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Summary. We construct and analyze finite element methods for approximating
the equations of linear elastodynamics, using mixed elements for the discretiza-
tion of the spatial variables. We consider two different mixed formulations for
the problem and analyze semidiscrete and up to fourth-order in time fully dis-
crete approximations. I? optimal-order error estimates are proved for the
approximations of displacement and stress.
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1 Introduction
The problem

The purpose of this paper is the construction and analysis of finite element
methods for approximating the equations of linear elastodynamics using mixed
Sformulations of the problem for the discretization of the spatial variables. For
simplicity we shall consider the following initial-boundary value problem: Let
Q be a bounded domain RY (N =2, 3) with smooth boundary dQ and let 0<T
< o0. We seek a vector displacement function u: Qx [0, T]—RY, satisfying -
index notation and the summation convention will be employed throughout

(1.1) U= 0;(Cijr Q) =f; in Qx[0,T],

u(x,t)=0 on Q2 x[0, T],
u(x,0)=u’(x), ua(x,0)=ul(x) in Q,

where the elasticities C;jy, 1=16,j,k, IS N, the body forces per unit volume f;,
1<iZN, and the initial displacement and velocity u® and u' are given functions
defined on Q. (Here dots denote differentiation with respect to t and 0;=20/0x;.)
For a discussion of the physical background of the equations of elasticity (cf.
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e.g. [16]). We shall consider two different approaches for the mixed finite element
approximation of (1.1). First, in Sect. 2, we shall discretize (1.1) in space using
its “displacement-stress” mixed formulation on appropriate finite element spaces
and analyze the semidiscrete problem and fully discrete approximations thereof,
based on up to fourth-order rational approximations to the cosine (cf. [6, 8]).
Next, in Sect. 3, we shall consider the “velocity-stress” formulation of (1.1),
proposed by Geveci [15], in the case of the scalar wave equation. We shall
use mixed finite element discretizations for the space variables and base the
time-stepping scheme on up to fourth-order accurate methods generated by
rational approximations to the exponential (cf. [5, 7]).

Notation and preliminaries

Employing standard notation, for s=1,2, ... we shall use the symbol H*® to
denote the Sobolev space H ()" or H*(Q)"*V, as the case may be, with corre-
sponding usual norm |-|,; we let Hy be the subspace of H® with elements
that vanish on dQ in the sence of trace. Let (-, ) be the inner product on
V=I2(Q)" or I?(Q"*Y with associated norm |/-]] and H=H(div;Q)
={re2(Q)"*V; divteV}, where

(diV‘L')i=5j‘E,~j, i_—:l,...,N.

We let Ry=IR"*¥ be the space of second-order real tensors (N x N matrices),
R, be the space of symmetric elements of Ry, and H, be the subspace of H
with symmetric elements. Fouth-order tensors will usually be denoted by bold-
face capital letters.

We shall suppose that the elasticity tensor C=C(x) corresponds to a linear
elastic material, i.c. that its components C, ;;, — the elasticities — satisfy

Cijkl=Cjikl=Cklij

in Q. Hence, for antisymmetric second-order tensors w, there holds Cw=0,
and we have C[Ry]=C[R,J<R,. We shall also assume that the restriction
of C to R, is bounded and uniformly positive definite in Q, i.e., that there
exist positive constants uo and g, such that

Bo Tij Tij S CijialX) Ty T Sy 715 Tijy - VTER,, x€Q.

As a consequence, if A=(a;;,) is the inverse of C in R, it will satisfy, for
some positive constants ug,, i, the inequality

1 ’ )
Ho TijTijS ija(X) T T Sy T35 Tj - VTER,, x€Q.

Letting o =(q;;) be the stress tensor defined by a;;=C,j;, 6, u,, we can write
(1.1) as
(1.2) i;—0;0,;=f; in Qx[0,T],
6;;=Ciju 0wy, in Qx[0, T,
u(x,t)=0 on dQx[0, T},
u(x,00=u’(x), u(x,0)=ul(x) in Q.
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It is well-known that the problem (1.1) — or (1.2) — has a unique solution (cf.
e.g. [14]). Moreover, under standard smoothness and compatibility conditions
on the data, one can prove e.g. that

m+i
ue [} C"" X0, T]; H* N HY),

k=0

where m is a nonnegative integer depending on the data. Thus, we shall assume
in the sequel that the data of (1.1) are smooth and compatible enough to allow
a unique, smooth enough for our purposes, classical solution u of (1.1) — or
(1.2) — to exist.

Let now we V. The first equation of (1.2) gives

(i, w)—(div g, w)=(f, w).

If we denote by ¢;; the symmetric tensor &;;{(v)=4%(d;v;+0;v;), we have o;;
=C; i1 & (1), and consequently &, (u)=a, ;04 For ye Hy, by Green’s formula
and the symmetry of y we can write the second equation of (1.2) as

a(a, X)+(ua le X):O, XEHsdy
where

a(o, X)’=§ Qi1 Oy Xij=(A a, x).
Q

Combining these relations we obtain the “displacement-stress™ mixed formula-
tion of the elastodynamics problem (1.1}{1.2): Find (&, 6): [0, T} > Vx H such
that

(1.3) (i, w)y—(dive,w)y=(f,w), VYwel,
a(o, )+, div ) =0, VyeH,
u(x,0)=u(x), u(x,0)=u'(x) in Q.

The finite element spaces

During the last decade many contributions have been made in the area of
mixed finite element discretizations of the corresponding to (1.3) stationary prob-
lem, i.e. the equations of lineal elastostatistics (cf. e.g. [1-4, 17, 21-23]). A basic
difficulty for the construction of effective mixed finite element spaces for this
problem is the requirement of symmetry for the elements of H . In [3] Arnold
et al. have constructed a class of high order finite element spaces for N=2.
Letting V,, H, approximate V and H4 respectively, they use for H, composite
elements to ensure that H,< H,, and that V,, H,, satisfy the so called commutative
diagram property (cf. [3]) (see also [17, 21, 22]). An alternative approach has
been taken in [2] and [23], where nonsymmetric approximations for the stress
tensor are used and a weak symmetry condition is imposed using a Lagrange
multiplier (cf. also [1]J). Finally, in a recent paper, Arnold and Falk [4] change
the mixed formulation introducing a new variable, the “pseudostress” p, which
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is not symmetric any more. If we know p then the stress tensor ¢ can be calculat-
ed directly without differentiation.

Here we suppose that we have at our disposal a couple of finite element
spaces V, and H, that satisfy the assumptions (FE!), (FE2) below. These are
satisfied by the spaces of [3] and of [17, 21, 22]. Furthermore our error analysis
can be applied, with proper modifications, if we choose for the space discretiza-
tion the formulation of Arnold and Falk [4] (cf. below). It is also straightforward
to see that all results and techniques of the present paper can be applied to
mixed finite element discretizations of scalar wave equations.

In the sequel therefore, we shall deal with finite element spaces that satisfy
the following properties. For h>0 (spatial discretization parameter) consider
a family of couples V,, H, of finite dimensional subspaces of Vand H,q, respec-
tively and suppose that:

(FE1) For veH', let Yy =Ce(v). Assume that the pair of “elliptic projections”
Pov, I, (Pyv, 11 Y)eV, x H,, of v, Y, exists uniquely a solution of the stationary
problem in V, x H,:

(div I1, yr, w)=(div ¥, w), Ywel,
a(ll 1y, )+ (Pv, div x)=0, VyeH,.

(FE2) For rinteger, r =2, the elliptic projections satisfy:

@ [Pv—vl=ch v, l<ssr

B MHLy—ylzchyl,, 1sx=r

and if ¢ = Ce(v)

Summary of results

In Sect. 2 we consider the semidiscrete problem resulting from (1.3) posed on
V., x H, and prove that the error of the semidiscrete approximations (u,, o)
is of optimal order in I?, i.e. that

lu—upll + o —oull Sch,

provided 1,(0) and 4,(0) are taken to be, respectively P, u® and P u!. Next
we construct fully discrete schemes of second and fourth order of accuracy,
that are based on rational approximations of the cosine (cf. [6, 8]). In each
time step the calculation of the approximations (U", Z")~(u(t,), o(t,), t,=nk,
n=0,1, ..., J with t,=T, requires the solution of a linear system with positive
definite matrix. Moreover, we prove that the approximations satisfy

Jnax (lu(t)—Ul+lo(t) -2 =W +k),  v=24,

provided the initial approximations are accurate enough. In [12] Cowsar et al.
consider the analogous mixed formulation for the scalar wave equation. For
the semidiscrete problem they prove an optimal-order I? error estimate, for
the approximation of u, taking as u,(0) and #,(0) the I?-projections on (the
analog of) ¥, of their initial data. Moreover they show the stability of a condition-
ally stable two-step fully discrete scheme.
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In Sect. 3 we consider the “velocity-stress” formulation of the problem (1.3):
If we v=1i then the pair (v, 6): [0, T] > Vx H 4 satisfies:

(1.4) @, w)~(dive, w)=(f,w), VYwelV
a(a, )+, div x)=0, VyeHy.
o(x,0)=Ce(u’(x)), v(x,0)=u'(x) in Q.

This formulation has been proposed by Geveci [15] for the discretization of
the scalar wave equation. In [15] Geveci analyzes the corresponding to this
formulation semidiscrete problem for the wave equation and proves optimal
convergence results for the error of the semidiscrete approximation. Here we
first prove that the semidiscrete approximation of (1.4) in V, x H, satisfies an
estimate of the form

lo—vyll + o —0ull =k,

provided {v(0)—v,(0)]| + o (0)—g,(0)]| =O(h"). Next we consider fully discrete
schemes that are based on rational approximations to the exponential (cf. [5,
7]), of order v=2, 3 or 4. Let (V", Z") be the approximation to (v(t,), c(t,))
generated by these schemes. If in addition to (FEI), (FE2) we assume that

(FE3) divH,<V,,
we can prove the following error estimate

Jax (o) =Vl + o)== CH +k), v=2,3,4,

if accurate enough initial approximations are given. Note that (FE3) holds
for the mixed finite element spaces that satisfy the commutative diagram proper-
ty.

In [13] Douglas and Gupta analyze the superconvergence of semidiscrete
mixed finite elements for the equations of clastodynamics. Finally for work
on semidiscrete mixed finite element approximations to parabolic problems cf.
Johnson and Thomeée [18].

Arnold-Falk discretization

In [4] Arnold and Falk approximate instead of ¢ the (nonsymmetric) pseudo-
stress tensor p defined by

p=(C+pD)grad u,

N
(recall that ¢ = C grad u), where Dt=tr(t)I —1", tr(v)= ) 7, and f is a positive
i=1
constant that has been chosen so that C+ D is invertible and so that the
inverse B satisfies

Haz Tij TijéBijkt(x) Tij Tk = s Tij Tajs VteRy, xef2,
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where u,, us are positive constants. Since now div Dt=0, 1€ Ry, the first equa-
tion of (1.2) yields

i4;—0; pi;=fi
so that (u, p)e Vx H (H = H(div; Q)) satisfies

(L.5) @, w)—(div p, w)=(f,w), Vwel,

(Bp, )+ (u, div )=0, VyeH.
For the space discretization of these equations one may use tensor products
of the spaces used in the mixed finite element discretization of scalar elliptic
equations (cf. e.g. [10, 11, 20] and the references in [9]). There exist such spaces
satisfying the assumptions ( FEI )—( FE3 ). Consequently our analysis of Sects. 2

and 3 can be applied — with the obvious modifications — to analyze semidiscrete
and fully discrete temporal approximations of (1.5).

2 Displacement-stress discretization

We first consider the continuous in time finite element approximation of the
solution of the problem (1.3). Let (u,, 6,): [0, T]1 - V, x H, be such that

2.1 (@i, w)—(div gy, W)=(f,w), Vwel,,
a(oy, 1)+ (u,, div x) =0, VyeH,,
uh(O) = ul(l)a uh(0)= u; s

where uf and ul are approximations of u® and u?, respectively, in V.

Discretization operators

For the purposes of the error analysis we introduce two discretization operators
D and D, as follows: Let D: V— H,, be defined for veV by

(2.2) (Dv, )=(v,divy) VyeH,.

It is straightforward to see that the above relation defines D uniquely. In fact,
the element DveH, is the solution of a linear system with a dim H, x dim H,
matrix with elements (y;, ;), where {y;} is a basis of H,. We also define the
operator D: Hy— V,,, given for te Hy by

(2.3) (Dr,w)y=(divt,w), Vwel,.
We consider now the operators

DD: V-V, and DD: H,—H,.
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Note that DD and DD are symmetric and positive semidefinite with respect
to the I?-inner product in V, and H,, respectively. Indeed, (2.2) and (2.3) give
for v, weV,

(DDv, w)=(div Dv, wy=(Dv, Dw)
and consequently i L
(DDv,v)=(Dv,Dv)=0.

Analogously, for 7, ye H, we have

(DD, x)=(Dr,div x)=(D7, Dy)
and therefore B
(DDt,7)=(Dt,D7)=0.

Finally we observe that for we V},, ye H, there holds

(2.4) (Dw, )= (w, div x)=(w, D).

Semidiscrete approximations

Using these discretization operators the problem (2.1) takes the following form:
We seek (uy,, ,): [0, T]— V, x H, such that
(2.5) i,—Do,=fy,
5 u; + A o= 0,
u0)=up, 4,0)=u,;,
where f, is the I*-projection of f in V,. The operator DA~ 'D is symmetric

and positive semidefinite on (¥, (-, -)), and thus (2.5) has a unique solution.
We now prove the following result.

Theorem 2.1. Let (u, o) be the solution of problem (1.2), and (u,, o,) the solution
of (2.1) with initial conditions up = P, u® and uj = P, u*. Then

t 1/2
llu(t)—uh(t)ll+kIU(t)—Gh(t)Héch'{llu(t)lirﬂ +{§ Hii(S)Hde} }

0

Proof. We shall compare the solution of the semidiscrete problem (2.5) with
the pair (R u, I1, 0)e V, x H, defined in (FE1 ). Let

Ru@®=w@), I,o()=c().

Then, denoting P: I2 -V, the I? projection operator onto V,, using (FE1)
we have

Ww(t)—D &) =w(t)— Pi(t) +£,(t)
and

(2.6) Dw(®)+A4E()=0.
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From these relations and (2.5) we obtain the error equations

é(t)~Dn ()= Pi()—w(),
De(t)+ An(t)=0,

where e=u,—w and n=0,—¢&. Differentiating the second equation with respect
to t we obtain

é(t)—Dn(t)=Pu(t)—w(t),
Dé(t)+ A () =0.

Taking the [*-inner product of this system with (¢, §)e V, x H, we have
(€,&)—(Dn, &)+ (D e, n)+(A4n, n)=(Pii(t)—(z), o).

Since (D#, é)=(n, Dé), using the fact that 4 is symmetric we have
d .. . " .
T {lel? +(An, m} < Pae)—w(@)| + )
Hence we conclude, since A is positive definite on R,
% {llel* + lel* + (A n, )} < [ Pi()—w(OI* +2{1e]* + llell* +(An, n)}.
By Gronwall’s lemma and ( FE2) we therefore have
1e@12 + le@N1*+ @)1 < c(1é©)I1* + le(0)]* + |\n(0)||2)+ch2'§t li(s)lI7 ds.

The particular choice of the initial data gives that ||¢(0)[|% + {le(0)I|* + |7 (0)||>=0;
hence we obtain the desired result using once more the assumption (FE2). [

Note that for given veH!, Pv, I,y =1II, C¢(v), can be computed as the
mixed finite element solution in V, x H, of a stationary problem. For the efficient
solution of the resulting linear system we refer to [9] and the references therein.

Fully discrete approximations

For the time discretization of (2.5) we shall use rational approximations to the
cosine. Specifically we shall consider rational functions of the form, cf. [§]

14+p, x*+p, x*

rix)= 1+q, x> +q,x*’

q15q2>0a

where we assume that r(x) is a fourth-order accurate approximation to the
cosine, i.e. py=4q,—1/2, p,=q,—q,/2+1/24, and that, for stability purposes,
the pair (q,, q;) belongs to the stability region # of the q,, ¢, >0 quarterplane
of Fig. 1 of [8].
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Let now k>0 be the (constant) time step, t,=nk, n=0,1, ..., J, with ¢,=T.
From the approximation property of r(x) we have, for any smooth function
y=y(),

(I~q, k207 +q, k* 1) (y"* ' +)y" ") =2(I —p, k* 07 + p, k* 1) " + O (k® y©),
where y"= y(t,).
Using (2.5) we have

6,2 uthG'h“l‘_fh
and

0% u,=02Do,+02f,=—DA 'Dii,+8%f,= DA 'DDo,— DA™ ' Df,+3?f,.
Motivated by these equations we may now discretize the first equation of

n

(2.5) as follows: Denoting by ({)j: )e V, x H, the fully discrete approximation of

t
(:Et";) and omitting terms of O(k®), we are led to
Un+l_2un+ Un—l__kZD(ql Z"+1—2p1 2n+q1 En*l)
—k*DA™'DD(q, 2" —2p, X"+ q, I
=kX (g f" = 2p [T+ g ") +K DA D(g /T = 2p, "+ quf ")
—k*(g,—12) 0%f™,
where f"=fy(t,), *f "=k ("1 =2f"+ 7).
For the discretization of the second equation of (2.5) we just obseve that
it implies
(k*qy +k*q, DDA~ ") Dup* ' + Aoy =Dy~ — Ao}~ 1)=0.

Using these equations, we can now state the fully discrete scheme that defines
the approximations v eV,xH U\ u(ty)
app )RR Az et

( E;)E V,xH,, 05j<n<J—1, be given approximations of (Zg’;) Define then
J

For some 1<nsJ—1, let

Z"+1

Un+1 Un Un—l .
2.7) R‘(2“*1)—25(Z“>+R2(E’”“):F’
where R,, R,, S are linear operators on V, x H, defined by
I —k*q,D—k*q, DA™*DD
k*q,D+k*q, DDA 'D k*q, A+k*q, DD ’
I —k*p,D—k*p,DA™'DD
0 0

nt+1
( ) as solution of the linear system

R,

Il

S

It

+
and

R,

I —k*q,D—k*q, DA~ DD
—kquﬁ_k4q2ﬁDA_15 "k2q1A_k4q2ﬁD ’
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and where by F" we denote
F,,_(k2(‘hf"+1 ‘2P1f"+(11f”_1))
B 0

+(k4DA_’5(q2f"*1—2pzf"+q2f"“)—k“(q1—rlz)ézf")
: .

n+1

Z“ +1
linear system with a positive definite matrix. To see that R, is positive definite

on V, x H, with respect to the inner product defined for (Wl), (wz)e Vx H 4

>y X1/ \Xa2
(G} o=t

let (:)e V, x H,, and observe that

We sec that at each time step the calculation of ( ) needs solving a

(-
+k?q; (Dw, x)+k*q, (DDA~ Dw, )
+k2qy (A, 1) +k*q2(DDy, x).

Since 47! is symmetric we have, using (2.4),
(DA™'DDy, w)=(x, DDA~ Dw).

Hence, since A is a positive definite,

(< () acacnesaionona (o

Note on implementation

Regarding the question of solving the linear system

(3

on V, x H, we make the following observations. Letting
(2.7b) k*q, AY+k*q, DDY=:¥,
we see that

(2.7¢) X=DA"'Y+a
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and
b

Y+k?q, DDA~ 'Y+ k*q, DDA~ ' DDA~ ' Y=h

where b=b—(k?>q, D+k*q, DDA~ 'D)a. If L,,=DDA "', then the above linear
system becomes

(2.7d) (I+k*q, Lp+k*q, I%)Y=h.

Hence the computation of (X, Y) requires the solution of the linear systems
(2.7d), (2.7b) and computing X by (2.7¢).

In the special case where 1+q, x*+q, x*=(1+ax?)?, a>0 — these are the
schemes constructed in [6] — the system (2.7d) becomes

(I+oak?Lp)*Y=h

Then, if we assume that (FE3) holds, we may conclude that to compute Y
from the above we have to solve two systems, with symmetric positive definite
matrix, of the form: Find Y, € H, such that

(AY,, ) +ak?(div Y,,divy)=(b,,x) VyeH,.
Analogously, the system (2.7b) has the form: Find Ye H, such that

20k2(AY, x)+ 22 k*(div Y, divy)=(Y,x) VyeH,.

Consistency of the Scheme (2.7)

In the convergence proof that will follow, we shall compare the approximation

" L —_ Pou(t . .
(gn) to the “elliptic projection” (Hll t;((t": ))::(g:). For this purpose we estimate

first (Z ), defined by

n

Wn+ 1 w" Wn*l a”
(2.8) R1<é"+1)—28(én)+R2(§n_l):=(yn).
Using (FE1) we see that for every n (2.6) implies that y"=0. On the other

hand,

(2.9) =Wt =2w+wh ) —kPD(q, & =2p, &M+ q, &)
—k*DA™'DD(q, &' —2p, &+ q, &),

To estimate the first term of the right-hand side of (2.9), we write

(2.10a) W'l 2w 4w L=Pw"t —u"t )2 P(W'—u")+ P(W' T —u" 1)
+ Pt =2ut+u" )
=:aq+P(un+1_2un+un—l),
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where ( FE2) gives that

(2.10b) lail Ck i sup |62 u(s)ll,-

se[tm—1,m+1]

For the next term of the right-hand side (2.9), we sece, using (FE!) and the
definition of D that for we V¥,

(D&, w)=(div ", w)=(div a", w)=(D ¢", w),
1.e. DE"=Dg". Hence using (1.3)
(2.10c) —k*D(q, &"" ' =2p, &"+q, & N=—Kk’D(q, 0" =2p, 6" +q 0" )
=—k*P3(qu"" ! =2p u"+q, u"T)
+k2 g S =2p " a, ).

Finally, for the estimation of the last term of (2.9) using again (FE1), the
first equation of (1.3) and the definition of (w", £"), we first have

(2.11a) DA 'DDE"=DA"'DD6"=DA"'D(0? Pu"—f")
=DA 'D(P—P)o?u"+DA ' Do*w'—DA "' Df"
=DA 'D(P—P)o*u"—Do2E"—-DA™ ' Df”
=DA 'D(P—P) o} u"—Potu"+fP"—DA™' Df".
Now using the definition of D, D and ( FE2) we obtain, for we¥,,
(2.11b) (DA 'D(P—P)d* u",w)=((P—P) 02 u", DA™ ' Dw)
SCH | u'|, DA™ D).

Next, for the terms containing second derivatives of f we have in view of (2.9),
using that g, —p,=(q, — 1/12)/2,

(2‘1 1 C) (qu(Z)n+ 1 _2p2f(2)n+q2f(2)n— 1):q2(f(2)n+ 1 _2f(2)n+f(2)n- 1)
+(q, — 112 (fP" =82 (") +(q, — 1/12) 8*f™,
where

2.11d) K@t —2f@ny fOnTl < ck®  sup 07 f(s)l,

sefm-1,m+ 1]
and

(2.11¢) KO —o2fmlsck®  sup 3/ f(s)].

sefm—1,m+ 1}

Finally, since the cosine scheme that we have in mind is fourth-order accu-
rate, we have

(212) |P(I—q, K202 +q, k* )W +u"™ )= 2P(I —p, k* 02+ p, k* 0¥ "
<ck® sup 5P u(s)l.

seftn—1,m+1}
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Combining (2.9), (2.10a—), (2.11a—¢) and {2.12) we conclude

(2.13) @ =k f"" = 2p fP+au ") HKEDAT D(qof " = 2py f "+ aaf"TY)
—k*(gy —15) 0%f"—d",

where
(2.14)  Jd o)l <c, WK (E*+ ) (|ol| +k*|DA" ' Dw)), Veoel,,
with ¢, (u,/)=c sup (/|07 u(s)ll,+ 67 u(s)| + 10} £ (s)I). The Egs. (2.8), (2.13) and

5¢[0,T]

(2.14) contain the consistency property of our scheme that will be required
later.

Convergence.
Let E"=U"—w", Z"=2"—¢"and, for 1 En<J,

(o@n:[|En_En—l”2+k2 HZ"‘FZ"_IHZ-FI(Z Hzn_Zn~lH2
A NIVARY AR EEY A | VAR AR [

We are now ready to state and prove the following optimal-order convergence
result for our scheme.

Uu® (Ut
Theorem 2.2. Assume that ( >, (Z‘) are given elements of V, x H,, chosen so

that 20

(2.15) DU +437=0, j=0,1
and

(2.16) EV+ K2 |E°2 ek (kK + W)

"

U
Then, for every n, 2<n=J, ( )eV}, x H, exists uniquely as the solution of (2.7).

Zn
If(q,, q,) belongs to the stability region 2 of Fig. 1 of [8], and in addition q, > 1/4,

and k is sufficiently small, there exists a positive constant c, independent of k
and h such that:

max (|E"]+ 127 Sclwf)(k + 1)
and
Jmax ({lu"—U"|+ lo" —Z"IN S e, f)(k* + 1.
U U 1 n+1
Proof. We have already seen that given ( Z:)’ ( sn- 1) we may compute ( o 1)

as the unique solution of the linear system (2.7).
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Subtracting (2.8) from (2.7) and using (2.13) we obtain the error equation:

En+1 E" Envl dn
(217 Rl(Z"+’>_2S<Z">+R2(Z"“):(0)’

where d"eV, satisfies the estimate (2.10). Next, take the ((-, -)) inner product
of both sides of (2.13) with the vector

Er+tl_pn-1
(Z"H—Z(Pz/‘h)zn'*’znﬂl)’

and obtain

(2.18) (En+1_2E"+En~1’En+1_En—1)
—Kk2(D(q, Z"* ' —2p, Z"+q, Z" V), E"t I —E" Y
—k4(DA_1ﬁD(q2 Z" Y 2p, Z"+q, Z" ), ENt —EnTY)
+k%(qy DE" ' —E" ), 2" —2(py/a) 2"+ 277 )
+k4(q2 ﬁDA—lﬁ(En+l__En'-1)’Zn+1_2(p2/q2)zn+zn—l)
+k g, AZ" =21, 2" = 2p,/q) 2+ 27 7Y)
+k*(q DD(Z" ' =271, 2" = 2(py/a) 27+ 277 )

=(dn,En+1_En—1).

Put now u=2(p, —(p; ¢9,)/q,) and observe that

(@i D(E™ ' —E""1),Z"" ' =2(py/q,) Z"+ 2" )
=(En+1—E"—1,D(q1 Zn+1 —2171 Z"+q1 Zn_l))+ﬂ(En+1-—En_1,DZ")
and
(@, A@Z" =277, 2" = 2(p,/q,) 2"+ 27 )
=(Z"+1—Z"_I,A(ql Zn-*-l_‘_zp1 Z"+q1 Z"_l))—i-,u(Z"“—Z”_‘,AZ").

Using (2.4) we have

(g2 DDA~ ' D(E** ' —E" 1), 2" —2(p,/q)) 2"+ Z" )
:(En+1_En—1’DA—15D(q2 Zn+1_2p2 Z"+q2 Zn—l))'

We now observe that the second component of the vector equation (2.17)
givesfor 1S<nsJ—1,

(k*q,+k*q, DDA~ )YD(E"*' —E"™ )+ A(Z"* 1 — 2" 1)) =0.
In view of (2.15) this implies that for0Sn<J
(k*q, A+k*q, DD) A~ (DE"+ AZ")=0,

from which since the operator DD is positive semidefinite on H,, q,, q,>0
and A is positive define on R, we have for every n, 0<n<J, that

(2.19) DE"+AZ"=0.
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Consequently,
[l(DZ", En+l _En—l):“(zn,ﬁ(En+1 —E" l)):__ —/l(Z",A(Z"+1 —-Z"_Z)).
Combining the above relations, we see that (2.18) becomes, for 1 <n<J—1
(220) (En+l_2En+En~1’En+1_En—1)
+k2(A(Zn+ 1 _zn 1)"]1 Zn+ 1 ___2171 Z”+611 Zn—t)
+k4(ﬁD(Zn+ 1 _gzn- 1), q, Znt 1 —2172 Z”+q2 Zn- 1)
:(d", En+ 1 _E" 1).
Applying now to (2.20) standard summation techniques valid for such sym-

metric, two-step schemes, cf. Sect. 2 of [8], we see that for I<M=<J—1 there
holds

(Q21) BN BN (K g, —p ) (AN +ZM), 29+ ZM)
+k2(qy +p)(A(ZY L —ZM), ZM+ 1 ZM)
FR4 g2 —p) ID(ZM T + 2|7+ k4 g+ p) ID(ZM 1 — 2%}
M
<c&'+ Y dLE"T—ETY).

n=1
Now (2.10}, (2.19) give the estimtate

|(d", En+1_En—1)|
SclP (kR (IE™ ' — B | +k? [ DA™ D(E" ! —E"~ 1))
Sck?(k*+ (| E* =B+ k2 ID(Z27 1 =2 )
Sl (k* I+ k(| E" P —En Y24 k* [ D(Zm =2 Y|

Since (g,, g,)e# and g, >1/4 we have, cf. [8], that the coefficients of all terms
in the left-hand side of (2.21) are positive. Hence

M+1
EMTI<cE v (MR K* (K> +h)2+ck Y 6" O0=M=sJ-1
n=1
Hence for k sufficiently small, (2.16) and the above give
M
EMI I <e(MRYK*(K*+h) +ck ) 6", 0<M<J-—1
n=1
By Gronwall’s lemma we finally obtain the desired results, using
M . .
IEM* Y < 3 IET =B+ E°,

i=0

(2.16) once more and (FE2). []
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We describe now one choice of the initial values of the scheme for which
(2.15) and (2.16) are valid. We compute ', ¢! using derivatives of the given
initial data by the formulas

k? k3 k*
a1=u°+ku1+562 (0)+ 63u(0)+*64u(0)
and

2 3

é‘=0(0)+k6,a(0)+§~'62 (0)+1‘—a3 (0),

and put U°=P u° X°=11,6(0) and U'=P, &', ' =11, 6'. Then E°=0, Z°=0
and, using (2.6), since time differentiation commutes with the operators DP,,
AHI >

DUI+A42/=0, j=0,1.

We have at once that |E'| < Ju' —a' | + |(I — Py u' —dY)| £ ck(h +k*), and
IZM) S lla(k)— 8[| + | (I — ;) (a (k) —6")|| S c (b +k*).
Also from the definitions of D and IT, we see that

IDZ*||?=(DI (o (t,)— "), DIT (o (t,) — "))
divIl,(o(t,)—¢é"), DI, (a(t,)— ")
div(a(t,)—6"), DI (a(t,)—6")
ck*[|DZ'|.

(
(

A

Hence (FE?2) gives (2.16).

Second order in time fully discrete schemes

To construct such schemes we consider a rational approximation to the cosine
of the form

14p, x?

rx)= 14q, x*’

q,>0.

where p,=q,—1/2 and assume for stability purposes that g, >1/4. Then, for
every smooth function y= y(t) there holds

(I—q, k2" +y"")=2(I —p, k*07) "+ O (k* y'*).

In a similar way as in the case of the fourth order schemes we led to the

following fully discrete scheme for finding approximations of (g:) of (Zgn))
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i
>e Vo,xH,, 0<j<J—1 be given approximations of (Zg’;)
i

i

in V,xH,: let (U
n+1

Zn+1

) Un+l ’ U Un*l
(2.19) Rl(an)—ZS (Z,,)+R'2(Zn#,):m,

Then define ( ) as the solution of the linear system

where R, R}, §' are linear operators on V}, x H, having the following form

R = 1 ~ —k*q,D
V\k2q, D k*q, A )

I —k*p, D
S'=
o )

, I —k%*q,D
Rz:(_kz q ),

415 —k'q, A
and F; is the element of V, x H, given by

F,_(kz(‘I1fn+1“2p1f"+CI1f"VI)
n 0 .

It is easily seen that since g, >0 R, is positive definite on (¥, x Hy, ((*, *)))
and therefore invertible. If we now let E"=U"— P, u(t,), Z"=2"—1II, o(t,) and,
for1<n=<J, put

é'm:“En—E"_XHZ—FkZ HZ"-}—Z"_IHZ-}-]{ZHZ"—Z"_IHZ,

we may prove the following result along the same lines as the proof of Theorem
2.2.

o 1
Theorem 2.3. Assume that (go), ( 21) are given elements of V,x H, chosen so
that

EVZck (k2 + )~

”m

) exists uniquely in V,x H, as the solution of

Z‘n

U
Then, for every n, 2<n=J, (

(2.19). If q,>1/4 then, for k sufficiently small, there exists a positive constant
¢, independent of k, h such that:

and
max (|u"—U"| + ¢"—Z") S c(k* + k).
osn<J
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3 Velocity-stress discretization
Semidiscretization

In this section we shall study fully discrete mixed finite element approximations
of the solution of problem (1.4), the “velocity-stress” formulation of the elasto-
dynamics problem (1.2). We first discuss the semidiscrete approximation of the
problem (1.4). We seek (v, 6,): [0, T]— V}, x H, such that

@y, wy—(dive,, wy=(f,w), Vwel, O
a(Gy, 1)+ vy, div x)=0, VyeH, O
v 0)=vp, 6,0)=03,

StsT
StsT)

where (v, 67) is a given approximation of (v°, a(0)) on V¥, x H,. Using the discreti-
zation operators D and D this is equivalent to seeking (v,, o): [0, T]— V,, x H,,
such that

(3.1 ty—Do,=f,, O0st=T
Adé,+Dv,=0, OZt<T,
uO)=vy, o,(0)=0a3,

where f; is the I?-projection of f in V,. We now define the operator %, on
V,x H, as
0 D
9"‘(—/4—15 0)'

Then the two differential equations in (3.1) can be written in the form

h
() e

For the needs of the error analysis we define the following bilinear form
on VxH:

(CoICoMmommasiaaozar ()()evme

Since A4 is symmetric and positive definite, ((-, -)), is a inner product on Vx H,
equivalent to the inner product ((-, -)) defined in Sect. 2. Furthermore observe
that

((@h(‘”)(w))) — (D1, wa)—(AA Dw,, 12)=(D 11, wa)— Dy, 72)
X1 X2//]a

and

(((::11) @h(;:zz)))fwh’ wi)—(A44™ Dw,, x)=(Dyz, w))—(Dwy, 21).

Hence, using (2.8), we have

(24X, )= —((X, 2, V)4, VX, YeV,xH,,
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ie. @, is antisymmetric on V, x H,. As a consequence,
(2, X, X))s=0, VXeV,xH,.

If (u, 0) is the solution of (1.2) let w(t):=P, u(t) and &(t):=II, o(t). Since time
differentiation commutes with the operator P, letting z(t):=w(t), we have

z(O)=P u()=PF v(t).
Differentiating the second equation of ( FE I ) with respect to t we obtain

(3.3) (div (1), g)=(diva(t),q), VqeV,, te[0,T],

(AE(t), 1) +(z(t), div x)=0, VyeH,, te[0, T].
We shall compare the solution of the semidiscrete problem (3.1) with the element
(z(0), E@)):== (P, v(t), 1, o(t)) of V,x H,, and prove the following result, which
is the analog in the case of the elastodynamics equations of the result of Geveci

[15].

Theorem 3.1. Let (v, o) be the solution of (1.4), where v=1u. If (v, 6,) is the solution
of (3.1) then

o) = vaOll + o () —on @]l S c(v° — 0, O)II + |l o° — 6, (0) 1)

t 1/2
+Ck’(ilv°Hr+H0°H,+{f (eI + Nﬁ(S)HZ)dS} .
0

Proof. Let (z(t), £(t))e V, x H,, be as above. Then (FE2) gives

(&)

Using now the definitions of z, £ and Eqgs. (3.3) we have

(=20 )

where D¢=Do and
(Dz,)=—(4& ), VyeH,,

sch(loll.+al,)
A

(3.4) ‘

i.e. that
(3.9 —A"'Dz=¢

Using (1.4) we get the relation

ool

Uy —

. z
where P is the I?-projection in ¥, x H,. Putting now 9=( x), we have from

On6
the above and (3.2) that

(3.6) 8,0—9,0=—PR,, te[0,T].
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Let E, be the solution operator of the corresponding to (3.6) homogeneous
problem on V, x H,, i.e. denote by W,(t)=E, W°eV, x H, the solution of the
problem

o Wo,— 9, W,,=0, W, (00=W° W%V, xH,.

Since 9, is antisymmetric on (V, x H,,((*, *))4 we easily obtain
Wl =NE, WOllL =W Il .

Duhamel’s principle gives now that the solution of (3.6) is

0(t)=E, 0(0)— 5 E,_,PR,(s)ds.
0

Hence
t
NOW®Il4=IE, © O+ | IE.-s PRIl ds
[0}
t
ZOOM+ § IR )4 ds.
0
Since now
IR (ML= lI5(t)— 2@ S ch™ i,
we complete the proof using (3.4) and that the norms |||*||| , and |||+ ||| are equiva-
lent. [

Fully discrete approximations

Since the operator 2, has purely imaginary eigenvalues it is reasonable to discre-
tize (3.2) in time using rational approximations of €'*, xelR [5, 7].

To this end consider a rational function #(z) which is an up to fourth order
accurate approximation of exp(z). Let #(z)= P(z)/Q(z) where P and Q are relative-
ly prime polynomials of degree up to two, with the following properties:

Ri v, 15vE4: F()—€ef|ZclzP Y,  zeC,
Rii [F(z)} <1, forevery zeiR.

It is a straightforward consequence of Rii that there holds
Riii Q(z)+0, forevery zeilR.

Examples of methods that satisfy these assumptions are given in the following
table [7], in which P(z)=1+p,z+p,2z% Q(z)=1+q,z+q, 2%

Approximations of ¢* v q, q, P P

Euler 1 —1 0 0 0
Crank-Nicolson 2 —-1/2 0 1/2 0

Calahan?® 3 22 Ve 1-24 A2=2441)2
Pade 2 -1 12 0 0

Padé 3 —2/3 1/6 1/3 0

Padé 4 —1/2 1/12 1/2 1/12

*i=(1/2)(1+1/)/3)
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A consequence of Ri is that for every smooth function y=y(t) and k>0,
there holds

67 yE+k)+q, ky (t+k)+q, k*y"(t+k)
=y(O+p ky () +p, K2y () +O (K 1y0+ D),

Using (3.2), observe that
O\ _ . (On fi\ _(—DA 'Duy, T
()= o)~ T35 e (a2 )

Motivated now by (3.7) we obtain the following fully discrete scheme: Let

Vi . o i

(ZJ.)eV,,xH,, 0<j=n=<J—1 be given approximations of (Z((ttj))) We define
j

Z‘n+l

(3.8) o (V"+ 1):@(‘/")%«*",

| 4 +1 . .
( )e V. x H, as the solution of the linear system

Z‘nJr 1 Z‘n

where .o/, # are linear operators on V, x H, defined by

I—k?*q, DA™ 'D kq,D
‘Q{”Q(kg")‘( —kq, A 'D I—quzA*'DD)
and
I—k*p, DA™'D kp,D
g_P(k@h)_( ~kp, A7'D I—kzpzA_lﬁD)’

and where by #" we denote

9"": _(k(qlfn+l _plfn);’{—kz(qu(l)"+1_pzf(l)n))
—k2 A7 D(ga " = paf")

Since o/ = Q(kZ,), if {4;}}7, are the eigenvalues of 2,, 1;€iR,j=1,2, ..., M,,
then the eigenvalues of <7 are Q(k4)), j=1,2, ..., M. Therefore, Riii gives that

zero is not an eigenvalue of /. Hence, the operator o7 is invertible and we
n+1

can compute ( s+t

) as the unique solution of (3.8).

Note on implementation

For the efficient solution of the system

(36
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we note first that if ¢,=0, 1e. &/=1+¢q,kP,, (3.8a) can be solved directly
using block elimination:

(3.8b) AY+ g3 k*DDY=Ab+q, kDa
X=—q,kDY+a.

For q,=+0, write o =(I —oy k2,)(I — o, kD}), where o, o, are complex in gener-
al — the roots of Q(z). In this case in order to compute (X, Y) we have to
solve two systems of the form (3.8b).

Another alternative for solving (3.8a) is a preconditioned iterative method,
similar to the one analyzed by Bales in [7] in the case of Galerkin approxima-
tions for the wave equation. The basic steps of this method are as follows:
First, consider an equivalent form of the system (3.8 a),

(3.8¢) d*d();)zﬂ* (Z)

where «/* is the adjoint of /. The matrix of the system (3.8¢) is symmetric
and positive definite. Solve (3.8¢) with an iterative method in which the calcula-
tion of an approximation (X?*1, Y?* 1) to (X, Y), given (X, Y¥), 0<j < p, requires
solving systems involving only a matrix 4, — the preconditioner — with certain
properties, cf. [7], and such that A;!®, eV, x H,, can be computed easily.
In our case an appropriate choice of A is Aq=.7% o/, where of o =1 —a*k* D}
for some real number o, i.e. where

s I+k*a®2DA" D 0
o 0 I+k*a*4~ DD/

o4, is symmetric and positive definite on (V, x H,,((*, *)),) and thus 4,=./3.
We conclude therefore that the computation of Ay '@ requires solving two
systems of the form: Find (X, Y)eV, x H, such that

X+k*a2DA DX =a,
AY+k*a?DDY=b;.

Stability

Since # = P(k2,), the eigenvalues of # are the numbers P(ki), j=1,2, ..., M,.
Let {®;}}», be an orthonormal system of eigenvectors of &, with respect to
((+, *))4 extended for complex elements as

(((::11 ) (:22)»4 =Wy, o)+ (A1, 1)
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My 1/2
If YeV,xH, with ¥=) ¢;¥,, then |||=52WP|“A={Z {Q(klj)lzicjlz} and
; =1
My

1/2
[||%‘I’|||A={ Y |P(k/1j)|2|cj|2} . Hence, using Rii, we have

i=1

(3.9) o Plila=[l|BY¥lla,  Y¥PeVix H,.

Consistency

L

We shall compare the approximations (;) with the element (Ig v ) :(2") of
10

V, x H,,. For this we need an estimate for (Z:) eV, x H,, defined by
1

3.10 AR Z")==(“q).
( ) ‘d(én+1> (én V'i
We have

a1 (Ff F7 kD@ & —p &) ) (DA Digy 2" —py )
' e e kAT D(g 2 =2\ AT DD, & —p, &)

As we have observed before, from the definition of z", &" we have that
D é&"=D¢" and the relation (3.5). Hence using (1.4),

(3.12a) ()=o) o)

Observe also that using again (3.3), (3.5) and (1.4) yields

~DA 'Dz"=Dé=Dg¢
and

(3.12b) PO, v"=—DA 'Dz"+f".
Now note that using (1.4) and (FE3) gives

(0, div y)—(dive,divy)=(f,divy), VyxeH,,
and

(3, div y)—(div o, div x)=(5,div ) = (D&, Dx)=(Dv, ) —(DD¢&, y),  VyeH,.
Hence
Di"=DDé& 4Dy

Also, using (1.4) we see that Do"= —PA40? 6", where P: H,—H, is the
I?-projection. Note that for e H 4, we have

(A~ ' PAr, )=(PAt, A" ' p)=(e, =(Pt,x) VyeH,
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ie. that A= P4=P on H . We finally obtain that
(3.12¢) —A'DDE— AT Df =P o2 0"

The relations (3.11) and (3.12a-¢) give

a" Un+1 "
(3.13) ())':>_—_P(I+kq1 6,+k2q26,2)(0n+1)~P(I+kp10,+k2p26,2)(an)
1
(A=DE"" ' —v")
F"+P
T ((Hl—l)(a"“—o“rkqlﬁta"“—kpl@zd")
=T+ F"+17,
where, from (3.8) we have,
(3.14) NS ck™ ( sup 67 T u(s)|+ sup (13 a(s)l)
se[tm,m+1] sefm,int1]
and from (FE2)
(3.15) WZMasckh™( sup  |lu(s)ll,+ sup [d(s)],)
setn,m+ 1] se[tn,mm+ 1}

Convergence

We have now the following result:

n

Vi
Theorem 3.2. Let that (V°, 2% =(2°, £°). Then for every n, 1<n<J, (Z”)e V,x H,

exists uniquely as the solution of the linear system (3.8). Asuming that the rational

td

V
function F(x) satisfies Ri, Rii and putting @”z( we have that if q,=0

—z
Zn_ én ’
for v=2, there exists a positive constant ¢, independent of k, h such that:

max [||@7||,=c(k®+h),

osnsJ

and consequently
Jmax ([Jo"— V"] + lo"—2Z" )< c(k”+h).
Proof. Combining (3.8), (3.10-13) we have that @” satisfies
M@rﬁrl zga@n_rln_rzn'
From (3.9) and (3.14), (3.15) we have

12 O™ il = 1B O™+ N4+ N4
2L O 4+ ck(kK*+h),  O0=n=J-1
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Hence, summing, we obtain
lloZ @l <l O°ll g+ cnk(k”+h), 1=n<J,
and since @°=0 we conclude that
i@l =ck"+k), 0=n=J.
Since 2, is antisymmetric on (V;, x H,, ((+, *)),) we have
o/ PNZ=((P, N4+ k(g1 —29)( D1 ¥, 2PN+ k* a3 (D0 P, D3 P))a-
We see easily that g2 —2q, =0, so that for every ¥ eV, x H,, there holds

IHPH 4= s P4
Hence we have

Ne"llasck’+h), 0=n=J. O
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