

The Lebesgue constant for Lagrange interpolation on equidistant nodes

T.M. Mills and S.J. Smith

Department of Mathematics, La Trobe University College of Northern Victoria, P.O. Box 199, Bendigo, Victoria 3550, Australia

Received March 12, 1991

Summary. For $n = 1, 2, 3, \ldots$, let A_n denote the Lebesgue constant for Lagrange interpolation based on the equidistant nodes $x_{k,n} = k$, $k = 0, 1, 2, ..., n$. In this paper an asymptotic expansion for $\log A_n$ is obtained, thereby improving a result of A. Schönhage.

Mathematics Subject Classification (1991): 41A05, 41A10, 41A60

1 Introduction

Consider the matrix X of points $x_{k,n}$, $k=0, 1, 2, ..., n; n=1, 2, 3, ...,$ where

and define

$$
0 \leq x_{0,n} < x_{1,n} < x_{2,n} < \ldots < x_{n,n} \leq n,
$$

$$
l_{k,n}(X, x) = \frac{\omega_n(X, x)}{\omega'_n(X, x_{k,n})(x - x_{k,n})},
$$

$$
\omega_n(X, x) = \prod_{k=0}^n (x - x_{k,n}).
$$

As is well known, the magnitude of the Lebesgue constant

$$
A_n(X) = \max_{0 \le x \le n} \sum_{k=0}^n |l_{k,n}(X, x)|
$$

plays a crucial role in determining the convergence behaviour of Lagrange interpolation polynomials based on X (see, for instance, [2]). Now let X' denote the special case when X is the matrix of equally spaced points

 X' : x_k $= k$, $k=0, 1, 2, ..., n$; $n=1, 2, 3, ...,$

Offprint requests to: S.J. Smith

and put $A_n = A_n(X')$. As discussed in Trefethen and Weideman [3], various authors have developed estimates for A_n , although many of the efforts seem to have been duplicates of one another. The first good estimate for A_n was due to Turetskii [4], who obtained

$$
A_n \sim \frac{2^{n+1}}{e n \log n}, \text{ as } n \to \infty.
$$

This result was improved slightly by Schönhage [1], whose result can be expressed in the form

(1)
$$
\log A_n = (n+1) \log 2 - \log n - \log \log n - 1 - \frac{\gamma}{\log n} + O\left(\frac{1}{(\log n)^2}\right)
$$
,

where $\gamma = 0.577$... is Euler's constant. In this paper we extend (1) by proving the following result.

Theorem. *There exists an asymptotic expansion of* $\log A_n$ *of the form*

(2)
$$
\log A_n = (n+1) \log 2 - \log n - \log \log n - 1 + \sum_{k=1}^{m} \frac{A_k}{(\log n)^k} + O\left(\frac{1}{(\log n)^{m+1}}\right), \quad m = 1, 2, 3, ...,
$$

where

(3)
$$
A_1 = -\gamma
$$
, $A_2 = \gamma^2/2 - \pi^2/12$, $A_3 = -\gamma^3/3 + \gamma \pi^2/6 - \zeta(3)/3$,
\n $A_4 = \gamma^4/4 + \gamma \zeta(3) - \gamma^2 \pi^2/4 + \pi^4/90$, ...

$$
\left(Here \ \zeta(3) = \sum_{r=1}^{\infty} r^{-3}.\right)
$$

We remark that it appears to be a difficult problem to obtain an explicit general formula for the A_k . We also point out that if A_n^* is defined by

$$
\Lambda_n^* = \min_X \Lambda_n(X),
$$

then

(4)
$$
\log \Lambda_n^* = \log \log n + \log(2/\pi) + \frac{\gamma + \log(4/\pi)}{\log n} + o\left(\frac{1}{\log n}\right)
$$

(See [2, Theorem 3.29].) A comparison of (2) and (4) shows that the equally spaced nodes X' can be regarded as very "bad" from the point of view of interpolation.

Lagrange interpolation

2 Proof of the Theorem

As shown by Schönhage $[1]$,

(5)
$$
A_n = \max_{0 \le x \le 1} \lambda_n(x),
$$

where $\lambda_n(x)$ is the unique polynomial of degree *n* that satisfies

 $\lambda_n(0)=1; \quad \lambda_n(k)=(-1)^{k-1}, \quad k=1, 2, ..., n.$

A straightforward induction argument shows that

(6)
$$
\lambda_n(x) = \frac{2(1-x)_n}{n!} - 1 + 2x + \sum_{k=2}^n g_k(x),
$$

where

$$
(1-x)_k = (1-x)(2-x) \dots (k-x),
$$

(7)
$$
g_k(x) = \frac{2^k}{k!} x(1-x)_{k-1} = \frac{2^k}{k!} x \frac{\Gamma(k-x)}{\Gamma(1-x)}, \quad k = 2, 3,
$$

Suppose x_k in (0, 1) is such that

(8)
$$
\max_{0 \le x \le 1} g_k(x) = g_k(x_k).
$$

From (5), (6) and (8) it follows that

(9)
$$
\sum_{k=2}^{n} (g_k(x_n)) + O(1) \leq A_n \leq \sum_{k=2}^{n} (g_k(x_k)) + O(1).
$$

Now, if $0 \le x \le 1$, then $g_k(x) \le 2^k k^{-1}$, and so

$$
\sum_{k=2}^{n-\lfloor \log_2 n \rfloor} g_k(x_k) \leq \sum_{k=2}^{\lfloor n/2 \rfloor} (2^k) + 2 n^{-1} \sum_{k=\lfloor n/2 \rfloor}^{n-\lfloor \log_2 n \rfloor} (2^k)
$$

= $O(2^{n/2}) + O(2^n n^{-2})$
= $O(2^n n^{-2}).$

Thus (9) yields

(10)
$$
\sum_{k=n-\lceil \log_2 n \rceil}^{n} (g_k(x_n)) + O(1) \leq A_n \leq \sum_{k=n-\lceil \log_2 n \rceil}^{n} (g_k(x_k)) + O(2^n n^{-2}).
$$

To make use of (10) we need to estimate x_k for $n - \lceil \log_2 n \rceil \leq k \leq n$. Now, x_k is given by the solution in $(0, 1)$ to the equation

$$
\frac{d}{dx}\log[x(1-x)(2-x)...(k-1-x)]=0.
$$

This gives

$$
\frac{1}{x} - \sum_{r=1}^{k-1} \frac{1}{r-x} = 0,
$$

or

$$
\sum_{j=1}^{\infty} \left(\sum_{r=1}^{k-1} r^{-j} \right) x^{j} = 1.
$$

Define

$$
S_1 = \gamma;
$$
 $S_j = \sum_{r=1}^{\infty} r^{-j}, \quad j = 2, 3, ...$

Since

$$
\sum_{r=1}^{k-1} r^{-1} = \log k + S_1 + O(k^{-1}),
$$

$$
\sum_{r=1}^{k-1} r^{-j} = S_j + O(k^{1-j}), \quad j = 2, 3, ...,
$$

it follows that x_k satisfies

(11)
$$
(\log k + S_1 + O(k^{-1})) x_k + \sum_{j=2}^{\infty} (S_j + O(k^{1-j})) x_k^j = 1.
$$

Now consider the equation

(12)
$$
(\log n + S_1) x + \sum_{j=2}^{\infty} S_j x^j = 1,
$$

which has a unique solution $x=x_n^*$ in (0, 1). Upon substituting $x=x_n^*$ in (12), then subtracting (11), it follows from $x_k = O((\log k)^{-1})$, $x_n^* = O((\log n)^{-1})$, that

$$
x_n^* - x_k = O((n \log n)^{-1}), \quad n - \lfloor \log_2 n \rfloor \leq k \leq n,
$$

where the $O((n \log n)^{-1})$ term can be made independent of k. Consequently, if $n - [\log_2 n] \le k \le n$, x_k is given to within $O((n \log n)^{-1})$ terms as the solution in $(0, 1)$ to (12) , which can be written more succinctly as

$$
\psi(1-x)+x^{-1}=\log n.
$$

(Here $\psi(\cdot)$ denotes the logarithmic derivative of the gamma function.) Note that (12) determines an asymptotic expansion for $x = x_k$, $n - \lceil \log_2 n \rceil \leq k \leq n$, of the form

(13)
$$
x = \sum_{j=1}^{m} \frac{B_j}{(\log n)^j} + O\left(\frac{1}{(\log n)^{m+1}}\right), \quad m = 1, 2, 3, ...,
$$

where the first few of the coefficients B_i are given by

(14)
$$
B_1 = 1
$$
, $B_2 = -\gamma$, $B_3 = \gamma^2 - \pi^2/6$,
\n $B_4 = -\gamma^3 + \gamma \pi^2/2 - \zeta(3)$, $B_5 = \gamma^4 - \gamma^2 \pi^2 + 4\gamma \zeta(3) + 2\pi^4/45$.

We next consider $g_k(x)$, as defined by (7). From the well-known asymptotic expansion for the gamma function,

$$
\Gamma(x) = \sqrt{2 \pi} e^{-x + (x - 1/2) \log x} (1 + O(x^{-1})),
$$

it follows that if x is given by (13), and if $n - \lfloor \log_2 n \rfloor \leq k \leq n$, then

$$
\frac{g_k(x)}{2^k} = \frac{x}{\Gamma(1-x)} \frac{\Gamma(k-x)}{\Gamma(k+1)} = \frac{x}{\Gamma(1-x)} \frac{e^{-x \log n}}{n} (1 + O(n^{-1})).
$$

Thus both $\sum_{k=n-\lfloor \log_2 n \rfloor} (g_k(x_n))$ and $\sum_{k=n-\lfloor \log_2 n \rfloor} (g_k(x_k))$ are of the form

$$
\left(\sum_{k=n-\lfloor \log_2 n \rfloor}^{n} 2^k \right) \frac{x}{\Gamma(1-x)} \frac{e^{-x \log n}}{n} (1+O(n^{-1})) = \frac{2^{n+1}}{n} \frac{x e^{-x \log n}}{\Gamma(1-x)} (1+O(n^{-1})),
$$

where x is given by (13). From (10) we conclude that

$$
A_n = \frac{2^{n+1}}{n} \frac{x e^{-x \log n}}{\Gamma(1-x)} + O(2^n n^{-2}),
$$

and thus

(15)
$$
\log A_n = (n+1)\log 2 - (1+x)\log n + \log x - \log \Gamma(1-x) + O(n^{-1}\log n)
$$

$$
= (n+1)\log 2 - (1+x)\log n + \log x - \sum_{k=1}^{\infty} S_k \frac{x^k}{k} + O(n^{-1}\log n).
$$

Upon substituting (13) and (14) in (15), the asymptotic expansion (2) and coefficients (3) are obtained, and hence the theorem is established.

References

- 1. Schönhage, A. (1961): Fehlerfortpflanzung bei Interpolation. Numer. Math. 3, 62-71
- 2. Szabados, J., V6rtesi, P. (1990): Interpolation of Functions. World Scientific, Singapore New Jersey London Hong Kong
- 3. Trefethen, L.N., Weideman, J.A.C. (1991): Two results on polynomial interpolation in equally spaced points. J. Approximation Theory 65, 247-260
- 4. Turetskii, A.H. (1940): The bounding of polynomials prescribed at equally distributed points. Proc. Pedag. Inst. Vitebsk 3, 117--127 [in Russian]