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Abstract 

Although the sealed second-price or Vickrey auctions have some nice theoretical properties, they 
are fairly seldom utilized in practice. It has been suggested that they are vulnerable to bid-taker 
cheating and that the revelation of bids after the bidding makes the bidders reluctant to reveal their 
true valuations. We outline procedures based on modern mathematical cryptography that are in- 
strumental in avoiding some of these difficulties and thereby will improve the properties of the 
Vickrey auctions. 
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1. Introduction 

Over the past decades the study of social institutions, arrangements, and norms 
has opened new vistas for the understanding of how human societies work. By so 
doing it has been instrumental in posing a new question of normative nature, e.g., 
how to improve the performance of existing institutions. Much of this literature 
takes welfare economics and social choice theory as its point of departure. A 
typical assumption is that society consists of rational agents pursuing their own 
interests and establishing institutions that they deem acceptable and necessary 
from their own viewpoint. The emergence of the institutions is not necessarily 
construed as a result of a purposeful design by individuals; it may indeed be a 
byproduct of activities striving for other goals. 

Auctions are well-known institutions in all parts of the world. In auctions a 
number of buyers and sellers of some good try to determine how much of the 
good is to be sold by whom to whom and at what price. Interestingly enough, 
several types of auctions are known to exist. They all share the feature that both 
sellers and buyers make offers to sell and buy, respectively, at a given price. The 
offers to buy are usually called bids. The types of auctions differ in the way in 
which the bids and selling offers are allowed to be made. Thus, for example, in 
the English (or ascending-bid) auction, the price of a good is successively raised 
until only one buyer is willing to make a bid for the good at the most recently 
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announced price (provided that only one good is to be sold). It is essential that at 
any point in the succession of bids the bidders know the value of the most recent 
bid. In Dutch (or descending-bid) auctions, on the other hand, the auctioneer 
starts from a high price for a given good and successively lowers it until one buyer 
is willing to make a bid at the given price. (See Engelbrecht-Wiggans 1980 for an 
overview of various types of auctions. For a more specific survey of game-theo- 
retic models of auctions, see McAfee and McMillan 1987.) 

These two types of auctions are typically oral ones, although their implemen- 
tation in communication networks presents no major problems. A sealed version 
of the English auction or first-price sealed-bid auction is obtained by requiring the 
bidders to submit sealed offers and by awarding the good to the highest bidder at 
the price that he/she (hereinafter "she") offers in her bid. 

In this article we focus on a relatively new type of auction, viz., the Vickrey 
auction or sealed second-price procedure. This procedure was devised by Vickrey 
(1961) to overcome the practical difficulties involved in arranging oral auctions 
while preserving their theoretically nice properties. In the following section we 
discuss the theoretical properties of Vickrey auctions. Thereafter, we outline ways 
of solving some of the problems related to those auctions. 

2. The Vickrey auction 

In the sealed second-price or Vickrey auction the sealed bids are submitted to the 
auctioneer within a predetermined period of time. After this period has elapsed, 
the auctioneer opens the bids and the good is sold to the bidder who has submitted 
the highest bid. The price, however, is not the one that she offers in her bid, but 
the second-highest bid. 

Under conditions to be discussed shortly the Vickrey auction has some nice 
properties (see Vickrey 1961; Rothkopf et al. 1990). First, if all bidders bid truth- 
fully, the result is a Nash equilibrium. In other words, no bidder has an incentive 
not to reveal her value of the good in her bid provided that the others bid truth- 
fully. In fact, a stronger claim can be made: revealing one's true value is the dom- 
inant strategy, i.e., regardless of whether the others reveal their true values in 
their bids, the best thing a bidder can do is to bid truthfully. 

Second, the outcome reached through the Vickrey auction is Pareto optimal, 
i.e., no reallocation leads to a situation that is weakly preferred by all to the out- 
come. The good is sold to the bidder with the highest private valuation of the 
good, and no bidder is willing to offer a higher price than the one obtained by the 
seller. Thus, the procedure is efficient in the technical sense. The conditions un- 
der which the above properties characterize the Vickrey auction are (i) that the 
bidders are risk-neutral, (ii) that the bidders are. symmetric, (iii) that the private 
values assigned to the good by bidders are statistically independent, and (iv) that 
the price at which the good will be sold is a function of the bids only. 
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The first condition states that the bidders are indifferent between options that 
have the same monetary value. The second condition, in turn, requires that the 
bidders draw their values for the good from the same probability distribution, i.e, 
that all players are of the same "type".  The third and fourth conditions are self- 
explanatory. 

3.  O b s t a c  es  f or  use  

Although some of the conditions under which the Vickrey auctions have the 
above-mentioned nice properties are stringent, it is remarkable that they are very 
rarely utilized in practice. One possible explanation for this is that those who 
decide which auction type is to be adopted do not find it optimal. This explanation 
is, however, inadequate, because under the above conditions all four types, some 
of which are frequently used, lead to the same outcomes. Thus, whoever decides 
the auction form--be it the bidders or sellers--cannot expect a better outcome 
from the other basic auction forms. Rothkopf et al. (1990) mention five potential 
reasons for the reluctance of real-world actors to make use of this type of auction. 
All of them--the bidders' risk-aversion, bidder asymmetry, nonindependent pri- 
vate valuations of the bidders, institutional inertia, and the fact that multiple ob- 
jects are usually offered for sale instead of a single good--are shown to be inad- 
equate explanations for the rarity of Vickrey auctions. However, the authors 
argue that two hitherto undiscussed reasons might provide a more satisfactory 
explanation: (1) the bidders' fear of getting cheated by the seller, and (2) the un- 
willingness to disclose one's true valuations. Of course, it is also possible that the 
bidders cheat the seller by colluding and driving down the price of the good. 
According to Robinson (1985), this possibility can to some extent be avoided by 
using sealed instead of oral auctions. This suggestion rests on the observation that 
the agreements between bidders are easily enforceable in oral auctions, while in 
sealed auctions their stability is not self-evident. 

In sealed auctions the seller may cheat the bidders by first looking at the sub- 
mitted bids and then having her accomplice submit losing bids, thereby driving 
up the price that the winning bidder has to pay. The mere possibility of this hap- 
pening may give the bidders an incentive to deviate from the truthful value reve- 
lation strategy. Vickrey (1961) suggests the use of trusted middlemen in the han- 
dling of submitted bids. 

The unwillingness of the bidders to reveal their true valuations of the good may 
be due to conditions prevailing on the market. Thus, for example, the firms bid- 
ding for some contract may be reluctant to reveal their true valuations of the 
contract, because their competitors would thereby get valuable information about 
the firm's cost estimates, which, in turn, could reveal the level of technology at 
the firm's disposal. In the following, we shall outline a cryptographic version of 
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Vickrey auctions that would seem helpful in overcoming these obstacles to the 
use of Vickrey auctions. 

4. Provisionally secret bidding 

Cryptography is the study of secret writing. In classic cryptosystems the encryp- 
tion (or ciphering) keys are related to the decryption (or decriphering) keys so 
that given one key the other one can easily be determined. In public-key crypto- 
systems, by contrast, this link between the keys is broken: if one knows the en- 
cryption key, one does not ipso  f a c t o  know the decryption key (see Diffie and 
Hellman 1976). Public-key cryptosystems make use of one-way functions, i.e. 
functions with the property that given the value of the function it is computation- 
ally intractable to determine the argument of the function without some additional 
"trapdoor" information (see Salomaa 1985, 1990). One example of such a function 
is modular multiplication: given a product (modulo k) of two large prime numbers, 
it is computationally intractable to determine the primes in question. In crypto- 
systems that are based on the intractability of modular exponentiation (e.g., the 
well-known RSA system (see Rivest et al. 1978)), the sender A of a message an- 
nounces publicly that messages to her can be sent by performing an easy com- 
putation, viz., by raising the numeric version of the message partitioned into 
blocks of suitable size to the tth power (mod n), where both t and n are fixed 
numbers. A chooses n so that it is a product of two large primes. The factorization 
of n is A's trapdoor information which enables her to easily decrypt messages 
sent to her. Anyone else but A faces a computationally intractable task in trying 
to determine the factors of n. It is noteworthy that the sender of the message is 
also ignorant about the factorization. 

Cryptographic protocols are ways of systematically utilizing the results of math- 
ematical cryptography in devising communication systems that serve the pur- 
poses of the parties involved with regard to the secrecy of messages. These pur- 
poses may, for example, call for a complete exclusion of third parties from the 
information transmitted between two parties, or for a partial revelation of secrets 
by all parties. Consider as an example a protocol that guarantees the secrecy of 
messages from party A to party B so that: 

(i) A knows that nobody else but B can read the message; 
(ii) B knows that the message came from A; and 

(iii) B knows that A cannot afterwards claim not having sent the message to B. 

Let us denote the numerical encoding of the message by w (the encoding is ob- 
tained by mapping the letters into numbers 0 . . . . .  25), the A's (B's, respectively) 
public encryption key by e A (eB). Similarly, A's (B's) private decryption key is 
denoted by dA (dB). We shall make the assumption that for all messages and all 
keys, the following holds: dA(ea(w)) = eA(dA(w)) = W. 
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A protocol satisfying the above three conditions is the following: 

Step 1 
Step 2 

Step 3 

Step 4 

A decrypts w using dA. Thus w is transformed into dA(w). 
A then encrypts the result using B's public encryption key. The result 
is eB(dA(w)). This is sent to B. 
B first decrypts what she received by using her private decryption key. 
The result is (by the above assumption) da(w). 
B finally encrypts the result of Step 3 by A's public encryption key to 
obtain w (Salomaa 1985). 

It should be emphasized that this protocol--or any other protocol for that mat- 
ter--can be no safer than the underlying cryptosystem, i.e., the way in which 
messages are encrypted and decrypted using the public and private keys. Without 
going into the details of these systems, we can assume that adequate cryptosys- 
tems are available (see Salomaa 1985, 1990 for details). 

It can readily be seen that the above protocol fulfills the requirements (i) 
through (iii). Requirement (i) is satisfied because in deciphering e~(dA(w)) anyone 
else but B is facing a computationally intractable task. Requirement (ii) is also 
satisfied, since in decrypting the message received B will have to use A's public 
encryption key in Step 4. Requirement (iii), finally, follows from the fact that in 
Step 3 B possesses the message w in a version where it is decrypted by A's private 
decryption key. As only A is supposed to know this key, Steps 3 and 4 guarantee 
(iii). 

Simple as it is, this protocol (call it protocol 1) is obviously applicable in sealed 
bidding in general and in Vickrey auctions in particular: A denotes the bidders 
and B the bid-taker or seller.The requirements (i) through (iii) are clearly desirable 
in bidding contexts. However, the problem of bid-taker cheating remains. After 
the bids have arrived, the bid-taker is the only one who knows their content. In 
case all bids are publicly posted and B's private decryption key is made public 
after the bidding period is over, the possibility of the bid-taker cheating by having 
"artificial" bids submitted is restricted. If one wants to exclude this possibility 
altogether, the best way to proceed is to ask the bidders to submit their offers in 
encrypted forms, as in the following protocol, which will be called protocol 2. 

Step l 

Step 2 
Step 3 

Step 4 

A sends B the following message: <eA(w), eB(dA(j(A)))> where w is A's 
offer andj(A) is A's identification, e.g., name and phone number. 
B posts all the received ea(w)'s. 
After the bidding time is over, the bidders A send B their private de- 
cryption keys, which are made public. 
All the bidders and the seller can now decrypt the prices offered and 
be assured that the good is sold to the highest bidder at the second 
highest price. 
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Step I enables the bid-taker B to identify the bidders, although she cannot find 
out their bids because they are given in encrypted form. Step 2, in turn, excludes 
the kind of bid-taker cheating in which "artificial" bids are added to the genuine 
ones after the bid-taker finds out the prices offered. At Step 3 the private keys 
are made public, whereupon everyone can recover the bids offered at Step 1. 
Although protocol 2 excludes the particular type of bid-taker cheating mentioned 
by Vickrey (1961) and Rothkopf et al. (1990), it requires the revelation of all bids. 
On the other hand, it is difficult to envisage an efficient procedure in which the 
bids would not be known even to the bid-taker. In protocol 2 the identification of 
the bidders does not have to be known to all bidders; the protocol only requires 
that the bids be recoverable by everyone. Thus, the bid-taker may publish the 
decryption keys only while keeping the identity of the bidder to herself. 

5. Minimal bid-revelation 

Suppose that one wishes to design a version of the Vickrey auction in which as 
few bids as possible are made known to the bidders and the bid-taker. Obviously, 
the bid-taker has to know at least one bid, viz., the second-largest one. Otherwise 
she could not collect the payment for the good. But does she need to know the 
content of other bids? In the following we shall outline a cryptographic protocol 
(let us call it protocol 3) in which she does not. The protocol is an application of 
Yao's solution to what he calls two millionaires problem (commonly also known 
as the age protocol), which is an arrangement enabling a group of people to de- 
termine who is the wealthiest (or oldest for that matter) without disclosing the 
exact wealth (or age) of any member of the group (Yao 1982). (See also Salomaa 
1985, 1990.) While the protocol faces some incentive problems in wealth-revela- 
tion contexts, the fact that we are dealing with sealed (or rather secret) second- 
price auctions guarantees that the incentives for not bidding truthfully are absent. 
Let us start with a special case with two bidders, A and B, only (see Salomaa 
1985; Nurmi 1989). Let the set of possible bids be representable by positive inte- 
gers in the interval [1,100]. Let A's (B's, respectively) private bid be the ith (/th) 
value in the interval. 

Step 1 

Step 2 

Step 3 

B chooses randomly a large number x and encrypts it with A's public 
encryption key to obtain ea(x) = k. Both A and B send to the bid-taker 
their bids in the form: <ec(eA(PASa)), ecea(sA)> and <ec(eB(P~SB)), 
eCeB(SB)>, respectively. Here ec is the bid-taker's public encryption 
key, PA (PB, respectively) A's (B's) bid, and SA (SB) a number privately 
chosen by A (B). 
B sends A the value k - j ,  that is, the difference between the encrypted 
version of the number that she randomly chose in Step 1 and the ordinal 
number that identifies her own bid. 
A now computes a number sequence: 
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Yu = dA ( k - j  + u), where u = 1 . . . . .  100. 

A does not reveal this sequence to B. A also computes  for each u the 
following value: 

z, = y, (rood q) where q is a pr ime chosen by A. 

Step 4 

Each z-value must  be  smaller than q - l .  The difference be tween any 
two z-values has to be at least 2. Should either of  these requirements  
not be the case,  another  value of q is chosen by  A. 
A reports  to B the following sequence: 

zj . . . . .  zi, z i + j + l ,  z i+2+l ,  . . . ,Zl00+l ,  q. 

Step 5 

The condition that the difference between any two z-values be at least 
two guarantees that no number  appears  twice in this sequence.  
B determines whether  the following condition is met: 

z i = x ( m o d q ) .  

I f  it is, then j ,  which identifies B's bid, is no larger than i, which iden- 
tifies A's bid. I f  it is not, then B's  bid is strictly larger than A's. This 
conclusion follows from the fact that 

z1 = 3~i (rood q) = d A ( k - j + j )  = dA(k) = x. 

Step 6 

Here  the second equality is a consequence of  Step 3 with u =j .  I f j  is 
strictly larger than i, zj + 1 is received and the equations do not hold. 
B informs A about  her conclusion in Step 5. The losing bidder sends 
her decrypt ion key to the bid-taker, whereupon the latter can recover  
her bid (see Step 1) and thus the price to charge the winning bidder. 

That  the conclusion reached in Step 5 is correct  can be seen from the following 
(Salomaa 1990). Consider  t h e j t h  number  z / i n  the sequence of z~, (u = 1 . . . . .  
100) generated by A in Step 3. I f  i is larger than or equal to j, then z /  = zj = 
s = x (rood q). If, on the other hand, j > i, then z /  = zj + 1 which is not 
congruent  with z i, and thus z / i s  not congruent  with x (rood q). We notice that the 
requirements that the absolute value of the difference between any two z-values 
be at least 2 and that each value be smaller than q -  1 are necessary  to guarantee  
that each z-value appears  only once in the sequence of  Step 4. The requirements  
are easily met  because  the pr imes are large; consequently,  the differences between 
two z-values are not likely to be 0 or 1. Another  choice of  q is seldom needed.  

Clearly, B's  incentives for not reporting the conclusion correct ly to A are ab- 
sent. Yet, regardless of  the conclusion, B does not know the amount  offered by 
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A. She only knows that the amount either exceeds her own offer or is at most as 
large as the latter. If A's bid is strictly higher than B's, then obviously A should 
be awarded the good at the price that B offers. If, on the other hand, A's bid is 
exactly as high as B's, then the price of the good can be immediately determined, 
viz., it is equal to A's bid. However, it is not known which one of the parties ought 
to get the good at that price. By repeating the procedure so that A's and B's roles 
are reversed, one finds out whether A and B happened to bid exactly the same 
amount. 

Having determined which of the parties has a higher offer, we still have to be 
assured that the party with the losing bid reports her bid correctly to the bid-taker. 
If bidder collusion can be disregarded, the only possibility for misreporting is that 
the losing bidder reports that her bid was higher than it actually was. This possi- 
bility can be counteracted by the requirement that the losing bidder reveal those 
choices that she has made at various stages of protocol 3. Thus, if B is the losing 
bidder, she informs A o f j  and x, whereupon A can check that B is not inflating 
the price of the good. If A, in turn, is the losing bidder, she informs B about the 
y, (u = 1 . . . . .  100) sequence that she computed. Thus B can check the correct- 
ness of the result reached. An additional protection against cheating is provided 
by the bid-taker who has been given the size of the losing bid in Step 6. 

In the two bidder case it thus appears that only one bid has to be publicly 
announced to implement the cryptographic version of the Vickrey auction. But 
protocol 3 can be utilized in an n-bidder context as well. A straightforward way 
to do that is to perform all n(n- 1)/2 pairwise comparisons of bids using protocol 
3. One then forms an n-by-n matrix of 0's and l's so that the cell (k,m) = 1 if the 
kth bidder has a higher bid than the ruth bidder. Otherwise, (k,m)= 0. If a unique 
highest bid exists, then obviously there is a row in the matrix with l's in all non- 
diagonal cells. If a unique second-highest bid exists, then there is a row with l 's 
in all non-diagonal cells except one, viz., the rth column (if the largest bid is that 
of bidder r). 

In general one can do with much fewer than n(n- 1)/2 pairwise auctions. From 
the point of view of sorting, we have to find the second largest among n numbers. 
Many sorting algorithms, linear in terms of n, are known for this task. However, 
we have to take the additional precaution that the largest number remains secret. 
The following procedure, where protocol 3 is applied 2n - 2 times, seems appro- 
priate. 

Assume that the bidders are A~, A2 . . . . .  An. Assume, further, that the bid- 
taker has informed each bidder about the bidders following her in this ordering. 
Thus, A~ knows the whole list, but An knows only that she is the last bidder. As 
before, the bidders initially give the bid-taker their bids in encrypted form. 

In the first round the highest bidder is found out by n - 1 applications of pro- 
tocol 3. A~ first compares her bid with A2, then with A3, until she finds someone, 
say As, with a bid at least as high as hers. A 5 then takes over, and so forth. When 
some bidder, say As, reaches A,, without losing, she reports to the bid-taker as the 
highest bidder. She only discloses her identity, not her bid. Observe that the iden- 
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tity of Ai remains secret for most of the bidders, although A~ knows it. If there 
are several bidders with the same highest bid, the rightmost bidder in the list wins. 
This is only one of the possible ways to handle this situation. 

The second round proceeds exactly as the first, except that now Ai changes her 
bid to a surely losing one. Consequently, the second highest bidder Aj is found 
out by another n -  I applications of the protocol. Ai gives her secret decryption 
key to the bid-taker, who now has all the information she needs. 

The above procedure of two rounds seems to disclose very little unnecessary 
information to the participants. Quite a different possibility is to modify the orig- 
inal protocol 3 to a multiparty protocol that gives the answer directly. The result 
will be much more involved than the procedure outlined above. Some sophisti- 
cated types of cheating are still possible. In particular, the bidders might use in 
the protocol different bid values from the ones they originally gave to the bid- 
taker. Such cheating will be found out if everything is disclosed at a later stage. 

During the process of comparing bids to find out the two highest ones, the only 
available information about the bids is of an ordinal nature, i.e., after each com- 
parison the bidders know which one of them has a higher offer. Once the two 
highest bids have been found, the size of the smaller one has to be made known 
at least to the bid-taker and the highest bidder. Preferably, the value of the second- 
highest bid should be public so as to eliminate some obvious forms of discrimi- 
nation. As we pointed out above, an arrangement in which no bid would eventu- 
ally be made known to at least the bid-taker would seem downright impossible. 
The procedure described above thus represents the best one can hope to achieve 
as far as bid-revelation is concerned. 

One could argue, however, that there are circumstances in which protocol 3 
encourages rather than discourages a particular type of cheating, viz., one in 
which the bid-taker solicits her accomplices to submit high bids to get higher price 
from a bidder--let us call her T--that the bid-taker knows desperately wants the 
item or right being auctioned. In this kind of situation the fact that the second 
highest bidder's identity is not revealed would seem an additional source of con- 
cern for T. Although protocol 3 does not eliminate this type of cheating altogether, 
it renders its success much less likely than in ordinary sealed bid auctions. In the 
latter it is conceivable that some kind of information about the magnitude of T's 
bid leaks to the bid-taker before the time for submitting the sealed bids has ex- 
pired. Thus the bid-taker could call upon her collaborators to submit second high- 
est bids to drive up the price that T has to pay. In protocol 3, in contrast, only T's 
identity (in case she happens to be the highest bidder) is known to all others. And 
even this information is revealed "too late," since by that time all bids have al- 
ready been submitted in encrypted form. If the bid-taker knew T's identity before 
the bidding starts, any attempt to drive up the price by soliciting bids from accom- 
plices runs the risk of backfiring, viz., it may well turn out that one of the solicited 
bids is the highest, whereupon protocol 3 calls for the identity of the bidder being 
revealed. Now, what about the second highest bidder's incentive to reveal her 
bid? Protocol 3 by itself does not contain any. The bidders and the bid-taker are 



372 NURMI/SALOMAA 

assumed to commit themselves to these rules before the bidding begins. It is, 
however, worth pointing out that the losing bidder has no way of revising her bid 
once the fact that she is the losing bidder is known. 

6. Practical considerations 

Due to the rather extensive computations needed in going through the steps of 
protocol 3, it is impossible to utilize the cryptographic version of Vickrey auctions 
unless the bidders and the bid-taker have considerable computing capacity at their 
disposal. If the RSA cryptosystem is used, it has been suggested as a rule of 
thumb to choose a composite number n so that it consists of at least 200 digits. 
This would guarantee a quite safe system, as the computing time needed to factor 
arbitrary 100-digit numbers is huge even by the best presently known methods. 

To perform modular exponentiations of 200-digit numbers requires special 
equipment---RSA chips that are currently available--even though from a theoret- 
ical point of view the computations are easy for a legitimate user. This require- 
ment necessarily excludes the use of the above protocol in most present-day auc- 
tions. On the other hand, once the special equipment is available, the steps of 
protocol 3 can be taken quite swiftly. 

Nothing in protocol 3 hinges upon the parties, i.e., the bidders and the bid- 
taker, to gather in the same place. Every step can be performed in an electronic 
communications network or by ordinary letter, for that matter. 

7. Concluding remarks 

In the preceding we have outlined a procedure for executing Vickrey auctions 
using cryptographic methods. The procedure seems to minimize, or even to avoid, 
the two problems that stand in the way of a general adoption of Vickrey auctions: 
the fear of bid-taker cheating, and the reluctance to reveal bids. The procedure 
does not, however, destroy the particularly nice property of the Vickrey auctions, 
viz., that truthful bidding is the dominant strategy for the bidders (assuming that 
they are risk-neutral and independent). In situations where the bid-taker knows 
that there is one bidder who desperately wants the item being auctioned, this 
property may be absent, but this is also the case when traditional sealed second- 
price auctions are considered. The implementation of cryptographic Vickrey auc- 
tions requires special computational equipment. 
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