in practice is very small. 
Indeed, we don't  even check for this in our code, since roundoff error will 
almost certainly produce nonzero values of ft. Vz. 

On coarse meshes containing many badly shaped elements, it may be possible 
to have triangles with (2, 37) lying inside this circle, in which case, -[3. V z <0.  
When this occurs, it is analogous to subtracting a one dimensional artificial 
diffusion from the system, which seems rather counter intuitive (and dangerous). 
In particular, the eigenvalues of the 2 x 2 diffusion matrix I + fl d' are 

2 = 1  
and 

~ =  [3.[3z 
- f l .  Vz 

so that the overall diffusion term ceases to be elliptic whenever - [3 .  V z < 0. 
If we scale �9 to be an element with the same geometry but with diameter 

h, we note that q~ and q3 will scale to be of size [fllh. Thus, as h-~0,  r ~ s 
and the (relative) radius of the circle Co tends to zero, which is consistent with 
our earlier remarks. Also, r=s if q3=0;  this implies that fl is perpendicular 
to one side of ~. In general, if fl is perpendicular to any side of ~, then - V z. fl 4: 0, 
since then V z is in the direction fl as in the streamline diffusion method. 

Given the above comments,  one might naturally approach this method with 
a great deal of skepticism with respect to its usefulness in general and its stability 
in particular (we certainly did). At present, we do not have any a priori error 
estimates for the method, except in the case when it reduces to the streamline 
diffusion method and existing estimates for that method apply. Nevertheless, 
the method is extremely stable, even under unfavorable geometric conditions. 
This stability comes from the divergence condition, as can be seen from the 
following line of reasoning. Let ~b~ be the piecewise linear nodal basis function 
associated with vertex v~ in the triangulation. Then, using integration by parts, 
element by element, we have from (4) 

A . F r  Z ~ { A - n o } r  
eij e~j 

where e o is the triangle edge connecting vertices vi and vj and {~ .n~}  is the 
jump in the normal component  of ~ across e o. By simple geometry, it seems 
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clear that in order to have a massive overshoot or undershoot (a "spike") at 
vl, the sum of the normal components of these jumps must be correspondingly 
large in magnitude, a circumstance which is prohibited by the divergence condi- 
tion. 

In effect, the divergence condition prevents the creation of any numerical 
sources or sinks within element interiors. The edge conditions guarantee good 
approximation along element edges, in particular at the vertices. The situation 
is entirely analogous to the finite element approximation of the Laplacian using 
piecewise linear elements; there A u = 0  within each element and it is the jumps 
in the normal components of Vu across the triangle edges that support the 
approximation. Thus we can expect, at least with hindsight, that this method 
will provide a stable and accurate approximation to (2). 

We end this section by noting that this method and its derivation remain 
well defined for three dimensional meshes based on tetrahedral elements. Indeed, 
it was our desire to have an upwinding procedure for tetrahedral meshes that 
remains stable even in the presence of unfavorable element geometries, which 
motivated our current work. 

7 Summary 

A uniform framework is developed for the study of general upwinding schemes. 
The standard finite element weak Galerkin discretization is chosen as the refer- 
ence. Differences between other discretization schemes and the weak Galerkin 
form are written as artificial diffusion terms. These artificial diffusion terms 
are spanned by a four dimensional space of element diffusion matrices. Three 
basis matrices are symmetric, rank one diffusion operators which can naturally 
be associated with the edges of the triangle. The fourth basis matrix is skew 
symmetric and is associated with a rotation by ~/2. 

The streamline diffusion method is one of the more widely used upwinding 
schemes in the finite element arena. Both the streamline and the crosswind 
upwinding terms are symmetric, positive semidefinite matrices of rank one and 
involve only the edge diffusions operators. 

Two finite volume discretizations, the box method and the Scharfetter-Gum- 
reel method, are then analyzed. Finite volume methods involve only approxima- 
tions along each triangle edge, while the standard Galerkin method uses approxi- 
mations within the triangle as a whole. Discretizations of convection diffusion 
problems give rise to two types of contributions to the element stiffness matrices. 
The first type corresponds to the upwinding terms, which contribute symmetric, 
positive semidefinite artificial edge diffusion terms. The second type arises from 
the centered difference approximation of the convective term. When viewed 
as a finite element method, these terms contribute nonsymmetric artificial diffu- 
sion upwinding terms. While finite volume discretizations may always be written 
as upwinded Galerkin methods, the converse does not appear to be true, since 
the skew symmetric elementary diffusion operator seems to have no analogue 
in the standard finite volume framework. 

Finally, the divergence-free upwinding scheme is analyzed. In general, the 
artificial diffusion introduced by this method leads to both symmetric and non- 
symmetric diffusion terms. However, whenever the velocity is perpendicular to 
one of the triangle edges, the streamline diffusion method is recovered. In some 
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extreme cases, the overall diffusion matr ix  has both positive and  negative eigen- 
values. Nevertheless, the method  appears  to be extremely robust  and  stable, 
and  remains  so even in unfavorable  s i tuat ions where other upwinding  schemes 
fail. 
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