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Summary. We construct and analyze finite element methods for approximating 
the equations of linear elastodynamics, using mixed elements for the discretiza- 
tion of the spatial variables. We consider two different mixed formulations for 
the problem and analyze semidiscrete and up to fourth-order in time fully dis- 
crete approximations. L 2 optimal-order error estimates are proved for the 
approximations of displacement and stress. 
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1 Introduction 

The problem 

The purpose of this paper is the construction and analysis of finite element 
methods for approximating the equations of linear elastodynamics using mixed 
formulations of the problem for the discretization of the spatial variables. For  
simplicity we shall consider the following initial-boundary value problem: Let 
f2 be a bounded domain ~N (N=2 ,  3) with smooth boundary Of 2 and let 0 <  T 
< ~ .  We seek a vector displacement function u: f2x [0, T]  __,~N, satisfying - 
index notation and the summation convention will be employed throughout 

(1.1) i~i--c~j(CijkZ C~ t Uk)=fi in 0 x [0, T], 

u(x,t)=O on dQ• [0, T], 

u(x,O)=u~ f~(x,O)=u~(x) in ~, 

where the elasticities Ci j k l  , l <i, j ,k ,  l< N, the body forces per unit volume f~, 
1 < i <  N, and the initial displacement and velocity u ~ and u 1 are given functions 
defined on O. (Here dots denote differentiation with respect to t and Oj= ~3/Oxj.) 
For  a discussion of the physical background of the equations of elasticity (cf. 
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e.g. [16]). We shall consider two different approaches for the mixed finite element 
approximation of (1.1). First, in Sect. 2, we shall discretize (1.1) in space using 
its "displacement-stress" mixed formulation on appropriate finite element spaces 
and analyze the semidiscrete problem and fully discrete approximations thereof, 
based on up to fourth-order rational approximations to the cosine (cf. [6, 8]). 
Next, in Sect. 3, we shall consider the "velocity-stress" formulation of (1.1), 
proposed by Geveci [15], in the case of the scalar wave equation. We shall 
use mixed finite element discretizations for the space variables and base the 
time-stepping scheme on up to fourth-order accurate methods generated by 
rational approximations to the exponential (cf. [5, 7]). 

Notation and preliminaries 

Employing standard notation, for s=  1,2 . . . .  we shall use the symbol H s to 
denote the Sobolev space HS(t2) N or H~(f2) N~N, as the case may be, with corre- 
sponding usual norm tl'll~; we let H~ be the subspace of H ~ with elements 
that vanish on at2 in the sence of trace. Let (-, .) be the inner product on 
V=L2(f2) N or L2(O) N• with associated norm I1"11 and H =H (d iv ; t 2 )  
= {z~LZ(O)N • div z~ V}, where 

(div z)i = t3~ zlj, i = 1 . . . .  , N. 

We let RN=IR N• be the space of second-order real tensors (N x N matrices), 
R~ be the space of symmetric elements of RN, and H~a be the subspace of H 
with symmetric elements. Fouth-order  tensors will usually be denoted by bold- 
face capital letters. 

We shall suppose that the elasticity tensor C---C(x) corresponds to a linear 
elastic material, i.e. that its components Cijkt - the elasticities - satisfy 

Cijkl = Cjikl = Cklij 

in f]. Hence, for antisymmetric second-order tensors 09, there holds Co9=0, 
and we have C [ R N ] = C [ R s ] c R ~ .  We shall also assume that the restriction 
of C to R~ is bounded and uniformly positive definite in O, i.e., that there 
exist positive constants #o and #1 such that 

[AO T~ij'~ij~Cijkl(X) TijT, kl~]A 1 7~ij'~ij, VrERs,  xeO.  

As a consequence, if A =(aijkl  ) is the inverse of C in R~, it will satisfy, for 
some positive constants p~,/~'~, the inequality 

frO Tij Zij~aijkl(X)'Clj Tkt~#~l "Cij'Cij, Vz~Rs ,  x~O.  

Letting tr=(trij ) be the stress tensor defined by aij=C~jk, (31Uk, we can write 
(1.1) as 

(1.2) i~i--Sjaij=f~ in O •  T], 

tTij = Cijkl ~l Uk in l] x [0, T], 

u(x, t ) = 0  on ~f2 x [0, T], 

u(x ,O)=u~ f i (x ,O)=ul(x)  in O. 
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It is well-known that the problem (1.1) - or (1.2) - has a unique solution (cf. 
e.g. [14]). Moreover, under standard smoothness and compatibility conditions 
on the data, one can prove e.g. that 

m + !  

ue n C " + ' - k ( [  0, T];HknH~)  , 
k = O  

where m is a nonnegative integer depending on the data. Thus, we shall assume 
in the sequel that the data of (1.1) are smooth and compatible enough to allow 
a unique, smooth enough for our purposes, classical solution u of (1.1) - or 
(1.2) - to exist. 

Let now we V. The first equation of (1.2) gives 

(fi, w) - (d iv  a,w)=(f ,w).  

If we denote by eij the symmetric tensor eij(v)=�89 we have tri~ 
= Cijk~ e~(U), and consequently e~j(u)=aijk~ trkt. For x~Hsd, by Green's formula 
and the symmetry of Z we can write the second equation of (1.2) as 

where 
a(a,~O+(u, divz)=O, z6H~ d, 

a(a, Z).'= ~ aijktOkl ZIj=(A o ", X). 

Combining these relations we obtain the "displacement-stress" mixed formula- 
tion of the elastodynamics problem (1.t)-(i.2): Find (u, ~r): [0, T] ~ Vx Hsd such 
that 

(1.3) (i~,w)-(divtr, w)=(f ,w),  VweV, 

a(tr, Z)+(u, div z)=O, V;t6H~d, 

u(x,O)=u~ a(x,O)=ul(x) in O. 

The finite element spaces 

During the last decade many contributions have been made in the area of 
mixed finite element discretizations of the corresponding to (1.3) stationary prob- 
lem, i.e. the equations of lineal elastostatistics (of. e.g. [1-4, 17, 21-23]). A basic 
difficulty for the construction of effective mixed finite element spaces for this 
problem is the requirement of symmetry for the elements of Hsd. In [3] Arnold 
et al. have constructed a class of high order finite element spaces for N--2 .  
Letting Vn, Hh approximate V and Hsd respectively, they use for H n composite 
elements to ensure that H n c Hsd, and that V h, H h satisfy the so called commutative 
diagram property (cf. [3]) (see also [17, 21, 22]). An alternative approach has 
been taken in [2] and [23], where nonsymmetric approximations for the stress 
tensor are used and a weak symmetry condition is imposed using a Lagrange 
multiplier (cf. also [1]). Finally, in a recent paper, Arnold and Falk [4] change 
the mixed formulation introducing a new variable, the "pseudostress" p, which 
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is not symmetric any more. If we know p then the stress tensor a can be calculat- 
ed directly without differentiation. 

Here we suppose that we have at our  disposal a couple of finite element 
spaces Vn and Hh that satisfy the assumptions (FEI), (FE2) below. These are 
satisfied by the spaces of [3] and of [17, 21, 22]. Furthermore our error analysis 
can be applied, with proper modifications, if we choose for the space discretiza- 
tion the formulation of Arnold and Falk [4] (cf. below). It is also straightforward 
to see that all results and techniques of the present paper can be applied to 
mixed finite element discretizations of scalar wave equations. 

In the sequel therefore, we shall deal with finite element spaces that satisfy 
the following properties. For  h > 0  (spatial discretization parameter) consider 
a family of couples Vh, Hh of finite dimensional subspaces of Vand Hso, respec- 
tively and suppose that: 

( F E I )  For  w H  1, let ~=Ce(v) .  Assume that the pair of " elliptic projections" 
P1 v, fil 1 ~, ( P1 v, 1"-11 ~ )~ g h • H h, of v, ~, exists uniquely a solution of the stationary 
problem in Vh x Hh : 

(div H 1 ~, w) = (div Ip, w), V w e Vh 

a(Hl~b,z)+(Plv, divz)=O, VZeHh. 

(FE2)  For  r integer, r > 2, the elliptic projections satisfy: 

and if ~ = Ce(v) 
(D I IHI~-~I ]  ~chSItOlls, l ~ x ~ r .  

Summary of  results 

In Sect. 2 we consider the semidiscrete problem resulting from (1.3) posed on 
Vh • Hh and prove that the error of the semidiscrete approximations (Uh, Oh) 
is of optimal order in L z, i.e. that 

HU--Uhll + IIo-Ohll <ch r, 

provided Uh(0) and fih(0) are taken to be, respectively PI u~ and P~ u 1. Next 
we construct fully discrete schemes of second and fourth order of accuracy, 
that are based on rational approximations of the cosine (cf. [6, 8]). In each 
time step the calculation of the approximations (U", ,~")~-(u(t,), a(t,)), t, = n k, 
n=0 ,  1, ..., J with ta = T, requires the solution of a linear system with positive 
definite matrix. Moreover, we prove that the approximations satisfy 

max (llu(t.)--U"lI+lla(t.)--F."ll)<c(hr+k~), v = 2 , 4 ,  
O<_n<_J 

provided the initial approximations are accurate enough. In [12] Cowsar et al. 
consider the analogous mixed formulation for the scalar wave equation. For  
the semidiscrete problem they prove an optimal-order L 2 error estimate, for 
the approximation of u, taking as uh(O) and tih(0 ) the L2-projections on (the 
analog of) Vh of their initial data. Moreover they show the stability of a condition- 
ally stable two-step fully discrete scheme. 
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In Sect. 3 we consider the "velocity-stress" formulation of the problem (1.3): 
If we v = fi then the pair (v, a): [0, T]  ~ V• H~d satisfies: 

(1.4) 0), w)--(div a, w ) = ( f  w), Vwe V 

a (6, Z) + (v, div X) = 0, V X ~ Hsd- 

a(x,O)=Ce(u~ v(x,O)=ul(x) in O. 

This formulation has been proposed by Geveci [15] for the discretization of 
the scalar wave equation. In [15] Geveci analyzes the corresponding to this 
formulation semidiscrete problem for the wave equation and proves optimal 
convergence results for the error of the semidiscrete approximation. Here we 
first prove that the semidiscrete approximation of (1.4) in Vh X Hh satisfies an 
estimate of the form 

IlV--Vhll + [la--ahll <ch', 

provided IIv(0)- vh(0)ll + II~(0)- trh(0)]l = O(h'). Next we consider fully discrete 
schemes that are based on rational approximations to the exponential (cf. [5, 
7]), of order v=2,  3 or 4. Let (V", S") be the approximation to (v(t,),a(t,)) 
generated by these schemes. If in addition to (FE1), (FE2) we assume that 

(FE3) div H h c Vh, 

we can prove the following error estimate 

max (llv(t.)-V"ll+ll~r(t.)-S,"ll)<=C(hr+k~), v=2,  3,4. 
O<_n<_d 

if accurate enough initial approximations are given. Note that (FE3) holds 
for the mixed finite element spaces that satisfy the commutative diagram proper- 
ty. 

In [13] Douglas and Gupta analyze the superconvergence of semidiscrete 
mixed finite elements for the equations of elastodynamics. Finally for work 
on semidiscrete mixed finite element approximations to parabolic problems cf. 
Johnson and Thom~e [18]. 

Arnold-Falk discretization 

In [4] Arnold and Falk approximate instead of a the (nonsymmetric) pseudo- 
stress tensor p defined by 

p =(C+flD) grad u, 

N 

(recall that a = C grad u), where Dr  = t r ( r ) I - T  T, t r (z)= ~ vii, and fl is a positive 
i = 1  

constant that has been chosen so that C+flD is invertible and so that the 
inverse B satisfies 

[22 ZijZijN~Bijkl(X) ZijY, klS~#3 Tij'gij, VzeR N, xEO, 
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where #2, #3 are positive constants. Since now div D r = 0 ,  Z~RN, the first equa- 
tion of (1.2) yields 

ili --  t~j Plj =f / ,  

so that (u, p)r Vx H (H = H(div; f2)) satisfies 

(1.5) (//, w ) -  (div p, w)= (f, w), ~/w E V, 

(Bp, z)+(u, divz)=O, Vz~H. 

For the space discretization of these equations one may use tensor products 
of the spaces used in the mixed finite element discretization of scalar elliptic 
equations (cf. e.g. [10, 11, 20] and the references in [9]). There exist such spaces 
satisfying the assumptions (FE 1)-(FE3). Consequently our analysis of Sects. 2 
and 3 can be applied - with the obvious modifications - to analyze semidiscrete 
and fully discrete temporal approximations of (1.5). 

2 Displacement-stress discretization 

We first consider the continuous in time finite element approximation of the 
solution of the problem (1.3). Let (Uh, ah): [0, T] -~ Vh • Ha be such that 

(2.1) (/i h , w) -- (div ah, w) = (f, w), V w ~ Vh, 

a(ah, Z)q-(Uh, div Z)=0, V Z ~ H h ,  

uh(O) = u ~  c~h(o) = u~, 

where u ~ and u~ are approximations of u ~ and u 1, respectively, in Vh. 

Discretization operators 

For thepurposes of the error analysis we introduce two discretization operators 
D and D, as follows: Let D: V~  H h be defined for v ~ V by 

(2.2) (/3v, ;0 = (v, div Z) VXeHh. 

It is straightforward to see that the above relation defines/3 uniquely. In fact, 
the element D v ~ H  h is the solution of a linear system with a dim H h x dim H h 
matrix with elements (~'i, ~kj), where {~,i} is a basis of Hh. We also define the 
operator D: Hsd--~ Vh, given for "C~Hsd by 

(2.3) (D z, w) = (div z, w), V w E l/h. 

We consider now the operators 

D/3: V-* Vh and /~D: Hsd ~ H h. 
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Note that D/3 and /3D are symmetric and positive semidefinite with respect 
to the U-inner product in Vh and Hh, respectively. Indeed, (2.2) and (2.3) give 
forv, we  Vh 

(D/3v, w) = (div/3v, w) = (/3 v,/3w) 
and consequently 

(D/3 v, v)=(/3v, /3v) >= O. 

Analogously, for z, ZEHh w e  have 

and therefore 
(/3D z, Z) = (D z, div Z) = (D z, D ~0 

(/3Dz, z )=(Dz,  Dv)>O. 

Finally we observe that for wc  Vh, Z~Hh there holds 

(2.4) (/3 w, ~0 = (w, div Z) = (w, D Z). 

Semidiscrete approximations 

Using these discretization operators the problem (2.1) takes the following form: 
We seek (Uh, ah): [0, T] ~ Vh x Hh such that 

(2.5) fih -- D ah =fh, 

/3Uh q- A ah =O, 
u ~ ( 0 )  = u ~  a ~ ( 0 )  = u 1 , 

where fh is the U-projection of f in V h. The operator DA-1/3  is symmetric 
and positive semidefinite on (Vh, (', ")), and thus (2.5) has a unique solution. 

We now prove the following result. 

Theorem 2.1. Let (u, tr) be the solution of problem (1.2), and (uh, ah) the solution 
of (2.1) with initial conditions u ~ = PI u~ and u~ = P1 ul. Then 

{ {i )1 2) I[u(t)--uh(t)l[ + Ha(t)--ah(t)t] <ch  r []u(t)[j,+l + ][/~(s)H 2 ds . 

Proof We shall compare the solution of the semidiscrete problem (2.5) with 
the pair (P1 u, H1 a)~ Vk • Hn defined in ( F E I ) .  Let 

P1 u(t)= w(t), 1I 1 a(t)= ~(t). 

Then, denoting P: U ~ Vh the L z projection operator onto V,, using ( F E I )  
we have 

fr ( t )  - D ~ (t)  = ff ( t)  - -  n i i  ( t)  + fh  (t)  

and 

(2.6) /3 w(t) + A ~ (t) = O. 
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From these relations and (2.5) we obtain the error equations 

~(t) -- D t/(t) = P fi (t) -- fi) (t), 

/3e(t)+ Atl(t)=O, 

where e = Uh--W and r/= ah--4. Differentiating the second equation with respect 
to t we obtain 

O'(t) - -  D t/(t)  = P fi (t) - -  fi) (t), 

/3~(t)+ Afl(t)=O. 

Taking the L2-inner product of this system with (~, r/)~ V h • Hh we have 

(~', ~) - ( D  t/, ~) + (/3 ~, t/) + (A O, ~/) = ( P / / ( t )  - -  ~ (t), ~). 

Since (D t/, ~)= (t/, I3 ~), using the fact that A is symmetric we have 

d 
dt {l[~ll2 +(A r/, rt)} < IlPiJ(t)-gf(t)[12+ II~lb 2. 

Hence we conclude, since A is positive definite on Rs 

~ t  {11@tl2 + Ilep[2+(Arl, ~/)} < IIPii(t)-fc(t)[12+2{H~ll 2 + IleH 2 +(A n, r/)}. 

By Gronwall's lemma and (FE2) we therefore have 

N~( t)ll2 § lie( t)ll2 § [l~/(t)ll2--<c(ll~(0)ll 2§ lie( 0)112§ ll~l(O)ll2) § i Ilft(s)ll 2ds" 
o 

The particular choice of the initial data gives that H~(0)[[2 + He(0)l[2 + 1[~/(0)]]2 =0;  
hence we obtain the desired result using once more the assumption (FE2). [] 

Note that for given v ~ H  1, Ply,  I I I ~ = H  ~ Ce(v), can be computed as the 
mixed finite element solution in Vh X Hh of a stationary problem. For the efficient 
solution of the resulting linear system we refer to [9] and the references therein. 

Fully discrete approximations 

For the time discretization of (2.5) we shall use rational approximations to the 
cosine. Specifically we shall consider rational functions of the form, cf. [8] 

r(x)= 1 +Pl  x2+p2 x4 
l+qlx2q._q2x4 , ql ,q2>O, 

where we assume that r(x) is a fourth-order accurate approximation to the 
cosine, i.e. p l=q~- l /2 ,  p2=q2-ql /2+l /24,  and that, for stability purposes, 
the pair (ql, q2) belongs to the stability region ~ of the q~, q2 > 0  quarterplane 
of Fig. 1 of [-8]. 
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Let now k > 0  be the (constant) time step, t .=nk ,  n=0,  1 . . . . .  J, with t j=T .  
From the approximation property of r(x) we have, for any smooth function 
y=y(t) ,  

(I--qx k2 82 + q2 k4 84)(y n+ l + y"- ~)= 2 ( I - p ~  k2 82 + p2 k" 8~) yn q-O(k6 y(6)), 

where y" = y(t,). 
Using (2.5) we have 

82, uh =Dah+fh 
and 

8~ Uh = 82, D a m + 82fh = - -  DA - '  D ii h + 82fh = - -  DA - '  DD ah -- DA - '  Dfh + 82fh �9 

Motivated by these equations we may now discretize the first equation of 

(2.5) as follows: Denoting by 2; x Hh the fully discrete approximation of 

u and omitting terms of O(k6), we are led to 
(t.)~ 

~ ( t . ) /  

U ~+1 - - 2 U " +  U ~-1 - - k 2 D ( q l  X n + l  - -2pl  Z"+q~ X ~-1) 
- - k 4 D A - l b D ( q 2  z~ n+l --2p2 Zn-l-q2 Z~ n-l) 

=k2(q~f  "+ ~ - 2px f"  + q ~ f ' -  x) + k4 DA-  ~ b(q2f"+ ~ - 2p2f"  + q2 f  "- ~) 
3_~ ~2 ~,. - k * ( q l - 1 2 J  J , 

where f "  :=fh(t.), 62f ~ = k-  z ( f ,+  ~ _ 2f" + f " -  1). 
For  the discretization of the second equation of (2.5) we just obseve that 

it implies 
(k2 ql + ka q2 DDA - 1)(Du~,+ 1 + A a~ + 1 -- Du~,- 1 -- d a~- 1) =0. 

Using these equations, we can now state the fully discrete scheme that defines 

( U )  [U"~(u ( t . )~  For  some l _ < n < J - - 1 ,  let the approximations X sVhxHh '  \X"] \a(t.)]" 

X ~ Vh x Hh, O<j<= n< J- -  1, be given approximations of {u(tj)~ Define then 
- \ ~ ( t j ) ] "  

X.  + ~ ] as solution of the linear system 

[U "+ U" V "-1 . 

where R~, R2, S are linear operators on Vh X Hh defined by 

I - k 2 q l D - k 4 q 2  DA-1DD~ 
R1 = k 2 q l b + k 4 q 2 ~ D A - 1  ~ k 2 q l A + k 4 q 2 D D  ]' 

S=(/O - k 2 p ' D - k ' P 2 0  D A - ' D D ) ,  

and 

=[-k2k I - k 2  ql D - k 4  q2 D A -  l bD] 
R2 q l b - k 4 q 2 b D d - l b  - k 2 q l A - k 4 q 2 D D  }' 
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and where by F" we denote 

F,=(k2(qlf .+ l _ 20 , f ,  + q , f , -1))  

+ (k'* DA-'D(qzf "+'- 2p2f" +0 qzf"-')-k4(ql- l~z)62f ") . 

/u 
We see that at each time step the calculation of k,y,+~] needs solving a 

linear system with a positive definite matrix. To see that R~ is positive definite 

on Vh x Hh with respect to the inner product defined for (wll, (w21eVx Hsd 
by \Zl] \~2, I 

W 2 ,2, 

/w\ 
let [Z)e  Vh X Hh, and observe that 

((RI (zW),(7)))=(w, w)--k2 ql (DZ, w)--k4 q2(DA-1DDz, w) 

-1- k2 q 1 (D w, Z) + k4 q2 (DDA - 1/~ w, Z) 

+ k2 ql (A z, Z) + k4 q2(DD z, Z). 

Since A - i is symmetric we have, using (2.4), 

(D .4  - ~ ~ O  X, w) = (x ,  ~ O A  - ' t~ w). 

Hence, since A is a positive definite, 

W,W (;)+0 

Note on implementation 

Regarding the question of solving the linear system 

(a) (2.7 a) RI = b 

on Vh X H h we make the following observations. Letting 

(2.7b) k2 qx A Y+ k4 q2 DD Y=, Y, 

we see that 

(2.7 c) X = D A  -1 ~'+a 
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and 
I'+k2q, DDA -a ~-+ k4q2 DDA - 1DDA- 1 ~_~, 

where ~ =  b -  (k 2 ql D + k4q2 DDA - 1D)a. I f  Lo:=DDA - 1 ,  then the above  linear 
system becomes 

(2.7 d) (I + k 2 ql Lo + k4 q2 L 2) Y= ~. 

Hence  the compu ta t i on  of (X, Y) requires the solut ion of the linear systems 
(2.7d), (2.7b) and comput ing  X by (2.7c). 

In the special case where 1 + q~ x 2 + q2 x4 = (1 + c~x2) 2, c~ > 0 these are the 
schemes cons t ruc ted  in [-6] - the system (2.7 d) becomes  

(I +o~kZ Lo) z ~'=~. 

Then,  if we assume that  (FE3) holds, we m a y  conclude tha t  to compu te  ~" 
f rom the above  we have to solve two systems, with symmetr ic  positive definite 
matr ix ,  of  the form:  Find YI~Hh such that  

(AY1,z)+c~k2(div Yl,div z)=(bl,Z) ~/ZGHh. 

Analogously ,  the system (2.7b) has the form:  Find Y~H h such that  

2o~k2(Ay, z)+~x2k4(div Y, div Z) = (Y, Z) VZ~Hh. 

Consistency of the Scheme (2.7) 

In the convergence p roof  tha t  will follow, we shall compa re  the app rox ima t ion  

U" ,, . . (/)1 u(t.)]= [w"~ For  this purpose  we est imate [ , ]  to the elhptlc p ro jec t ion"  \ii1 a(t,)] \3"] \z//a"\ 
first ~7")' defined by 

.,(: ) 
Using  (FE1) we see that  for every n (2.6) implies tha t  7"=0 .  On the other  

hand,  

(2.9) a .=(w .+12w.+w. -1 )_k2D(q l  ~.+l _ 2 p  I ~ " + q l  ~ . -1)  

_kg DA- a ~D(q2 ~n+ l _ 2 p 2  ~n w q 2 ~n- 1). 

To est imate the first te rm of the r ight -hand side of  (2.9), we write 

(2.10a) w "+ 1 _ 2w" + w"-  1 = p (w .+  1 _u.+ 1)_2P(w._u.  ) + P(w"- 1 - u " -  l) 
+ p(u.+ 1-2u"+ u"-  1) 

= , a ]  +P(u "+ 1-2u" + u"-  1), 
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where ( F E 2 )  gives that 

(2.lOb) ][a'~ II ~ Ck2 hr sup ]IO~ u(s)]]r. 
sE[t n l , t n +  1] 

For  the next term of the r ight-hand side (2.9), we see, using ( F E 1 )  and the 
definition of D that  for WeVh 

(D ~", w) = (div ~", w) = (div a", w) = (D a", w), 

i.e. D~"=Da". Hence using (1.3) 

(2.10c) --k2D(ql ~"+l - -2Px ~ " + q l  ~ , - 1 ) =  _k2D(q l  a,,+X 2pl a . + q  t an-l)  
= -k2pO2(q l  u "+1 - 2 p l  u"+ql u "-1) 

+ k2 (q l f  "+ ' - 2 p l f "  + q l f ' -  '). 

Finally, for the est imation of the last term of (2.9) using again (FE1) ,  the 
first equat ion  of (1.3) and the definition of (w", ~"), we first have 

(2.11 a) DA- 1DD ~" = D A -  ' DD a" = DA - '  b(O 2 P u " - f " )  

=DA-1D(P--P1)O~ u"+DA-1DO 2 w " - - D A - '  Df" 

= D A - '  D(P--PO 02 u " - D O  { r  - '  Df" 

=DA -10(P--P~)  02 u" -PO~ u"+f~2)"--DA-'  Df". 

N o w  using the definition of D,/~ and ( F E 2 )  we obtain,  for co~Vh, 

(2.1 lb )  (PA- lb(P- -P~)OZtu" ,~o)=((P-POO{u" ,DA- 'b~o)  

<= C h ~ 110 2 u"ll, IIDA -1/5 (o II, 

Next,  for the terms containing second derivatives o f f  we have in view of (2.9), 
using that  q 2 - P 2  =(qx - 1/12)/2, 

(2.11 c) (q2f  t2~" + 1 _ 2 p2 f  ~2~" + q2 f  (2~" - l) = q2 (ft2).  + l _ 2f~2~, + f (2 ) , -  1) 

+ (ql -- 1 /12)(f  r -- 62f  ") + (ql -- 1/12) 62f  ", 

where 

(2.11d) 

and 

(2.11 e) 

k 4 IIf ~2)"+ ~ - 2 f ( 2 ) "  + f  ~2)"- 1 II <=ck 6 sup 1104f(s)lL, 
S ~ [ t n -  l tn4  1] 

k 4 llf~2)"-g2f"ll <~ck 6 sup II O,4f(s)/I. 
s~[ t  n -  a , t n +  t] 

Finally, since the cosine scheme that  we have in mind is four th-order  accu- 
rate, we have 

(2.12) l iP( I -q1  kZO2t +q2 k4O4t)( u"+' + u " - ' ) - 2 P ( l - p ,  k2 0,z + p2 k*O, 4) u"lj 
<=ck 6 sup 110 6 u(s)H. 

Sff[t n -  1 tn+  1] 
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Combin ing  (2.9), (2.10 a-c),  (2.11 a-e)  and (2.12) we conclude 

(2.13) a n = k 2 ( q l f n + 1 - 2 P l f " + q l f " - 1 ) - t -  k 4DA -1/~(qzf ,+ 1 _ 2 p z f ,  + q z f " - 1 )  

- k 4 ( q l - ~ Z ) ( ~ z f  n d" 

where 

(2.14) ](d",m)l<cl(u,f)kZ(k4+hq(lle)N+kZllDA aDcoll), V(OeVh, 

with c , ( u , f ) = c  sup (]1~? 2 u(s)ll~+ 1)? 6 u(s)]l + ]10~f(s)H). The  Eqs. (2.8), (2.13) and 
se [0, T] 

(2.14) contain  the consistency p roper ty  of  our  scheme that  will be required 
later. 

Convergence. 

Let E" = U" - w", Z" = S" - -  4" and, for 1 _< n _< J,  

~n=iiEn En-ll[2+k21lZnq_Zn-ll[2+k2 iizn zn-~ll2 

+ k 4 l ID(Z"+ Z"-~)l[ 2 + k 4 [ ID(Z"-Z"-  t)l[ 2. 

We are now ready to state and prove  the following op t imal -o rder  convergence 
result for our  scheme. 

Theorem 2.2. Assume that so , S1 are given elements of Vh X Hh, chosen so 
that 

(2.15) DUJ+ASJ=O, j = 0 ,  1 

and 

(2.16) ~1 +k  2 ilEO[]2~ck2(k,, +hr)2. 

Then, for every n, 2 <_ n <_J, X" e Vh X Hh exists uniquely as the solution of (2.7). 

If(q1, q2) belongs to the stability region ~ of Fig. 1 of  [8], and in addition ql > 1/4, 
and k is sufficiently small, there exists a positive constant c, independent (if k 
and h such that: 

max (liE"l] + ]lZ"ll)<c(u,f)(k4+h r) 
O<n<_J 

and 
max  (Hu"-  U"ll + Ilrr"-S"ll)<c(u,f)(k4+h% 

O<n<=J 

Proof. We have  a l ready seen that  given , \ Z , - 1 ]  we may  compu te  \2,+11 

as the unique solut ion of the linear system (2.7). 
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Subtrac t ing  (2.8) f rom (2.7) and  using (2.13) we obta in  the er ror  equat ion:  

IE.  

where d"~Vh satisfies the es t imate  (2.10). Next,  take the ((., .)) inner p roduc t  
of  bo th  sides of  (2.13) with the vector  

Z" E" + l _ E " -  1 ) + 1 __ 2 ( p z / q 2 )  Z n + Z n - 1/ ,  

and obta in  

(2.18) ( E n + I - - 2 E " + E " - X , E " + I - - E  " -1)  

- k 2 ( D ( q l  Z " + a - 2 p l  Z " + q l  Z " - I ) , E  " + I - E "  1) 

- - k  4 (DA - 1 D D  (q2 Zn + 1 _ _  2 P2 Zn + q2 Z n -  1), E "  + 1 _ E " -  1) 

+ k2(ql ~ ( E , +  1 - E " -  1), Z , +  1 - 2 ( p 2 / q 2 )  Z " + Z " -  1) 

+ k4(q2 D D A  - 1 ~ ( E n +  1 _ E n -  1), Z n +  t - 2 ( p 2 / q 2 )  Z " + Z " -  1) 

+ k2(ql  A (Z  "+ 1 - Z " - 1 ) ,  Z , +  1 _ 2(p2/q2) Z" + Z " - 1 )  

+ kg(q2 ~ D ( Z n +  1 - - Z " -  1), Z , +  1 _ 2 ( p z / q 2 )  z n  + Z n -  1) 

= ( d , , E , + I _ E . - 1 ) .  

Put  now # = 2(p 1 --(Pz qO/q2) and observe tha t  

(q , /~  (E, + 1 - E " -  1), z n +  1 _ 2(p2/q2 ) Z"  + Z " -  ') 

= ( E , +  1 _ E " -  1, D(q l  Z "+ 1 _ 2 p l  Z" + ql  Z " -  ' ) )+  # ( E  "+ 1 --  E " -  1, DZ")  

and 
(qx A (  Z"+ I - Z " - 1 ) ,  Z , + 1 -  2(pz/q2)  Z"  + Z " - 1 )  

= ( Z  "+ ' - Z " -  1, A (q, Z "+ ' - 2 p l  Z" + ql Z " -  1))+ t t (Z .+  1 - Z " -  1, AZ") .  

Using  (2.4) we have 

(q2 D D A  - ' D (E" + 1 _ E " -  1), Z"  + 1 __  2 (Pz/q2) z n  + z n  - 1) 

= (E" + 1 _ E " -  1, D A  - ' DD (q2 Z" + 1 _ 2 P2 Z"  + q2 Z " -  1)). 

We now observe  that  the second c o m p o n e n t  of the vector  equat ion  (2.17) 
gives for 1 < n < J -  1, 

(k2 q ,  + k4 q2 O D A -  ' ) ( ~ ( E " +  ' - E " -  I ) +  A ( Z " +  ' -  Z " -  I))=O. 

In view of (2.15) this implies that  for O < n < J  

( k2 q l A + k 4 q2 DD) A - 1 ( ~ E  n + A Z " )  = O, 

f rom which since the ope ra to r  /3D is posit ive semidefinite o n  n h ,  q l ,  q2 > 0  
and A is posit ive define on  R~, we have for every n, 0 < n < J, that  

(2.19) D E " + A Z " = O .  
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Consequent ly ,  

p(DZ",  E "+ i - En- I )= /~(Zn, /~(E "+1 - E / l - ' ) ) =  - #(Z", n (Z n+ 1 _ Z , -  2)). 

Combin ing  the above  relations, we see that  (2.18) becomes,  for 1 < n-< J - 1  

(2.20) ( E " + I - 2 E " + E " - I , E " + I - E  "-1) 

+ k2 (A(Z  "+ ~ - Z " -  l), q~ Z,+ ~ _ 2pa Z" + ql Z " -  ~) 

+ k4(~D(Zn+ 1 - Z / 1 -  1), q2 Zn+ 1 - 2 p 2  Z " +  q2 Z " -  1) 

=(d/1, E , + l _ E , - 1 ) .  

Apply ing  now to (2.20) s tandard  summat ion  techniques valid for such sym- 
metric, two-s tep schemes, cf. Sect. 2 of  [8], we see that  for 1 < M_< J - - 1  there 
holds 

(2.21) ]IEM+ I _ EMIl +�89 _ p l ) ( A ( Z U +  1 +ZM), ZM+ I + Z  M) 

+ k2(ql + p l ) ( A ( Z , +  l _ZM) ,  ZM+ 1 _ Z  M) 

q- k4 (q2 - - P 2 ) l i D (  ZM+1 + zM)II 2 q- k4(q2 -]-P2)l iD( ZM+~ - zM)I] 2 } 
M 

< c ~ 1 +  ~ (d/1, E " + I - E " - I ) .  
/1=1 

N o w  (2.10), (2.19) give the es t imtate  

I(d", E "+ 1 _ E" -  1)1 

<=ckZ(k4 + hr)([]E "+1 - E "-1 [I + k 2 II D A - 1  D(E "+ a -- E" -  l)ll) 

< c k 2 ( k 4 + h r ) ( l l E " + ~ - E n - 1  [I + k2 IID(Z "+a - Z " -  ~)1[) 

<ck3(k4+hr)2+ck(llE,,+l_E.-lll2+k41lD(Z.+l_Z,, 1)[] 2). 

Since (ql ,  q2)~9~ and q~ > 1/4 we have, cf. [8], that  the coefficients of all terms 
in the left-hand side of  (2.21) are positive. Hence  

M+I  
~M+l<=c~l  + c ( M k )  k2(k3 +hr)2 + c k  ~. o ~n O<_M<_J--1.  

Hence  for k sufficiently small, (2.16) and the above  give 

M 
g M + l < c ( M k )  k Z ( k 4 + h r ) 2 + c k  ~ •", O < M < = J - 1 .  

n=l  

By Gronwal l ' s  l e m m a  we finally obta in  the desired results, using 

M 
IIEM+IlI~ ~ I{E J+I-EjlI+ IIE~ 

j=0  

(2.16) once more  and  ( F E 2 ) .  [] 
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We describe now one choice of the initial values of the scheme for which 
(2.15) and (2.16) are valid. We compute 51, #~ using derivatives of the given 
initial data by the formulas 

k 2 k 3 k 4 
5' = u ~  ku' +~.. ~, u ( O ) + ~  ~, u(O)+ 45., ,~,4 u(O). 

and 
k 2 k 3 

~ = a(O) + k t?t a(O) + ~.T t?2 a(O) + 3.T 0'3 a(O), 

and put U~ u ~ Z~  a(O) and U l=P1 51, Z l = / / 1  ~l. Then E~ Z~ 
and, using (2.6), since time differentiation commutes with the operators /3P~, 
AH1, 

bUJ+AZJ=O,  j=O, 1. 

We have at once that HEll]__< Ilu 1 - 5  ill + I[(I-P1)(u 1-~1)1[ <=ck(hr+k4), and 
II 21 II < IIo-(k) -~1  II + II(I-/ / l)(a(k)-~1)il  <=c(hr+k4) �9 

Also from the definitions of D and H1 we see that 

[I OZl  I] 2 = (OH1 (a(tx) - da), OH1 (a(t 1)- t~l)) 

= (div//1 ( a ( t O -  61), D//1 (a(t~)-- ~ ) )  

= (div (a(t 1)-  dl), D//1 ( a ( t O -  ~l)) 

ck3 IlDZ ~ I/. 

Hence ( F E 2 )  gives (2.16). 

Second order in time fully discrete schemes 

To construct such schemes we consider a rational approximation to the cosine 
of the form 

r ( x ) -  1 + Pl x2 
l + q l x 2 ,  q~>0. 

where Pl =q~- - l / 2  and assume for stability purposes that ql > 1/4. Then, for 
every smooth function y = y(t) there holds 

(I--q1 k2632)(y "+1 + y , -  1) = 2(I--pl  k2O 2) y" + O(k4y(4)). 

In a similar way as in the case of the fourth order schemes we led to the 

following fully discrete scheme for finding approximations of ( ~ /  of [utt"'] 
g ~ T n \  / [ x , \  

I, ,~ ( t.) ! \z,- /  



Mixed finite elements for elastodynamics 25l 

in VhXHh: let Sj eVhXHh, O<j<J--1 be given approx imat ions  of  \a(ti) ]. 

Then define \S"  + as the solution of the linear system 

' R ' "  " F.' (2.19) R'~\S"+~}-2S'  Z" t z~X,_~)= ,,  

where R'I, R~, S' are linear opera to r s  on Vh X Hh having the following form 

I - k2q l  D] 
R'I= k2ql b kZqlA ]' 

S '=( Io  --k;plD), 

I --kZqlD] 
R'2= _ k 2 q l b  klqlA],  

and F.' is the element  of Vh X Hh given by 

F,,:=(k2(qlf,+l 2 p l f , + q l f ,  -1) 
0 

It  is easily seen tha t  since q ~ > 0  R'I is positive definite on (Vhx Hh, ((', "))) 
and therefore invertible. If  we now let E"= U"-P~ u(t,), Z " = S " - H ~  a(t.) and, 
for 1 <_n< J, put  

g.= I[E,_E,-~IIZ +k 2 HZ,+ Z.-XHZ +k 2 IlZ"-Z"-ahl 2, 

we m a y  prove  the following result a long the same lines as the p roof  of T h e o r e m  
2.2. 

<) Theorem 2.3. Assume that No , Z1 are given elements of Vh x H h chosen so 
that 

~1 <ck2(k2 + hr)2. 

<1 Then, for every n, 2-<n-< J, 2;" exists uniquely in Vh x Hh as the solution of 

(2.19). If  ql > 1/4 then, for k sufficiently small, there exists a positive constant 
c, independent of k, h such that: 

max (IIE"II + IIZ"ll)<c(kZ+h r) 
O<_n<_J 

and 
max  (llu"-U"ll + Ila"-Z"ll)<c(kZ+h'). 

O<_n<_d 
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3 Velocity-stress discretization 

Semidiscretization 

In this section we shall study fully discrete mixed finite element approximations 
of the solution of problem (1.4), the "velocity-stress" formulation of the elasto- 
dynamics problem (1.2). We first discuss the semidiscrete approximation of the 
problem (1.4). We seek (v h, ah): [0, T] ~ Vh • Hh such that 

(vh, w)-- (div ah, W) = (f, W), V w ~ Vh 0 --< t < T, 

a((rh, g)+(Vh, divz)=O, VzeHh O<t<_T, 
v~(0) = vo. ~,(o) = ~o. 

where (v ~ a ~ is a given approximation of (v ~ or(0)) on Vh X Hh. Using the discreti- 
zation operators D and D this is equivalent to seeking (Vh, t~h): [0, T] ~ Vh X Hh, 
such that 

(3.1) l Jh - -Dah=fh ,  O<__t<__ T, 

vh(O)= ~o, ~(o1= ~o, 

where fh is the L2-projection of f in V h. We now define the operator ~h on 
V h • H h as  

Then the two differential equations in (3.1) can be written in the form 

o [ v , \ _ ~  /v,\  [fh\ 

For  the needs of the error analysis we define the following bilinear form 
on V• Hsd : 

W1 , W2 

Since A is symmetric and positive definite, ((., .))A is a inner product on V• Hsd 
equivalent to the inner product (( . , .))  defined in Sect. 2. Furthermore observe 
that 

and 

Hence, using (2.8), we have 

((~hx. Y))A = - ((x. ~h Y)h. V X , Ye Vh x H h , 
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i.e. ~h is antisymmetric on Vh • Hh. As a consequence, 

((~h X, X)) A = 0 ,  V X  E V h • n h . 

If (u, a) is the solution of (1.2) let w(t).'=P~ u(t) and r  t a(t). Since time 
differentiation commutes with the operator P~, letting z(t):=ff(t),  we have 

z(t)=P1 ti(t)=Pl v(t). 

Differentiating the second equation of (FE  I )  with respect to t we obtain 

(3.3) (div~(t) ,q)=(div~r(t) ,q) ,  Vqe Vh, te[-0, T], 

(A~( t ) ,Z )+(z ( t ) , d i v z )=O,  VzEHh, tEl-0, T]. 

We shall compare the solution of the semidiscrete problem (3.1) with the element 
(z(t),~(t)).'=(P1 v( t ) , l l l  ~r(t)) of Vh• and prove the following result, which 
is the analog in the case of the elastodynamics equations of the result of Geveci 
[15]. 

Theorem 3.1. Let (v, o) be the solution of (1.4), where v = f,. I f  (Vh, Oh) is the solution 
of  (3.1) then 

Hv(t)--vh(t)]] + H(r(t)--(rh(t)]] <C([IvO--vh(O)][ + []Cr ~ 

{/ ~,2 
+chr(llvollr+ {Io'-~ (I]o-(s)l]2+ jlfJ(s)[12)ds~ �9 

Proof  Let (z(t), ~(t))e Vh • n h be as above. Then ( FE 2 ) gives 

(3.4) r - A-- 

Using now the definitions of z, ~ and Eqs. (3.3) we have 

z z a z D~ 

where D ~ = D ~ and 

(Sz, z)= -(A~,z), VzEHh, 
i.e. that 

(3.5) -A- '  Sz=~. 

Using (1.4) we get the relation 

ph-q 
where P is the L2-projection in Vh x H h. Putting now 0 = \a  h -  ~], we have from 

the above and (3.2) that 

(3.6) OtO--~hO= - -PRt ,  t e l0 ,  T]. 
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Let  E t be the so lu t ion  o p e r a t o r  of the co r r e spond ing  to (3.6) h o m o g e n e o u s  
p r o b l e m  on VhXHh, i.e. deno te  by  Wh(t)=Et  W ~  the so lu t ion  of  the 
p r o b l e m  

(~t Wh-- ~h Wh=O, W h ( 0 ) = W  0, W ~  G Vh • Hh . 

Since ~h is antisymmetric on (Vh X Hh, ((', "))a) we easily obtain 

IIIWnlll = lllE, W~ = III W~ 

Duhamel's principle gives now that the solution of (3.6) is 

O(t) = E, 0(0) - i E,_,  PRt(s) ds. 
0 

Hence 

Since now 

IIiO (t)l[l~ ~ IIIE, o (o)IllA+ i IIIE,-s PR,(s)]II~ ds 
0 

< IIIO(O)II[A + i IIIe,(s)lll,4 ds. 
0 

IIIR,(s)IllA = II~(t)--~(t)ll ~ c h  r II~llr, 

we comple te  the  p r o o f  using (3.4) a n d  that  the  n o r m s  Ill'IliA and  Ill" Ill are  equiva-  
lent. [ ]  

Fully discrete approximations 

Since the operator ~h has purely imaginary eigenvalues it is reasonable to discre- 
tize (3.2) in time using rational approximations of e i~, x e R  [-5, 7]. 

To this end consider a rational function ~(z) which is an up to fourth order 
accurate approximation of exp(z). Let ~(z)= P(z)/Q (z) where P and Q are relative- 
ly prime polynomials of degree up to two, with the following properties: 

Ri  3v, l _ < v < 4 :  Ie(z)-eZl<clz[ ~+~, z ~ ,  
Ri i  I~(z)l < 1, for every z ~ i R .  

I t  is a s t r a igh t fo rward  consequence  of  R i i  tha t  there  holds  

Ri i i  Q(z)+O, f o r e v e r y  zei~,~. 

Examples  of m e t h o d s  tha t  satisfy these a s s u m p t i o n s  are  given in the fol lowing 
table  [7],  in which  P ( z ) =  1 + p~ z + p2 z 2, Q ( z ) =  1 + ql z + q2 z2. 

Approximations of e z v ql q2 Pl P2 

Euler 1 - l 0 0 0 
Crank-Nicolson 2 -- 1/2 0 1/2 0 
Calahan a 3 - 2 2  22 1 --22 22 - 2 2 +  1/2 
Pad6 2 - 1 1/2 0 0 
Pad+ 3 - 2/3 1/6 1/3 0 
Pad6 4 - 1/2 1/12 1/2 1/12 

2=(1/2) (1 + 1/]~) 
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A consequence of Ri is that for every smooth function y=y(t) and k>0 ,  
there holds 

(3.7) y(t + k)+ql ky'(t +k)+q2 k2y"(t +k) 
= y(t) + pl k y' (t) + p2 k2 y" (t) + O(kV+ l y (v+ 1)). 

Using (3.2), observe that 

) 
\an~ ~-- A -1  DD a d  ~--  Dfh/" 

Motivated now by (3.7) we obtain the following fully discrete scheme: Let 

be  ive. a..roximations of We define \a(O]" 
V,+1\ 

ll~Vh • H h as the solution of the linear system Z,+ ] 

(3.8) 
V n + 1 V n 

where d ,  ~ are linear operators on Vh x H h defined by 

and 

=Q(k~h)=/I-kZq2, DA - '  d 
\ --kql A 1D 

= P ( k ~ h )  = ( I  - -  k 2 P2 DA - 1 
\ --kpl A-1D 

kqxD ) 
I - -  k 2 q2 A - 1DD 

kplD ) 
I - - k  2p2A-1DD ' 

and where by ~ "  we denote 

[k(q, f  "+' -Pl.f")+ k2(q2f (')"+' -P2f(') ')] 
~ - \  _ k Z A - ' b ( q 2 f . + ' _ p 2 f . )  }" 

Since d = Q(k~h), if {2j}~21 are the eigenvalues O f ~ h ,  2~eiN, j =  1, 2 . . . . .  M h ,  

then the eigenvalues of d are Q(k2s),j= 1, 2 . . . . .  M h. Therefore, Riii  gives that 
zero is not an eigenvalue of d .  Hence, the operator sr is invertible and we 

can compute \22. + as the unique solution of (3.8). 

Note on implementation 

For  the efficient solution of the system 
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we note first that if q2=0, i.e. d = I + q l  k ~  h, (3.8a) can be solved directly 
using block elimination: 

(3.8b) AY+q 2 k2DDY=Ab+ql  kDa 

X =  --qa kDY+a. 

For q: 4: 0, write ~r = ( I -~1 k~h)(I-  O~z k~h), where ~1, ~z are complex in gener- 
al - the roots of Q(z). In this case in order to compute (X, Y) we have to 
solve two systems of the form (3.8b). 

Another alternative for solving (3.8a) is a preconditioned iterative method, 
similar to the one analyzed by Bales in 1-7] in the case of Galerkin approxima- 
tions for the wave equation. The basic steps of this method are as follows: 
First, consider an equivalent form of the system (3.8 a), 

b '  

where ~r is the adjoint of ~r The matrix of the system (3.8c) is symmetric 
and positive definite. Solve (3.8c) with an iterative method in which the calcula- 
tion of an approximation (X p § 1, yp + 1) to (X, Y), given (X j, Y J), 0 <j < p, requires 
solving systems involving only a matrix A0 - the preconditioner - with certain 
properties, cf. [7], and such that A o l ~ ,  ~Vh•  can be computed easily. 
In our case an appropriate choice of A o is Ao = ~ ,~'0, where ,~'o = I - ~ 2  k2 ~ 
for some real number ~, i.e. where 

d o  =(I q- k2 0~2 DA-  l b 0 ) 
0 I+k2cz2A-aDD " 

J o  is symmetric and positive definite on (Vh • Hh,(( ' ,  "))a) and thus Ao=~40 z. 
We conclude therefore that the computation of Aoa~b requires solving two 
systems of the form: Find (X, Y)~Vh • Hh such that 

~ +k2e2 DA- l O ~ = a l  

ATY+ k2 ct2 ~D ~=bl. 

Stability 

Since ~ =  P(k~h), the eigenvalues of ~ are the numbers P(k2j), j =  1, 2 . . . . .  Mh. 
Let {~j}~--"l be an orthonormal system of eigenvectors of ~h with respect to 
((', "))A extended for complex elements as 

W 2 ,wx 
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If tPeVh• with t / '=~c;q~j ,  then Illdq'l][~= IQ(k,~,j)12Jcj] 2 
J J 

III~UlIIA= IP(k,tj)lZlcjl 2 . Hence, using Rii, we have 
. =  

(3.9) II1~ '/q L, __< II1~ q'lltA, VtlteVh• . 
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and 

Consistency 

<) We shall compare the approximations X" with the element \H~ a"]-'\~"] 

Vh X H h. For this we need an estimate for 7] ~ Vh x H h, defined by 

f Zn + 1 zn n 
(~ - - .  a l  (3.10) 

We have 

(3.11) ( a]~=(  z"+l--z "+kD(q x ~"+1--pl r ~_[k2DA-a f(q2 z"+'-P2 z")~ 
y]] \~"+~-~"--kA-~f(q~z"+~-z")] \kZA-~fD(qz~"+~-pz~')]" 

4" we have that As we have observed before, from the definition of z", 
D ~" = D a" and the relation (3.5). Hence using (1.4), 

(3.12a) \ - A - t D z  "] 8t~ ~" )-(fo)" 

Observe also that using again (3.3), (3.5) and (1.4) yields 

- D A - I  fzn=D~"=Dd" 
and 

(3.12 b) P0,, v" = -DA -1 f z  n +fn. 

NOW note that using (1.4) and (FE3) gives 

(6, div Z)-(div ~, div Z) = ( f  div Z), V Z ~ Hh, 
and 

(~, div Z)-- (div a, div Z) = (b, div Z)-(D 4, DZ) =(fib, Z) -(fiDe, Z), VZeHn. 

Hence 

f13"=fDr 

Also, using (1.4) we see that f b " = - P A O ~ a " ,  where P: H~d-~H h is the 
U-projection. Note that for z~Hsd we have 

(A-~PAr, z)=(PAr, A-~x)=(z,Z)=(Pz,)O VZeHh, 
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i.e. that A - 1 PA = P on H~d. We finally obtain that 

(3.12c) - A  -~/SD r -~/3f"  =/3 ~ a". 

The relations (3.11) and (3.12a~z) give 

(3.13) \?u(a2]=P(I +kq~ c3t+kZq2aZt)\~r"+l] - P ( I  +kp l  c~'+k2pz~?~) va 

+ ~ . , + p ( ( F l l  (P,--I)(v "+' --v") a")) 
-I)(a"+ l-cr" + kql c3t a "+1 - k p l  (?t 

= , r , " + ~ " + r L  

Ch.G. Makridakis 

where, from (3.8) we have, 

(3.14) IIIr~"llh_<ckV+l( sup Ilay+lu(s)ll+ sup 
s e [ t n ,  t n+ J] s e [ t , , , t  n ~ 11 

and from (FE2)  

(3.15) IIIG"lllA-<_ckh'( sap II~(s)L+ sup II~(s)L). 
s e [ t n , t n +  11 S ~[ tn , t n+  1] 

Convergence 

We have now the following result: 

<) Theorem 3.2. Let that (V ~ S ~ = (z ~ G~ Then for every n, 1 <= n <= J, S" e Vh x H h 

exists uniquely as the solution of the linear system (3.8). Asuming that the rational 

function ~(x) satisfies Ri, R i i  and putting O"={V"-z"~" ~ ~ E " - ~ ] '  we have that if q2 =0 

for v = 2, there exists a positive constant c, independent of k, h such that: 

max 1110"lll4 <c(kV + h'), 
O < n < _ J  

and consequently 
max (llv ~ -  v"pl + Ila"-S"ll)<e(k~+h'). 

O<_n<<_J 

Proof Combining (3.8), (3.10-13) we have that O" satisfies 

~10  "+1 = ~ O " -  Fx"- Fz". 

From (3.9) and (3.14), (3.15) we have 

I I I dO "+ ~IIIA_-< IIl~O"lll,, + IIIq"lllA + lilts"IliA 
<__llls/O"lllA+ck(k~+h'), O<_n<_d-1. 
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Hence,  summing, we obtain 

IIIdO"llh <llldO~ +cnk(k~ + hr), 1 <n<_J, 

and since O ~ = 0  we conclude tha t  

I I IdO"l lh<  c(kV + h'), O<_n<J. 

Since ~h is ant isymmetr ic  on (Vh • Hh, ((', "))4) we have 

I[[dH[I] 2 = ((H, H)) a + kZ(q 2 - 2 q2)((V~a 71, ~ a  H))a + k4 q4 ( (~  2 H, 9 2 H))A. 

W e  see easi ly  t ha t  q 2 - 2 q 2 = > 0 ,  so tha t  for every  H ~  V h x Ha there  ho lds  

Ill HILl,,_-< lilt4 HIIh. 
Hence we have 

IIlO"llh<c(k"+h~), O<n<_J.  [] 
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