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Abstract. Analysis of concurrent systems is plagued by the state explosion problem. We describe an analysis 
technique that uses necessary conditions, in the form of linear inequalities, to verify certain properties of 
concurrent systems, thus avoiding the enumeration of the potentially explosive number of reachable states of 
the system. This technique has been shown to be capable of verifying simple safety properties, like freedom 
from deadlock, that can be expressed in terms of the number of certain events occurring in a finite execution, 
and has been successfully used to analyze a variety of concurrent software systems. In this paper, we extend 
the technique to the verification of more complex safety properties that involve the order of events and to the 
verification of liveness properties, which involve infinite executions. 
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1. Introduction 

Many concurrent systems can be modeled as a set of  communicating finite state machines. 

In theory, this allows properties of such systems to be verified automatically by state 
enumeration and model  checking techniques. In practice, however, the analysis of  these 
systems is generally intractable since the number of  system states grows exponential ly 

with the number of  state machines. This is commonly known as the state explosion 

problem. 

Many techniques have been proposed to cope with this problem. Symbolic  model  

checking techniques [6][15] use binary decision diagrams (BDDs) [5], a compact  rep- 
resentation for boolean functions, to represent the state space of  a system symbolically.  
BDDs can compactly represent certain kinds of  regularity in the state space of  a concur- 
rent system and drastically improve the performance of  model  checking on these systems, 
though in general the size of  the BDDs can grow as fast as the number of  states in the 
system. These techniques have been applied to certain kinds of  circuits, some standard 
concurrency problems such as the dining philosophers, and recently to a cache coherence 
protocol. 

Partial order techniques [13][18][21] identify transitions that "commute" (have the 
same effect if  performed in either order) and use this information to reduce the number 
of  states explored by not differentiating equivalent interleavings of  transitions. These 
techniques excel at analyzing systems in which the state explosion results primari ly from 
interleaving the actions of  largely independent processes. For example, these techniques 
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explore only O(n) states in a standard dining philosophers system of n philosophers. 
In a slight variation of this system in which a "host" process is added to prevent the 
deadlock, however, the number of states explored remains exponential in n. 

Abstraction techniques [8] use homomorphisms that map the state space of the system 
to a smaller, more abstract transition system sufficient for verifying a particular property. 
The chief difficulty with these techniques is in finding a good abstraction, i.e., one that 
preserves just enough of the details of the system to verify a particular property. Although 
not completely automatic, these techniques have been applied to systems having over 
1013~176 states. 

Compositional approaches [7] [20] [23], usually based on a process algebra [4] [ 14] [17], 
reduce the complexity of the analysis by composing the components of a concurrent 
system in stages and hiding internal details of the composed entity after each stage. These 
techniques are best applied to well-structured systems with simple interfaces between the 
subsystems. Automated tools for performing these analysis [10][22] have been used to 
verify a range of concurrent systems from simple network protocols such as the alternating 
bit protocol to standard concurrency problems such as the dining philosophers and the 
self-service gas station. 

The inequality necessary condition method [2][3] avoids the enumeration of a system's 
states altogether. Given a concurrent system and a property to be verified, this method 
generates a system of linear inequalities that represents necessary conditions for the 
existence of an execution of the concurrent system violating the property. The inequalities 
express constraints on the number of times certain events can occur in relation to other 
events. The consistency of these necessary conditions is then checked using integer linear 
programming (ILP) methods. If the inequality system has no integral solutions, then the 
necessary conditions for the violation of the property cannot be satisfied, proving that 
the concurrent system has the property. This method has been automated and applied 
to some concurrent systems having as many as 1047 reachable states [3]. Unfortunately, 
the types of properties that can be verified by this method are somewhat limited. For 
example, it can verify that a system is free from deadlock, but it cannot verify liveness 
properties, which involve reasoning about infinite executions, nor can it directly verify 
properties like mutual exclusion, which involve the relative order of the events in an 
execution, rather than just the number of occurrences of these events. 

In this paper, we extend the inequality necessary condition method to handle both infi- 
nite executions and properties involving the relative order of events. A further extension 
of these ideas in [11] enables the technique to verify properties expressible in linear time 
temporal logic, thus allowing a very general class of questions about a system to be 
answered while avoiding the construction of an exponentially-sized state graph. In the 
next section, we describe the model on which the method is based and outline the basic 
inequality necessary condition technique. The third section discusses the expressiveness 
of our extended analysis technique, and the fourth and fifth describe it in detail. We then 
report on some preliminary experiments demonstrating the feasibility of the technique 
and present some conclusions. 
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2. Model and Basic Technique 

We model a concurrent system as a collection of coupled finite state automata (FSAs) 
with additional restrictions expressed as a set of recursive languages on the alphabets of 
the FSAs. The acceptance of a symbol by an automaton represents the occurrence of an 
event in the concurrent system. An event may represent a normal action of a component, 
such as initiating a communication with another component, or an error, such as waiting 
forever for a communication that never takes place. An execution of the concurrent 
program is thus modeled by a string of event symbols. 

Formally, we regard a concurrent system as a triple (M, R, T) where M is a set of FSAs 
MI~. . . ,  Mn with alphabets ~1, . . . ,  ~n, ~ = Ui ~i, R is a set of recursive restriction 
languages R 1 , . . . ,  Rm with alphabets A 1 , . . . ,  Am, Ai c_ P~ for all /, and T C N is 
a terminal alphabet. Let pA(S) denote the projection of string s onto alphabet A (i.e., 
symbols of s not in A are removed). Then a string t C T* represents a legal behavior 
or trace of the concurrent system if there exists a string s E N* with pT(S) = t where 
pr.~ (s) C L(M~) for all i and PA~ (8) E Rj for all j .  

This model is general enough to represent many common communication mechanisms, 
including asynchronous message passing [2], but in this paper we will focus on the 
case where pairs of processes communicate synchronously over named channels that 
connect them. On each channel, one process acts as the caller while the other acts as 
the acceptor. We model such a communication using the channel name as an event 
symbol that appears in the alphabets of the FSAs of both processes. (We can also 
model the transmission of data across a channel by encoding the data into this symbol, 
but for simplicity, here we restrict communication to synchronization). The event that 
the process becomes permanently blocked waiting for communication over a channel is 
represented by the acceptance of a hang symbol for that channel. The hang symbols for 
channel e in the caller and acceptor processes are denoted h_c(e) and h_a(e) respectively. 
Since the two processes communicating over a particular channel cannot both become 
permanently blocked waiting for the other one to be ready to communicate, strings in 
which both h_c(e) and h_a(e) occur cannot correspond to executions of the concurrent 
system. The restriction language {h_c(e), h_a(e), A} excludes these strings. Figure 1 
gives the specification for a small concurrent system in an Ada-like design language 
and shows the FSAs we would use to model that system. Note that the value of the 
variable turn has been encoded into the state of M3. Also, in states that can engage in 
communication over multiple channels (e.g., state 5), there must be the option to accept 
a sequence of hang symbols: one for each channel. In all our examples, we shall take 
the set of event symbols appearing in an FSA or restriction language as its alphabet and 
not specify the alphabets separately. 

The basic technique, detailed in [2], uses necessary conditions, in the form of linear 
inequalities, to either help find a trace with certain properties or prove that no such trace 
could exist. Every trace determines a path in each FSA from the starting state to an 
accepting state, representing the activities engaged in by the process corresponding to 
that FSA. The fact that the paths come from a trace implies that they satisfy certain 
conditions involving the interaction between processes and the constraints imposed by 
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task body one is 

begin 

loop 
three.A; 

end loop; 
end one; 

task body two is 

begin 
loop 

three.B; 

end loop; 
end two; 

task body three is 
turn : (one,two) := one; 

begin 

loop 
select 

when (turn = one) => 

accept A; 

or 
accept B; 

turn := two; 
end select; 

end loop; 
end three; 

M 1 

v ,  v ~  aO~) 

M 3  , ~ , .  - 

R1 = {h_c(a), h_a(a), A) 

R2 = {h_c(b), h_a(b), A) 

Figure 1. Small Example 



VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 101 

the restriction languages. Our technique finds flows in each FSA that meet weaker 
conditions. Specifically, it requires that, for each communication channel, the FSAs 
connected by that channel agree on the number of times that they communicated over 
that channel and that inequalities representing some aspects of the various restriction 
languages be satisfied. 

To produce the inequalities, we assign a variable, xi, called a transition variable, to 
each transition i that represents the number of times transition i is taken. We also assign 
an accept variable, fi, to each accepting state i that will be one if the FSA containing 
state i is in that state at the end of the trace; otherwise it will be zero. First, we produce a 
flow equation for each state, equating the flow into the state with the flow out of the state 
(i.e., the number of times the state is entered equals the number of times it is exited). 
There is an implicit flow of one into the start state and accept variables are counted 
as flow out. We then produce a communication equation for each channel, equating the 
number of times the processes connected by the channel communicated over that channel. 
We also produce restriction inequalities to enforce the restriction languages which, in 
this case, simply forbid more than one hang symbol for each channel from occurring. 

The system of inequalities generated thus far represents necessary conditions that will 
be satisfied by every trace of an execution of the concurrent system. To verify a particular 
property of the system, we add inequalities that represent the negation of that property. 
For example, to verify that the caller of channel e cannot become permanently blocked 
waiting for a communication on channel e, we would add the inequality Ih_c(e)] > 1, 
where I h-c(e)l is the number of occurrences of event h_c(e) in the trace (which is given 
by the sum of certain transition variables). Properties that can be verified are limited to 
those whose negations can be expressed by linear inequalities involving the numbers of 
occurrences of particular events. 

The algorithm to generate the inequalities described above is shown in Figure 2. The 
abbreviations used in this and the other algorithms in this paper are summarized in 
Table 1. The notation [expr]cona indicates that the expression expr should be added to 
the inequality only if the condition cond is true, and otherwise zero should be added. 
The existence of every variable appearing in expr is always implicitly conjoined to 
this condition, which defaults to true if not specified. The inequalities generated by the 
algorithm for the example of Figure 1 are shown in Figure 3. Here, we have not specified 
a property to be verified; the inequality system shown represents necessary conditions 
for the existence of any (finite) trace. 

These inequalities represent necessary conditions for an assignment of values to the 
transition variables to correspond to a trace. Clearly every set of paths corresponding to 
a trace will yield flows through the FSAs satisfying the communication and restriction 
inequalities, so these inequalities represent necessary conditions satisfied by every trace. 
The conditions are not sufficient, however, since not every set of flows satisfying the 
inequalities need correspond to a trace. There are several reasons for this. First, the 
communication equations do not guarantee that there is a consistent ordering of the 
communication events (e.g., one FSA could synchronously communicate with another 
over channel c and then channel d, while the other communicated over channel d and 
then channel c). Secondly, the presence of cycles in the FSAs can allow cyclic flows that 
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Table 1. Abbreviations used in Algorithms 

accept(c) 
alphabet(M) 
call(c) 
fsa( O 
han g_a( c ) 
han g_c( c ) 
in(j) 
label(k) 
out(j) 
occur(e) 
SCC(M) 
start(j) 
states(M) 
trans(M) 

transitions representing accept on channel c 
alphabet of FSA M 
transitions representing call on channel c 
FSA containing state/transition i 
transitions in acceptor representing blockage on channel c 
transitions in caller representing blockage on channel e 
transitions into state j 
event symbol labeling transition k 
transitions out of state j 
transitions labeled with event e in any one FSA containing e 
transitions in any strongly connected component of FSA M 
true if state j is a start state of an FSA, else false 
states of FSA M 
transitions of FSA M 

Input: 

Output:  

A set M o f  F S A s  

A property P to be verif ied 

A set o f  inequal i t ies  

Fo r  each  transit ion k of  an F S A  of  M :  

Create  transit ion var iable  Xk 

For  each accept ing state j o f  an F S A  of  M :  

Create  accept  var iable  f j  
For  each  state j o f  an F S A  of  M :  

Genera te  f low equat ion:  [1]startG) + 

For  each channel  c: 

Genera te  synchroniza t ion  equat ion:  

Genera te  restr ict ion inequali ty:  

= Z Xk + [Yj] 
kein(j) kEout(j) 

Xk ~-- ~ Xk 
kCcall(c) k@accept(c) 

~_~ Xk + ~ Xk <_ 1 
kEhang_c(c) kChang_a(c) 

Genera te  addit ional  inequal i t ies  speci fy ing the v io la t ion  of  P 

Figure 2. Basic Algorithm 
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Flow: (state) 
1 ~- Xl = Xl "3 I- X2 (1) 

~ = f~ (2) 
1 + x 3  = x~+x4  (3) 

x4 = f4 (4) 
l + x 5  = x 5 + x 6 + x a  (5) 

x 6 + x 7  = xT+x8  (6) 
z9 = ZlO (7) 

xs + xlo = fs (8) 
Communication: (channel) 

x~ = z r  + z 7  (b) 

Restriction: (number) 
X2 ~-X9 ~_~ 1 (1) 

x 4 + x s + x l o  _< 1 (2) 

Figure 3. Inequality System for Basic Technique 

are not connected to the path found within the FSA. For example, there can be a cyclic 
flow on arc 7 in Ma of Figure 1 even if the flow from the start state passes through 
arcs 9 and 10; the flow equation for state 6 does not constrain the transition variable 
for arc 7. Finally, the restriction languages, in general, may not be simple enough to 
capture with linear inequalities. In such a case, we could enforce only certain aspects 
of the restriction language. For example, we might add the equation lal = Ibr for the 
restriction language generated by (ab)*,  but this equation does not enforce the alternation 
of a and b. For these reasons, a solution to the inequality system may not correspond to 
a trace of the concurrent system. If such a solution arises, the analysis is inconclusive 
since the presence of that solution implies nothing about the existence of another solution 
that does correspond to a trace. In our experience [3], however, such spurious solutions 
are uncommon. Also, we can sometimes add additional inequalities to remove such 
solutions. 

As shown in [2], the formalism and analysis technique can also be applied to systems 
that use an asynchronous communication mechanism. For such systems, the communi- 
cation and restriction inequalities would be different. For example, the communication 
inequalities would require that the number of messages received along each channel 
not exceed the number of messages sent along that channel. A description of how the 
analysis technique and the extensions we present here can be adjusted for use with such 
systems is given in [11]. 



104 C O R B E T T  A N D  A V R U N I N  

3. Expressiveness 

In this paper, we extend the basic technique presented in the last section to the verification 
of properties whose negations can be specified by co-star-less I expressions, which are 
w-regular expressions [19] of the form: 

0 S~:lei,lSit2ei,2"'" S~,n'ei'n~: n'+lT~ 
i = 1  

where Si,j C_ ~, ei,j E E, Ti C_ ~. Specifically, given an co-star-less expression, the 
extended technique produces necessary conditions for the existence of a trace lying in the 
language of infinite strings generated by the expression. This extended technique relies 
on two key ideas. The first idea allows the technique to test for properties in which 
events occur in a specific order and is described in Section 4. The second idea allows 
the technique to deal with infinite traces and is described in Section 5. In this section, 
we discuss the power of the technique and some related techniques from [11] in relation 
to model checking. We then sketch how an analysis with our technique proceeds. 

Model checking techniques can determine whether a system satisfies a formula of tem- 
poral logic. It is well known that such first order logics are equivalent in expressive 
power to star-free regular expressions [19], which allow concatenation, union, and nega- 
tion, but not Kleene star. If we define star-less expressions as regular expressions of the 
form: 

0 s&,e,,,,s&,+l 
i = 1  

then we see that star-less expressions are star-free (A* for any A c_ E is star-free-- 
e.g., ~* = ~). Unfortunately, there exist languages that can be defined with star-free 
expressions that cannot be defined with star-less expressions. This follows from the 
strictness of the dot-depth hierarchy of star-free expressions and the observation that 
star-less expressions have bounded dot-depth. For the infinite case, first order logics are 
equivalent in expressibility to co-regular expressions of the form: 

m 

U 
where Ai, Bi are star-free expressions. Again, there exist languages definable with such 
expressions that are not definable using w-star-less expressions (e.g., (ab)~~ Thus w-star- 
less expressions are strictly less expressible than temporal logic. In practice, we have not 
yet encountered any commonly verified concurrency properties that are not expressible 
with co-star-less expressions, though our experience with the technique is limited. 

Two extensions of our technique are presented in [11]. The first allows arbitrary in- 
equalities over the number of occurrences of certain events to be added to the inequality 
system generated for the analysis of an co-star-less expression. These inequalities restrict 
attention to traces lying in the language of the co-star-less expression and satisfying the 
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constraints expressed by the inequalities (e.g., the number of a events equals the number 
of b events). With such inequalities, it is easy to define languages that cannot be defined 
with star-free expressions (e.g., strings with an even number of a events). On the other 
hand, the depth-1 Dyck language cannot be expressed with star-less expressions and 
inequalities, so the class of star-free languages and the class of languages that can be 
expressed with star-less expressions and inequalities are not comparable. The implemen- 
tation of our technique for co-star-less expressions allows these additional inequalities to 
be added and we have used them in several experiments, usually to reduce the size of 
the co-star-less expression required. 

The second extension described in [11] allows the verification of properties specified by 
a BiJchi automaton. Since Biichi automata are more expressive than first order logic [19], 
this implies that the technique can be used for any property expressible in linear temporal 
logic. This extension relies on the same two ideas as the technique for w-star-less 
expressions. We do not describe it here, however, because, unlike the technique for co- 
star-less expressions, it has not yet been implemented and tried on sample systems; hence 
the quality of the necessary conditions it produces, and thus its practical significance, is 
not known. 

Given a concurrent system and a property whose negation is expressible as an co-star- 
less expression, we can apply the extended techniques presented here as follows. We 
produce necessary conditions, in the form of linear inequalities, for the existence of a 
trace of the concurrent system that is also generated by the w-star-less expression. If  
these conditions are unsatisfiable (i.e., the inequality system has no integral solution), 
then there are no traces of the system violating the property, so the property must hold. If  
the conditions are satisfiable (i.e., the inequality system does have an integral solution), 
then the property may or may not hold. I f  the necessary conditions are strong, however, 
the property will usually not hold when the conditions are satisfiable. Our experience is 
that our necessary conditions are strong. Furthermore, if the property does not hold, a 
solution satisfying our necessary conditions can often be used to find a trace violating 
the property. 

4. Queries Involving Order 

In this section, we describe a technique for verifying more complex safety properties in 
which the order of the events involved is significant. Since a violation of a safety property 
can be shown by a prefix of a trace, we may use regular expressions to generate these 
prefixes and postpone dealing with infinite traces until we address liveness properties in 
Section 5. Here, we present a technique for verifying safety properties whose violations 
are expressible with star-less expressions. 

The basic technique presented in Section 2 can easily find traces in which certain 
event symbols occur a specified number of times, but it cannot find traces in which these 
symbols occur in a specific order. For example, to find a trace with one a event and one 
b event in the system of Figure 1, we would add xl  = 1 and :Ca = 1 to the inequality 
system in Figure 3. There does not appear to be any way, however, to add equations that 
require the events to occur in a specific order. This is a serious limitation since many 
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safety properties (e.g., mutual exclusion) constrain only the order of events and not their 
number. To produce necessary conditions for a trace containing a specific sequence 
of events, we use those events to divide the trace into segments we call intervals, we 
produce an inequality system for each interval, and then we connect these inequality 
systems together. For brevity, we will use the term "interval" to refer to the segment of a 
trace, to the inequality system representing necessary conditions for the existence of this 
segment, as well as to solutions to this inequality system interpreted as flows through 
the FSAs (e.g., we might speak of "flows through interval i" rather than "flows through 
the FSAs represented by the solution to the inequality system generated for interval i"). 

We explain the technique using the example of Figure 1 and then present the algorithm. 
Suppose we want to verify that there are no a events after any b event. The negation of 
this property can be expressed by the star-less expression E * b ( E - { a ,  b})*a. We produce 
necessary conditions for the existence of a prefix of a trace containing a b followed by 
an a, as generated by this expression. We divide the prefix into two intervals. The 
first interval is from the initial state of the system to the state of the system after the 
b event (generated by E 'b) .  The second interval is from the state of the system after 
the b event to the state of  the system after the a event (generated by (E - {a, b})*a). 
For each interval, we produce an inequality system similar to the one generated by the 
basic algorithm, but with the following differences. We want the inequality system for 
the first interval to find flows ending after a b event rather than at accepting states. To 
achieve this, we assign to each state j having an incoming b transition a connection 
variable cl,j that will be one if the FSA containing state j is in state j at the end of the 
first interval, and will be zero otherwise. In FSAs not containing b events, we assign 
connection variables to all states. Note that requiring the interval to end in an FSA at a 
state with an incoming b transition does not guarantee that a b event occurred in that FSA 
during the interval. Therefore, we add a requirement inequality stating that at least one 
b event occurs. Since we are seeking only a prefix of a trace, we do not assign accept 
variables. If  the connection variables are counted as flow out in the flow equations, as 
accept variables are treated in the basic technique, then the resulting inequality system 
will find a flow in each FSA from a starting state to a state in which the FSA could be 
immediately after a b event. Furthermore, in FSAs with b events, the flow must pass 
through at least one such event. 

The inequality system for the second interval must find a flow in each FSA from the 
state the FSA was in at the end of the first interval to a state in which the FSA could 
be after an a event. To each state j in which an FSA could be following an a event, 
we assign a connection variable, c2,j, that will be one if the FSA is in that state at the 
end of the second interval, and will be zero otherwise. In this interval, there can be no 
b events and only one a event (at the end), so we produce requirement equations setting 
the number of occurrences of a to one and the number of occurrences of b to zero. We 
then count the connection variables from the first interval as flow in, rather than having 
an implicit flow in of one at the start states, and count the connection variables from the 
second interval as flow out. Finally, the restriction inequalities are produced as before 
and involve the number of hang symbols from both intervals. 
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Flow (interval 1): (state) 

1 -~- Xl,1 = Xl,1 q- Xl,2 -Jr C1,1 (1) 
z l ,~  = cl,2 (2) 

1 + zl,3 = xl,3 + xl,4 + cl,3 (3) 
xl,4 = 0 (4) 

1 + xl ,5 = xl,~ + xl ,6 + xl ,9 (5) 
xl,6 + xl,7 = zl,7 + x~,s + cl,6 (6) 

xl,9 = xz,lo (7) 
xl,s  +x1,1o = 0 (8) 

Communicat ion  (interval 1): (channel) 
271,~ = ~ , ~  (a)  

271,3 : Xl,6 -~- Xl,7 (b) 

Requirement  (interval 1): (symbol) 
xl,3 >_ 1 (b) 

Flow (interval 2): (state) 
c1,1 + x2,1 -- x2,1 + x2,2 + c2,1 (1) 
cl,2 +x2,2  = 0 (2) 
cl,3 + x2,3 = x~,3 + z2,4 + c2,3 (3) 

X2, 4 : C2, 4 (4) 
x2,5 = x2,5 + x2,6 + x2,9 + c:,5 (5) 

Cl,6 + x2,6 + x~,r = x2,r + x2,8 (6) 
z~,9 = z2,1o (7) 

x2,s +x2,1o = 0 (8) 

Communicat ion  (interval 2): (channel) 
�9 ~,1 = x~,~ (a)  

x2,3 = x2,6 + z2,7 (b) 

Requirement  (interval 2): (symbol) 
z~ , l  = 1 (a)  

x2,3 = 0 (b) 

Restriction: (number)  
Xl,2 -~- xl,9 -}- x2,2 -~- x2,9 < 1 (1) 

Xl,4 + Xl,8 + Xl,10 + X2,4 
+X2,s +X2,10 __< 1 (2) 

Figure 4. Inequality System for Prefix of Trace Generated by E*b(E - {a,b})*a 
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The inequality system produced for the system in Figure 1 given the expression 
E*b(E - {a, b})*a is shown in Figure 4. The transition variable for transition j of 
interval i is denoted xi,j. The whole system finds a flow in each FSA starting at the 
start state, proceeding through the first interval to a state with a connection variable for 
b, and then continuing through the second interval to a state with a connection variable 
for a. 

Note that this inequality system, which represents necessary conditions for the existence 
of a prefix of a trace generated by E*b(E - {a, b})*a, has no integral solution. This 
proves that no trace containing a b followed by an e exists. For this trivial example, 
an appropriate kind of intersection between M3 and the automaton for ba could have 
shown this; however, the above technique can be applied even if the events a and b are 
in different FSAs, as shown by the first example in Section 6. 

We now present the algorithm for generating inequalities representing necessary con- 
ditions for the existence of a prefix of a trace generated by a star-less expression. We 
first present the algorithm for generating such conditions for one disjunct of a star-less 
expression, which we call a sequence, and then describe how the conditions for several 
sequences can be combined to represent necessary conditions for the existence of a prefix 
of a trace generated by any one of the sequences. A sequence of a star-less expression 
is a regular expression of the form: 

S~elS~e2... SnenSn+ 1 

The algorithm to generate necessary conditions for the existence of a prefix of a trace 
generated by a sequence is shown in Figure 5. If Sn+l = E, we may omit the last 
interval (iteration i = n + 1), as we did in the example above. The correctness of these 
conditions is proved in [11]. 

Given a set of sequences, we derive necessary conditions for the existence of a trace 
generated by their disjunction as follows. We assign a sequence variable, si, to each 
sequence and generate an equation summing the sequence variables to one. We generate 
an inequality system, which we call a sequence system, for each sequence. A sequence 
system is similar to the inequality system generated for a sequence, as described above, 
with the following exceptions: 

�9 In the sequence system for sequence i, the implicit flow into the start states in the 
first interval is si rather than one. 

�9 In the sequence system for sequence i, the requirement equations that require a 
symbol occur exactly (or at least) once are changed to require the occurrence of that 
symbol exactly (or at least) si times. 

If the sequence variable for a sequence system is set to one, it is the same as the inequality 
system that would be generated for the sequence standing alone. If  the sequence variable 
for a sequence system is set to zero, it will always have the trivial solution where all the 
variables are zero. By this construction, it is clear that there exists an integral solution 
to the inequality system for the disjunction if and only if there exists an integral solution 
to at least one of the inequality systems generated for the sequences. Thus the resulting 
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Input: 

Output: 

A set M of FSAs 
A sequence: S ~ e l S ~ e 2 . . .  SnenS~+l 
A set of  inequalities 

For each interval i = 1 , . . .  , n  § 1: 
For each transition k of  an FSA of M :  

Create transition variable xi,k 
For each state j of  an FSA of M:  

If i = n + 1 or ei r aIphabet(fsa(j)) or 3k c in( j ) ( label(k)  = e 0 then 
Create connection variable ci,j 

For each interval i = 1 , . . . ,  n + 1: 
For each state j of  an FSA of M:  

Generate flow equation: 

[1]i=lAstart(j ) q-[Ci--l,j] § E Xi,k = 
kei~(j) 

For each channel c: 

Generate synchronization equation: 

For each e in E: 
If e r Si then 

Generate requirement equation: 

Else 

Generate requirement equation: 

For each channel c: 
Generate restriction inequality: 

keout(j)  

E Xi'k ~ E Xi'k 
kCcatt(c) kCaccept(c) 

Xi,k =- [J]ir 
k~ occur( e ) 

zi,k _> [1]i~,~+l^e=,, 
kE occur( e ) 

i----1 kEh c(c) kChang_a(c) 

Figure 5. Algorithm for Sequence 
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inequality system represents necessary conditions for the existence of a prefix of a trace 
generated by the disjunction of the sequences. 

The size of the inequality system for the disjunction is equal to the sum of the sizes of 
the inequality systems for the sequences, plus one additional variable per sequence, plus 
one additional equation (summing the sequence variables to one). An optimization de- 
scribed in [11] can significantly reduce the size o f  the inequality system for a disjunction 
by having different sequences share the same transition variables. 

We have described how to generate necessary conditions for the existence of a prefix 
of a trace generated by a star-less expression. In the next section, we describe how to 
generate necessary conditions for the existence of an infinite suffix of a trace and how 
to combine these two kinds of conditions to form necessary conditions for the existence 
of a potentially infinite trace generated by an w-star-less expression. 

5. Infinite Traces 

In this section, we address the verification of liveness properties. Note that the basic 
technique presented in Section 2 does not admit infinite traces, i.e., traces in which 
one or more FSAs continue engaging in actions forever. For example, the inequality 
system in Figure 3 has no integral solution since all of the traces of the concurrent 
system are infinite (there is no way for all of the FSAs to reach accepting states without 
violating the restrictions). This limitation is serious since the violation of a liveness 
property must be shown by a complete trace, which may be infinite. Therefore, to 
verify liveness properties, we must extend the formalism to represent infinite traces and 
extend the analysis technique to generate necessary conditions for the existence of infinite 
traces. We may then use the inconsistency of these conditions as proof that no infinite 
trace exists that violates a particular liveness property, just as the inconsistency of the 
conditions generated by the basic technique was used to prove that no finite trace exists 
that violates a particular safety property. 

We first extend the model of Section 2 to allow infinite traces and then describe 
how to generate necessary conditions for the existence of these traces. The model of 
Section 2 represents an execution of a concurrent system with a finite string. To represent 
infinite executions, we use infinite strings of event symbols and make two changes to 
our representation of a system. First, the processes of the system are modeled by BiJchi 
automata [19] rather than FSAs. A Biichi automaton is the infinite analog of an FSA, 
accepting languages of infinite strings rather than finite strings. The only difference is 
the condition for acceptance. In an FSA, a computation must end in an accepting state 
for the string to be accepted. A Biichi automaton accepts an infinite string if and only 
if the infinite computation on that string enters at least one of the accepting states of 
the automaton infinitely often. B/ichi automata accept w-regular languages, the infinite 
analog of regular languages. The Biichi automaton, M~o, used to model a process looks 
exactly like the FSA, M, used before except that: 

�9 All states in M~o are accepting. This admits any infinite path through the automaton 
as a legal trace of the process. 



VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 111 

To each state of M~ that was accepting in M, we add a self-loop (i.e., a transition 
from the state to itself) on a stopped symbol, denoted SM, unique to the automaton. 
This allows legal finite behaviors of processes within the framework of infinite strings: 
for every finite string t accepted by M there is an infinite string t(sM) ~ accepted by 
mw. 

The second change made to the formalism involves the restrictions. Each restriction 
language is defined to be the union of a recursive language of finite strings over E and 
an w-context-free language [19] of infinite strings over E. Restriction languages must 
include both finite and infinite strings since the projection of an infinite string onto an 
alphabet may be either finite or infinite. This completes the extension of the formalism. 
The analysis technique will still use the FSA representation of the processes, but will 
treat them as B/ichi automata where appropriate. 

We now describe how to generate necessary conditions for the existence of infinite 
traces. Consider the simplest case where we are seeking any infinite trace of a concurrent 
system (as opposed to a trace with a specific property). We can always divide such a 
trace into afinite interval, containing all events occurring only finitely many times in the 
trace, and a perpetual interval, containing only events occurring infinitely often in the 
trace. Solutions to the inequalities generated for the perpetual interval represent finite 
flows through the FSAs satisfying certain consistency requirements, however, these flows 
are interpreted differently than those found by the previous techniques. Any finite flow 
through an arc in the inequality system generated for the perpetual interval represents 
the infinite repetition of the event labeling that arc. For example, the infinite trace 

ababbcbbcbbcbbc... 

might be represented by a flow through arcs labeled aba in the finite interval, and a flow 
through arcs labeled be in the perpetual interval. Note that this representation does not 
capture any information about the order in which the events in the perpetual interval 
are repeated, nor their relative frequency of occurrence, but only that they are repeated 
infinitely often. This suffices to verify properties specified with w-star-less expressions. 
The transitions in a particular FSA that occur infinitely often in the trace must be part 
of a strongly connected component (SCC) in the FSA when viewed as a graph (i.e., to 
run forever, the FSA must traverse a cycle or set of interconnected cycles). An isolated 
state is not considered connected to itself unless there is an explicit self-loop, so these 
SCCs must contain at least one arc. 

We construct an inequality system for the finite interval and another for the perpetual 
interval and connect these systems together to form an inequality system representing 
necessary conditions for the existence of an infinite trace. The inequality system for 
the finite interval is similar to the inequality system generated by the basic technique of 
Section 2 except for the following: To each state j of an FSA that is part of a SCC, we 
assign a perpetual variable, pj, that counts as flow out in the flow equations (just as the 
accept variables do). This variable will be one if the FSA repeats a set of transitions, 
starting from state j ,  infinitely often, and it will be zero otherwise. Accept variables are 
also generated for the finite interval. For efficiency, the analysis technique uses these 
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variables to allow the termination of processes, rather than using the infinite repetition 
of a stopped symbol, as in the formalism. 

The inequality system for the perpetual interval represents necessary conditions for the 
existence of an infinite suffix of a trace. In this interval, any positive flow through an 
arc represents infinitely many occurrences of the event labeling that arc in the trace. We 
generate the perpetual interval system as follows. First, we conceptually remove parts 
of the FSAs not part of SCCs (in the example of Figure 1, we remove transitions 2, 4, 
6, 8, 9, and 10, and ignore states 2, 4, 7, and 8). Second, we generate flow equations 
for the remaining states, but we do not add an implicit flow of one into the start states, 
nor do we include any other types of variables (e.g., accept, perpetual, connection). The 
connection between the finite and perpetual intervals is different than the connection 
between intervals in the technique of Section 4, as we will explain. Third, we generate 
synchronization equations for each channel equating the number of perpetual calls and 
accepts for that channel. Since hang symbols cannot occur perpetually, the perpetual 
interval system contains no restriction inequalities. Requirement inequalities are added 
only if the set of events that can be repeated forever (i.e., the Ti sets in an w-star-less 
expression) is a strict subset of Y., in which case these inequalities set to zero the number 
of occurrences of events not permitted to occur in the infinite suffix. In the case where 
we seek any infinite trace, no requirement inequalities are added. 

We connect the finite and perpetual interval systems using additional inequalities. Un- 
like the way intervals were connected in Section 4, the flow through an FSA does not 
pass from the finite interval to the perpetual interval through a connection variable; the 
flow through the finite interval can exit via a perpetual variable pj at any state j that is 
part of an SCC, and then a cyclic flow (with no beginning or end) is forced to occur 
in that SCC as part of the perpetual interval. To achieve this, we add a perpetual-force 
inequality Y']~keout(j)[x2,k] > pj for each state j in an SCC. We use the same subscript- 
ing for transition variables as in Section 4: interval 1 is the finite interval, interval 2 is 
the perpetual interval. This inequality requires that if the FSA containing state j starts 
repeating transitions perpetually at state j ,  then there 
state j in the perpetual interval. 

If the flow through an FSA in the finite interval exits 

must be a nonzero flow through 

via an accept variable rather than 
a perpetual variable, then no cyclic flows are forced to occur in that FSA. In fact, in this 
case we want to prevent such cyclic flows in the FSA. We could enforce this for an FSA 
N using the quadratic equation 

= 0  

where states(N) is the set of states of FSA N and SCC(N) is the set of transitions of FSA 
N contained in an SCC (note that Y']~j~state~(N)[PJ] < 1). In practice, since quadratic 
programming is much harder than linear programming, we achieve the desired relation 
using a linear inequality by using a large upper bound U for the transition variables (i.e., 
xi,k <_ U). For each FSA N, we add a perpetual-bound inequality, 



VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 113 

where [SCC(N)[ is the size of set SCC(N). If the flow through the FSA in the finite 
interval exits via an accept variable (i.e., ~jestates(N)[PJ] = 0) then no flow is allowed 
in the FSA in the perpetual interval. If, however, the flow exits via a connection variable 
(i.e., ~jCstat~s(N)~Oj] = 1), then this inequality allows any amount of flow (less than 
U) through arcs in the FSA in the perpetual interval. 

The inequalities described are necessary conditions for the existence of a potentially 
infinite trace. The inequality system representing necessary conditions for the existence 
of a potentially infinite trace of the example of Figure 1 is shown in Figure 6. We may 
test for the possibility that 3//2 becomes permanently blocked by adding the equation 
Xl ,  4 : 1. The resulting inequality system has a solution corresponding to an infinite 
trace in which transition 4 is taken once and transitions 1 and 5 are taken perpetually 
(x2,1 = x2,5 = 1). This proves that the b communication need not eventually occur. 
Most systems would enforce some type of fairness in the selection of a communication 
partner that would prevent this behavior. We can enforce certain types of fairness using 
additional inequalities that might, for example, forbid the starvation of an FSA waiting 
for a communication if that communication is enabled infinitely often, which we can tell 
from the presence of certain events in the perpetual interval. In the example of Figure 1, 
the inequality UXl, 4 -}- X2, 5 ~ U would prevent M2 from becoming blocked waiting 
for a communication with M3 on channel b if M3 is in state 5 infinitely often. Adding 
this inequality produces an inequality system with no integral solutions, proving that M2 
cannot become permanently blocked if M3 must engage in a communication on b that 
is infinitely often possible. The generation of fairness inequalities is discussed further in 
[11]. 

The algorithm to generate inequalities representing necessary conditions for the exis- 
tence of an infinite trace is shown in Figure 7. The correctness of these conditions is 
proved in [11]. The technique to find infinite traces can be combined with the technique 
of Section 4, allowing us to produce necessary conditions for the existence of an infinite 
trace generated by an w-star-less expression. To accomplish this, we make the last inter- 
val of each sequence a perpetual interval and connect it to the preceding interval just as 
the perpetual interval was connected to the finite interval above. We add accept variables 
to the last finite interval, allowing the FSAs to terminate rather than run forever. As a 
result, the conditions we produce are also necessary for the existence of a finite trace 
generated by the finite part of the w-star-less expression (obtained by removing the Ti 
sets). The size of the inequality system generated by this technique is linear in the size 
of the automata and linear in the size of the w-star-less expression. 

6. Experiments 

The technique for verifying properties expressible with w-star-less expressions has been 
implemented in the Inequality Necessary Condition Analyzer (INCA), a descendant of 
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Flow (finite): (state) 
1 + Xl,1 = Xl,1 + Xl,2 + Pl ( l )  

xl,2 = f2 (2) 
1+Xl,3  = X l , 3 + x l , 4 + p 3  (3) 

xl ,4 = y ,  (4) 

1 + x l , 5  = x l , 5 + x 1 , 6 + x l , 9 + P 5  (5) 
Xl,6 ~- xl,7 ~-- Xl,7 + Xl,8 -}-p6 (6) 

zl ,9  = z1,1o (7) 
x1,8 + z1,1o = Ys (s)  

Synchronization (finite): (channel) 
x~,l = xl ,5 (a) 
x1,3 = xl,6 + x l , 7  (b) 

Hang (finite): (channel) 
Xl,2 71- Xl,9 < 1 (a) 

Zl,4 + z l , s  + x l ; l o  _< 1 (b) 
Flow (perpetual): (state) 

x2,1 = x2,1 (1) 
Z2,3 ~-- X2,3 (3) 
z2,s = z~,5 (5) 
x2,r = x2,7 (6) 

Synchronization (perpetual): (channel) 
x2,1 = x~,~ (a) 
z2,3 = z~,7 (b) 

Perpetual-force: (state) 
x2,1 > Pl (1) 
x2,3 ~ P3 (3) 
x2,5 > P5 (5) 
X2,7 >__ P6 (6) 

Perpetual-bound: (FSA) 
x~,~ <_ Um (1) 

X2,3 ~ Up3 (2) 
�9 2,~ + x2,7 < 2u (p5  + p~) (3) 

Figure 6. Inequality System for a Potentially Infinite Trace 
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Input: A set M of FSAs 
Output: A set of inequalities 

For each transition k in an FSA of M: 
Create transition variable Xl,k 
If k is in an SCC then 

Create transition variable x2,k 
For each state j in an SCC of an FSA of M: 

Create perpetual variable pj 
For each accepting state j of an FSA of M: 

Create accept variable f j  
For each interval i = 1, 2: 

For each state j of an FSA of M: 
Generate flow equation: 

kC in(j ) kC out (j ) 
For each channel c: 

For each interval i = 1, 2: 
Generate synchronization equation: 

E xi,k= E xi,k 
kC call( c ) k e accept ( e ) 

Generate restriction inequality: ~ xl,k + 
kEhang_c(c) 

For each state j in an SCC of an FSA of M: 

Generate perpetual-force inequality: E [x2,k] _> pj 
kEout(j)  

For each FSA Mi in M: 
Generate perpetual-bound inequality: 

k e S C C ( M i )  j e s t  (Mi) 

xl,k _< 1 
kChang_a(c) 

Figure 7. Algorithm for Potentially Infinite Trace 
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ha ~ pa h b X ~ p b  

Customer a Customer b Router Guard 

Figure 8. Packet Router Example 

the constrained expression toolset [3]. A series of experiments has demonstrated the 
feasibility of the technique for verifying different kinds of properties on several examples 
of concurrent systems. This section describes some of these experiments. All times 
reported are in seconds on a DECstation 5000. 

The first experiment we describe is very small and is presented as a demonstration 
of how an analysis proceeds. The concurrent system shown in Figure 8 contains two 
customer FSAs (a and b), one router FSA, and one guard FSA. We use the more compact 
symbols >c, <c  as the hang symbols for channel c. Customer a (respectively, b) repeats 
the following forever: communicate with the guard on channel ra (rb) to gain exclusive 
access to the router, send the header of a packet to the router on channel ha (hb), send 
the packet to the router on channel pa (pb), and free the router by communicating with 
the guard on channel fa  (fb). The guard guarantees that the router is used in a mutually 
exclusive fashion. The router simply accepts any packet or header at any time. Present 
but not shown are restriction languages, like those in the example of Figure 1, that forbid 
both hang symbols for a channel from occurring in the same trace. 

First we verified the safety property that the router cannot send a header for one 
customer followed immediately by a packet from the other. This can be expressed in 
linear temporal logic as [3[(ha --~ ~pbUpa) A (hb --* -~paUpb)]. Its negation can be 
expressed by the star-less expression 

E* ha (E - {pa})*pb U E* hb (E - {pb})*pa 

Starting with a specification of the concurrent system in an Ada-like design language 
and the above expression, the toolset produced an inequality system of 107 inequalities 
in 128 variables. Our integer programming package determined this inequality system 
has no integral solution in two seconds. Since the inequality system represents necessary 
conditions for the existence of a prefix of a trace generated by the expression, we may 
conclude that the safety property holds. 

The second property we attempted to verify was the liveness property that the first 
customer would transmit a header infinitely often. This property can be expressed in 
linear temporal logic as ~Oha and its negation by the w-star-less expression E* (E - 
{ha}) ~. The toolset produced an inequality system of 67 inequalities in 70 variables 
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and the integer programming package found a solution to this system in one second. 
Examination of the solution reveals that it does correspond to a possible trace of the 
concurrent system, one in which customer a becomes permanently blocked waiting to 
acquire the router while customer b repeatedly acquires it forever. Thus we have proved 
that the the liveness property does not hold by producing a trace violating the property. 
The problem is that no fairness is enforced when selecting a communication partner. 
When we instruct the toolset to produce two additional inequalities to enforce fairness in 
the guard's selection of a communication partner, as described in Section 5, the resulting 
inequality system was determined to have no integral solution in three seconds. This 
proves that the liveness property does hold, assuming an FSA cannot starve waiting for 
a communication that is infinitely often possible. 

In the absence of such fairness, it is possible to verify a weaker liveness property: once 
a customer (say a) has acquired access to the router, it must eventually get to transmit a 
packet. This can be expressed in linear temporal logic by the formula O(ra ~ ~ha)  and 
its negation by the w-star-less expression E* ra(E - {ha}) ~. The toolset produced an 
inequality system of 59 inequalities in 56 variables which was found to have no integral 
solution in one second, proving this weaker liveness property holds even in the absence 
of fairness. 

The second experiment we describe involves several versions of a mutual exclusion 
protocol based on the concept of coteries [12]. A coterie is a general mechanism for 
achieving mutually exclusive access to a resource in a distributed system. Each resource 
has a set of keys. A coterie is a set of subsets of the keys with the property that any 
two subsets have a non-null intersection. A customer wishing to use the resource must 
first acquire all of the keys in one of the coterie subsets. Since any two coterie subsets 
must share at least one key, only one customer may possess all of the keys in one of 
the coterie subsets at any given time. One simple type of coterie consists of all subsets 
possessing a majority of the keys. 

We considered four versions of a coterie mutual exclusion system containing one re- 
source, three guards, and either two or three customers. The customers must acquire a 
majority of the keys (i.e., two keys) to use the resource. Each guard holds one key and a 
customer communicates with a guard to request, acquire, and release its key. In the first 
two versions, there are three customers which each request two specific keys, waiting 
until these keys are granted before using the resource; in the second two versions, there 
are two customers which cyclically request each of the three keys until they have been 
granted a total of two keys. In the second and fourth versions, the guards are extended 
to enforce fairness in granting the requests: In the second version, the guards queue 
requests for the keys; in the fourth version, a guard will not grant a key to the customer 
that last held it if the other customer has since requested the key. 

Two properties of mutual exclusion protocols are commonly verified. First, the protocol 
must enforce the mutual exclusion. Second, the protocol should be "fair"' in some 
Sense--a customer wishing to use the resource should eventually be permitted to do so. 
The first property is a safety property; the second is (usually) a liveness property. We 
attempted to verify four properties: freedom from deadlock, mutual exclusion, freedom 
from starvation (this is the fairness property mentioned above), and a queuing property 
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for the second version (essentially a strong kind of fairness that is actually a safety 
property). The performance of the automated tools on these examples is shown in 
Table 2. It lists, for each example and property: the result of the experiment, the time 
to generate the inequality system from an Ada-like specification, the time to solve the 
system, the total time, and the size of the inequality system generated. We also analyzed 
incorrect versions of the systems to show that the necessary conditions generated are 
useful for finding errors when they are present; incorrect versions have an "(i)" after the 
version number. The suffix "-fair" on the starve properties in the first version indicate 
that fairness inequalities were generated to enforce fairness in selecting communication 
partners. 

There are four possible results of an experiment: "verified" indicates that the ILP pack- 
age determined that the inequality system generated had no integral solutions, proving 
the property holds; "disproved" indicates that the ILP package found a solution that cor- 
responds to a trace violating the property, thus proving that the property does not hold; 
"ILP fails" indicates that the ILP package could not determine (within a preset bound on 
the number of branch and bound iterations) whether or not the inequality system has an 
integral solution; "spurious" indicates that an integral solution to the inequality system 
was found but this solution did not correspond to a trace of the system. In the last two 
cases, the analysis is inconclusive. Each of these cases happened once in this set of 
experiments. Each time, however, we were able to simplify the property by breaking it 
down into cases and verify each case (the suffix "-1" idicates that the property is one 
case of the full property). 

In summary, the modified toolset was able to give a definitive answer for all the 
properties we attempted to verify. Although these systems do not have a large number of 
processes, the processes themselves are fairly complicated (some having over 200 states 
in their FSA representation) and together the system they comprise is complex enough 
to possess a variety of interesting properties. As Table 2 shows, the average analysis 
time to verify or disprove a property of these systems, starting from an Ada-like source 
and an w-star-less expression, was about five minutes. These experiments are described 
in great detail in [11]. 

The last experiment described here involves a version of the dining philosophers system 
where the standard deadlock is prevented by having the philosophers pass around a "dic- 
tionary"; the philosopher holding the dictionary cannot hold any forks. Each philosopher 
nondeterministically decides whether to read or eat. If she decides to read, she waits for 
the philosopher to her right to pass her the dictionary, reads it, then waits for the philoso- 
pher to her left to accept the dictionary. If she decides to eat, she picks up her left fork, 
then her right fork, eats, and puts down her forks. This activity is repeated forever. Each 
philosopher and fork is modeled with a process. The philosopher processes synchronize 
with each other to pass the dictionary and synchronize with the fork processes to pick up 
and put down the forks. In this example, we verify the same properties on several sizes 
of the system to get an idea of how the techniques perform as the size of the system is 
scaled up. 

We attempted to verify several properties for each size of the system: 
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Table 2. Toolset Performance on Coterie Mutual Exclusion 

Version 
1 
1 (i) 
1 
1 
1 
1 (i) 
2 
2 (i) 
2 
2 (i) 
3 
3 
3 (i) 
3 
4 
4 (i) 
4 
4 
4 (i) 
4 

Property Result 
mutex verified 
mutex  disproved 
deadlock verified 
starve disproved 
starve-fair verified 
starve-fair disproved 
mutex verified 
mutex  disproved 
queue verified 
queue  disproved 
mutex ILP fails 
mutex- 1 verified 
mutex  disproved 
starve disproved 
mutex- 1 verified 
mutex- 1 disproved 
starve spurious 
starve-1 verified 
starve-1 disproved 
deadlock verified 

Time 
Gen Solve Total 

73 258 331 
68 4 72 
51 1 52 
57 14 71 
57 19 76 
72 3 75 

364 1140 1504 
370 8 378 
254 2 256 
262 3 265 
329 2483  2812 
280 4 284 
327 36 363 
291 34 325 
360 7 367 
352 5 357 
381 74 455 
369 10 379 
352 25 377 
324 317 641 

Size 
Ineqs • Vats 

234 x 272 
220 x 254 
93 x 102 

154x150 
172x 150 
170x 147 
365x414 
356 x 405 
315x410 
319x419 
591 • 
381x537 
570x638 
467x511 
552 x 855 
449 x 668 
650 x 742 
549 x 598 
457x484 
231 x 334 

1. Philosopher 0 cannot become permanently blocked waiting to pick up her left fork. 
This property holds, even without the dictionary. 

2. Philosopher 0 cannot become permanently blocked waiting to pick up her right fork. 
Without  the dictionary, this property does not hold since all of the philosophers may 
become permanently blocked waiting to pick up their right forks. With the dictionary, 
however, the property holds, proving that the deadlock is prevented. 

3. Philosopher 0 cannot become permanently blocked waiting to get the dictionary. 

Since some philosopher between philosopher 0 and the philosopher currently holding 
the dictionary may never decide to read again, this property does not hold. 

4. Philosopher 0 cannot become permanently blocked waiting to pass the dictionary 
to the next philosopher. Since Philosopher 1 may never decide to read again, this 
property does not hold. 

The results of  these analyses are shown in Table 3. In the first two cases, the toolset 
determined correctly that the property holds. In the latter two cases, the toolset found a 
solution corresponding to an execution of  the system in which the property is violated. 

The last two properties do not hold because a philosopher may stop reading after 
some finite time. We therefore attempted to verify them under the assumption that each 
philosopher reads infinitely often. Results of  these analyses are shown in Table 4. In 
both cases, the toolset correctly determined that the properties hold under the fairness 
assumption. Note that though the size of the state space of this system is growing 
exponential ly in the number of philosophers, our analysis times appear to be growing 
much more slowly. 
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Table 3. Toolset Performance on Dining Philosophers 

Property Result 
left-fork 

right-fork 

get-dict 

dump-diet 

with Di~ionary 

Number 
of Phils 

20 
40 
60 
80 

100 
20 
40 
60 
80 

100 
20 
40 
60 
80 

100 
2O 
40 
60 
80 

I00 

verified 
verified 
verified 
verified 
verified 
verified 
verified 
verified 
verified 
verified 
disproved 
disproved 
disproved 
disproved 
disproved 
disproved 
disproved 
disproved 
disproved 
disproved 

Time 
Gen Solve Total 
214 14 228 
508 121 629 
800 176 976 

1305 276 1581 
1736 371 2107 
216 17 233 
481 44 525 
846 99 945 

1304 113 1417 
1756 179 1935 
210 152 362 
487 325 812 
828 488 1316 

1245 842 2087 
1692 1413 3105 
230 43 273 
467 133 600 
836 268 1104 

1245 436 1681 
1684 652 2336 

Size 
lneqs • Vars 
1035x994 
2075• 
3115x2994 
4155• 
5195x4994 
1036• 
2076• 
3116x2995 
4156• 
5196x4995 

958• 
1918x 1997 
2878x2997 
3838• 
4798x4997 

958• 
1918x1996 
2878• 
3838x3996 
4798• 

Table 4. Toolset Performance on Dining Philosophers with Dictionary When 
Philosophers Must Read Infinitely Often 

Number Time 
Phils Result Gen Solve I TotM Propeay of 

get-di~ 20 verified 215 22 237 
40 verified 500 55 555 
60 verified 870 144 1014 
80 verified 1350 244 1594 

100 verified 1894 390 2284 
dump-dict 20 verified 212 16 228 

40 verified 528 61 589 
60 verified 876 137 1013 
80 verified 1336 214 1550 

100 verified 1879 354 2233 

Size 
Ineqs x Vats 

983x 1024 
1963x2044 
2943x3064 
3923x4084 
4903x5104 

983x 1024 
1963x2044 
2943x3064 
3923x4084 
4903x5104 
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Finally, we mention that we also attempted to verify the last two properties under the 
weaker fairness assumption that a philosopher who does not become permanently blocked 
will choose to read infinitely often. The toolset determined that the properties hold. For 
the last property, the times were comparable to those reported in the table. In testing 
whether a philosopher could become blocked waiting to get the dictionary, however, 
we encountered numerical problems in solving the inequalities representing the dining 
philosophers systems with this fairness assumption. The times required to solve the 
system of inequalities were significantly larger in this case, and increased more rapidly 
with the number of philosophers. For instance, it took approximately 8000 seconds to 
solve the system with 60 philosophers and more than 7 hours to solve the system with 
100 philosophers. 

For comparison, we note that the BDD-based technique of [15] can verify similar prop- 
erties of these systems up to 48 philosophers, but was unable to handle a 64 philosopher 
system. 

7. Conclusion 

We have presented a technique for verifying many safety and liveness properties of 
concurrent systems. The technique involves generating linear inequalities that represent 
necessary conditions for the existence of a trace violating the property. The obvious 
advantage of the approach is that it does not require enumeration of the system's many 
states. The disadvantages are that spurious solutions to the inequality system can make 
the analysis inconclusive and the tractability of integer linear programming in practice is 
not well understood. Nevertheless, our experience [3] suggests that spurious solutions are 
relatively rare and that our inequality systems, being largely network flow systems, have 
a special structure that usually makes their solution tractable. Furthermore, a prototype 
implementation of the technique has been successfully applied to several sample systems, 
including systems with relatively few complex processes and systems with many simple 
processes. In essence, our technique sacrifices some generality for tractability. If our 
necessary conditions do not sufficiently restrict the order of interprocess interactions, 
there may be spurious solutions to our inequalities, making our analysis inconclusive. 
For many systems and properties, however, our necessary conditions are strong enough to 
yield appropriate orderings of interprocess interactions, and the method is both tractable 
and conclusive. 

The practical utility of our technique depends on the strength of its necessary conditions 
and the tractability of the integer programming problems it produces. Although it would 
be desirable to have a formal characterization of the class of systems for which our 
technique is practical, we believe that the best information about the practicality of our 
method will come from accumulating experience in applying it to a wide range of systems. 
The most important reason for this is that sufficient information about the tractability of 
the integer programming problems is not available. Although there has been some effort 
to develop special-purpose solvers for this particular type of problem, network flows 
with certain side constraints, we are not aware of any theoretical results that indicate 
precisely when such problems can be solved much more easily than the general integer 
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linear p rog ramming  problem.  Even  papers proposing new methods for solving such 

problems validate those methods by present ing empir ical  data on their per formance  on 

s tandard test problems (e.g., [1]). We therefore p lan  a major  project  invo lv ing  a thorough 

empir ical  evaluat ion of  our  technique,  inc luding  both its applicat ion to a large n u m b e r  

of  sample  concurrent  systems and compar ison with other techniques such as symbol ic  

model  checking.  
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Notes 

1. Not to be confused with a star-free regular expression, to be discussed below. We use the term star-less 
since the expressions specify patterns of the el,j events using only concatenation and union (allowing the 
intervening symbols specified by the Si,j). 
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