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Summary. In this paper we apply the coupling of boundary integral and finite 
element methods to solve a nonlinear exterior Dirichlet problem in the plane. 
Specifically, the boundary value problem consists of a nonlinear second order 
elliptic equation in divergence form in a bounded inner region, and the Laplace 
equation in the corresponding unbounded exterior region, in addition to appropri- 
ate boundary and transmission conditions. The main feature of the coupling 
method utilized here consists in the reduction of the nonlinear exterior boundary 
value problem to an equivalent monotone operator equation. We provide sufficient 
conditions for the coefficients of the nonlinear elliptic equation from which exist- 
ence, uniqueness and approximation results are established. Then, we consider the 
case where the corresponding operator is strongly monotone and Lipschitz- 
continuous, and derive asymptotic error estimates for a boundary-finite element 
solution. We prove the unique solvability of the discrete operator equations, and 
based on a Strang type abstract error estimate, we show the strong convergence of 
the approximate solutions. Moreover, under additional regularity assumptions on 
the solution of the continuous operator equation, the asymptotic rate of conver- 
gence O(h) is obtained. 

Mathematics Subject Classification (1991): 35J65, 35J05, 65N15, 65N30, 65N50, 
65R20 

1 Introduction 

At present, there are two different concepts for the combination of boundary 
element method (BEM) and finite element method (FEM). One, which we will not 
consider, uses BEM for the modeling of special finite element functions (see e.g., 
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Schnack (1987) and Hsiao et al. 1991). The second concept, which is the most 
popular, consists of subdividing the original domain into a finite number of 
subregions and using in each of them either FEM or BEM, where the latter lives on 
all boundaries of the subregions. This approach is particularly attractive for 
exterior problems or boundary value problems in domains extending to infinity. In 
this case, the general coupling procedure may be simply described as follows. First, 
one divides the domain into two subregions, a bounded inner and an unbounded 
outer region by introducing an auxiliary common boundary, if necessary. Next, the 
problem is reduced to an equivalent one in the bounded inner region. This 
reduction will be accomplished by deriving either a local natural boundary condi- 
tion or a nonlocal boundary condition, which relates the Cauchy data of the 
solution, on the common boundary. Because of the necessity of deriving this 
boundary condition on the common boundary, one needs generally to apply 
boundary integral methods to the unbounded outer region. This reduction to an 
equivalent problem is by no means a unique process. The first significant result 
concerning the theoretical justification of a coupling procedure of this type based 
on the direct boundary integral method seems due to Brezzi and Johnson (1979) 
and Johnson and Nedelec (1980). This result has been generalized recently by 
Wendland (1986, 1988). Further theoretical developments with respect to various 
coupling procedures may be found in Costabel (1987), Feng (1983), Han (1987), 
Hsiao and Porter (1986), MacCamy and Marin (1980) and Porter (1986). For 
a complete survey of the coupling methods we refer to the recent papers Hsiao 
(1988) and Hsiao (1990). 

It is worth remarking that in terms of general flexibility and applicability, the 
most suitable approaches are the ones given in Johnson and Nedelec (1980), 
Costabel (1987), Han (1987) and Wendtand (1986, t988), which are all based on an 
integral representation of the solution in the unbounded region from Green's 
Theorem, the so-called direct boundary integral method. The success of the 
coupling procedure described in Johnson and Nedelec (1980) and of its correspond- 
ing generalization given in Wendland (1986, 1988), hinges on the fact that the 
boundary integral operator of the double layer potential is compact. However, in 
many applications as e.g., in elasticity, this is not the case. Costabel (1987) and Han 
(1987) proposed modifications of the original method of Johnson and Nedelec in 
which the compactness does not play any role. Both Costabel's and Han's ap- 
proaches are based on the addition of a boundary integral equation for the normal 
derivative (resp. traction in the case of elasticity). Costabel's method leads to 
a symmetric and non-coercive bilinear form, while Han's method, on the contrary, 
yields a coercive and non-symmetric bilinear form. 

It has been shown recently that the coupling of boundary integral and finite 
element methods, originally designed for treating linear problems, works equally 
well for the case of an adequate combination of linear and nonlinear partial 
differential equations. To the best of the authors's knowledge, up to now only 
Costabel and Stephan (1988), Gatica (1989), Gatica and Hsiao (1989a, b, c, 1990), 
Berger (1989), and Berger et al. (1990) have applied the coupling method to 
nonlinear problems from the theoretical point of view. In Berger et al., for instance, 
the approach is based on the classical method of Johnson and Nedelec. On the 
other hand, Costabel and Stephan extended the symmetric method for linear 
problems (see Costabel (1987)) to the nonlinear case and obtained a variational 
formulation in which the weak solution constitutes a saddle point of the associated 
functional. The approach used in Gatica and Hsiao's papers is based on the theory 
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of monotone operators and can be regarded as a generalization of Han's method to 
the nonlinear case. 

In this paper we report on the results obtained in Gatica and Hsiao (1989a, b) 
for the two-dimensional case. In Sect. 2 we convert the nonlinear exterior boundary 
value problem to an equivalent nonlocal boundary problem in the inner region. 
Then, in Sect. 3 we give a weak formulation for the nonlocal boundary problem 
and reduce it to an equivalent operator equation form. Some known results on 
monotone operators are collected in Sect. 4. Existence and uniqueness of the 
solution of this operator equation are established in Sect. 5 by using the results 
from Sect. 4. In Sect. 6, we study the Galerkin approximations for the monotone 
operator equation and provide some abstract error estimates of the C6a and the 
Strang type. Finally, in Sect. 7 we derive asymptotic error estimates for a bound- 
ary-finite element solution of the operator equation for the case in which the 
corresponding operator is strongly monotone and Lipschitz-continuous. 

2 The noniocal boundary problem 

We first specify the nonlinear exterior boundary value problem. Let f2 o be 
a bounded simply connected domain in IR 2 with smooth boundary Fo. Let t2- be 
the annular region bounded by F_o and another smooth closed curve F. We denote 
by f2 § the complement of Go w f2 - (see Fig. 1 below). For  any function v defined in 
f 2 - u f 2  +, we write v • for its limits on F from f2 • Also, for 0 < r < l ,  
C l " ( f ]  - ) c~ C l " ( f ]  + ) denotes the space of functions v defined in f2- w ~+ such 
that vqff-~ C l'r(f2 - )  and v lff+ + C l"(ff+) ,  where for each nonnegative integer m, 
Cm"(f] • ) is the space of those functions in C"(f]  • whose partial derivatives of 
order msatisfy a Holder continuity condition with exponent r in f2 • In addition, 
let ai: t2- x ~ 2 ~  ~ ,  i = 1, 2 be nonlinear mappings such that ai~CX(~ - x IR 2) 
for all i =  1,2. Then, given f ~ C ( O - ) ,  go~Cl ' r (Fo)  and b~lR, we consider the 

t2- F 

Fig. 1. Geometry of the exterior BVP 
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n o n l i n e a r  e x t e r i o r  boundary value problem: F i n d  u E C 2(~r~ - k..) ~'~+ )/"3 C 1 , r ( ~  - ) ('3 
C 1,~(~ + ) such that 

(2.1) ~ 8 
- , = 1  ~x-ixi a ' ( ' ' vu ( ' ) )  = f  in O- 

- A u = 0  int2 + 

u = go onFo 

- + 

u = u+'  ,=1 a i ( ' , ( V u ) - ( ' ) ) v i  = \ c ~ v /  

u(x) = b l o g l x l  + 0(1) as ]xl-~+ oo , 
7~ 

on F 

where v := (vl, v2) denotes the unit outward normal to F. 
We remark that the regularity conditions specified above on the nonlinear 

coefficients at and the data f and 9o will be relaxed when we consider the weak 
formulation of (2.1), which, as indicated before, is our main concern in this paper. In 
that case it will suffice to have feL2(O -)  and g o 6 H 1 / 2 ( f f o )  , in addition to the 
Carath6odory and growth conditions for al (see Sect. 3). We comment further that 
if f e  C(O-)  then clearly f~  L 2 ( ~  - ), and similarly if 9o e C l"(Fo) then one can 
prove that go e H 1/2(Fo). However, the converses are not necessarily true. 

Explicit examples of nonlinearities ai appear in physics, mechanics, etc. In the 
stationary heat conduction equation, for example, one has a~(x, Vu(x))= 

k(x, Vu(x)) ~ where u is the temperature and k is the heat conductivity. Also, in 

some subsonic flow and fluid mechanics problems the nonlinear mappings a~ have 
similar expressions (see e.g., Feistauer 1986, 1987). 

Our goal here is to solve the problem (2.1) by the coupling procedure as 
in Han (1987) for linear problems. We first reduce (2.1) to a nonlocal boundary 
problem. For this purpose we need some results from potential theory. Let 

~-~loglx-  Yl be the fundamental solution for the two-dimensional E(x, Y) 

Laplacian. Then, we assume that F is a closed Lyapunov curve and define the 
following continuous boundary integral operators (see Michlin (1970, 1978)): 

(2.2) V: c~ --* Ct'r(F) 

(V~)(x) := S E(x, y )~(y)dsr ,  
F 

(2.3) K: C ~  ~ C l " ( r )  

(2.4) K': C~ -~ Ct" (F)  
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(2.5) W: Cl"(r)  ~ C~ 

(WO(x):= -0v(x--5! E(x,y) r 

Here V, K, K' and W are, respectively, the boundary integral operators of the 
simple, double, ad]oint of the double and hypersingular layer potentials. For further 
properties of these operators we refer to Michlin (1970) and Colton and Kress 
(1983). We remark that since our main interest is the studying of a weak formula- 
tion of (2.1), we will provide in Sect. 3 the continuity properties of the above 
operators in the Sobolev spaces H'(F). 

The following lemma will also be needed (see Hsiao and Roach 1979; Hsiao 
1986). 

Lemma 2.1. Let v e C2(~ +) o C 1,r(~'~+) be the solution of the exterior Dirichlet 
problem 

- A v = 0  in I2 + 

v prescribed on F 

v(x)=bloglxl  +O(1)  as Ixl--' + 
7~ 

Then 

! / Ov'~ + 
~-~v ) ds = 2b . 

Let us return now to our problem (2.1). From Green's theorem we have the 
representation 

(2.6) u ( x ) = !  o - ~ E ( x , y )  u + ( y ) d s , - ! E ( x , y ) \ o v . ]  ( y ) d s , - 2  

for all x e f2 +, where 2 is a constant. Hence, in view of the jump conditions of the 
corresponding layer potentials, we arrive at the integral equations on F: 

(2.7) u + = ( � 8 9  Ov] - 2 ,  

0vJ = - W u + + ( � 8 9  0v/ " 

Now we use the interface conditions from (2.1). We have u § = u- ,  and if we (0 V 
put 8=~,~=tai( ' ,(Vu)-( '))vi ,  then \ 0 v /  = & We substitute into (2.7) to 
obtain, on F, 

(�89 + V i i + 2 = 0 ,  
2 

= ~ a,(',(Vu)-('))v, = - Wu-  + ( � 8 9  K ' )~ .  
i = l  
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These formulae and Lemma 2.1 lead us to the nonlocal boundary problem: Find 
u~C2(O-)n  Cl" ( I2 - ) ,  ~eC~ and 2 ~  such that 

2 0 
(2.8) - , ~ l  ~x~ a ' ( ' ' V u ( ' ) )  = f  in f2- 

u = go on Fo 

2 

ai( ' , (Vu)-( ' ) )v i=~ and t i =  - W u -  + ( � 8 9  K')3 
i = 1  

(�89 + V 8 + 2 = 0  o n r  

on r 

S ~ds = 2b. 
F 

Note that in (2.8) the boundary conditions on F are nonlocal conditions, since the 
values u-  over the entire curve F are needed in order to compute ti(x) = ~2= 1 
ai(x, (Vu)-(x))vi at a single point x e F. Clearly, one may also consider other types 
of nonlocal conditions, and in principle, the nonlocal boundary problem (2.8) can 
be treated numerically by any conventional scheme, since it is a problem over the 
finite region t2 -.  We will adopt the Galerkin procedure and lead up to the coupling 
of the boundary element and finite element methods. Before doing so, we establish 
explicitly the equivalence between (2.1) and the nonlocal boundary problem (2.8). 

Theorem 2.2. The problems (2.1) and (2.8) are equivalent in the following sense: 

i) I f  v is a solution of (2.1), then (u, 8, 2) solves (2.8), where u := rift-, 8 := \ Ov } 

on F and the constant 2 is obtained from the Green's representation for v in 0 +. 
Conversely, if (u, 8, 2) is a solution of (2.8), then v defined by 

[ u(x), x e ~-  

(2.9, v(x)=l!{Ov_ov~E(x ,y)}u_(y)ds  _ ! E ( x , y , ~ ( y ) d s  _2 ,  xef2+ 

is a solution of (2.1). 
ii) The problem (2.1) has a unique solution if and only if (2.8) has also a unique 

solution. 

Proof Naturally, the first assertion of i) follows from our deduction of (2.8). Now, 
let (u, ti, 2) e [C 2 (t2-) c~ C l, r(f~ - )] x C ~ x ~ be a solution of (2.8) and define 
v by (2.9). According to the regularity properties of u and 8, it follows that 
v e C 2 (f2- w f2 4)c~ C l' r ( f 2 - ) n  C 1.,(f~ + ). Also, since v = u in f2- and the double 
and single layer potentials are harmonic in f2 +, we obtain that v clearly satisfies the 
first three equations in (2.1). On the other hand, taking limit in (2.9) as x approaches 
F from I2 + we get 

(2.10) v + = ( � 8 9  o n F .  

Then, adding (2.10) to the fourth equation in (2.8) we deduce that v § = u -  on F, 
and since u-  = v- we conclude that v § = v-  on F. Analogously, taking limit in 
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(2.9) of the normal derivative as x approaches F from f2 + again, we obtain 

OvJ - W u -  + ( � 8 9  K ' ) 8 ,  

which together with the third equation in (2.8) imply Ov ] = ~' and hence, since 
v = u i n O - ,  

�9 = o n  F .  
i = 1  

Finally, it is easy to see that the equality ~r 8 ds = 2b and the formula (2.9) yield the 
asymptotic behavior v(x) = (b/re) loglxl + O(1) as Ixl --, + ~ .  This concludes the 
demonstration that v is a solution of (2.1). 

We now prove ii). First, suppose that (2.1) has at most one solution and that 
(uj, c?j, 2j), j = 1, 2 are two solutions to (2.8). Then, according to our previous 
analysis we obtain that for j = 1, 2 the function vj defined by (2.9) with (u j, 8j, 2j) 
instead of (u, 8, 2), is a solution to (2.1). Thus, the uniqueness of (2.1) implies 
Vl = /-)2,  which means Ux = u2 in f ] - ,  and 

(2.11) ! O - ~ ) E ( x , y )  u ; ( y ) d s , - ! E ( x , y ) S a ( y ) d s y - 2 a  

= I E(x, y) u~(y)dsy - I E(x ,y)Sz(ylds  r - 22 
r F 

for all x ~ s +. Then, since by (2.8) ~j = ~ =  1 ai( ", (Vuj)- ( "))vl on F, we obtain that 
~1 = 82. Hence, the equality (2.11) gives 21 = 22. In this way we have shown that 
(Ux, 81,21) = (uz, 82, 22), which proves that (2.8) has at most one solution. 

Conversely, suppose that (2.8) has no more than one solution and that vl, v2 are 
two solutions to (2.1). Then, by i) and the uniqueness of (2.8) we deduce that 

vl = v2 m sz ' ~,-~-v ) \ t3v ] on F, and 2~ = 22. Now, since by (2.1) vi ~ = vi- 

and v2 ~ = v2 we deduce that v~ = v~-, and then, from the Green's representation 
for vj in Q+ we conclude that vl = v2 in O +. This completes the proof. [] 

Having proved the above equivalence, we now focus our attention on the 
nonlocal boundary problem (2.8). Indeed, the derivation of a convenient weak 
formulation for (2.8) is the main purpose of the next section. 

3 T h e  w e a k  f o r m u l a t i o n  

In order to provide a weak formulation of (2.8), we need first to introduce a few 
notations and collect some results. 

3.1 Preliminaries 

In what follows, for m integer, r real, let H"(g2-)  and H'(F) denote the usual 
Sobolev spaces equipped with norms I1" IIn,-ts~- ~ and I[" II~rtr~ respectively (see e.g. 
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Kufner et al. (1977)). Furthermore, for m > 0, let I" ]umm-) denote the seminorm, 

{ Ivb"(u-) := ~ I ID%I 2 dx , 
l a l = m O  - 

and let ( "," ) denote the duality pairing between H'(F)  and H - ' (F )  with respect 
to the L2(F)-inner product, 

(r 8 ) : =  S r u162 8 ) e H ' ( F )  x H - ' ( F ) .  
i r  

We now introduce the subspace Hrlo(f2 - ) of Hi(f2 - ) defined by 

(3.1) Hrlo (f2-):= { v e n l ( Q - ) :  Vlro = 0} . 

Then, it is easy to prove that II " Ilu,m-) and l" b,(~-) are equivalent on H~o(Q- ), 
i.e., there exists a positive constant C such that 

(3.2) [Ivll~l(n-~ < CIv[~,(o-) VveH~o(O-) .  

Let us now consider the boundary integral operators of the layer potentials 
acting on the Sobolev spaces H'(F). The following results are well known (see e.g. 
Hsiao 1989; Hsiao and Wendland 1977, 1981). 

Lemma 3.1. For C ~176 boundary F, the operators defined by (2.2)-(2.5) 

(3.3) V: H r- 1/2(F) ~ H r+ 1/2(F); K: H ~+ 1/2(F) ~ Hr+3/2(F) 

K': H'- I /2 (F)  --+ H~+I/2(F); W: H'+i/2(F) --* H ~- in (F)  

are continuous for any r e IR. In addition, if diameter of F is less than 1, then V is 
a bijective mapping from H ~- 1/2 (F) onto H ~ + 1/2 (F) for all r e ~ ,  and there exists 
a positive constant C such that 

(3.4) (V~, ~> > C II ~ 2 [In- 1,~(r) V ~ e H - 1 / 2 ( F ) .  

The first part of Lemma 3.1 clearly indicates that V, K, and K' are pseudo- 
differential operators of order - 1, whereas W is a pseudodifferential operator of 
order + 1 (see Kohn and Nirenberg 1965). We comment that for the purposes of 
the weak formulation of (2.8), we shall be particularly interested in r = 0. In this 
case, as shown in Hsiao and Wendland (1977), it suffices to require F to be of class 
C 2 in order to obtain the above continuity properties. Now, we also observe that 
the assumption on the diameter of F insures that V has a positive kernel, from 
which one proves that (3.4) holds (Hsiao and Wendland 1977, Corollary 1). 
However, this restriction on the size of F can be removed if we consider a conveni- 
ent subspace of H -  1/2(F). In fact, let D be twice the diameter of F, and let us rewrite 
the operator V as follows, 

(Vr = ~ r  ~ ~(y)ds r -  logD(1, ~) 

for all ~ e H -  in(F).  Then, if H o  1/2(F) denotes the subspace of H -  in(F)  defined 
by 

(3.5) Hol/2(F):= { ~ e U - ' / 2 ( F ) : ( 1 ,  ~) = 0}, 
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we obtain clearly that 

(3.6) (V~)(x) = ~ ! log  ~(y)ds r V~eHoi l2 ( r ) .  

This shows that V has a strictly positive kernel on Ho 112(F), and consequently, 
there exists C > 0 such that 

(3.7) (V~, r > CIlr V ~ e H o ' / : ( F ) ,  

independently of the diameter of F. It is worth remarking that the subspaces 
Hlro(f2 - )  and Hol/Z(F)introduced here (cf. (3.1), (3.5)) will become the correct 
spaces for the weak formulation of (2.8). 

On the other hand, if F is a Lipschitz continuous boundary, then for all 
re  [ -  1/2, 1/2] the mapping properties of V and W remain the same as in (3.3), but 
K and K' become now pseudodifferential operators of order 0, only. More precisely, 
we have the following result (see Costabel 1988, Theorems 1, 2). 

Lemma 3.2. For C O. 1 boundary F, the operators defined by (2.2)-(2.5) 

V: H ' -  1/2(F) --~ H r+ 1/2(F); K: H '+ 1/2(F) --~ H '+ 1/2 (F) 

K': H r-  1/2(F) ~ H ' -  1/2(F);  W:  H "+ 1/2(F)  ~ n ' -  I /2 (F)  

are continuous for all re  [ -  1/2, 1/2]. Furthermore, there exists C > 0 such that 

(3.8) (V~, 3> >_- CII 2 ~11. .... (r) V~eHoX/2(r) .  

Now, it is not difficult to see that for CeH1/2(F), 

(wr  - ! E(x, y) r  

_at d~(y) ds 
ds~Jr E(x'y) ds---~- r" 

Hence, integrating by parts on F, we get 

(3.9) ( ~ , W ~ >  = V ~ s s  ) V ~ , ~ H 1 / 2 ( F ) ,  

de 
where dss stands for the derivative of ~ with respect to the arc length s. 

We remark that the above expression is well defined because the map 

H 1/2(F)~ ~ - - . -~e  H -  1/2(F) is continuous (see Ne~as 1967), and from Lemma 3.2 

with r = 0 ,  V:H-1/2(F)-*H1/2(F) is also continuous. In particular, for v, 
z~Hl (O  -)  we have by the trace theorem v , z eHt/2(F), and hence, 

(3.10) < z - , W v - > = (  \ ds } " 
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Moreover, since dr-=u-1/2tr~ a direct application of (3.8) and (3.10) gives ds =** o t - l ,  

(3.11) ( v - , W v - ) =  V \  ds / '  ~ >=C ~ >=0 

for all v �9  
The results given in this subsection will be needed later in the paper. 

3.2 The weak formulation and the operator equation 

We first reformulate the nonlocal boundary problem (2.8) in a weak sense. To this 
end, we assume that 0t2- �9 C o, 1, f � 9  L2(~2 - )  and 9o �9 H 1/2(Fo). Then the problem 
(2.8) reads: Find (u, 5, 2) �9 H 1 (t2-) x H -  1/2 (F) x IR such that 

(3.12) - ~ ~ x a ~ ( ' , V u ( ' ) ) = f  in f2- 
i = 1  

u = go on Fo 

2 

2 ai(', (Vu)-("))v i = 5 and 5 = - Wu- + (�89 - K')5 
i=l 

( � 8 9  + V 5 + 2 = 0  o n F  

on F 

<1, 5> = 2b,  

where the nonlinear partial differential equation in (3.12) must be understood in the 
distributional sense. Note that in view of the trace theorem we now have 
u-  �9 and U[ro �9 H 1/2(F0). Also, the conormal ~2= 1 ai( ' ,  (Vu)-('))vi is 
interpreted as a distribution in H-1/2(F) via the divergence theorem. In other 

0 
words, for any v�9  -) with }-'2= 1 ~xi ai(', Vv( ' ) ) �9  the formal expres- 

sion ~2= 1 ai( ", (Vv)-('))vi denotes the distribution in H - 1/2(F) which is defined as 
follows, 

 a xVv,x,, z 
i = 1  i = 1  f~- d X  

+ I Ux~ a~(', Vv(')) zdx 
f~- i=I 

for all z �9 H~o(O-). Here, we have assumed explicitly that the nonlinear coefficients 
a i are such that ai( ' ,  Vv(" )) �9 L 2 (O-) for all v �9 H 1 (f2-). This assumption will make 
sense later on when we specify the Carath6odory and growth conditions for ai. 

Now for the weak formulation, we multiply the partial differential equation in 
(3.12) by any function z �9 H ~-o (f2 - ) and apply the divergence theorem (cf. (3.13)) and 
the third equation in (3.12) to yield 

2 Oz 
(3.14) ~. S a,(x, Vu(x)) d x + < z - , W u - - ( � 8 9  S f z d x  

i = l  f}- ~ f}- 
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Similarly, we multiply the fourth equation in (3.12) by any test function 
6 e H -  x/2(F) and integrate over F to obtain 

(3.15) (V& 6) + ( ( � 8 9  K ) u - , 6 )  + 2<1,3) = O. 

Equations (3.14) and (3.15) then lead us to the weak formulation: Given (f, go, 
b)~L2(12-)xH1/2(Fo)x~, find (u ,~ ,2 )~HX( f2 - )xn-1 /2 (F)x~  such that 
(u - 9)eH~o(t2-), (1, ~7) = 2b, and (u, t7, ~.) satisfies 

2 

(3.16) ~ I 
i =  1 Y/ -  

OZ 
ai(x, Vu(x)) ~xi dx + B((u, 8), (z, 6)) + 2(1, 6)  = S f zdx  

f j -  

for all (z, 6)eH~-o(f2-)• H-1/2(F), where geHl( f2  -)  is an extension of go with 
g[ro = go, and B is the bilinear form defined by 

(3.17) B((v, ~), (z, 6 ) ) :=  ( z - ,  W v -  ) - ( z - ,  (�89 - K ' ) ~ )  

+ <v~, ,~> + < ( N  - K)v-,  ,~> 

for all (v, ~), (z, 6)~Hl(f2 -) x H-1/Z(F). 
We remark that (3.16) and (3.12) are equivalent. Moreover, if (u, t~, 2) is a suffi- 

ciently smooth solution of (3.16), then it is also a classical solution of the nonlocal 
boundary problem (2.8). Obviously, the regularity properties of a solution of (3.16) 
will depend on the smoothness of the coefficients a~, the data go, f and the 
boundary 0t2-. The question of regularity will not be addressed here. 

Now, in order to deduce a more suitable formulation, we set w = u - g in t2-, 
2b 

and tr = 8 - ~ - ~  on F. It is easily seen that (w, a)~H~-o(f2- ) x Hol/2(F). Conse- 

quently, we reformulate (3.16) as follows: Given ( f  g, b)~L2( ~ -  ) x Hl(~2 - ) x JR, 
find (w, tr, 2) ~ H~-o(f2- ) x H ol/2( F) x ~ such that 

2 

(3.18) ~ I 
i = 1  .Q-  

ai(x, V(w + g)(x))~--~Zxi dx + B((w, tr), (z, 6)) + 2(1, 6)  = ~-(z, 6) 

for all (z, 6)~H~-o(t2-)xH-1/Z(F), where ~ is the linear functional on 
Hi(t2 -)  x H -1/2(/-) defined by 

(3.19) ~-(z, 6) :=  I f z d x - B  g, ,(z, 6) 
f / -  

V(z, 6) e Hl(~2 - ) x H - 1/2(r).  

Furthermore, we can still reduce (3.16) to a simpler problem by considering the 
following formulation which is a simplification of (3.18): Given ( fo ,  b)~ 
L2(~-)  x Hi(12-) x IR, find (w, tr) ~ H[o (t2- ) x Ho i/2 ( F ) such that 

2 & 
(3.20) ~ I ai(x,V(w+g)(x))-~x dX +B((w'tr) '(z '6))=F(z'6) 

i = 1 ~ -  
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for all (z, 6) ~ H ~'o (~ -  ) x H o a/2(r), where F is the restriction of the functional ~ on 
the subspace H ~-o(Q- ) x H o 1/2(F), i.e., 

(3.21) F(z, 6):= ~ f z d x  - B g, , (z, 6) 

V(z, 6)~/-/3~ (t~-) • n o  ~/2(r). 

In fact, we have the following result. 

Theorem 3.3. The weak formulations (3.18) and (3.20) are equivalent in the following 
sense: 

i) I f  (w, a, 2) is a solution of (3.18) then (w, a) solves (3.20). Conversely, if 
(w, ~) is a solution of (3.20), then (w, a, 2) is a solution of (3.18), where the constant 
2 is given by 

= -  w + g , ~ +  ,(0,1) . 

ii) The problem (3.18) has a unique solution if and only if (3.20) has also a unique 
solution. 

Proof The fact that every solution (w, g, 2) of (3.18) provides a solution (w, ~) of 
(3.20) is clear. Now, let (w, ~)e H~-o(t2-)x H o  1/2(F) be a solution of (3.20). Given 
6 e l l -  1/2(F) we define 

6 0 = 6  ( 1 , 6 )  

Since 60 ~ H o  1/2(F) we can write from (3.20) 

2 0z 
~, S ai(x, V(w + g) (x ) )~x  i dx + B((w, a), (z, 6o)) = F(z, 6o) 

i = 1  f~- 

for all zeH~.o(O- ). But, it is clear that 

1 
B((w, t~), (z, 60)) = B((w, g), (z, 6)) - ~ B((w, a), (0, 1))(1, 6 ) ,  

and also 
1 

F(z, Oo) = ~'(z, 6) - ~ ~-(0, 1) (1, 6> .  

It follows from the above equations that 

2 Oz 
~, I ai(x, V(w + g)(x)) ~xi dx + B((w, t7), (z, 6)) + 2(1, 6 )  = ~-(z, 6) 

i = 1  ~ -  

for all (z, 6)eH~o(~-)x H-1/2(r), where 

1 
2 = ~ { ~-(0, 1) - B((w, a), (0, 1))} . 

This proves that (w, o-, 2) is a solution of (3.18). Moreover, from (3.19) we have 

~'(0, 1) = - B g, ~ , (0, 1) , which together with the above equality yields (3.22). 
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We now prove ii). It is clear from i) that the uniqueness of(3.20) follows from 
that of (3.18). Conversely, suppose that (3.20) has at most one solution, and let 
(w i, a i, 2j), j = 1, 2 be two solutions of(3.18). Since for j = 1, 2, (wj, ai) is a solution 
of (3.20), the uniqueness of (3.20) implies (wl, a l )  = (w2, a2). Therefore, from (3.18) 
we deduce that ( 2 1 -  2 2 ) ( 1 , 6 ) = 0  Vf~H-1/2(_F), which gives 21 = 22. This 
completes the proof. [] 

From the above theorem we conclude that in order to study the existence and 
uniqueness of solution to (3.16) (or (3.18)), it suffices to consider the equivalent 
weak formulation given by (3.20) which involves only the two unknowns w and a. 
Consequently, from now on we shall direct our efforts to study the solvability of 
this problem. As indicated in the beginning of this paper, the approach we adopt 
here consists in the reduction of (3.20) to an equivalent operator equation. For  this 
purpose, we need now to specify some conditions on the nonlinear coefficients ai. 
So, let ai: f2- x ~,2 ~ IR be such that the following conditions are fulfilled: 

(H.1)  Carathbodory conditions. The function a~(', at) is measurable in I2- for all 
at E IR 2 and a~(x, ") is continuous in IR 2 for almost all x e f2-. 

(H.2)  Growth condition. There exist functions C~iEL2(Q  - ), i =  1, 2 such that 

Ir  at)l < C{1 + latl} + I~(x) l  

for  al l  at e F.. 2 and for a lmost al l  x e Q - .  

Here and in the sequel, C is a generic constant. 
As a consequence of (H.1) and (H.2) one can prove the following important 

result (for details of the proof see Gatica 1989, Chapter 2; and also Vainberg 1964). 

Theorem 3.4. Suppose that (H.1) and (H.2) are satisfied. Let As be the Nemytsky 
operator defined by 

(3.23) (Aiv)(x):= as(x, V(v + g)(x)) VveHl(~2-)Vx~t2 - . 

Then Ai is a continuous map from H I(~ - )  into L E ( Q  - ) and the inequality 

(3.24) I[Aivll2=ta-) < C{Area(f2-) + Iv + 9 1 2 _ )  + II 4~,llbm-~} 

holds for all v ~ H 1 (f2-) and for all i = 1, 2. 

It is important to remark that in view of the previous theorem, all of the 
integrals over I2- on the left hand side of the formulations (3.16), (3.18) and (3.20) 
make sense. Hence, we are now in a position to reduce (3.20) to an equivalent 
operator equation form. We define the Hilbert space 

:= H I ( ~  - )  x H-u2(F), 
and the subspace 

n : =  
with the product norms 

II (v, r l l .  := {l lvl l~,m-> + IIr 112 V(v, r  
and 

II(v, r II(v, r V(v, r  
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Further, let ~ *  and H* be the duals of ~ and H, respectively, with the norms 
defined by 

II-l, (z, 6)1t 
(3.25) I1/ t1~:= sup V l ~ *  

(z,~) ~e 0 

and 

lit,  (z, 6)]1 
(3.26) II lllr~.:= sup Vl~H* 

~ , ~ .  I[(z, 6)IIH 
(z,~) ar 0 

where [ "," -I denotes the duality pairing on both ~ *  x ~ and H* x H. 
We remark that the bilinear form B (see (3.17)) is bounded on ~ x ~ as 

a consequence of Lemma 3.1 (or Lemma 3.2), and the trace theorem. That is, there 
exists M > 0 such that 

(3.27) IB((v,r 6))l<=MIl(v,~)llJell(z, 6)ll~ V(v,~),(z, 6 ) ~ .  

This clearly implies that the linear functionals ~- (see (3.19)) and F (see (3.21)) are 
also bounded, i.e., ~ ~ g *  and F ~ H*. 

Now, we observe that for fixed (w, a), the expression on the left hand side of the 
equality (3.20) is a linear functional in (z, 6). Then, in virtue of Theorem 3.4 and the 
boundedness of B, we can introduce the nonlinear operators Y : a ~  ~ g *  and 
T: H ~ H*, where Y is defined by 

(3.28) [ ~J'(v, ~), (z, 6)] := ~ I ai(x, V(v + 9)(x)) dx + B((v, ~), (z, 6)) 
i = l  ~ -  

for all (v, r (z, 6 ) ~ ,  and T is the corresponding restriction of Y- on H, i.e., 

(3.29) IT(v, ~), (z, 6)] := [ ~J'(v, ~), (z, 6)] 

for all (v, ~), (z, 6)eI-I. Note that T can be defined, equivalently, as T:= i*" ~-'i,  
where i : H  ~ ~ and i * : ~ * ~  H* are the usual continuous injections. 

Consequently, as the main point of this section, the weak formulation (3.20) can 
be written in the form of an operator equation: Find (w, a) ~ H such that 

(3.30) T(w, a) = F ,  

or, equivalently, such that 

(3.31) [T(w, a), (z, 6)] = [F, (z, 6)] V(z, 6 ) ~ H .  

The operator equation form (3.30) then allows us to study the solvability of the 
weak formulation (3.20) by the theory of monotone operators. This analysis will be 
carried out in Sect. 5. For that purpose, some known results on monotone oper- 
ators will be provided in the next section. 

We remark that at this point it may seem that the introduction of the space ~ ,  
the functional ~-, and the operator 3", is unnecessary. However, the usefulness of 
this setting will become transparent in Sects. 6 and 7 when we study the Galerkin 
approximations of the operator equation (3.30). 

We end this section with the following corollary of Theorem 3.4. 
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Theorem 3.5. Under the assumptions (H.1) and (H.2), the operators Ai:HI(I2 -) -* 
L2(f2 - ) and T : H - o  H* have the following properties: 

i) There exists Mo > 0 such that 

(3.32) IlAivllL2<~-) < C[l(v, 4)lln 

for all (v, 4) ~ H with [1 (v, 3) I] H > Mo. 
ii) T is bounded and continuous. 

Proof. It follows easily from (3.24) that 

(3.33) IIA~vlIL2~-~ < C{Mo + II(v, r V(v, 4 ) ~ H ,  

where the constant Mo is given by 
2 

Mo:= {Area(~2-) + Igl~,(r~-) + ~ l[~il[~2(r~-)} x/2 �9 
i = l  

Hence, (3.32) is a simple consequence of (3.33). 
Now, by using (3.27), (3.33), and Schwarz's inequality, we obtain from the 

definition of T in (3.29), 

liT(v, ~),(z, 8)]1 < i=1 ~ IlalvllL2(~-, a~x i L2(fJ-) + Mll(v, 4)IIHII(z, ~)IIH 

< C{Mo + II(v, r }LZIH'tO-) + M II(v, 4)IIHII(z, ~)llH 

<= C{Mo + II(v, 4)118} II(z, ~)IIH V(V, ~), (Z, 6 ) ~ H .  

The above inequality and (3.26) imply, 

liT(v, 4)11~. _-_ C{Mo + II(v, 4)lln} V(v, 4 ) ~ H ,  

which clearly shows that T is bounded, i.e., it maps bounded sets of H into bounded 
sets of H*. 

To prove the continuity of T, we let {(v ~k), 4~k))} be a sequence in H which 
converges to (v, 4)~H. Then, for all (z, J ) e H  we have from (3.29), 

2 dz 
[T(v ~,  ~k~) - T(v, ~), (z, 8)] = Y, j {(a,v~)(x) - (a,v)(x)} Ux, dx 

i = l  f / -  

+ B((v~k), ~k)) _ (V, 4), (Z, C~)). 

Thus, Schwarz's inequality, (3.27), and (3.26), lead to the estimate 

,, e ' ) -  :< - 
l i=1  

which, by the continuity of the Nemytsky operators, shows that 

II T(v t~, 4 r - T(v, 3)IIH. ~ 0 .  

This proves the continuity of T. [] 

The above theorem will be needed in Sect. 5. 



186 G.N. Gatica and G.C. Hsiao 

4 Some known results on monotone operators 

The results to be presented here have been taken mainly from the books Ne~as 
(1986) and Oden (1986). Throughout  this section we always assume that T is 
a mapping from a reflexive and separable Banach space X into its dual X*. Also, 
[ ' ,-3 denotes the duality pairing between X* and X, and I['ll is the norm on X. 
Hereafter, the symbols "---~" and " - - , "  mean convergence in the weak and strong 
sense, respectively. To begin with, we introduce the following definitions: 

Definition 1. T is said to satisfy the property (M) if whenever 

u,-~u, T u , - ~ f  and lim sup [Tu, ,  u,]  =< If,  u] , 
n--~ -k OD 

then Tu = f. 

Definition 2. T is called coercive on X if 

[Tu, u] 
lim - - =  + oo.  

, . l l ~ + |  II ull 

Definition 3. T is called demicontinuous if Un --* U ~ TUn ~ Tu. 

We now state the first result regarding the existence of solutions to the operator 
equation Tu = f, with f~  X*. 

Theorem 4.1. Suppose that T is coercive, demicontinuous, bounded, and satisfies the 
property (M). Then T(X) = X*, and T-1 is a multivalued bounded mapping. 

Proof. See Ne~as (1986, Theorem 3.3.6). [] 

The above theorem can be simplified by using the following result. 

Theorem 4.2. Suppose that T is bounded and satisfies the property (M). Then T is 
demicontinuous, and is therefore continuous when restricted to any finite dimensional 
subspace of X. 

Proof. See Oden (1986, Theorem 28.1). [] 

The fact that restrictions of demicontinuous operators to finite dimensional 
spaces are continuous follows from the well known property that weakly conver- 
gent sequences are also strongly convergent in this ease. Then, as a consequence of 
Theorems 4.1 and 4.2, we obtain 

Theorem 4.3. Suppose that T is coercive, bounded, and satisfies the property (M). 
Then T(X) = X*, and T -  1 is a multivalued bounded mapping. 

We remark that a direct proof of this result, which makes no use of Theorem 
4.2, is given in Oden (1986, Theorem 28.2). Also, we comment that the notion of 
operators of type (M), which was introduced in Brezis (1968), is sometimes too 
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general to be of great value in applications. For  our purposes in this paper, it will 
suffice to consider instead the following class of monotone operators. 

Definition 4. The operator T is called 
i) monotone if 

[ T u - T v ,  u - v ] > O  Yu, v E X ,  

ii) strictly monotone if 

[ T u - T v ,  u - v ] > O  Vu, v ~ X , u ~ v ,  

iii) strongly monotone if there exists C > 0 such that 

[Tu - Tv, u - v] > C l l u  - vii 2 Vu, v E X .  

Definition 5. The operator T is called hemicontinuous if the mapping F, gt  
[T(u + tv), w]6lR is continuous for all u, v, w~X. 

The relationship between monotone and type (M) operators is made clear in the 
following statement. 

Theorem 4.4. I f  T is monotone and hemicontinuous, then T satisfies the property (M). 

Proof. See Ne~as (1986, Theorem 3.3.14). [] 

Of particular interest to us here are the following theorems for the finite dimen- 
sional problems. 

Theorem 4.5. Let Xh be a finite dimensional subspace of X. Suppose that T is 
coercive and demicontinuous. Then, given f ~ X*, there exists at least one uh ~ Xh 
such that 

(4.1) [Tuh, vh] = I-f, vh] Vvh~Xh . 

Proof. The main part of the proof consists in the reduction of (4.1) to an equivalent 
fixed point equation in IR m, where m is the dimension of Xh. Hence, a direct 
application of Brouwer's fixed point theorem yields the desired conclusion. For 
details, see Oden (1986, Theorem 27.2). [] 

Theorem 4.6. Let Xh be finite dimensional, and let T h : X  h X h be monotone. Then 
Th is bounded. 

Proof. See Oden (1986, Theorem 27.3). [] 

Now, we are in a position to deduce an important existence-uniqueness result. 

Theorem 4.7. Suppose that T is monotone, hemicontinuous, bounded, and coercive. 
Then T(X) = X*. Moreover, if T is strictly monotone, then T is one-to-one. 

Proof (main ideas). It is clear that the surjectivity of the operator T is a conse- 
quence of Theorems 4.3 and 4.4. However, it is worth mentioning that a construc- 
tive proof which makes use of the Galerkin approximations (4.1) can also be 
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employed. In fact, since X is separable, there is a family {Xm}m~ of finite 
dimensional subspaces such that X1 c X2 c - . .  c X, and U{Xm :meN} is dense 
in X. It can be proved (see e.g., Oden (1986, Lemma 27.1)) that if T is monotone, 
bounded, and hemicontinuous, then T is demicontinuous. Therefore, given f e  X*, 
a direct application of Theorem 4.5 allows us to construct a sequence of Galerkin 
approximations {um}m ~N satisfying 

umeXm, [Turn, v~] = [f, v~] Vv,.eX~. 

Hence, the coerciveness of T implies that {Um}m~N is bounded, and since X is 
reflexive, there exists a subsequence {Wm}m ~ N ~ {Um}m ~ r~ which converges weakly 
to an element w e X. The rest of the proof reduces to show that Tw = f. For further 
details, see Oden (1986, Theorem 27.1). 

Finally, if T is strictly monotone and u, u' are two different solutions to Tu = f, 
then 

0 < [ T u -  T u ' , u -  u'] = [ f - f , u -  u'] = 0 

which is a contradiction. So, necessarily u = u'. [] 

We end this brief collection of results on monotone operators with two simple 
corollaries of Theorem 4.7. 

Theorem 4.8. Suppose that T is monotone, continuous, bounded, and coercive. Then 
T(X) = X*. Moreover, if T is strictly monotone, then T is one-to-one. 

Proof. It follows easily from Theorem 4.7 and the obvious fact that continuity 
implies demicontinuity. [] 

Theorem 4.9. Suppose that T is strongly monotone, continuous, and bounded. Then 
T(X) = X*, and T is one-to-one. In other words, for any f e  X* there exists a unique 
u e X such that Tu = f. 

Proof. Let II1"111 be the norm on X*. Then by the strong monotonicity of T we 
deduce 

_ _  [TO, u'l 
I-Tu, u] > Cllul[ + - - >  Cllult -IIIT01II VueX Ilull = Ilull = 

which clearly shows that T is coercive. (Note that TO is not necessarily equal to 
zero.) Hence, Theorem 4.8 yields the desired result. [] 

5 Existence and uniqueness 

In this section we provide sufficient conditions for the solvability of the operator 
equation (3.30), which as shown in Sect. 3, is equivalent to the weak formulation 
(3.20). The approach used here is the same as in Gatica and Hsiao (1989c). 

For purposes of clarity, we recall from (3.28)-(3.29) the definition of the 
nonlinear operator T: H ~ H*, 

(5.1) I'T(v, ~j), (z, 6)] = ~ J" ai(x, V(v + g)(x)) dx + B((v, ~), (z, 6)) 
/ = 1  f / -  
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for all (v, ~), (z, 6 ) ~ H : =  Hlo(O - )  x Hol/2(F),  where B is the bounded bilinear 
form (cf. (3.17)), 

(5.2) B((v, ~), (z, 6)) := ( z - ,  W v - )  - ( z - ,  (�89 - K ' )~ )  

+ (V~,6>  + ((�89 - K)v- ,  6> 

for all (v, ~),(z, 6 ) z ~ : =  H~( t2 - )xH-~ /2(F) .  
We are interested in the operator  equat ion for the unknown (w, a) (cf. (3.30)), 

(5.3) T(w, a) = F ,  

where F e l l *  is the bounded linear functional defined by (3.21). 
In order  to apply the results on monotone  operators  given in Sect. 4, we need to 

make further assumptions on the nonlinear coefficients a~ in (5.1). We consider the 
following conditions: 

(H.3) Coerciveness condition. There exist a constant C1 > 0 and a function 
C2 ~ L 1 ( t2-)  such that 

2 

ai(x, ~)~i --> C11~[ 2 - C 2 ( x  ) 
i = 1  

for all ~t:= ( ~ ,  ~2)~IR 2 and for almost all xEt2- .  

(H.4) Monotonicity condition. 
2 

(a,(x, ~t) - ai(x, ~t'))(0ti - 0t}) > 0 
i = l  

for all at, ~ ' e  I R  2 and for almost all x ~ t2-.  

(H.5) Strict monotonicity condition. 
2 

(a,(x, ~t) -- ai(x, s -- ~)  > 0 
i = 1  

for all ~, ~'~ IR 2, ~t 4= ~t', and for almost all x ~ O- .  

(H.6) Strong monotonicity condition. The nonlinear coefficients ai(x, ") have con- 
t inuous first order  partial derivatives in N2 for almost all x e t2-.  In addition, there 
exists C > 0 such that  

2 ~ 2 

i 1 i = 1  

for all at:-- (al,  ct2), fl:= (i l l ,  fiE) ~ 2  and for almost all x e O - .  

Clearly, these conditions are not mutually exclusive. Hence, our  main results 
can be summarized in the following theorems depending on the assumptions on ai. 

Theorem 5.1. Suppose that the coefficients al satisfy the assumptions (H.1)-(H.4). Let 
T : H - ~  H *  be the operator defined by (5.1) and let F ~ H *  be the bounded linear 
functional defined by (3.21). Then there exists a solution (w, a)E H of the equation 
(5.3), and the solution is unique, if (H.5) is satisfied. 
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Theorem 5.2. Suppose that the coefficients ai satisfy the assumptions (H.1), (H.2) and 
(H.6). Let T: H --* H* be the operator defined by (5.1) and let F ~ H *  be the bounded 
linear functional defined by (3.21). Then there exists a unique solution (w, a)~ H of 
the equation (5.3). 

The proofs of these theorems are lengthy, but the arguments here are straight 
forward if one applies the results on monotone operators given in the previous 
section. To facilitate the proofs, let us first make some observations. 

We note that the bilinear form B, in addition to being bounded (see (3.27)), 
satisfies also a sort of positiveness condition. In fact, since 

(v- , ( �89  K')r = ( ( � 8 9  K)v-, r  

we obtain from (5.2), 

B((v, 0 ,  (v, O ) =  <v-,  W v - >  + <V~, ~> 

for all (v, 0 e l l ,  and hence, making use of (3.8) (cf. Lemma 3.2) and (3.11), we 
conclude that 

(5.4) B((v, 0,  (v, 0 )  >-- C II ~ 113-,,2~r) V(v, 0 ~ H .  

The above inequality indicates that the operator T is completely dominated by 
the nonlinear term in T, i.e., the integral over I2- involving the Nemytsky operators 
A~, i = 1, 2 (see (5.1)). This is precisely why all of our hypotheses are imposed on the 
nonlinear mappings a~. On the other hand, we recall from Theorem (3.5) that under 
the assumptions (H.1) and (H.2), the operator T defined by (5.1) is bounded and 
continuous on H. This result will be used in the proof of both Theorem 5.1 and 
Theorem 5.2, below. 

Proof of Theorem 5.1. The conclusion of this theorem is a direct application of 
Theorem 4.8. The assumption (H.3) naturally gives the coerciveness property of 
T (see Definition 2 in Sect. 4) as can be seen in the following. We may write from the 
definition of the Nemytsky operators Ai (3.23), 

2 ~1  2 

~. ~ a,(x, V(v + g)(x))-~x dx= ~ ~ a,(x, V(v + g)(x)) dx,(v + g)dx 
i=1 l~-  i = 1  .Q- 

2 c~g 
-- Z S (Aiv)(x)-~xidx, 

i = l ~ -  

and hence, from (H.3) together with i) in Theorem 3.5, we get 

2 c3v 
(5.5) ~ ~ a,(x, V(v + g)(x))~-~x dX > C~lv + gl2n,(~-)- IIC21IL,r 

i = 1  $~- 

- Cll(v, 0l lHlgln,(n-)  

for all (v, 0 ~ H with I1 (v, 0 II. > Mo. Now, according to (3.2) we have Iv 13, (~-) > C 
II v I L 3,  (~-)Vv ~ n ~'0 (f2-). Hence, we easily obtain, 

(5.6) Iv + gl~,(o-) > Ivl~*(~-~ - 2[vln,r 

>= C 11 v ]l~,(~-j - 21g lu,(~-~ bl (v, 011. 
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for all (v, r  Consequently,  we deduce from (5.1), (5.4), (5.5) and (5.6), 

}l (v, ~)IIH 

for all (v, ~) e H with II (v, ~) I[H > Mo. The above inequality proves that T is coercive 
on H. 

Similarly, in view of (5.1) and (5.4), we obtain 

(5.7) [T(v, r - T(z, 6), (v, r - (z, 6)] > C [[ ~ - 6 [12n .... tr) 

y, { ~ ~ } dx + S {~,(x,  v ~ ( ~ ) )  - a,{~, V~(~ ) ) }  Ux, ax,  
i = 1  .o-  

for all (v, ~), (z, 6 ) ~ H ,  with ~:= v + 9 and ~:= z + 9. Then, since (H.4) holds, we 
deduce from (5.7), 

s  ~) - T(z ,  ~), (v, ~) - (z, ,~)3 > C II ~ - ~ 1 1 ~ , - , , ~  >= 0 

for all (v, ~), (z, 6 ) ~ H ,  which proves that T is monotone.  
In addition, suppose that  (H.5) is satisfied, and let (v, ~), (z, 6 ) e H  such that 

(v, 0 * (z, 6). If r  ~, then (5.7) gives 

(5.8) IT(v, ~) - T(z, 6), (v, ~) - (z, 6)]  > 0 .  

Now, if v 4: z, then making use of (3.2) again, we get 

I~ - ~ 1 . , ~ - ~  = Iv - z l u , ( ~ - )  > C Ilv - z [1~,~-~ > 0 .  

Thus, there must  exist a subset D of t2- with Area(D) > 0 such that V~(x) * V~,(x) 
a.e. in D. Hence, the assumption (H.5) and (5.7) imply that the inequality (5.8) also 
holds in this case. This shows that T is strictly monotone.  Finally, snce by (H.1) and 
(H.2) T is bounded  and continuous,  an application of Theorem 4.8 completes this 
proof. []  

Proo f  o f  Theorem 5.2. The existence and uniqueness results given here follow 
directly from Theorem 4.9. It remains only to show that under (H.6), T is strongly 
mono tone  on H. In fact, for v, zEH~.o(f2-),  let us put  again ~:= v + g, ~:= z + g, 
and define the real valued function hi: [0, 1] --* IR by 

hi(t) := ai(x, at(x, t)) Yt ~ [0, 1] , 

where at(x, t):= VF(x) + t(VF(x) - V~(x)). It follows that 

j = 1 c3xJ ' 

and since ai(x, V~(x)) - ai(x, V~(x)) = h~(1) - hi(O), we deduce that 

ai(x, V~(x)) - ai(x, V3(x)) = ai(x, at(x, t)) dt . 
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Consequently, (H.6) and (3.2) yield 

I {a,(x, V~(x)) - a,(x, V~(x))} ~x~ ~x~ dx 
i = l  I~ -  

> C.= a-S dx = C l v -  zl2,to-~ 

= CIv-zl~t~-)_>-  CIIv-  z l l~t~-) .  

Then, by substituting this inequality into (5.7), we conclude 

[T(v, ~) - T(z, 6), (v, r - (z, 6)] > C [I (v, ~) - (z, 6)I1~ 

for all (v, 0,  (z, 6)e  H, which proves the strong monotonicity of T. [] 

Having proved these existence-uniqueness results for the operator equation 
(5.3) (or (3.30)), we now direct our attention toward the Galerkin approximations of 
the corresponding solution (w, a). This is precisely the aim of the next section. 

6 Galerkin approximations of the operator equation 

To formulate the Galerkin approximations of the solution of (5.3), we let { Hh }h ~ s 
be a family of finite-dimensional subspaces of H such that U {Hh, h e S} is dense in 
H, where the parameter h is in an index set S and represents, without loss of 
generality, a measure of the size of the corresponding finite elements. Then, the 
Galerkin approximation of the solution (w, a) of (5.3) is defined as an element 
(Wh, ah)~ Hh satisfyin9 the Galerkin equations 

(6.1) [T(wh, ah), (Zh, 6h)] = IF, (Zh, 6h)] 

for all (zh, 6h)EHh. 
We remark that, as for the operator equation (5.3), the existence, uniqueness as 

well as the convergence of the Galerkin approximations (Wh, ~rh) of (6.1) depend 
strongly on the assumptions of the nonlinear coefficients ai in T. From Theorem 5.1 
we know that there exists a unique solution (w, t r )eH of (5.3), provided (H.5) is 
fulfilled in addition to the assumptions (H.1)-(H.3). In this case, we will obtain the 
following expected results for the Galerkin approximations. 

Theorem 6.1. Suppose that the coefficients ai satisfy the conditions (H.1)-(H.3), and 
(H.5). Then there exists a unique solution (Wh, trh)~ Hh of the equation (6.1). More- 
over, there is a subsequence {(w-~, a~)} of {(Wh, ah)}h~S such that 

(w-~,,r~)~(w,a) as ~-- ,0 .  

Proof Let ih:Hh ~ H and i* : H * ~  H* be the canonical continuous injections. 
Then (6.1) can be written, equivalently, as the "discrete" operator equation 

(6.2) Th(wh, ah) = Fh , 

where Th: Hh--*H* and FhEH* are defined by Th:= i * ' T ' i h  and Fh:= F' ih,  
respectively. Since T is bounded, continuous, monotone and coercive on H, it is 
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easy to prove that Th holds the same properties on H h. Hence, an application 
of Theorem 4.8 implies that T h is one-to-one and onto. The existence of a subse- 
quence of {(wh, O'h)}heS converging weakly to (w, a) is deduced easily from the 
proof of Theorem 4.7. []  

We remark that the weak convergence of the Galerkin approximations can be 
improved if the condition (H.6) is satisfied. In fact, we have the following result. 

Theorem 6.2. Suppose that the coefficients al satisfy the conditions (H.1), (H.2) and 
(H.6). Then there exists a constant C > 0 independent of h such that 

(6.3) 11 (w, a)  - (wh, ah)IIH < C inf {11 (w, a)  --  (vh, {h)fin 
(Vh, Ch ) �9 Hh 

+ liT(w, a) - T(Vh, ~h)lJH*} , 

where (w, a ) e H  and (Wh, trh)6H h are the unique solutions of (5.3) and (6.1), 
respectively. 

Proof. It follows easily from the triangle inequality and the strong monotonicity 
property of T. [] 

Now, in order to obtain some kind of rate of convergence, an additional 
condition will be needed in contrast to the linear problems (see Michlin 1962). For  
this purpose, one will introduce a Lipschitz condition below. We comment that if 
T were a bounded linear operator, then (6.3) would become the usual C6a's lemma 
(see Ciarlet 1978). 

We recall that T:  H --* H* is Lipschitz continuous, if there exists C > 0 such that 

(6.4) LIT(v, ~) - T(z, ~)l[H, ~ ClL(v, ~) - (z, 6)[In 

for all (v, 4), (z, 3)~ H. We shall show that a sufficient condition on the nonlinear 
coefficients ai to ensure (6.4) is the following condition: 

(H.7) Lipschitz condition. The nonlinear functions a~(x,') have continuous first 
order partial derivatives in IR 2 for almost all x e Q- .  Also, there exists Co > 0 such 

that for each i, j ~ { 1, 2}, ~ a~(x, ~t) satisfies the Carath6odory conditions (H. 1), and 
o~j 

~9-~j ai(x, oO <= Co 

for all ~ I R  2 and for almost all x e O - .  

Since the bilinear form B in (5.1) is bounded (cf. (3.27)), to establish (6.4) it 
suffices to show that the Nemytsky operators Ai defined by (3.23) are Lipschitz 
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continuous on H ~ (f2-). In fact, similarly as in the proof of Theorem 5.2, we have 
for v , z~Hl ( t2 - ) ,  

IIa~v - a,zl122<~-) = S lai(x, V~(x)) - ai(x, V~(x))12 dx 
D -  

= ~-I ai(x, or(x, t)) c~x~ dt d x ,  

where ~:= v + g, ~:= z + g and ~t(x, t):= V~(x) + t(V~7(x) - V~(x)). It follows from 
(H.7) that 

Ilm,v - a,z  ll2~to-~ < 2C21~ - s < Cllv - zll2,t~-) 

which proves that Ai:H~(I2 -)  ~ L2(f2 -)  is Lipschitz continuous. Therefore, we 
conclude that if the condition (H.7) is satisfied, then both operators T and ~-- are 
Lipschitz continuous on H and ~ ,  respectively. 

As a corollary of Theorem 6.2 we can now state the following result concerning 
the error estimates of the Galerkin approximations. 

Theorem 6.3. Suppose that the coefficients ai satisfy the conditions (H.1), (H.2), (H.6) 
and (H.7). Then there exists a constant C > 0 independent of h such that 

(6.5) [I (w, ~) - (Wh, ~h)II, ~ C inf II (w, ~) -- (vh, ~h)IIH 
(Uh, ~h) ~ Hh 

where (w,r and (Wh, trh)~Hh are the unique solutions of (5.3) and (6.1), 
respectively. 

We observe that as in the linear case, these simple, yet crucial estimates (6.3) and 
(6.5), show that the problem of estimating the error between the solution (w, tr) and 
the Galerkin approximations (Wh, trh) is reduced to a question in the approximation 
theory. Furthermore, for the numerical implementations, one does not solve (6.1) 
exactly. This leads us to consider a modification of that formulation. More 
precisely, for reasons that will become evident in Sect. 7 we now extend our concept 
of Galerkin approximations to a more general setting in which ~,~, ~ and ~- come 
into play (see Remark before Theorem 3.5). To this end, we now let {I-Ih}h~ s be 
a family of finite-dimensional subspaces of ~ (not necessarily subspaces of H!). In 
addition, let Th:Hh ~ H* be an operator that approximates 9- o n  Hh ,  and let 
Fh ~ H* be an approximation of ~ on Hn. Then we redefine a Galerkin approxima- 
tion of the solution (w, tr) of (5.3) as an element (Wh, trh)~Hh (if it exists) such that 

(6.6) [ 'Th(Wh, trh) , (Zh, 6h)'] h = [ 'Fh ,  (Zh, 6h)'] h 

for all (zh, 6h)~Hh, where [ ' ,  " ]h denotes the duality pairing on H* x H h. AS far as 
the existence of a solution of (6.6) is concerned, it suffices from Theorem 4.6 and 
Theorem 4.8, to assume that T h is a continuous, monotone and coercive operator 
o n  H h. Note that from Theorem 4.6, since Hh is finite-dimensional, the monotonic- 
ity of Th implies that T h is bounded. Similarly, from Theorem 4.9, we see that there 
exists a unique solution of (6.6) if T h is continuous and strongly monotone o n  H h. 
Moreover, we can establish the following important theorem. 

Theorem 6.4. Suppose that the coefficients ai satisfy the conditions (H.1), (H.2), (H.6) 
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and (H.7). Let Fe ~ H~,' be an approximation of ~ on He, and let Th:Hh ~ H~' be an 
operator that approximates ~-" on  Hh, with the properties: 

i) Th is continuous 
ii) T h is uniformly strongly monotone, i.e., there exist constants ho > 0 and C > O, 

independent of h, such that 

[Th(Vh, ~h) - -  Th (Zh, 6h), (Vh, ih) -- (Zh, 6h)]h > dll(v~, Ch) - (zh, ~e)ll~ 

for all (Vh, ~h), (Zh, ~ h ) ~ H h  and for all he(O, ho). Then (5.3) has a unique solution 
(w,a )~H and (6.6) has a unique solution (Wh, ah)~He. Moreover, the followin9 
Stran9 type estimates hold for all h 6(0, ho): 

(6.7) I[(W,a)--(Wh, ah)l l~e<C~ sup 
[[Fh, (Zh, 6h)-]h -- [ J'(W, ~r), (Zh, 6h)]l 

+ inf 
(vh, ~h)EHh 

+ sup 
(2'h, ~h ) E H h 
(zh, ~h) 4~ 0 

where C > 0 is a constant independent of h. 

(zh, 6h) * 0 

II(w, a) - (vh, ~h)ll~ 

I[Y-(Vh,~h),(Zh, Sh)]--[Te(ve,r Oh) ]h l ) } l~h:_O~ 

Proof From Theorem 5.2 and the previous remark, it remains only to prove the 
estimate (6.7). We have again by the triangle inequality, 

(6.8) II (w ,  17) - (We, lTh)tl,~ ~ II (W, (7) - -  (Oh, ~h)I[~tg ' "r II (Wh, O'h) - -  (Oh, ~h)tt~q' 

for all (re, ~ h ) ~ H h .  NOW, since by ii) T h is uniformly strongly monotone and 
(%, ah)eHh is the solution of (6.6), we obtain, with (Zh, 6h): = (Wh, ae) -- (re, Ch), 

II (ze, ~e)ll~ < C{ [Fh, (Zh, 6h)]h -- [Th(vh, Ch), (Zh, 8e)]e} 

for all (Vh, ~,)~ Hh. It follows easily that 

(6.9) II (Zh, ~h)ll~ < C{II-Fe, (Zh, 6 e ) ] h  - -  [Y-(W, ~r), (zh, 6h)-] [ 

+ I [9-(w. a). (z,. 6h)] - [Y-(vh. r (zh. 6h)]l 

+ I[~-(v,, {h), (zh, 6h)] - [Th(ve, {h), (zh, 6h)]ht} �9 

Note that by (H.7) 5- is Lipschitz continuous on of. Hence, dividing (6.9) by 
H(ze, 6h)llJe, and then taking the supremum with respect to (zh, 6h)eHh on each 
term of the right hand side, we deduce that 

f I[Fh, (zh, 6h)lh [ J ( w ,  ~), 6h)][ 
II (we, ,rh) - (re, ~h)l],r < C ~ sup ~ , ~ , ~  II (zh, ~h)II~ 

+ II(w, ~r) -- (Vh, r 

t [ ~ ( v h ,  ~h), (ze, ,~h)] - [Th(vh, ~e), (ze, ~e)]hl "~ 
+ s u p  J 

(zh, ~h) * 0 

for all (Vh, ~h)~Hh- Together with (6.8) this completes the proof. [] 
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It is important to note that the estimate (6.7) can be considered as a slight 
variant of the well known first and second Strang's lemmas for treating linear 
problems with variational crimes (see e.g. Ciarlet 1978, Chap. 4). To conclude this 
section, we remark that the Strang type estimate (6.7) plays a fundamental role in 
the asymptotic error estimates. In Sect. 7 an explicit operator Th is given to possess 
the properties i) and ii) in Theorem 6.4, and specific error estimates based on (6.7) 
are also obtained for a family of finite element subspaces {Hh}he(O,ho). 

7 Asymptotic error estimates 

The main goal of this section is to derive asymptotic error estimates for a 
boundary-finite element solution of Eq. (5.3) for the case in which the correspond- 
ing operator is strongly monotone and Lipschitz-continuous. The problem is 
discretized by using linear conforming triangular elements on a polygonal domain 
Oh approximating 0 - ,  and using piecewise constants functions on the correspond- 
ing polygonal boundary Fh that approximates F. Two discrete problems are 
defined, one on ~h and the other on 0 - .  With the hypotheses that the conditions 
(H.1), (H.2), (H.6) and (H.7) are satisfied on a domain containing 0 - ~  Oh, we 
conclude that both discrete problems are unique solvable. The solution of the 
discrete problem on 0 -  yields the Galerkin solution (Wh, ah) defined by (6.6). 
Similarly, the solution of the discrete problem on Oh induces, by means of a con- 
venient transformation, another approximation which we denote by (~h, 6h) and 
call the Quasi-Galerkin solution. Then, based on the Strang type estimate given in 
Theorem 6.4, we prove the strong convergence of (Wh, ah) and (Wh, 6h) to the 
solution (w, a) of (5.3). Moreover, under additional regularity assumptions on 
(w, tr), we show that the approximate solutions converge to (w, a) with the asymp- 
totic rate of convergence O(h). The present section can be regarded as the first piece 
of work concerned with the asymptotic error analysis of the coupled boundary and 
finite element methods for a nonlinear problem. For the linear case we refer to 
Wendland (1986, 1988). 

7.1 Preliminaries 

Throughout the rest of this section we write f2 instead of ~ - .  Let O c ]R 2 be 
a bounded domain with smooth boundary such that 0 is strictly contained in ~. 
We assume that the data f and g are such that f ~  L 2 (O), and g ~ H 2 § for some 
e > 0. In addition, the nonlinear coefficients ai are supposed to satisfy the following 
assumptions: 

(H.1)' Carathbodory conditions. The function as(', at) is measurable in O for all 
~ t ~  2 and ai(x, ") is continuous in IR 2 for almost all x e ~ .  

(H.2)' Growth condition. There exist functions ~bieHl(~), i = 1, 2 such that 

la~(x, a01 = C(1 + I~1} + Iq~(x)l 

for all at e IR z and for almost all x ~ ~. 
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(H.6)' Strong monotonicity condition. The nonlinear coefficients ai(x, ") have con- 
tinuous first order partial derivatives in IR 2 for almost all x e ~. In addition, there 
exists C > 0 such that 

0 2 
~ a,(~, ~)~,~j ~ c Y. ~,~ 

i , j= l ~ j  i = 1  

for all ~:= (el, e2), P:= (B1, ~2)e IRe and for almost all x e ~ .  

(H.7)' Lipschitz condition. The nonlinear functions ai(x, ") have continuous first 
order partial derivatives in R2 for almost all x e ~. Also, there exists Co > 0 such 

that for each i,j~ {1, 2}, ~2- ~ ai(x, ~t) satisfies the Carath6odory conditions (H.1)', 
and 

~-~ja,(x,~t)l<:co 

for all ~t ~ IR 2 and for almost all x ~ ~. 

Having established our main hypotheses, we now rewrite the operator equation 
(5.3), equivalently, as: Find (w, a)~ H such that 

(P) [T(w, cr),(z,~)] = [F,(z,~)] V(z ,~)~H,  

where F is the bounded linear functional defined by (3.21). We will refer to (P) as the 
continuous problem. 

We remark that from the point of view of the formulation of problem (P), the 
assumptions on f and g, and the conditions (H.1)' and (H.2)' can be weakened. In 
fact, as proved in the previous sections, f~L2(f2), g~HX(f2), and the hypotheses 
(H.1) and (H.2) suffice to prove that T and F are well defined. Similarly, from the 
point of view of the solvability of problem (P), the assumption (H.6)' can also be 
simplified. Indeed, according to Theorem 5.2, (H.1), (H.2), and (H.6) guarantee the 
existence of a unique solution of (P). 

For the purposes of this section, we find it convenient to redefine the bilinear 
form B. We note that since 

1 0 { 1 } 
 v- log ds,, = - � 8 9  vx r, 

the boundary integral operator K of the double layer potential (see (2.3) and 
Lemma 3.2), satisfies the identity, 

( K v - , f ) = d ( v - , f ) - � 8 9  V(v,f)~HI(t2)xH-I/2(F) 

where d: HX/2(F)x H-1/2(F)~ R is the bounded bilinear form defined by 

1 (x - y)" v(y) 
( 7 . 1 )  d(r  Ix- -y~ {r 

for all (4, 6)eH1/2(F)x H-1/2(F). Similarly, we introduce the bounded bilinear 
form b: H -  1/2(F) x H -  1/2(F) -+ IR defined by 

(7.2) b(~ ,6) :=  (V~, ,~ )  V~,,~eH-I/2(F), 
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where V is the boundary integral operator of the simple layer potential (see (2.2) 
and Lemma 3.2). Observe, in view of (3.6), that 

(7.3) b(~,6) = ~ ! ! l o g  { o } r y )6(x) ds, dsx 

for all ~ e Ho  1/2(F) and for all ~ ~ H -  1/2(F), where D denotes twice the diameter of 
F. Moreover, according to (3.8) (cf. Lemma 3.2), we have 

(7.4) b(~, ~) > C [I ~ 2 [In- 1/2(r) V~eHol /2(F)  �9 

Also, from (3.10), we clearly have 

( z - , W v - ) = b  -dss' ds Vv'zeI-l~(12)" 

Now, if we let A( "," ) denote the semilinear form 

2 0z 
A(v,z):= 2 I (Aiv)(x)-~x dX Vv, zfH1(12) , 

i=1t'2 

with (Aiv) (x):= at(x, V(v + g)(x)) being the Nemytsky operator, then the operator 
~-- and the bilinear form B may be redefined: 

[Y-(v, r (z, ,~)] := A(v, z) + B((v, r (z, ~)) ,  

and 

(7.5) B((v, r (z, ,~)) := b (  dr- , d ~  
ds ds J + b(~, 6) + d(z-, ~) 

- d(v-, ~) + (v- ,  6)  - ( z - ,  ~) 
for all (v, 3), (z, 6) ~ o~f'. 

This setting will be used in Subsection 7.3 to define the finite element dis- 
cretizations associated to the continuous problem (P). To that end, we now 
introduce the corresponding triangulations of the domain. 

7.2 Triangulations of  the domain and their properties 

Let {12h}h~(0, ho) be the set of polygonal approximations of 12 obtained by approxi- 
mating F and Fo by two simple closed piecewise linear curves Fh and ['o,h, 
respectively, with all their vertices lying on 0f2. We assume that the bounded 
domain 12 introduced in Sect. 7.1 is such that 

(7.6) ~h C ~ Vhe(0, ho). 

Observe that OOh = Fh w/'0,h.  Now, let /-/h be a triangulation of 12h, i.e., a set 
I1 h : =  {Z 1 . . . . .  "rm} consisting of a finite number of closed triangles, which has the 
following properties: 

i) ~h = kJ jm=l~j. 
ii) Ifz~, z ~ H h ,  ~ ,I = zj, then either z~ n rj = ~ or z~ c~ zj is a common vertex or 

z~ n zj is a common side of z~ and zj. 
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We denote by Vh := {P~ . . . . .  PM} the set of all vertices of/-/h, and assume: 

iii) ~ ~_ ~, ~hh n t~f2h ----- ~f2 for all he(0, ho). 
iv) At most two vertices of each zjeI-lh lie on 8[2h:= F h ~ Fo ,  h- 

For definiteness, from now on we assume that t3f2 := F ~ Fo is piecewise of class C 2 
and add the condition: 

v) The points of Of 2 where the condition of C2-smoothness is not satisfied are 
elements of ~/hh. 

We let hj and 0j denote the length of the maximum side and the magnitude of the 
minimum angle of z j e  IIh, respectively, and set 

h : = m a x { h j : j =  1 . . . . .  m} and O h : = m i n { O j : j =  1 . . . . .  m } .  

We assume that there exists a positive constant 0o such that 

(vi) Oh > 0o > 0 Vhe(0, ho). 

The set of triangulations {H h }he(0, ho) with all the properties i)-vi) is called a system 
of  regular triangulations. 

We now introduce further notations. Let zj be a boundary triangle, i.e., a triangle 
with two vertices on F, or on Fo, and let oJ oJ oJ be its vertices (in a local Jt 1 , ~t 2 , ~t 3 

notation) with P J2, PJ3~F, or P J2., PJ.3 ~Fo. Let ~j  be the part o f f  (or Fo) which is 
approximated by the segment P~ P~. Then the closed triangle z~ d with two straight 
sides - 1 - 2 ,  p j  oJ  - 1 - 3  p j  oJ and one curved side ~j is called the ideal triangle associated with 

~d the triangle zj. In other words, zj is the approximation of z j .  
From now on, for simplicity, we will assume that the region bounded by F is 

convex. Then, we adopt the following notation: 

Q ~h = N, z+ N~ ~+ 
- -  L . ) r =  1 r,F~.J L . J r = l ~ r , F  o 

and 
f~h ~ N~ - 

- -  ~ L . ) r = l ~ r ,  Fo , 

where z + z + - ,,r, r, ro, Zr, ro are domains with boundaries 

<~Z+r <~+r w + <~Z+ro ~+ l + t3ZT, ro = cgT, r o u lT.ro = , It, r, = r, r o ~  r, ro, , �9 

Here, <~,, +r -c F (resp. ~,, +ro c_ Fo, ~ ro ,  c- Fo) is the curved side of an ideal triangle 
ld + + z~ , and l,,r ~- Fh (resp. l,,ro ~ Fo,h, l,-/ro ~- Fo,h) is the corresponding side of the 

triangle zj e / /h  that approximates z~d. We assume that h is sufficiently small so that 
%+,r and l~r (resp. C~r o and l~ro, ~/ ,ro and 17,to) intersect only at the end points of 
the line segment l § (resp. l § l~,ro). It is clear from the above definitions that 

and 

N1 6~+ Fh N1 + F = L . . ) r = l O r ,  F,  = U r = l l r ,  F , 

N2 ( ~  + N3 1 ( ~ . F o  , F 0 -.~ L . ) r = l  tOr, FoL.) U r =  

Fo,h N~ l+ro W ~ N~ I-~ ~-  t J r = 1  r= l r, l o  " 

Throughout the rest of the section, in our estimates we shall work with various 
constants. For  simplicity, the same symbol C will be used to denote generic 
constants which are independent o f  h. Also, if necessary, the constant ho will be 
replaced by a convenient smaller one denoted again by ho. We use I'1 to mean the 
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Lebesgue measure defined in I R  2, a s  well as the one dimensional measure defined 
on 0D or ODh. We now state a useful lemma. We omit its proof since it is too 
technical. However, we refer the interested reader to Gatica and Hsiao (1989b). 

Lemma 7.1. There exists a positive constant C such that 

Nt N2 N3 

~ ,  "~+ T + I ,,rl, Z t ,,rol, ~ Iv2rol < ChZ, 
r = l  r = l  r = l  

N1 
2 2 Z IlvllL .+ < Ch2[iv[12a) VveHI(D) 

r = l  lr,r = 

and 

hold for all he(O, ho). 

Proof See Gatica and Hsiao (1989b, Lemma 3.1, Lemma 3.3). [] 

7.3 The finite element discretizations 

In this subsection we introduce the two discrete problems mentioned in the 
beginning of the section, which lead to the Galerkin and Quasi-Galerkin approx- 
imations of the solution (w, tr) of the continuous problem (P). We mainly follow the 
approach given in Johnson and Nedelec (1980) for linear problems. 

7.3.1 The discrete problem on ~h 

We first define, similarly as in (3.1) and (3.5), the following Sobolev spaces: 

n~o.,(f2h):= {~enl(f2h):~lro,, = 0},  

no'/2(rh):= {~'en-'/2(rh): ~ ~'(s)ds = 0}, 
Fh 

and the associated product space, 

H:= HL..(Qh) x/-/o'/2(r~). 

Also, we introduce the finite element spaces, 

Oh l :=  {6eC(Dn):~l~j is affine Vj = 1 , . . . , m } ,  

(7.7) ~1 ._ {~eH~:~(Pj) = 0 V P j e ~  c~ Fo,h} h, 0 " - -  

/~h I/2"= {(eL2(Fh):~ ' l l+ is constant Vr = 1 , . . . ,  N1}, 

g;,~/2 := {~eg;~: ~ ~'(s)ds = 0 } ,  
Fh 

(7.8) 

and the product space, 

(7.9) I~s:= ~ l  v r_7-1/2 
~.th, O ^ l a h ,  O �9 
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It is clear that I?Ih is a finite element subspace of 17I. We now define the usual 
interpolation operator ~'h : H 2 (Qh) ~ V "* I'* ~ ~ H h ~ by the relation 

( ? v ) ( P j )  = v(Pj)  VPj~hh. 

We adopt the notation ~h:= ~h~ for all ~H2(~h).  
Since by hypothesis o~H2+~(~), and by (7.6) ~ h -  ~, we have clearly that 

g ~ H 2(Qh). Thus, according to (H.1)' and (H.2)', we can define the semilinear form 

z 0z  
(7.10) .~n(v, z) = ~ ~ a,(x, V(v + (~h)(x)) ~X~ dx 

i=1 ~ 

for all v, z ~ H t (~n). Analogously, following (7.1) and (7.3), we introduce the discrete 
bilinear forms 

, (o} 
(7.11) bn(~, 6):= 2n r~ ~ r,I log ~ ~(y)6(x)ds, dsx 

for all ~, 6~H-1/z(F,), 

1 (X -- y)'vh(y) 
(7.12) d,(~,6):=~:~:~ ~:-~-~ {~(y)-~(x)}6(x)ds~ds, 

for all (~, 6)~HI/2(Fh) x H-I/2(Fh), and 

(7.13) (v- ,  6)h:= S v-(x)f(x)ds~ 
Fh 

for all v e H 1 (Oh), 6 ~ H-1/2(Fh). We remark that in (7.13) v- denotes now the trace 
of v ~ H I(Qh) on Fh, i.e., v-  ~ H 1/2 (Fh). Thus, ( "," )h stands for the duality pairing 
between H 1/Z(Fh) and H- 1/2(Fh) with respect to the L2(Fh)-inner product. Also, in 
(7.12), we denote by Vh(y) the outward normal to F at the point ~0h(y)~F, y~  Fh, 
where qJh: Fh ~ F is the mapping that associates to each y e Fh, y r ~ ,  the intersec- 
tion point of F with the line passing through y perpendicular to Fh, and fib(Y) = Y 
for all y ~ ~ c~ Fh. It is clear that for h sufficiently small, ~h is a bijection. 

Now, similarly as in (7.5), we define the discrete bilinear form corresponding 
to B, 

(7.14) Bh((V,~),(Z, 6)):=bh "~Sh' dSh + b h ( ~ , 6 ) + d h ( z - , ~ )  

- ~ ( v - ,  6) + ( v - ,  6 )h  -- ( z - ,  ~)h 

for all (v, r (z, 6)~ Hl(t2h)x H-1/2 (Fh), where d/dsh indicates tangential derivative 
along Fh. We remark that Bh is bounded as a consequence of the trace theorem on 
H l(g2h) and the continuity properties of the boundary integral operators on the 
Lipschitzian boundary Fh (see Lemma 3.2). By (H.1)' and (H.2)' we can define the 
operator T : H --+ H*, with 

(7.15) [T(v, ~), (z, 6)]~:= A,(v, z) + Bh((v, ~), (z, 6)) 

for all (v, ~), (z, 6)~I?I, where [-', "]g denotes the corresponding duality pairing. 
Also, due to the boundedness of Bh we can introduce the bounded linear functional 
F : H --. R, with 

(7.16) [F,(z, 6)]-h:= S f z d x -  h g '(-f~l ,(Z, 6) 
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for all (z, 6)eI~. The discrete analogue of (P) can now be formulated: Find 
(fib, ah)~Hh such that 

(~h) [~(~h, a~), (~, (~)]~ = [~,  (~,  ~'h)] ~ 
for all 07h, ~'h)eI~h, where ITIh is the finite element subspace of I~ defined in (7.9). 

By following the same arguments of the proof of Theorem 3.4 (see Gatica 1989, 
Chapter 2), we easily deduce that under (H.1)' and (H.2)', the discrete Nemytsky 

A i, defined by operator ~ h 

(.4~v) (x) := ai(x, V(v + ~h)(x)) , 

is a continuous map from Hl(f2h) into L2(f2h), and hence, the operator I" defined 
by (7.15) is bounded and continuous. By using Lemma 3.2 and (3.11), since Fh is 
Lipschitzian, one can easily prove that Bh satisfies the inequality 

(7.17) Bh((V, ~), (v, r > C II ~ II~ .... try) 

for all (v, r I~, which is the discrete analogue of (5.4). Then, following the same 
procedure as in Sect. 5 (see proof of Theorem 5.2) and using (7.17) and (H.6)', we 
deduce that T is a strongly monotone operator on the whole space H. 

As a consequence, we can state the following result concerning the solvability 
of ( ~ ) .  

Theorem 7.2. Under the assumptions (H.1)', (H.2)' and (H.6)', there exists a unique 
solution pair (wh, a,)~ l-Ih tO the problem (Ph). 

Proof. The proof follows directly from Theorem 4.9. [] 

We comment that the problem (Ph) leads to a nonlinear system of algebraic 
equations for the unknowns ~vh(P~) per each vertex Pje~l~h, Pjq~Fo.h, and the 
unknowns a*lt~.r per each side l,+r of the polygonalboundary Fh. The algorithms 
for solving the nonlinear system determined by (Ph) as well as their numerical 
implementations will not be discussed here. The solution (Wh, t~h) of the discrete 
problem (P,), an element of the space C(~2h) • L2(Fh), cannot be directly compared 
with the solution (w, a) of the continuous problem (P), since they are defined on 
different domains. However, we shall see in the next subsection that a suitable 
transformation Jr ' :  C(t2h)xL2(Fh)--~ C(~)•  L2(F) can be introduced so that 
~t'(~h, t~h) constitutes what we call the Quasi-Galerkin approximation of (w, a). 
Moreover, by using this mapping ~ ,  and based on (Ph)' we show that a discrete 
problem (Ph) of the form (6.6) can be formulated for which the assumptions i) and 
ii) of Theorem 6.4 are fulfilled. 

7.3.2 The discrete problem on 

We first convert the subspace IZlh of 171 into a subspace of ~ '  := H 1(~2) x H-1/2(F). 
For this purpose, we shall use the properties of the mapping ~kh: Fh ---' F defined 
previously. Using ~b h 1 to transform integrals along Fh to integrals along F, we have 
for any ~'e L2(Fh) 

(7.18) S ~(s) ds = ~ (~o ~kh 1)(s)Jh(s)ds, 
Fa 1" 
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where Jh(s) = (d/ds) ~Of 1 (s) denotes the derivative of r x in the tangential direction 
to F. The identity (7.18) suggests the definition of the mapping JC'r: L2(Fh) ~ L2(F) 
with 

~#~(~):= (~or V~+L~(r~). 
Note that i f  ~/-Ih,  01/2, w h e r e  /~h. 01/2 is the finite element subspace defined in (7.8), 
and if ~ = J/r(~), then 

0 = ~ ~(s) ds = ~ (~o Ch 1)(s)Jn(s) ds = ~ r ds ,  
Fh r F 

which proves that ~ 6 H o  1/2(F). Therefore, if we define 

Hf,~/z = j/gr(Hf, oX/Z) , 

then clearly Hh,~/2 is a subspace of Hol/2(_F). 
Similarly, let us define the mapping alga : C(~h) ~ C(~2) by 

~ ' ~ : =  v V~EC(~h),  

where v(x) = ~(x) for all x ~ {2 c~ f2h; v(x) = v(y)  for all x on the line segment joining 
y e F h  and r  and v(x) = v(y)  for all x on the line segment joining y~l+ro 
and ~,h,o(y)eCg+ro for all r = 1 . . . . .  N2. Here Ch, 0 is the mapping that associates 
to each y ~ l+ro, y r ~ the intersection point of Cg+ro with the line passing through 
y perpendicular to l + = r, ro, and Ch. o(Y) y V y ~ ~ c~ l~ro. Then we introduce the 
following subspaces of H 1 (f2): 

and 

H~ := J//o (~1) ,  

W -~.(9~o) h , 0 " - -  , " 

According to the definitions of Jg~ and Hh ~, o (see (7.7)), it is clear that v(x) = 0 for all 
x~ u,=lT,,roN2 + and for all v~H~, o. However, H lh,o is not a subspace of H~-o(f2). In 
fact, although every v~H~,o vanishes at the end points of the curve sides 
cf,~r o, r = 1 . . . . .  N3, its values on the rest of the points of ~ r o  are not necessarily 
zero. In other words, H 1 is not a subspace of H~ o (Q) because the boundary h, 0 

condition at Fo is not fully satisfied. We then define the subspace of 
~ : =  Hi(t2) x H-1/2(F), 

H h : =  n~,o x n h , , ~ / 2  . 

It follows from the previous comment that Hh is not a subspace of H := Hr~o 
(f2) x Ho  U2(F). Hence, our next goal is to use the subspace I-I h to define a Galerkin 
approximation of (w, a) in the form of (6.6). 

Let us introduce the mapping H2(I2) ~ v ~ 1% := v h e Hh x = JC'u(/~h 1), where v h is 
the unique element of nh 1 such that v*(Pj) = v(Pj) V Pj ~ ~h. Then, given 9 h := lh9, by 
(H.1)' and (H.2)', we can define the semilinear form, 

(7.19) Ah(v,z):= ~ S ai(x, V(v + gh)(x)) dx 
i = 1  f2 h 

for all v, zeH~,  o = J/r Here O h is the domain bounded by Fh and Fo. 
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Now, by changing integrations from Fh to F, the discrete bilinear forms bh and 
~, from (7.11) and (7.12) then satisfy the following identities: 

(7.20) b,(r 6") = bh(J/r~, -/r V~, 6 e H ~ / 2  , 

and 

(7.21) dh(~-, 6) = dh((~4/~)-, J / rg)  W7~/4~,o Vg~g;~/2 , 

where bh and dn are the bilinear forms defined by 

D 

for all ~, 6 e H ~ / 2 ,  and 

(7.23) dh(V-, 6):= 

1 ! ! ( O ~ ' ( x ) - - O ~ X ( Y ) ) ' v ( Y )  . . . .  
2---~ i~_~(x) ~ - ~ ( y - - ~  tv t Y ) -  v-(x))6(x)Jh(y)ds:,dsx 

for all v~H~ and for all 6 ~ H ~ / z .  Note that in the definition of d, we have used 
also the property that v(tp~l(x)) = v(x) for all x ~ F  and for all veH~.  

Similarly, given v = ~ /n~  with ~ e / i ~ ,  o, and 6 = Jtr  g with g ~ / i g  o ~/2, we obtain 

( v - ,  6) = I v-  (s)6(s) as = ~ v- (~k; X(s))(Go ~9~ -x)(s)sh(s) ds 
1" 1" 

= I ~-(~)g(s)ds = (~ - ,  g>~. 
Fn 

Hence, we deduce that 

(7.24) (~7-, g)h = ((.//'/~2~)-, '-////Fg) VV~/-I1,0 Vg6/-Ih,~/2 �9 

Furthermore, given ~Te H~,o and v = .//~ E e H~, o, we clearly have v- (s) = ~- (Oh ~ (S)), 
from which it follows that 

do- d~- (~k~_ d 
ds (s) = ds~ ~ (s)) ~ ~ ;  ~ (s). 

Hence, we can write 

(7.25) dv- (d~_~sh) 
d--S--- ~ r  

d~- ~ r~- x/2 dv - 
Also, since ~ = , , , .  o , we deduce that ~ ~ nh-~ ~/2. 

Collecting (7.20), (7.21), (7.24) and (7.25), we see that the discrete bilinear form 
Bh (cf. (7.14)) satisfies the identity 

(7.26) Bh((~, ~'), (L 6)) = Bh(~'(~, ~'), J//(~, 6)) 

for all (~, ~'), (~, 6") ~ ITIh, where Bh : Hh • Hh ~ IR is the bilinear form defined by 

dz- 
(7.27) B,((v, O, (z, 6)):= bh ds ' ds + bh(~, 6) + dh(Z-, ~) 

- dh(v-,  6) + ( v - ,  6 )  - ( z - ,  r  
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for all (v, r (z, 6)eHh, and ~ ' :  C(Oh) x L2(rh) --* C(O) x L2(F) is defined 
naturally by 

Now, in order to formulate the discrete problem on ~ in terms OfAh, Bh and Hh, 
we need the following lemma (see Johnson and Nedelec 1980; Leroux 1977). 

Lemma 7.3. Let d, b, bh, dh be the bilinear forms defined in (7.1), (7.2), (7.22) and 
(7.23), respectively. Then there exists a positive constant C such that for all h ~ (0, ho), 

Ib(r ~) - bh(~, ~)[ < Chl[~llH-~:~tr)ll6ll.-~:~tr) Vr ~Hh,,~/2 , 
and 

Id(v-, 6) - dn(v-, 6)1 < Ch 3/2 I[ v I[H,tt~)II 6 [IH .... tr) V(v, 6)~ HA x H~,~/2 . 

As a by-product of this lemma one deduces from its proof (see e.g. Johnson and 
Nedelec 1980) that for all 3, 6~H~,~/2, vsH~,  

(7.28) Ib(r 6) - bh(~, 6)1 ~ Ch 2 II ~ IIL2(r)II 6 ]{L2tr) �9 

(7.29) Id(v-, 6) - dn(v-, 6)1 < Ch 2 II 6 IIL~tr)[I v I1.,~.) �9 

As a consequence of Lemma 7.3, the continuity ofb and d (cf. (7.1), (7.2)) and the 
trace theorem, we deduce that the bilinear form B h defined by (7.27) is bounded on 
a h x H h. Moreover, in virtue of the inequalities (7.28) and (7.29), we observe that 
the bilinear forms bh and d h are  also well defined and bounded o n  L2(F) x L2( /" )  
and Hi(f2)x L 2 (F), respectively. Hence, the bilinear form Bh is well defined and 
bounded on (Hi(O) x L2(F)) x (H1 (I2) x L2(F)), as well. 

We are now in a position to introduce the discrete operator equation in Hh. 
First, we define the operator Th: n h  "* n ~ ,  with 

(7.30) [Th(v , ~), (2, 6)] h := Ah(V , z) --F Bh((V, ~), (z, 6)) 

for all (v, 3), (z , f )eHh,  where [- ,  "]h denotes the duality pairing on H*XHh.  
( h 2b'~ 

Further, similarly as in (7.16) and (3.21), since g ,  Vfi)eHl(f~)x L 2 ( r ) ,  we can 
i -  i / 

define the bounded linear functional F h �9 H h -+ R, 

B {{  h 2b \ ) t 31) 

for all ( 2 , ~ ) ~ H  h. Therefore, we now formulate the following problem: Find 
(Wh, O'h) ~ H h such that 

(Ph) [Th(wh, O'h), (2h, (}h)]h ----" [Fh, (2h, ~h)']h 

for all (zh, 6h)~Hh. The solution of (Ph) (if it exists) will be called the Galerkin 
approximation of the solution (w, tr) of the continuous problem (P). 

At this point, in view of (7.26), one may wonder whether the functional Fh in 
(7.31) and the semilinear form Ah in (7.19) can be redefined so that the identities 

(7.32) [F, (,~, g)]~' --- [Fh, ,-~'(z, ~)]h V( -~, 656~I'~Ih , 

and 

(7.33) ,i.h(g, z") = Ah(e/'/t~, -//r~g) V~, gS/~ .o  
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hold. If this were the case, then (7.32) and (7.33) together with (7.26) would imply 
that (Pn) is just a reformulation of (Ph), and hence, the solution of (Ph) would be 
given by Jl(Wn,ffh), since I-In = ~/(ITIn). Unfortunately, this is not possible. In fact, 
if (z, 6) = Jr 6), and v = Jt'a~, then from (7.10) and (7.16) we easily obtain that 

and 

2 N 3  

Ah(~,~) = Ah(V,Z) + 2 E J" 
i = 1  r = l  ~-r,ro 

ai(x, V(~ + ~h)(x))=-- dx , 
oxl 

[~,(~,a')]z= Sfzdx--Bh gh,~r ,(z, ))+ ~ ~ fs 
.Qh r = 1 r r.ro 

/ / H a  T--~ Because of the extra terms involving the integration on Lj,= : .... the conjecture is 
false. Nevertheless, one can prove that these extra terms are sufficiently small so 
that the solution (Wh, ~Tn) of (Pn) can be approximated by the solution (r 6h) of 
(Pn) in the sense that 

where 

(7.34) 

I[(Wh, ah) -- (fib, 6h) ]]je = O( h) , 

(wh, 6h):= ~'(~,, ~h) �9 

Because of this property, we refer to (Wh, ~h) as the Quasi-Galerkin approximation 
of (w, ~r). 

Now, the fact that the assumptions of the Theorem 6.4 are satisfied for the 
approximating operator T h in (7.30) will follow from (H.1)', (H.2)', (H.6)', Lemma 
7.3, the coerciveness property of b (see (7.4)), and a discrete Friedrichs inequality 
(see Gatica and Hsiao 1989b, Lemma 4.6). Here, the condition that t3f2 is piecewise 
C 3 must be added to our hypotheses. We omit the proof, but again we refer the 
interested reader to Gatica and Hsiao (1989b) for details. 

Therefore, we deduce that there exists a unique (Wh, O'h)~Hh solution of (ph). 
Moreover, if (w, a) e H is the unique solution of the continuous problem (P), then 
we have the following error estimate: 

(7.35) I[ (w, a) -- (wh, ~rh) l l ,  _--< C( sup IEFh, (zh, a0]h ~Y-(w, ~), (zn, a0] r 
(zh, ~.)~H. II (Zh, g,)11. k. 
(Zh,~)h) ~ 0 

+ inf ( II (w, a) - (vh, en)II 
(Oh, ~h) 6 Hh \ 

+ sup [[~J(Vh''h)'(Zh'(~h)]--[Th(Vh''h)'(Zh't~h)]h[)} 

(zh, ~h) * 0 

This abstract error estimate will be needed for the convergence proof as well as the 
asymptotic rate of convergence in the next section. 

7.4 Convergence analysis and error estimates 

The main result concerning the convergence analysis of (Ph) and (Ph) can be 
summarized in the following theorem. 
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T h e o r e m  7.4. Let (w, a)e H and (%, trh)e Hh be the unique solutions of the problems 
(P) and (Ph), respectively. In addition, let (Wh, ah)e Hh be the Quasi-Galerkin approx- 
imation defined by (7.34). Then, 

lim [l(w, a)  - (Wh, ah)[ [~  = lira [l(w, o') - (wh, 6 , )  I[jr = O.  
h~O h~O 

Furthermore, if weH2+e(O) for some e > O, and if ffeH1/2(I'), then there exist 
positive constants C, ho independent of h, such that 

II(w,o)--(Wh, oh)ll~ ~ fh ,  and II(w,a)--(~h, 6h) ll~ ~ Ch 

for all he(O, ho). 

The proof for the error II (w, a )  - (w~, ah)I1~ is based on the estimate (7.35), and is 
given in this Subsection. Similarly, it is not difficult to prove (see e.g. Gatica and 
Hsiao (1989b, Sect. 5.2)) that II (Wh, Oh) -- (~h, 6h)[1~ = O(h). Clearly, this estimate 
will complete the proof of Theorem 7.4. 

In what follows we shall estimate the terms appearing on the right hand side of 
(7.35). We will need the following theorem, which is a consequence of the usual 
interpolation result for linear triangular elements (see e.g. Ciarlet 1978), the Cal- 
derbn extension Theorem (see Gilbarg and Trudinger 1983, Theorem 7.25), and the 
Sobolev imbedding Theorem (see Kufner et al. 1977). 

T h e o r e m  7.5. Given e > 0, there exists a positive constant 
h e (0, ho), such that 

IIv - vh I 1 . , r  _-< ChllvllH2+~r 

for all veH2+~(t2) and for all he(O, ho), where vh:= lhveH~. 

C independent of 

Proof. See Gatica and Flsiao (1989b, Theorem 5.3). [] 

The following result will be required to estimate the third term on the right 
hand side of (7.35). 

T h e o r e m  7.6. There exists a positive constant C independent of  h e (0, ho), such that 

[ A ( v ,  ,z) - A h ( v  , z) l  ~ Ch(1 + livllnl~))llZ[IH,~> 

for all v, z e HA, o and for all h e (0, ho). 

Proof Let v, z e HA, o, and define the semilinear form 

~lh(v,z):= ~ ~ a,(x, V(v + g)(x)) dx . 
i=1  f2 h 

Then, by the triangle inequality we have 

(7.36) IA(v, z) - Ah(v, z)l < IA(v, z) - ~,h(V, Z)I + I,Z-h(v, z) -- Ah(v, z)l �9 
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Now, according to the definition of A (see Subsec. 7.1), we can write 

2 NI 

A(v, z) -- -$-h(V, Z) = ~ ~ j" a,(x, V(v + g)(x))  d x .  
i = 1  r = l  ~:+~,r 

It follows from (H.2)' and Schwarz's inequality that 

(7.37) IA(v, z) - Ah(V, z)l 

< c  Z ( I  § 
= r=l T.,rl + Igl~,<:p + Ivl~,.+..:)+ ~=x I1r IIL:(:~))j" 

Since g ~ H 2 + ' ( ~ )  and ~bi~Hl(~), we obtain from Lemma 7.1 that 

N1 

Igl~,~.+.,~ < Ch211gll~(a~, 
r = l  

and 

NI 

Z II r 11~2r ~ Ch2 II r I1~,<o) �9 
r = l  

On the other hand, it is not difficult to prove (see Gatica and Hsiao 1989b, Lemma 
4.5) that 

N1 

Y. IriS,(:.,.)_-< Chlvl~,<.~, 
r = l  

for all v ~ HI. o. Therefore, Lemma 7.1 and applying the above inequality to v and 
z imply that 

IA(v, z ) -  .i.dv, z)l < C{h 2 +hlvl2,(o)}l/2hU21zln,(o~ 

from (7.37), and hence 

(7.38) [A(v, z)--~h(v, z)l < Ch{h  1/2 + 11 v [In,(~)} IIz Ilu,~o) �9 

We note that here the constant C depends also on II g 11.2(o) and II r II.,~o), i = 1, 2. 
As for the second term in the right side of (7.36), we have 

2 c3z 
~-h(V, Z) -- Ah(v, z) = Z I {Ai (v) (x)  -- A,(v  + O h - g)(x)} ~ d x ,  

i = l  O h 

where Ai denotes the Nemytsky operator which maps H~(O) continuously into 
L2(O) (see Sect. 3). Thus, since by (H.7)' Ai is Lipschitz continuous (see Sect. 6), we 
obtain that 

2 

[/~h(V, Z ) -  Ah(V , Z)I ~ E I [  Ai(v) -- Ai(v + Oh _ g)[IL=(O)II z IIx,r 
i = 1  

< C ][ g -- gh IIH'(~> II z [In,(o~ �9 
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Hence, by applying Theorem 7.5 to 9 e H 2 +~(I2), we conclude, 

(7.39) lAb(V, z) -- Ah(V, z)l < Ch II g 11/~2+~ II z I1~1 ~.). 

The inequalities (7.38), (7.39) and (7.36) yield the desired result. [] 

We are ready now to estimate the third term on the right hand side of (7.35). In 
fact, as a consequence of Lemma 7.3 and Theorem 7.6 we can prove the following 
result. 

Theorem 7.7. There exists a positive constant C independent of  h e (0, ho), such that 

I[J(Vh, ~h), (Zh, 6h)] -- [Th(Vh, #h), (Zh, 6h)]hl 
sup < Ch{1 + ll(Vh, ~h)ll~'} 

( zh ,~h)  ~= 0 

for all (vn, ~h)eHh and for all he(O, ho). 

Proof See Gatica and Hsiao (1989b, Theorem 5.5). [] 

In order to estimate the first term on the right hand side of(7.35) we make use of 
some results involving curved finite elements (see Feistauer and Zeni~ek 1987; 
Zlamal 1973) and deduce that for each Zh ~ H l  o there exists ~h e Hr~o(f2) such that 

(7.40) II Zh -- Zh Iln' ca) <= Ch II Zh IIH~(~) �9 

With this auxiliary result, we can now prove the following two lemmas. 

Lemma 7.8. There exists a positive constant C independent of  h e (0, ho) such that 

II [o~, (zh, 6h)] - I - J (w ,  ~), (zh, ~h)][ < Chll(zh, 6h)ll~ 

for all (Zh, 6h)6Hh and for all h~(O, ho). 

Proof Let (Zh, 6h)enh.  Then, we can write 

(7.41) [o~, (Zh, 6h)] = [o~, fib, 6h)] + [o ~ ,  (Zh -- ~,, 0) ] ,  

and, similarly, 

(7.42) [Y(w, a), (Zh, 6h)] = [~--(W, a), (~h,6h)] + [J-(W, O'), (Zh -- ~h, 0)] . 

Since ~heHlo(O) and 6heHh,~/2 C___ Ho~/E(F), we see that (zh, Oh)ell. Then, since 
(w, a) is the unique solution of the problem (P), we easily obtain that 

[Y-(w, ~r), (~,, &) ]  = [ ~ ,  (~h, &) ]  �9 

Consequently, by subtracting (7.42) from (7.41), and using (7.40), we deduce 

I [~-,(z~, &) ]  - [Y-(w, ~), (z~, &)] [  = I1-~-, (z~ - ~ ,  0)] - [y- (w,  a), (z~ - ~,, 0)]1 

_-< { I1~ I1~, + II Y-(w, ~r)II~,} Ilzh - -  ~ h l l n ~ ( * )  

<--_ Ch{ II o~ I1~. + IlY(w, ~)11~.)Ilzhlln~(.) 

< Chll(zh, 6h)l[~r �9 

This completes the proof. [] 
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Lemma 7.9. There exists a positive constant C independent of h e(O, ho) such that 

(7.43) I[Fh, (Zh, (~h)]h -- [ ~ ,  (Zh, Oh)I[ ~ Ch I[ (Zh, 6h)[1~, 

for all (zh, 6h)eHh and for all he(0, ho). 

Proof We easily obtain from the definitions of ~ and F h (see (3.19) and (7.31)), 

(7.44) I[Fh, (Zh, 6h)]h -- [ ~ ,  (Zh, 6h)]l N I~fZh dx - ~ fZh dxl 

. 

NI T+ Now, since ~ -  ~h = Ur=l r,r, we get by Schwarz's inequality, 

N1 

r= l  

_-< II f 1122~+~ II zh IIL2~+~.~ �9 
k r = l  L r = l  

Hence, by applying Lemma 7.1 to ZheH~(Q), for given f e  LE(Q) ,  w e  deduce 

(7.45) ~fzh dx - ~ fzh dx <= C II f IIL2(a)h II zh Ilu~r �9 
~h 

Now, from the boundedness of B and applying Theorem 7.5 to g, it follows that 

(7.46) I B((g - g h, 0), (Zh, 6h))l < C II g Iln~ § II (Zh, fib)I[~'. 

Further, from the definitions of B and Bh (see (7.5) and (7.27)), we obtain easily 

< b(dgh dZh~ , f d g  h dZh" ~ 2b 
= ds ,  d s j - l ~ h ~ - ~ s , d s )  +~F-]I b(1,6h)-bh(1,6h)l 

2b 
+ ~ [d(z~, 1) - dh(z~-, 1)l + Id ((gh) -, 6h) -- dh((gh) -, Oh)l �9 

Then it follows from Lemma 7.3 and the approximation property of gh (see 
Theorem 7.5) that the first and fourth term on the right hand side of (7.47) are 
bounded, respectively, by 

C II g IIH2 +'(~) h [[ Zh [[axta), and C [1 g [[u~+~(n) h3/2 I[ t~h {In- l/2(r) �9 
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Moreover ,  from (7.28) and (7.29), we have, respectively, 

Ib(1, 6h) -- bh(1, 6n)l < Ch 2 I[(}h liLY,r) , 

and 

Id(zh, 1 ) -  dh(Zh, 1)1 < Ch 2 llgh II~,t~) �9 

Therefore, since H;,~/2 satisfies the inverse assumption (see Leroux 1977; Hsiao and 
Wendland 1977), it follows that the second term on the right hand side of (7.47) is 
bounded by Ch 3/2 [16h IIH .... try. Thus, we obtain the estimate 

2b 
(7.48, B ( (  h 2b'] ' ~ l J '  < Chlt(zh, fh'll~ , o  -_ 

Consequently,  (7.44), (7.45), (7.46) and (7.48) yield (7.43). [] 

We are now in a position to estimate the first term on the right hand side of 
(7.35). In fact, we have the following main result. 

Theorem 7.10. There exists a positive constant C independent of h ~ (0, ho), such that 

I[Fh, (Zh, 6h)]h -- [Y(W, a), (Zh, 6h)]l 
sup < Ch 

(zh, ~h) 4= 0 

for all h ~ (0, ho ). 

Proof It follows easily from triangle inequality and Lemmas 7.8 and 7.9. [] 

As a consequence of Theorem 7.7 and Theorem 7.10, the abstract error estimate 
(7.35) can be rewritten as follows, 

(7.49) [l(w, tr) - (Wh, trh) tl.~ --< C{h + eh(w, 0")} , 

where 

(7.50) eh(w, a) = inf { II (w, o) - (vh, ~h)I1~ + (1 + II (vh, ~h)I[~)h} �9 
(Vh, ~h ) ~ Hh 

Now, we recall from Leroux (1977) (see also Johnson and Nedelec 1980) the 
following approximation property of the subspace H~,~/2: For  any # e H~o - 1/2( F), 
0 < s < 1, there exists ~heH~,~/2 such that 

(7.51) It~ -- ~alln-"2~r~ < ChSll~lln . . . .  ~r) Vh6(0, ho ) ,  

where the constant  C is independent of h and ~. We are ready now to complete the 
proof  of Theorem 7.4. 

Proof of Theorem 7.4. As expected, the proof  reduces to estimate the term en(w, rr) 
on the right hand side of (7.49). First of all, we note that  the spaces 
Hrlo(f2) n C~~ and Hol /E(F)~  C~~ are dense in H~o(f2 ) and Hol/Z(F), re- 
spectively (see e.g., Gilbarg and Trudinger  1983, Theorem 7.25). We then define the 
product  space 

H ~ := [Hr~o(O) c~ C~(~) ]  x [ H o l / 2 ( r )  n c ~ ( r ) ] ,  
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which is dense in H. Thus, given F/> 0, there exists (w,, a , ) E H  ~ such that  

II(w, ~r) - (w,, ~,)11~ < n_. 
2 

Since w,~eC~ and a,~C~(F),  f rom Theorem 7.5 and the approx imat ion  
proper ty  (7.51), we deduce that  there exists 0 </~(~/) < ho such that  

II(w,, o',) - (w~, ~h)ll~ < 
2 

for all h < h(q). 
Therefore,  given r / >  0, there exists 0 < h(r/) < ho such that  

(7.52) ll(w, a) - (w~, a~)[l~ < 

for all h < h(q). Since (w h, a ~ ) s H h ,  we obtain  f rom (7.50) and (7.52) that  

(7.53) eh(W, ~) < II(w, or) h h -- (W,. Cr,)ll~ + (1 + II(wh,. ~ ) l l ~ ) h  

< q + (1 + ~/+ II(w, ~r)ll~,)h Vh~(0,  h(~/)). 

In  summary ,  it follows f rom (7.49) and (7.53) that  given ~/> 0, there exists 
h (q) :=  min{q, h(q)} such that  

II(w, ~r) - (wh, ah)ll~ < C{h + ~l + (1 + ~/+ II(w, cr)ll.,~)h} < Ot  

for all h < h(rl). This proves  the convergence result. 
In  addition, if w~H2+~(f2) and a~H1/2(Y), then by Theorem 7.5 and the 

approx ima t ion  p roper ty  (7.51) (with s = 1), we get for all he(0 ,  ho) 

(7.54) II(w, o') - (w h, o'h)l[~ < C{ II wllt~=+~<.) + t la l l~,2<r)}h,  

where w h : =  Ihw E H~, o, and 0 "h is given by (7.51) with a instead of ~. It  follows from 
(7.50) and (7.54) that  

(7.55) eh(w, ~r) < II (w, a) - (w h, o -h) I1~ + (1 + II (w h, ~?)II~,)h _-< Ch. 

Hence, substi tuting (7.55) into (7.49) we obta in  the convergence rate O(h). 
We emphasize  that  ( P h )  has been int roduced only to facilitate the proof  of the 

convergence result. For  numerical  purposes,  the actual  computa t ions  must  be 
carried on the discrete p rob lem (13h), and then transferred to ~ using the maping  J//. 
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