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Summary. For n=1,2, 3, ..., let 4, denote the Lebesgue constant for Lagrange
interpolation based on the equidistant nodes x; ,=k, k=0, 1,2, ..., n. In this
paper an asymptotic expansion for log A4, is obtained, thereby improving a result
of A. Schénhage.
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1 Introduction
Consider the matrix X of points x;, ,, k=0, 1,2, ...,n;n=1,2,3, ..., where

0 X0 <Xy p<Xp <o <Xp 21,

and define "
(X, x)

henlXo 9= 0% X =)

(D"(X, x)= H (X ——xk,n)‘
k=0
As is well known, the magnitude of the Lebesgue constant

AX)= max Y [lpa(X, 0]

0SxSn 5=

plays a crucial role in determining the convergence behaviour of Lagrange inter-
polation polynomials based on X (see, for instance, [2]). Now let X’ denote
the special case when X is the matrix of equally spaced points

X' x =k, k=0,1,2,...,n n=1273, ..,
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and put 4,=4,(X"). As discussed in Trefethen and Weideman [3], various au-
thors have developed estimates for 4,, although many of the efforts seem to
have been duplicates of one another. The first good estimate for 4, was due
to Turetskii [4], who obtained

2n+1

as n—oo.

enlogn’

This result was improved slightly by Schénhage [1], whose result can be
expressed in the form

1
(1) logA,=(n+1)log2—logn—loglogn—1— 1gn+0((1ogn)2)’

where y=0.577 ... is Euler’s constant. In this paper we extend (1) by proving
the following result.

Theorem. There exists an asymptotic expansion of log A, of the form
(2) logAd,=(n+1)log2—logn—loglogn—1

+Z

1
(logn ((logn)’"“)’ m=1,23, ...,
where
(3) Ay=—y,  Ay=y*2—7?/12, As=—y/3+yn?/6—{(3)/3,
Ayg=7"4+y((3)—y*n*/4+7*/90, ....

(Here {(3)= ir‘3.>

r=1

We remark that it appears to be a difficult problem to obtain an explicit
general formula for the 4,. We also point out that if A is defined by

A¥=min 4,(X),
then x

4) log A¥=loglogn+log(2/m)+

y +log(4/xm) +o 1 .
logn logn

(See [2, Theorem 3.29].) A comparison of (2) and (4) shows that the equally
spaced nodes X' can be regarded as very “bad” from the point of view of
interpolation.
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2 Proof of the Theorem

As shown by Schonhage [1],

(5 A,= max 4,(x),

0sxg1

where 4,(x) is the unique polynomial of degree n that satisfies
WO)=1; K=" k=12, ..,n

A straightforward induction argument shows that

_2(1=x), =
(6) An(e)=——— —1+2x+ kgzgk (x),
where
(1—=x)=(1—-x)2—x) ... (k—x),
2k 2* I'(k—x)
(7) gk(x)_mx(l_x)"_‘_ﬁxF(l—x)’ k=23, ...
Suppose x; in (0, 1) is such that
() OIBaflgk(x)zgk(xk)‘
From (5), (6) and (8) it follows that
&) 2 (gxa)+0()=4,= Z g(x))+0(1).
k=2 k=
Now, if 0<x <1, then g, (x)<2¥k ™!, and so
n—[logzn] [n/2] n—[log; n]
Y os)= Y @9+2n7t Y (29
k=2 k=2 k=[n/2+1]
=02")+0(2"n"?)
=0(2"n"?).
Thus (9) yields
(10) Y Ex)+roM=4,2 Y (gla)+0(2"n7?).

k=n—[logzn] k=n—[logan]
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To make use of (10) we need to estimate x, for n—[log, n]<k<n. Now,
X, 1s given by the solution in (0, 1) to the equation

~d—log[x(l-x)(2—x) oo (k—1—=x)]=0.

dx
This gives
1 kg
;_r; r—x=0’
or
o k—1
> (Zr”’) x'=1
j=1 \r=1
Define
Sl"'ya S1= Zr 19 .]'_2’ 35
Since =t
k—1
Zr”1=logk+Sl+O(k"),
r=1

k—1
Y =S40 ), j=2,3,...,

r=1

it follows that x, satisfies

(11) (logk+S;+0k™ ) x,+ Y. (S;+ Ok ) xf=1.
j=2

Now consider the equation

12) (logn+S)x+ ) S;x'=1,

j=2

which has a unique solution x=x} in (0, 1). Upon substituting x=x} in (12),
then subtracting (11), it follows from x, = O ((logk) ™ !), x*=0((logn)~ 1), that

x¥*—x,=0(nlogn)™'), n—[log,n]<k<n,
where the O((nlogn)™!) term can be made independent of k. Consequently,
if n—[log,n]<k<n, x, is given to within O((nlogn)~') terms as the solution
in (0, 1) to (12), which can be written more succinctly as
Yy(1—x)+x"1=logn.
{Here y(+) denotes the logarithmic derivative of the gamma function.) Note

that (12) determines an asymptotic expansion for x=x,, n—{log,n]<k<n, of
the form

m B, 1
(13) x_j;(logn)j+0((logn)"‘“)’ m=1,2,3, ...,
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where the first few of the coefficients B; are given by
(14) B,=1, B,=-y, By=y*—1%/6,
B,=—7*+yn?/2—{(3), Bs=y*—y*n?+4y{(3)+2n*/45.

We next consider g,(x), as defined by (7). From the well-known asymptotic
expansion for the gamma function,

[(x)=]/2me **&~Udlesx(] 4 O(x~ 1)),
it follows that if x is given by (13), and if n—[log, n] £k <n, then

2,(x) x Tk—x)  x e x

= —_ -1

W TT(—x T+ T(—x) (1+0(m"5).

Thus both Y (gilx,) and Y. (gk(xy)) are of the form
k=n—[logyn] k=n—{logzn]
n —xlogn 2n+1 xe—xlogn
2k X € ~In—= -1
X )y o= a0,
where x is given by (13). From (10) we conclude that
2n+1 xe—xlogn w2

and thus

(15) logA,=(n+1)log2—(1+x)logn+logx—logl(l—x)+0(n~'logn)
o k
=(n+1)log2—(1+x)logn+logx— ¥ Sk%+0(n_1 logn).
k=

1

Upon substituting (13) and (14) in (15), the asymptotic expansion (2) and coeffi-
cients (3) are obtained, and hence the theorem is established.
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