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Summary. This paper  describes upper and lower p-norm error bounds for 
approximate  solutions of the linear system of equations Ax=b .  These bounds 
imply that the error is proport ional  to the quantity IIrll2llAWrllq ~ where r is 
the residual and q is the conjugate index to p. The constant of proportionali ty 
is larger than 1 and lies in a specified range. Similar results are obtained for 
approximations to A-  ~ and solutions of nonsingular linear equations on general 
spaces. 
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1 Introduction 

In this paper, upper and lower bounds on the p-norm error of approximate  
solutions of a nonsingular system of linear equations 

(1.1) A x = b  

will be described. In particular, it will be shown that when 2 is the solution 
of (1.1), r = A x - b  is the residual, then 

BIrll 2 
(1.2) I lx -21 lp=c  liAr rllq 

where A T is the transpose of A and c is a constant lying in an interval [1, Cp(A)]. 
The number  Cv(A ) will be characterized and some simple bounds for it will 
be described. Throughout  this paper  1 <= p =< oo and q = p ( p -  1)- a is its conjugate. 

Essentially, the p-norm error of an approximate  solution x of (1.1) is propor-  
tional to, and bounded below by, the quantity 

(1.3) ap(r) = Ilr[[~ 
IIATrllq " 
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This expression is easily computed and provides an indication of the order 
of magnitude of the error of a particular approximation. As a consequence, 
it provides a natural stopping criterion in iterative methods for solving (1.1). 

The results obtained using these error bounds provide different information 
to that obtained using the well-known estimates based on the condition number 
of A and the residual. Usually this condition number estimate is written 

(1.4) IIx--~IIp~Ke(A) II~{Ip I[rllp 
Ilbll~ 

where Kp (A) = {I A [[ p 11A - 1 I[; is the p-norm condition number of A. 
The error estimate in Theorem 1 below provides both upper and lower 

bounds on the error, not just the upper bound of (1.4). Moreover they depend 
on IIAVrI[q as well as [[r][z so, unlike (1.4), different error estimates are found 
for approximate solutions whose residual norms are the same. 

2 p-norm error estimates 

First consider the case where A is a nonsingular real n • n matrix and b is 
a real n-vector. The residual r(x) associated with a vector x is 

(2.1) r = r ( x ) , = A x - b .  

Let I[ lip and ( , )  denote the usual p-norm and Euclidean inner product 
on R". When the subscript p is omitted, Hxll will denote the 2-norm. Terms 
not defined here should be taken as in [1]. 

When A is a nonsingular n • n matrix, define 

(2.2) Cp(A)..= sup [[AX yt[qqlA -~ yltp. 
Ilyll2 = l 

This number is well-defined as it is the maximum value of a continuous function 
on a compact set. 

Theorem 1. Let A be a nonsingular, n x n real matrix, x ~= ~ and 1 <= p <= ~ .  Then 

(2.3) ap(r) < IIx-- ~tl,_-< Cp(A) av(r) 

where ap, r and Cp(A) are defined by (1.3), (2.1) and (2.2) respectively. 

Proof  From the definition of r, and H61ders inequality, 

Ilrll 2 - -  (ATr, x - R )  ~ llAWrtlq I I x -  :tlt~ �9 

Upon dividing by t1A T rj]q, the lower bound in (2.3) follows. 
The definition (2.2) implies that 

Cp(A)= sup IIATyIIq IIZ- 1 Yllp 
r*0 ltyll~ 
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because of the homogeniety of this expression. Substituting r for y, leads to 

(2.4) IIAT rlla IIA- ' rllp< Cp(A)Ilrll z 2 

and this is the second inequality in (2.3). []  
Note that the upper bound in (2.3) is optimal, in that there is an x in 

~ "  for which it is attained, because there is an r which yields the maximum 
value in the definition of Cp(A). 

When p = 2, a weaker form of the upper bound in (2.3) can be derived using 
Kantorovich'  inequality, which says that if B is a positive definite, symmetric, 
matrix, then 

(2.5) <By, y> < B -  ' y, y> < K 1 ]IYll 2 

with K1 =(21 +2,)2(421 2,) -1. Here 2t(2,) is the largest, (smallest) eigenvalue 
of B. See Luenberger [3], Sect. 7.6, or Householder [2], Sect. 3.4, for proofs 
of (2.5). Let B = A A  T, then 21 =a{ ,  2 , = a ,  2 where al ,  (a,) is the largest, (smallest) 
singular value of A. Then 

(2.6) IIAT yII2 IIA- '  Y]I2 ~ K Ibylk 2 

with 

(2.7) K - -  al + a ,  1 K2(A)+ 
2a,  o. 2 

and where K2(A)= ~ is the 2-norm condition number of A. 
O" n 

From the definition of C2 (A), one must have 

(2.8) C2 (A) < K < K2 (A) 

when K is given by (2.6) a s  C 2 (A) is the smallest number for which (2.6) holds. 
The absolute error bounds in (2.3) lead to the relative error bounds 

Ilrll 2 < l lx-~llp < CIIrlE = 
(2.9) IlZW rllq llxllp + f l[rll 2 =  [l~llp = IIaT rllq [ I x [ lp - f  llrl[ 2 

with C = C,(A)  and provided the last denominator is positive. These are a direct 
consequence of the triangle inequality. 

The lower bound in (2.3) may often be improved. From the Hahn-Banach 
theorem 

<A- 1 r, z> 
I I x - ~ t l l p  = IIA - 1  r l lv = s u p  

= , o  Ilzllq 
Let z = A T y then, since A is nonsingular, 

(2.10) 
(r,  y> 

I[x-~llp=supy,o IIAT y]Iq " 

The lower bound in (2.3) corresponds to the choice y = r  in this expression. 
For  a particular equation, there may well be a better choice of y. 
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The lower bound in (2.3) may also be generalized to the case where the 
matrix is singular or non-square. Let B be an m x n matrix, f an m-vector and 
consider the least squares problem of solving 

(2.12) B T ( B x - f ) = O .  

Let ff be a solution of (2.12) and r : = B x - - f  be the residual associated with 
an approximate  solution. If B)? = f  then 

r= B ( x -  ~2) + d 

where d = f - f  lies in the null space of B T. Thus 

Ilrll 2 = ( B ( x -  Yc), r) + IId][~ 

so rearranging, and using H61der's inequality as before yields 

IlrlF~- IldH~ 
(2.13) IIx-~cll,> ilBTrtlq 

Here tldlt= is the Euclidean distance o f f  from the range of B. 

3 Evaluation and properties of Cp(A) 

The quantity Cp(A) defined by (2.2) depends only on p and A and obeys Cp(c~A) 
= Cp(A) for any nonzero scalar e. 

Despite appearences, it is not necessary to find A -  ~ to compute Cp(A). Substi- 
tute Aw for y in (2.2), then using homogeneity, 

(3.1) Cp(A)= sup [IAT AwllqHWl[p 
[ [ A w l l 2  = 1 

[]AT Awltqltwtlp 
= sup 

w,o IIAwH~ 

[IAT AwIIq 
= sup 

llwN,=, IIAwil :, 

These formulae provide different characterizations of Cp(A) as the value of a 
maximization problem of a continuous function subject to an equality constraint. 
When 1 < p  < o% the functions involved are continuously differentiable. When 
p =  1 or o% this is a nonlinear programming problem wih "non- smoo th"  func- 
tions. 

There are some simpler estimates of Cp(A). Given 1 <p ,  s <  c~, let 

tlexllp 
IIBllp~=sup 

x , o  tlxL 
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From the definition (2.2), 

(3.2) Cp(A)< HAT]Iq2 IIA- a [Iv2 = IIAH2p IIA - ~[Iv2 

as IIBT}Iq2 = IIBH2p when p, q are conjugate. 
Consider the problem of extremizing the quadratic form 

g(y) = (A T Ay, y> = HAyll 2 

on the unit sphere Sv= {y~lR": I]yllp= 1}. 
Let 

(3.4) %:=infg(y), 7p=infg(y) 
S v Sv 

then 

% Ilylhp 2 ~ g(Y)~ ?p Ilyl[~ 

for all y. This implies that 

llAII2p=l/~ 
so (3.2) yields 

(3.5) 

and I Ih-a l lp2=% ~ 

Cv(A) < Cp(A),= . 

In general it is easier to evaluate Cp(A) than Cp(A) since it is easy to extremize 
this quadratic form g. When p=2 ,  then c~z=o, z, 72=o~ so (3.5) leads to (2.8) 
again. 

4 Error estimates for general linear equations 

The preceding analysis may be generalized to obtain upper and lower error 
estimates for approximate solutions of general, nonsingular, linear problems. 

Let X be a normed vector space over a field F, Y be an inner product 
space over F and A: X ~ Y be a continuous linear operator with a bounded 
inverse. None of X, Y, F need be complete. 

Let X* be the dual space of X with the dual norm 

[h(x)[  
I lh l l ,  = s u p  - -  

x , o  Ilxll 

where tl II denotes the norm on X, ( , )  will be the inner product on Y and 
the adjoint operator A*: Y~  X* is defined by 

(4.1) (A* y)(x)= ( Ax, y) 
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for all x in X and y in Y. A* is a bounded,  cont inuous,  linear opera tor  whenever 
A is. Define 

(4.2) C(A) :=  sup {IA*ytl, IIA -xyl l .  
l ty l I2= 1 

This is finite as bo th  A - 1  and A* are cont inuous  linear operators.  
Our  interest is in solving equat ion (1.1) with b given in Y, and the error  

is expressed in terms of  the residual 

(4.3) 

and the functional 

r = r ( x ) = A x - - b  

Ilrql 2 
(4.4) a(r) = 

[[A*rH," 

Using the same arguments  as in Theorem 1, we prove 

Theorem 2. Assume X,  Y,, A as above. I f  ~ is the unique solution of (1.1), x is 
any vector in X,  then 

(4.5) a(r) <= t l x -  ~[I < c ( a )  a(r) 

where C(A), r and a(r) are defined by (4.2)-(4.4). 

This theorem may  be used to obtain  er ror  estimates for linear equat ions  
over general fields including the rat ional  or  complex numbers.  It may  be used 
to obta in  er ror  bounds  on matrix inverses by taking X =  Y=M,(F) ,  with the 
usual inner p roduc t  and b = I ,  to be the identity. The dual norms on X here 
could be the 1 and ~ norms  as well as the inner p roduc t  norm.  

These error  bounds  also apply to nonsingular  linear opera tor  equat ions 
where Y is a Hilbert  space. 
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