
Formal Methods in System Design, 6, 97-123 (1995)
�9 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Using Integer Programming to Verify General
Safety and Liveness Properties

JAMES C. CORBETT
University of Hawaii at Manoa

GEORGE S. AVRUNIN
University of Maxsachusetts at Amherst

corbett @hawali.edu

avrunin @ math.umass.edu

Abstract. Analysis of concurrent systems is plagued by the state explosion problem. We describe an analysis
technique that uses necessary conditions, in the form of linear inequalities, to verify certain properties of
concurrent systems, thus avoiding the enumeration of the potentially explosive number of reachable states of
the system. This technique has been shown to be capable of verifying simple safety properties, like freedom
from deadlock, that can be expressed in terms of the number of certain events occurring in a finite execution,
and has been successfully used to analyze a variety of concurrent software systems. In this paper, we extend
the technique to the verification of more complex safety properties that involve the order of events and to the
verification of liveness properties, which involve infinite executions.

Keywords: Concurrent systems, automated verification, integer programming, safety, liveness

1. Introduction

Many concurrent systems can be modeled as a set of communicating finite state machines.

In theory, this allows properties of such systems to be verified automatically by state
enumeration and model checking techniques. In practice, however, the analysis of these
systems is generally intractable since the number of system states grows exponential ly

with the number of state machines. This is commonly known as the state explosion

problem.

Many techniques have been proposed to cope with this problem. Symbolic model

checking techniques [6][15] use binary decision diagrams (BDDs) [5], a compact rep-
resentation for boolean functions, to represent the state space of a system symbolically.
BDDs can compactly represent certain kinds of regularity in the state space of a concur-
rent system and drastically improve the performance of model checking on these systems,
though in general the size of the BDDs can grow as fast as the number of states in the
system. These techniques have been applied to certain kinds of circuits, some standard
concurrency problems such as the dining philosophers, and recently to a cache coherence
protocol.

Partial order techniques [13][18][21] identify transitions that "commute" (have the
same effect if performed in either order) and use this information to reduce the number
of states explored by not differentiating equivalent interleavings of transitions. These
techniques excel at analyzing systems in which the state explosion results primari ly from
interleaving the actions of largely independent processes. For example, these techniques

98 CORBETT AND AVRUNIN

explore only O(n) states in a standard dining philosophers system of n philosophers.
In a slight variation of this system in which a "host" process is added to prevent the
deadlock, however, the number of states explored remains exponential in n.

Abstraction techniques [8] use homomorphisms that map the state space of the system
to a smaller, more abstract transition system sufficient for verifying a particular property.
The chief difficulty with these techniques is in finding a good abstraction, i.e., one that
preserves just enough of the details of the system to verify a particular property. Although
not completely automatic, these techniques have been applied to systems having over
1013~176 states.

Compositional approaches [7] [20] [23], usually based on a process algebra [4] [14] [17],
reduce the complexity of the analysis by composing the components of a concurrent
system in stages and hiding internal details of the composed entity after each stage. These
techniques are best applied to well-structured systems with simple interfaces between the
subsystems. Automated tools for performing these analysis [10][22] have been used to
verify a range of concurrent systems from simple network protocols such as the alternating
bit protocol to standard concurrency problems such as the dining philosophers and the
self-service gas station.

The inequality necessary condition method [2][3] avoids the enumeration of a system's
states altogether. Given a concurrent system and a property to be verified, this method
generates a system of linear inequalities that represents necessary conditions for the
existence of an execution of the concurrent system violating the property. The inequalities
express constraints on the number of times certain events can occur in relation to other
events. The consistency of these necessary conditions is then checked using integer linear
programming (ILP) methods. If the inequality system has no integral solutions, then the
necessary conditions for the violation of the property cannot be satisfied, proving that
the concurrent system has the property. This method has been automated and applied
to some concurrent systems having as many as 1047 reachable states [3]. Unfortunately,
the types of properties that can be verified by this method are somewhat limited. For
example, it can verify that a system is free from deadlock, but it cannot verify liveness
properties, which involve reasoning about infinite executions, nor can it directly verify
properties like mutual exclusion, which involve the relative order of the events in an
execution, rather than just the number of occurrences of these events.

In this paper, we extend the inequality necessary condition method to handle both infi-
nite executions and properties involving the relative order of events. A further extension
of these ideas in [11] enables the technique to verify properties expressible in linear time
temporal logic, thus allowing a very general class of questions about a system to be
answered while avoiding the construction of an exponentially-sized state graph. In the
next section, we describe the model on which the method is based and outline the basic
inequality necessary condition technique. The third section discusses the expressiveness
of our extended analysis technique, and the fourth and fifth describe it in detail. We then
report on some preliminary experiments demonstrating the feasibility of the technique
and present some conclusions.

VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 99

2. Model and Basic Technique

We model a concurrent system as a collection of coupled finite state automata (FSAs)
with additional restrictions expressed as a set of recursive languages on the alphabets of
the FSAs. The acceptance of a symbol by an automaton represents the occurrence of an
event in the concurrent system. An event may represent a normal action of a component,
such as initiating a communication with another component, or an error, such as waiting
forever for a communication that never takes place. An execution of the concurrent
program is thus modeled by a string of event symbols.

Formally, we regard a concurrent system as a triple (M, R, T) where M is a set of FSAs
MI~. . . , Mn with alphabets ~1, . . . , ~n, ~ = Ui ~i, R is a set of recursive restriction
languages R 1 , . . . , Rm with alphabets A 1 , . . . , Am, Ai c_ P~ for all /, and T C N is
a terminal alphabet. Let pA(S) denote the projection of string s onto alphabet A (i.e.,
symbols of s not in A are removed). Then a string t C T* represents a legal behavior
or trace of the concurrent system if there exists a string s E N* with pT(S) = t where
pr.~ (s) C L(M~) for all i and PA~ (8) E Rj for all j .

This model is general enough to represent many common communication mechanisms,
including asynchronous message passing [2], but in this paper we will focus on the
case where pairs of processes communicate synchronously over named channels that
connect them. On each channel, one process acts as the caller while the other acts as
the acceptor. We model such a communication using the channel name as an event
symbol that appears in the alphabets of the FSAs of both processes. (We can also
model the transmission of data across a channel by encoding the data into this symbol,
but for simplicity, here we restrict communication to synchronization). The event that
the process becomes permanently blocked waiting for communication over a channel is
represented by the acceptance of a hang symbol for that channel. The hang symbols for
channel e in the caller and acceptor processes are denoted h_c(e) and h_a(e) respectively.
Since the two processes communicating over a particular channel cannot both become
permanently blocked waiting for the other one to be ready to communicate, strings in
which both h_c(e) and h_a(e) occur cannot correspond to executions of the concurrent
system. The restriction language {h_c(e), h_a(e), A} excludes these strings. Figure 1
gives the specification for a small concurrent system in an Ada-like design language
and shows the FSAs we would use to model that system. Note that the value of the
variable turn has been encoded into the state of M3. Also, in states that can engage in
communication over multiple channels (e.g., state 5), there must be the option to accept
a sequence of hang symbols: one for each channel. In all our examples, we shall take
the set of event symbols appearing in an FSA or restriction language as its alphabet and
not specify the alphabets separately.

The basic technique, detailed in [2], uses necessary conditions, in the form of linear
inequalities, to either help find a trace with certain properties or prove that no such trace
could exist. Every trace determines a path in each FSA from the starting state to an
accepting state, representing the activities engaged in by the process corresponding to
that FSA. The fact that the paths come from a trace implies that they satisfy certain
conditions involving the interaction between processes and the constraints imposed by

100 CORBETT AND AVRUNIN

task body one is

begin

loop
three.A;

end loop;
end one;

task body two is

begin
loop

three.B;

end loop;
end two;

task body three is
turn : (one,two) := one;

begin

loop
select

when (turn = one) =>

accept A;

or
accept B;

turn := two;
end select;

end loop;
end three;

M 1

v , v ~ aO~)

M 3 , ~ , . -

R1 = {h_c(a), h_a(a), A)

R2 = {h_c(b), h_a(b), A)

Figure 1. Small Example

VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 101

the restriction languages. Our technique finds flows in each FSA that meet weaker
conditions. Specifically, it requires that, for each communication channel, the FSAs
connected by that channel agree on the number of times that they communicated over
that channel and that inequalities representing some aspects of the various restriction
languages be satisfied.

To produce the inequalities, we assign a variable, xi, called a transition variable, to
each transition i that represents the number of times transition i is taken. We also assign
an accept variable, fi, to each accepting state i that will be one if the FSA containing
state i is in that state at the end of the trace; otherwise it will be zero. First, we produce a
flow equation for each state, equating the flow into the state with the flow out of the state
(i.e., the number of times the state is entered equals the number of times it is exited).
There is an implicit flow of one into the start state and accept variables are counted
as flow out. We then produce a communication equation for each channel, equating the
number of times the processes connected by the channel communicated over that channel.
We also produce restriction inequalities to enforce the restriction languages which, in
this case, simply forbid more than one hang symbol for each channel from occurring.

The system of inequalities generated thus far represents necessary conditions that will
be satisfied by every trace of an execution of the concurrent system. To verify a particular
property of the system, we add inequalities that represent the negation of that property.
For example, to verify that the caller of channel e cannot become permanently blocked
waiting for a communication on channel e, we would add the inequality Ih_c(e)] > 1,
where I h-c(e)l is the number of occurrences of event h_c(e) in the trace (which is given
by the sum of certain transition variables). Properties that can be verified are limited to
those whose negations can be expressed by linear inequalities involving the numbers of
occurrences of particular events.

The algorithm to generate the inequalities described above is shown in Figure 2. The
abbreviations used in this and the other algorithms in this paper are summarized in
Table 1. The notation [expr]cona indicates that the expression expr should be added to
the inequality only if the condition cond is true, and otherwise zero should be added.
The existence of every variable appearing in expr is always implicitly conjoined to
this condition, which defaults to true if not specified. The inequalities generated by the
algorithm for the example of Figure 1 are shown in Figure 3. Here, we have not specified
a property to be verified; the inequality system shown represents necessary conditions
for the existence of any (finite) trace.

These inequalities represent necessary conditions for an assignment of values to the
transition variables to correspond to a trace. Clearly every set of paths corresponding to
a trace will yield flows through the FSAs satisfying the communication and restriction
inequalities, so these inequalities represent necessary conditions satisfied by every trace.
The conditions are not sufficient, however, since not every set of flows satisfying the
inequalities need correspond to a trace. There are several reasons for this. First, the
communication equations do not guarantee that there is a consistent ordering of the
communication events (e.g., one FSA could synchronously communicate with another
over channel c and then channel d, while the other communicated over channel d and
then channel c). Secondly, the presence of cycles in the FSAs can allow cyclic flows that

102 CORBETT AND AVRUNIN

Table 1. Abbreviations used in Algorithms

accept(c)
alphabet(M)
call(c)
fsa(O
han g_a(c)
han g_c(c)
in(j)
label(k)
out(j)
occur(e)
SCC(M)
start(j)
states(M)
trans(M)

transitions representing accept on channel c
alphabet of FSA M
transitions representing call on channel c
FSA containing state/transition i
transitions in acceptor representing blockage on channel c
transitions in caller representing blockage on channel e
transitions into state j
event symbol labeling transition k
transitions out of state j
transitions labeled with event e in any one FSA containing e
transitions in any strongly connected component of FSA M
true if state j is a start state of an FSA, else false
states of FSA M
transitions of FSA M

Input:

Output:

A set M o f F S A s

A property P to be verif ied

A set o f inequal i t ies

Fo r each transit ion k of an F S A of M :

Create transit ion var iable Xk

For each accept ing state j o f an F S A of M :

Create accept var iable f j
For each state j o f an F S A of M :

Genera te f low equat ion: [1]startG) +

For each channel c:

Genera te synchroniza t ion equat ion:

Genera te restr ict ion inequali ty:

= Z Xk + [Yj]
kein(j) kEout(j)

Xk ~-- ~ Xk
kCcall(c) k@accept(c)

~_~ Xk + ~ Xk <_ 1
kEhang_c(c) kChang_a(c)

Genera te addit ional inequal i t ies speci fy ing the v io la t ion of P

Figure 2. Basic Algorithm

V E R I F Y I N G G E N E R A L S A F E T Y AND LIVENESS P R O P E R T I E S 103

Flow: (state)
1 ~- Xl = Xl "3 I- X2 (1)

~ = f~ (2)
1 + x 3 = x~+x4 (3)

x4 = f4 (4)
l + x 5 = x 5 + x 6 + x a (5)

x 6 + x 7 = xT+x8 (6)
z9 = ZlO (7)

xs + xlo = fs (8)
Communication: (channel)

x~ = z r + z 7 (b)

Restriction: (number)
X2 ~-X9 ~_~ 1 (1)

x 4 + x s + x l o _< 1 (2)

Figure 3. Inequality System for Basic Technique

are not connected to the path found within the FSA. For example, there can be a cyclic
flow on arc 7 in Ma of Figure 1 even if the flow from the start state passes through
arcs 9 and 10; the flow equation for state 6 does not constrain the transition variable
for arc 7. Finally, the restriction languages, in general, may not be simple enough to
capture with linear inequalities. In such a case, we could enforce only certain aspects
of the restriction language. For example, we might add the equation lal = Ibr for the
restriction language generated by (ab)*, but this equation does not enforce the alternation
of a and b. For these reasons, a solution to the inequality system may not correspond to
a trace of the concurrent system. If such a solution arises, the analysis is inconclusive
since the presence of that solution implies nothing about the existence of another solution
that does correspond to a trace. In our experience [3], however, such spurious solutions
are uncommon. Also, we can sometimes add additional inequalities to remove such
solutions.

As shown in [2], the formalism and analysis technique can also be applied to systems
that use an asynchronous communication mechanism. For such systems, the communi-
cation and restriction inequalities would be different. For example, the communication
inequalities would require that the number of messages received along each channel
not exceed the number of messages sent along that channel. A description of how the
analysis technique and the extensions we present here can be adjusted for use with such
systems is given in [11].

104 C O R B E T T A N D A V R U N I N

3. Expressiveness

In this paper, we extend the basic technique presented in the last section to the verification
of properties whose negations can be specified by co-star-less I expressions, which are
w-regular expressions [19] of the form:

0 S~:lei,lSit2ei,2"'" S~,n'ei'n~: n'+lT~
i = 1

where Si,j C_ ~, ei,j E E, Ti C_ ~. Specifically, given an co-star-less expression, the
extended technique produces necessary conditions for the existence of a trace lying in the
language of infinite strings generated by the expression. This extended technique relies
on two key ideas. The first idea allows the technique to test for properties in which
events occur in a specific order and is described in Section 4. The second idea allows
the technique to deal with infinite traces and is described in Section 5. In this section,
we discuss the power of the technique and some related techniques from [11] in relation
to model checking. We then sketch how an analysis with our technique proceeds.

Model checking techniques can determine whether a system satisfies a formula of tem-
poral logic. It is well known that such first order logics are equivalent in expressive
power to star-free regular expressions [19], which allow concatenation, union, and nega-
tion, but not Kleene star. If we define star-less expressions as regular expressions of the
form:

0 s&,e,,,,s&,+l
i = 1

then we see that star-less expressions are star-free (A* for any A c_ E is star-free--
e.g., ~* = ~). Unfortunately, there exist languages that can be defined with star-free
expressions that cannot be defined with star-less expressions. This follows from the
strictness of the dot-depth hierarchy of star-free expressions and the observation that
star-less expressions have bounded dot-depth. For the infinite case, first order logics are
equivalent in expressibility to co-regular expressions of the form:

m

U
where Ai, Bi are star-free expressions. Again, there exist languages definable with such
expressions that are not definable using w-star-less expressions (e.g., (ab)~~ Thus w-star-
less expressions are strictly less expressible than temporal logic. In practice, we have not
yet encountered any commonly verified concurrency properties that are not expressible
with co-star-less expressions, though our experience with the technique is limited.

Two extensions of our technique are presented in [11]. The first allows arbitrary in-
equalities over the number of occurrences of certain events to be added to the inequality
system generated for the analysis of an co-star-less expression. These inequalities restrict
attention to traces lying in the language of the co-star-less expression and satisfying the

VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES] 0 5

constraints expressed by the inequalities (e.g., the number of a events equals the number
of b events). With such inequalities, it is easy to define languages that cannot be defined
with star-free expressions (e.g., strings with an even number of a events). On the other
hand, the depth-1 Dyck language cannot be expressed with star-less expressions and
inequalities, so the class of star-free languages and the class of languages that can be
expressed with star-less expressions and inequalities are not comparable. The implemen-
tation of our technique for co-star-less expressions allows these additional inequalities to
be added and we have used them in several experiments, usually to reduce the size of
the co-star-less expression required.

The second extension described in [11] allows the verification of properties specified by
a BiJchi automaton. Since Biichi automata are more expressive than first order logic [19],
this implies that the technique can be used for any property expressible in linear temporal
logic. This extension relies on the same two ideas as the technique for w-star-less
expressions. We do not describe it here, however, because, unlike the technique for co-
star-less expressions, it has not yet been implemented and tried on sample systems; hence
the quality of the necessary conditions it produces, and thus its practical significance, is
not known.

Given a concurrent system and a property whose negation is expressible as an co-star-
less expression, we can apply the extended techniques presented here as follows. We
produce necessary conditions, in the form of linear inequalities, for the existence of a
trace of the concurrent system that is also generated by the w-star-less expression. If
these conditions are unsatisfiable (i.e., the inequality system has no integral solution),
then there are no traces of the system violating the property, so the property must hold. If
the conditions are satisfiable (i.e., the inequality system does have an integral solution),
then the property may or may not hold. I f the necessary conditions are strong, however,
the property will usually not hold when the conditions are satisfiable. Our experience is
that our necessary conditions are strong. Furthermore, if the property does not hold, a
solution satisfying our necessary conditions can often be used to find a trace violating
the property.

4. Queries Involving Order

In this section, we describe a technique for verifying more complex safety properties in
which the order of the events involved is significant. Since a violation of a safety property
can be shown by a prefix of a trace, we may use regular expressions to generate these
prefixes and postpone dealing with infinite traces until we address liveness properties in
Section 5. Here, we present a technique for verifying safety properties whose violations
are expressible with star-less expressions.

The basic technique presented in Section 2 can easily find traces in which certain
event symbols occur a specified number of times, but it cannot find traces in which these
symbols occur in a specific order. For example, to find a trace with one a event and one
b event in the system of Figure 1, we would add xl = 1 and :Ca = 1 to the inequality
system in Figure 3. There does not appear to be any way, however, to add equations that
require the events to occur in a specific order. This is a serious limitation since many

106 CORBETT AND AVRUNIN

safety properties (e.g., mutual exclusion) constrain only the order of events and not their
number. To produce necessary conditions for a trace containing a specific sequence
of events, we use those events to divide the trace into segments we call intervals, we
produce an inequality system for each interval, and then we connect these inequality
systems together. For brevity, we will use the term "interval" to refer to the segment of a
trace, to the inequality system representing necessary conditions for the existence of this
segment, as well as to solutions to this inequality system interpreted as flows through
the FSAs (e.g., we might speak of "flows through interval i" rather than "flows through
the FSAs represented by the solution to the inequality system generated for interval i").

We explain the technique using the example of Figure 1 and then present the algorithm.
Suppose we want to verify that there are no a events after any b event. The negation of
this property can be expressed by the star-less expression E * b (E - { a , b})*a. We produce
necessary conditions for the existence of a prefix of a trace containing a b followed by
an a, as generated by this expression. We divide the prefix into two intervals. The
first interval is from the initial state of the system to the state of the system after the
b event (generated by E 'b) . The second interval is from the state of the system after
the b event to the state of the system after the a event (generated by (E - {a, b})*a).
For each interval, we produce an inequality system similar to the one generated by the
basic algorithm, but with the following differences. We want the inequality system for
the first interval to find flows ending after a b event rather than at accepting states. To
achieve this, we assign to each state j having an incoming b transition a connection
variable cl,j that will be one if the FSA containing state j is in state j at the end of the
first interval, and will be zero otherwise. In FSAs not containing b events, we assign
connection variables to all states. Note that requiring the interval to end in an FSA at a
state with an incoming b transition does not guarantee that a b event occurred in that FSA
during the interval. Therefore, we add a requirement inequality stating that at least one
b event occurs. Since we are seeking only a prefix of a trace, we do not assign accept
variables. If the connection variables are counted as flow out in the flow equations, as
accept variables are treated in the basic technique, then the resulting inequality system
will find a flow in each FSA from a starting state to a state in which the FSA could be
immediately after a b event. Furthermore, in FSAs with b events, the flow must pass
through at least one such event.

The inequality system for the second interval must find a flow in each FSA from the
state the FSA was in at the end of the first interval to a state in which the FSA could
be after an a event. To each state j in which an FSA could be following an a event,
we assign a connection variable, c2,j, that will be one if the FSA is in that state at the
end of the second interval, and will be zero otherwise. In this interval, there can be no
b events and only one a event (at the end), so we produce requirement equations setting
the number of occurrences of a to one and the number of occurrences of b to zero. We
then count the connection variables from the first interval as flow in, rather than having
an implicit flow in of one at the start states, and count the connection variables from the
second interval as flow out. Finally, the restriction inequalities are produced as before
and involve the number of hang symbols from both intervals.

VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 107

Flow (interval 1): (state)

1 -~- Xl,1 = Xl,1 q- Xl,2 -Jr C1,1 (1)
z l ,~ = cl,2 (2)

1 + zl,3 = xl,3 + xl,4 + cl,3 (3)
xl,4 = 0 (4)

1 + xl ,5 = xl,~ + xl ,6 + xl ,9 (5)
xl,6 + xl,7 = zl,7 + x~,s + cl,6 (6)

xl,9 = xz,lo (7)
xl,s +x1,1o = 0 (8)

Communicat ion (interval 1): (channel)
271,~ = ~ , ~ (a)

271,3 : Xl,6 -~- Xl,7 (b)

Requirement (interval 1): (symbol)
xl,3 >_ 1 (b)

Flow (interval 2): (state)
c1,1 + x2,1 -- x2,1 + x2,2 + c2,1 (1)
cl,2 +x2,2 = 0 (2)
cl,3 + x2,3 = x~,3 + z2,4 + c2,3 (3)

X2, 4 : C2, 4 (4)
x2,5 = x2,5 + x2,6 + x2,9 + c:,5 (5)

Cl,6 + x2,6 + x~,r = x2,r + x2,8 (6)
z~,9 = z2,1o (7)

x2,s +x2,1o = 0 (8)

Communicat ion (interval 2): (channel)
�9 ~,1 = x~,~ (a)

x2,3 = x2,6 + z2,7 (b)

Requirement (interval 2): (symbol)
z~ , l = 1 (a)

x2,3 = 0 (b)

Restriction: (number)
Xl,2 -~- xl,9 -}- x2,2 -~- x2,9 < 1 (1)

Xl,4 + Xl,8 + Xl,10 + X2,4
+X2,s +X2,10 __< 1 (2)

Figure 4. Inequality System for Prefix of Trace Generated by E*b(E - {a,b})*a

108 CORBETT AND AVRUNIN

The inequality system produced for the system in Figure 1 given the expression
E*b(E - {a, b})*a is shown in Figure 4. The transition variable for transition j of
interval i is denoted xi,j. The whole system finds a flow in each FSA starting at the
start state, proceeding through the first interval to a state with a connection variable for
b, and then continuing through the second interval to a state with a connection variable
for a.

Note that this inequality system, which represents necessary conditions for the existence
of a prefix of a trace generated by E*b(E - {a, b})*a, has no integral solution. This
proves that no trace containing a b followed by an e exists. For this trivial example,
an appropriate kind of intersection between M3 and the automaton for ba could have
shown this; however, the above technique can be applied even if the events a and b are
in different FSAs, as shown by the first example in Section 6.

We now present the algorithm for generating inequalities representing necessary con-
ditions for the existence of a prefix of a trace generated by a star-less expression. We
first present the algorithm for generating such conditions for one disjunct of a star-less
expression, which we call a sequence, and then describe how the conditions for several
sequences can be combined to represent necessary conditions for the existence of a prefix
of a trace generated by any one of the sequences. A sequence of a star-less expression
is a regular expression of the form:

S~elS~e2... SnenSn+ 1

The algorithm to generate necessary conditions for the existence of a prefix of a trace
generated by a sequence is shown in Figure 5. If Sn+l = E, we may omit the last
interval (iteration i = n + 1), as we did in the example above. The correctness of these
conditions is proved in [11].

Given a set of sequences, we derive necessary conditions for the existence of a trace
generated by their disjunction as follows. We assign a sequence variable, si, to each
sequence and generate an equation summing the sequence variables to one. We generate
an inequality system, which we call a sequence system, for each sequence. A sequence
system is similar to the inequality system generated for a sequence, as described above,
with the following exceptions:

�9 In the sequence system for sequence i, the implicit flow into the start states in the
first interval is si rather than one.

�9 In the sequence system for sequence i, the requirement equations that require a
symbol occur exactly (or at least) once are changed to require the occurrence of that
symbol exactly (or at least) si times.

If the sequence variable for a sequence system is set to one, it is the same as the inequality
system that would be generated for the sequence standing alone. If the sequence variable
for a sequence system is set to zero, it will always have the trivial solution where all the
variables are zero. By this construction, it is clear that there exists an integral solution
to the inequality system for the disjunction if and only if there exists an integral solution
to at least one of the inequality systems generated for the sequences. Thus the resulting

VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 109

Input:

Output:

A set M of FSAs
A sequence: S ~ e l S ~ e 2 . . . SnenS~+l
A set of inequalities

For each interval i = 1 , . . . , n § 1:
For each transition k of an FSA of M :

Create transition variable xi,k
For each state j of an FSA of M:

If i = n + 1 or ei r aIphabet(fsa(j)) or 3k c in(j) (label(k) = e 0 then
Create connection variable ci,j

For each interval i = 1 , . . . , n + 1:
For each state j of an FSA of M:

Generate flow equation:

[1]i=lAstart(j) q-[Ci--l,j] § E Xi,k =
kei~(j)

For each channel c:

Generate synchronization equation:

For each e in E:
If e r Si then

Generate requirement equation:

Else

Generate requirement equation:

For each channel c:
Generate restriction inequality:

keout(j)

E Xi'k ~ E Xi'k
kCcatt(c) kCaccept(c)

Xi,k =- [J]ir
k~ occur(e)

zi,k _> [1]i~,~+l^e=,,
kE occur(e)

i----1 kEh c(c) kChang_a(c)

Figure 5. Algorithm for Sequence

110 CORBETT AND AVRUNIN

inequality system represents necessary conditions for the existence of a prefix of a trace
generated by the disjunction of the sequences.

The size of the inequality system for the disjunction is equal to the sum of the sizes of
the inequality systems for the sequences, plus one additional variable per sequence, plus
one additional equation (summing the sequence variables to one). An optimization de-
scribed in [11] can significantly reduce the size o f the inequality system for a disjunction
by having different sequences share the same transition variables.

We have described how to generate necessary conditions for the existence of a prefix
of a trace generated by a star-less expression. In the next section, we describe how to
generate necessary conditions for the existence of an infinite suffix of a trace and how
to combine these two kinds of conditions to form necessary conditions for the existence
of a potentially infinite trace generated by an w-star-less expression.

5. Infinite Traces

In this section, we address the verification of liveness properties. Note that the basic
technique presented in Section 2 does not admit infinite traces, i.e., traces in which
one or more FSAs continue engaging in actions forever. For example, the inequality
system in Figure 3 has no integral solution since all of the traces of the concurrent
system are infinite (there is no way for all of the FSAs to reach accepting states without
violating the restrictions). This limitation is serious since the violation of a liveness
property must be shown by a complete trace, which may be infinite. Therefore, to
verify liveness properties, we must extend the formalism to represent infinite traces and
extend the analysis technique to generate necessary conditions for the existence of infinite
traces. We may then use the inconsistency of these conditions as proof that no infinite
trace exists that violates a particular liveness property, just as the inconsistency of the
conditions generated by the basic technique was used to prove that no finite trace exists
that violates a particular safety property.

We first extend the model of Section 2 to allow infinite traces and then describe
how to generate necessary conditions for the existence of these traces. The model of
Section 2 represents an execution of a concurrent system with a finite string. To represent
infinite executions, we use infinite strings of event symbols and make two changes to
our representation of a system. First, the processes of the system are modeled by BiJchi
automata [19] rather than FSAs. A Biichi automaton is the infinite analog of an FSA,
accepting languages of infinite strings rather than finite strings. The only difference is
the condition for acceptance. In an FSA, a computation must end in an accepting state
for the string to be accepted. A Biichi automaton accepts an infinite string if and only
if the infinite computation on that string enters at least one of the accepting states of
the automaton infinitely often. B/ichi automata accept w-regular languages, the infinite
analog of regular languages. The Biichi automaton, M~o, used to model a process looks
exactly like the FSA, M, used before except that:

�9 All states in M~o are accepting. This admits any infinite path through the automaton
as a legal trace of the process.

VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 111

To each state of M~ that was accepting in M, we add a self-loop (i.e., a transition
from the state to itself) on a stopped symbol, denoted SM, unique to the automaton.
This allows legal finite behaviors of processes within the framework of infinite strings:
for every finite string t accepted by M there is an infinite string t(sM) ~ accepted by
mw.

The second change made to the formalism involves the restrictions. Each restriction
language is defined to be the union of a recursive language of finite strings over E and
an w-context-free language [19] of infinite strings over E. Restriction languages must
include both finite and infinite strings since the projection of an infinite string onto an
alphabet may be either finite or infinite. This completes the extension of the formalism.
The analysis technique will still use the FSA representation of the processes, but will
treat them as B/ichi automata where appropriate.

We now describe how to generate necessary conditions for the existence of infinite
traces. Consider the simplest case where we are seeking any infinite trace of a concurrent
system (as opposed to a trace with a specific property). We can always divide such a
trace into afinite interval, containing all events occurring only finitely many times in the
trace, and a perpetual interval, containing only events occurring infinitely often in the
trace. Solutions to the inequalities generated for the perpetual interval represent finite
flows through the FSAs satisfying certain consistency requirements, however, these flows
are interpreted differently than those found by the previous techniques. Any finite flow
through an arc in the inequality system generated for the perpetual interval represents
the infinite repetition of the event labeling that arc. For example, the infinite trace

ababbcbbcbbcbbc...

might be represented by a flow through arcs labeled aba in the finite interval, and a flow
through arcs labeled be in the perpetual interval. Note that this representation does not
capture any information about the order in which the events in the perpetual interval
are repeated, nor their relative frequency of occurrence, but only that they are repeated
infinitely often. This suffices to verify properties specified with w-star-less expressions.
The transitions in a particular FSA that occur infinitely often in the trace must be part
of a strongly connected component (SCC) in the FSA when viewed as a graph (i.e., to
run forever, the FSA must traverse a cycle or set of interconnected cycles). An isolated
state is not considered connected to itself unless there is an explicit self-loop, so these
SCCs must contain at least one arc.

We construct an inequality system for the finite interval and another for the perpetual
interval and connect these systems together to form an inequality system representing
necessary conditions for the existence of an infinite trace. The inequality system for
the finite interval is similar to the inequality system generated by the basic technique of
Section 2 except for the following: To each state j of an FSA that is part of a SCC, we
assign a perpetual variable, pj, that counts as flow out in the flow equations (just as the
accept variables do). This variable will be one if the FSA repeats a set of transitions,
starting from state j , infinitely often, and it will be zero otherwise. Accept variables are
also generated for the finite interval. For efficiency, the analysis technique uses these

112 CORBETT AND AVRUNIN

variables to allow the termination of processes, rather than using the infinite repetition
of a stopped symbol, as in the formalism.

The inequality system for the perpetual interval represents necessary conditions for the
existence of an infinite suffix of a trace. In this interval, any positive flow through an
arc represents infinitely many occurrences of the event labeling that arc in the trace. We
generate the perpetual interval system as follows. First, we conceptually remove parts
of the FSAs not part of SCCs (in the example of Figure 1, we remove transitions 2, 4,
6, 8, 9, and 10, and ignore states 2, 4, 7, and 8). Second, we generate flow equations
for the remaining states, but we do not add an implicit flow of one into the start states,
nor do we include any other types of variables (e.g., accept, perpetual, connection). The
connection between the finite and perpetual intervals is different than the connection
between intervals in the technique of Section 4, as we will explain. Third, we generate
synchronization equations for each channel equating the number of perpetual calls and
accepts for that channel. Since hang symbols cannot occur perpetually, the perpetual
interval system contains no restriction inequalities. Requirement inequalities are added
only if the set of events that can be repeated forever (i.e., the Ti sets in an w-star-less
expression) is a strict subset of Y., in which case these inequalities set to zero the number
of occurrences of events not permitted to occur in the infinite suffix. In the case where
we seek any infinite trace, no requirement inequalities are added.

We connect the finite and perpetual interval systems using additional inequalities. Un-
like the way intervals were connected in Section 4, the flow through an FSA does not
pass from the finite interval to the perpetual interval through a connection variable; the
flow through the finite interval can exit via a perpetual variable pj at any state j that is
part of an SCC, and then a cyclic flow (with no beginning or end) is forced to occur
in that SCC as part of the perpetual interval. To achieve this, we add a perpetual-force
inequality Y']~keout(j)[x2,k] > pj for each state j in an SCC. We use the same subscript-
ing for transition variables as in Section 4: interval 1 is the finite interval, interval 2 is
the perpetual interval. This inequality requires that if the FSA containing state j starts
repeating transitions perpetually at state j , then there
state j in the perpetual interval.

If the flow through an FSA in the finite interval exits

must be a nonzero flow through

via an accept variable rather than
a perpetual variable, then no cyclic flows are forced to occur in that FSA. In fact, in this
case we want to prevent such cyclic flows in the FSA. We could enforce this for an FSA
N using the quadratic equation

= 0

where states(N) is the set of states of FSA N and SCC(N) is the set of transitions of FSA
N contained in an SCC (note that Y']~j~state~(N)[PJ] < 1). In practice, since quadratic
programming is much harder than linear programming, we achieve the desired relation
using a linear inequality by using a large upper bound U for the transition variables (i.e.,
xi,k <_ U). For each FSA N, we add a perpetual-bound inequality,

VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 113

where [SCC(N)[is the size of set SCC(N). If the flow through the FSA in the finite
interval exits via an accept variable (i.e., ~jestates(N)[PJ] = 0) then no flow is allowed
in the FSA in the perpetual interval. If, however, the flow exits via a connection variable
(i.e., ~jCstat~s(N)~Oj] = 1), then this inequality allows any amount of flow (less than
U) through arcs in the FSA in the perpetual interval.

The inequalities described are necessary conditions for the existence of a potentially
infinite trace. The inequality system representing necessary conditions for the existence
of a potentially infinite trace of the example of Figure 1 is shown in Figure 6. We may
test for the possibility that 3//2 becomes permanently blocked by adding the equation
Xl , 4 : 1. The resulting inequality system has a solution corresponding to an infinite
trace in which transition 4 is taken once and transitions 1 and 5 are taken perpetually
(x2,1 = x2,5 = 1). This proves that the b communication need not eventually occur.
Most systems would enforce some type of fairness in the selection of a communication
partner that would prevent this behavior. We can enforce certain types of fairness using
additional inequalities that might, for example, forbid the starvation of an FSA waiting
for a communication if that communication is enabled infinitely often, which we can tell
from the presence of certain events in the perpetual interval. In the example of Figure 1,
the inequality UXl, 4 -}- X2, 5 ~ U would prevent M2 from becoming blocked waiting
for a communication with M3 on channel b if M3 is in state 5 infinitely often. Adding
this inequality produces an inequality system with no integral solutions, proving that M2
cannot become permanently blocked if M3 must engage in a communication on b that
is infinitely often possible. The generation of fairness inequalities is discussed further in
[11].

The algorithm to generate inequalities representing necessary conditions for the exis-
tence of an infinite trace is shown in Figure 7. The correctness of these conditions is
proved in [11]. The technique to find infinite traces can be combined with the technique
of Section 4, allowing us to produce necessary conditions for the existence of an infinite
trace generated by an w-star-less expression. To accomplish this, we make the last inter-
val of each sequence a perpetual interval and connect it to the preceding interval just as
the perpetual interval was connected to the finite interval above. We add accept variables
to the last finite interval, allowing the FSAs to terminate rather than run forever. As a
result, the conditions we produce are also necessary for the existence of a finite trace
generated by the finite part of the w-star-less expression (obtained by removing the Ti
sets). The size of the inequality system generated by this technique is linear in the size
of the automata and linear in the size of the w-star-less expression.

6. Experiments

The technique for verifying properties expressible with w-star-less expressions has been
implemented in the Inequality Necessary Condition Analyzer (INCA), a descendant of

114 CORBETT AND AVRUNIN

Flow (finite): (state)
1 + Xl,1 = Xl,1 + Xl,2 + Pl (l)

xl,2 = f2 (2)
1+Xl,3 = X l , 3 + x l , 4 + p 3 (3)

xl ,4 = y , (4)

1 + x l , 5 = x l , 5 + x 1 , 6 + x l , 9 + P 5 (5)
Xl,6 ~- xl,7 ~-- Xl,7 + Xl,8 -}-p6 (6)

zl ,9 = z1,1o (7)
x1,8 + z1,1o = Ys (s)

Synchronization (finite): (channel)
x~,l = xl ,5 (a)
x1,3 = xl,6 + x l , 7 (b)

Hang (finite): (channel)
Xl,2 71- Xl,9 < 1 (a)

Zl,4 + z l , s + x l ; l o _< 1 (b)
Flow (perpetual): (state)

x2,1 = x2,1 (1)
Z2,3 ~-- X2,3 (3)
z2,s = z~,5 (5)
x2,r = x2,7 (6)

Synchronization (perpetual): (channel)
x2,1 = x~,~ (a)
z2,3 = z~,7 (b)

Perpetual-force: (state)
x2,1 > Pl (1)
x2,3 ~ P3 (3)
x2,5 > P5 (5)
X2,7 >__ P6 (6)

Perpetual-bound: (FSA)
x~,~ <_ Um (1)

X2,3 ~ Up3 (2)
�9 2,~ + x2,7 < 2u (p5 + p~) (3)

Figure 6. Inequality System for a Potentially Infinite Trace

V E R I F Y I N G G E N E R A L S A F E T Y AND LIVENESS P R O P E R T I E S 115

Input: A set M of FSAs
Output: A set of inequalities

For each transition k in an FSA of M:
Create transition variable Xl,k
If k is in an SCC then

Create transition variable x2,k
For each state j in an SCC of an FSA of M:

Create perpetual variable pj
For each accepting state j of an FSA of M:

Create accept variable f j
For each interval i = 1, 2:

For each state j of an FSA of M:
Generate flow equation:

kC in(j) kC out (j)
For each channel c:

For each interval i = 1, 2:
Generate synchronization equation:

E xi,k= E xi,k
kC call(c) k e accept (e)

Generate restriction inequality: ~ xl,k +
kEhang_c(c)

For each state j in an SCC of an FSA of M:

Generate perpetual-force inequality: E [x2,k] _> pj
kEout(j)

For each FSA Mi in M:
Generate perpetual-bound inequality:

k e S C C (M i) j e s t (Mi)

xl,k _< 1
kChang_a(c)

Figure 7. Algorithm for Potentially Infinite Trace

116 CORBETT AND AVRUNIN

ha ~ pa h b X ~ p b

Customer a Customer b Router Guard

Figure 8. Packet Router Example

the constrained expression toolset [3]. A series of experiments has demonstrated the
feasibility of the technique for verifying different kinds of properties on several examples
of concurrent systems. This section describes some of these experiments. All times
reported are in seconds on a DECstation 5000.

The first experiment we describe is very small and is presented as a demonstration
of how an analysis proceeds. The concurrent system shown in Figure 8 contains two
customer FSAs (a and b), one router FSA, and one guard FSA. We use the more compact
symbols >c, <c as the hang symbols for channel c. Customer a (respectively, b) repeats
the following forever: communicate with the guard on channel ra (rb) to gain exclusive
access to the router, send the header of a packet to the router on channel ha (hb), send
the packet to the router on channel pa (pb), and free the router by communicating with
the guard on channel fa (fb). The guard guarantees that the router is used in a mutually
exclusive fashion. The router simply accepts any packet or header at any time. Present
but not shown are restriction languages, like those in the example of Figure 1, that forbid
both hang symbols for a channel from occurring in the same trace.

First we verified the safety property that the router cannot send a header for one
customer followed immediately by a packet from the other. This can be expressed in
linear temporal logic as [3[(ha --~ ~pbUpa) A (hb --* -~paUpb)]. Its negation can be
expressed by the star-less expression

E* ha (E - {pa})*pb U E* hb (E - {pb})*pa

Starting with a specification of the concurrent system in an Ada-like design language
and the above expression, the toolset produced an inequality system of 107 inequalities
in 128 variables. Our integer programming package determined this inequality system
has no integral solution in two seconds. Since the inequality system represents necessary
conditions for the existence of a prefix of a trace generated by the expression, we may
conclude that the safety property holds.

The second property we attempted to verify was the liveness property that the first
customer would transmit a header infinitely often. This property can be expressed in
linear temporal logic as ~Oha and its negation by the w-star-less expression E* (E -
{ha}) ~. The toolset produced an inequality system of 67 inequalities in 70 variables

VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 117

and the integer programming package found a solution to this system in one second.
Examination of the solution reveals that it does correspond to a possible trace of the
concurrent system, one in which customer a becomes permanently blocked waiting to
acquire the router while customer b repeatedly acquires it forever. Thus we have proved
that the the liveness property does not hold by producing a trace violating the property.
The problem is that no fairness is enforced when selecting a communication partner.
When we instruct the toolset to produce two additional inequalities to enforce fairness in
the guard's selection of a communication partner, as described in Section 5, the resulting
inequality system was determined to have no integral solution in three seconds. This
proves that the liveness property does hold, assuming an FSA cannot starve waiting for
a communication that is infinitely often possible.

In the absence of such fairness, it is possible to verify a weaker liveness property: once
a customer (say a) has acquired access to the router, it must eventually get to transmit a
packet. This can be expressed in linear temporal logic by the formula O(ra ~ ~ha) and
its negation by the w-star-less expression E* ra(E - {ha}) ~. The toolset produced an
inequality system of 59 inequalities in 56 variables which was found to have no integral
solution in one second, proving this weaker liveness property holds even in the absence
of fairness.

The second experiment we describe involves several versions of a mutual exclusion
protocol based on the concept of coteries [12]. A coterie is a general mechanism for
achieving mutually exclusive access to a resource in a distributed system. Each resource
has a set of keys. A coterie is a set of subsets of the keys with the property that any
two subsets have a non-null intersection. A customer wishing to use the resource must
first acquire all of the keys in one of the coterie subsets. Since any two coterie subsets
must share at least one key, only one customer may possess all of the keys in one of
the coterie subsets at any given time. One simple type of coterie consists of all subsets
possessing a majority of the keys.

We considered four versions of a coterie mutual exclusion system containing one re-
source, three guards, and either two or three customers. The customers must acquire a
majority of the keys (i.e., two keys) to use the resource. Each guard holds one key and a
customer communicates with a guard to request, acquire, and release its key. In the first
two versions, there are three customers which each request two specific keys, waiting
until these keys are granted before using the resource; in the second two versions, there
are two customers which cyclically request each of the three keys until they have been
granted a total of two keys. In the second and fourth versions, the guards are extended
to enforce fairness in granting the requests: In the second version, the guards queue
requests for the keys; in the fourth version, a guard will not grant a key to the customer
that last held it if the other customer has since requested the key.

Two properties of mutual exclusion protocols are commonly verified. First, the protocol
must enforce the mutual exclusion. Second, the protocol should be "fair"' in some
Sense--a customer wishing to use the resource should eventually be permitted to do so.
The first property is a safety property; the second is (usually) a liveness property. We
attempted to verify four properties: freedom from deadlock, mutual exclusion, freedom
from starvation (this is the fairness property mentioned above), and a queuing property

118 C O R B E T T AND AVRUNIN

for the second version (essentially a strong kind of fairness that is actually a safety
property). The performance of the automated tools on these examples is shown in
Table 2. It lists, for each example and property: the result of the experiment, the time
to generate the inequality system from an Ada-like specification, the time to solve the
system, the total time, and the size of the inequality system generated. We also analyzed
incorrect versions of the systems to show that the necessary conditions generated are
useful for finding errors when they are present; incorrect versions have an "(i)" after the
version number. The suffix "-fair" on the starve properties in the first version indicate
that fairness inequalities were generated to enforce fairness in selecting communication
partners.

There are four possible results of an experiment: "verified" indicates that the ILP pack-
age determined that the inequality system generated had no integral solutions, proving
the property holds; "disproved" indicates that the ILP package found a solution that cor-
responds to a trace violating the property, thus proving that the property does not hold;
"ILP fails" indicates that the ILP package could not determine (within a preset bound on
the number of branch and bound iterations) whether or not the inequality system has an
integral solution; "spurious" indicates that an integral solution to the inequality system
was found but this solution did not correspond to a trace of the system. In the last two
cases, the analysis is inconclusive. Each of these cases happened once in this set of
experiments. Each time, however, we were able to simplify the property by breaking it
down into cases and verify each case (the suffix "-1" idicates that the property is one
case of the full property).

In summary, the modified toolset was able to give a definitive answer for all the
properties we attempted to verify. Although these systems do not have a large number of
processes, the processes themselves are fairly complicated (some having over 200 states
in their FSA representation) and together the system they comprise is complex enough
to possess a variety of interesting properties. As Table 2 shows, the average analysis
time to verify or disprove a property of these systems, starting from an Ada-like source
and an w-star-less expression, was about five minutes. These experiments are described
in great detail in [11].

The last experiment described here involves a version of the dining philosophers system
where the standard deadlock is prevented by having the philosophers pass around a "dic-
tionary"; the philosopher holding the dictionary cannot hold any forks. Each philosopher
nondeterministically decides whether to read or eat. If she decides to read, she waits for
the philosopher to her right to pass her the dictionary, reads it, then waits for the philoso-
pher to her left to accept the dictionary. If she decides to eat, she picks up her left fork,
then her right fork, eats, and puts down her forks. This activity is repeated forever. Each
philosopher and fork is modeled with a process. The philosopher processes synchronize
with each other to pass the dictionary and synchronize with the fork processes to pick up
and put down the forks. In this example, we verify the same properties on several sizes
of the system to get an idea of how the techniques perform as the size of the system is
scaled up.

We attempted to verify several properties for each size of the system:

VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 119

Table 2. Toolset Performance on Coterie Mutual Exclusion

Version
1
1 (i)
1
1
1
1 (i)
2
2 (i)
2
2 (i)
3
3
3 (i)
3
4
4 (i)
4
4
4 (i)
4

Property Result
mutex verified
mutex disproved
deadlock verified
starve disproved
starve-fair verified
starve-fair disproved
mutex verified
mutex disproved
queue verified
queue disproved
mutex ILP fails
mutex- 1 verified
mutex disproved
starve disproved
mutex- 1 verified
mutex- 1 disproved
starve spurious
starve-1 verified
starve-1 disproved
deadlock verified

Time
Gen Solve Total

73 258 331
68 4 72
51 1 52
57 14 71
57 19 76
72 3 75

364 1140 1504
370 8 378
254 2 256
262 3 265
329 2483 2812
280 4 284
327 36 363
291 34 325
360 7 367
352 5 357
381 74 455
369 10 379
352 25 377
324 317 641

Size
Ineqs • Vats

234 x 272
220 x 254
93 x 102

154x150
172x 150
170x 147
365x414
356 x 405
315x410
319x419
591 •
381x537
570x638
467x511
552 x 855
449 x 668
650 x 742
549 x 598
457x484
231 x 334

1. Philosopher 0 cannot become permanently blocked waiting to pick up her left fork.
This property holds, even without the dictionary.

2. Philosopher 0 cannot become permanently blocked waiting to pick up her right fork.
Without the dictionary, this property does not hold since all of the philosophers may
become permanently blocked waiting to pick up their right forks. With the dictionary,
however, the property holds, proving that the deadlock is prevented.

3. Philosopher 0 cannot become permanently blocked waiting to get the dictionary.

Since some philosopher between philosopher 0 and the philosopher currently holding
the dictionary may never decide to read again, this property does not hold.

4. Philosopher 0 cannot become permanently blocked waiting to pass the dictionary
to the next philosopher. Since Philosopher 1 may never decide to read again, this
property does not hold.

The results of these analyses are shown in Table 3. In the first two cases, the toolset
determined correctly that the property holds. In the latter two cases, the toolset found a
solution corresponding to an execution of the system in which the property is violated.

The last two properties do not hold because a philosopher may stop reading after
some finite time. We therefore attempted to verify them under the assumption that each
philosopher reads infinitely often. Results of these analyses are shown in Table 4. In
both cases, the toolset correctly determined that the properties hold under the fairness
assumption. Note that though the size of the state space of this system is growing
exponential ly in the number of philosophers, our analysis times appear to be growing
much more slowly.

120 CORBETT AND AVRUNIN

Table 3. Toolset Performance on Dining Philosophers

Property Result
left-fork

right-fork

get-dict

dump-diet

with Di~ionary

Number
of Phils

20
40
60
80

100
20
40
60
80

100
20
40
60
80

100
2O
40
60
80

I00

verified
verified
verified
verified
verified
verified
verified
verified
verified
verified
disproved
disproved
disproved
disproved
disproved
disproved
disproved
disproved
disproved
disproved

Time
Gen Solve Total
214 14 228
508 121 629
800 176 976

1305 276 1581
1736 371 2107
216 17 233
481 44 525
846 99 945

1304 113 1417
1756 179 1935
210 152 362
487 325 812
828 488 1316

1245 842 2087
1692 1413 3105
230 43 273
467 133 600
836 268 1104

1245 436 1681
1684 652 2336

Size
lneqs • Vars
1035x994
2075•
3115x2994
4155•
5195x4994
1036•
2076•
3116x2995
4156•
5196x4995

958•
1918x 1997
2878x2997
3838•
4798x4997

958•
1918x1996
2878•
3838x3996
4798•

Table 4. Toolset Performance on Dining Philosophers with Dictionary When
Philosophers Must Read Infinitely Often

Number Time
Phils Result Gen Solve I TotM Propeay of

get-di~ 20 verified 215 22 237
40 verified 500 55 555
60 verified 870 144 1014
80 verified 1350 244 1594

100 verified 1894 390 2284
dump-dict 20 verified 212 16 228

40 verified 528 61 589
60 verified 876 137 1013
80 verified 1336 214 1550

100 verified 1879 354 2233

Size
Ineqs x Vats

983x 1024
1963x2044
2943x3064
3923x4084
4903x5104

983x 1024
1963x2044
2943x3064
3923x4084
4903x5104

VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 121

Finally, we mention that we also attempted to verify the last two properties under the
weaker fairness assumption that a philosopher who does not become permanently blocked
will choose to read infinitely often. The toolset determined that the properties hold. For
the last property, the times were comparable to those reported in the table. In testing
whether a philosopher could become blocked waiting to get the dictionary, however,
we encountered numerical problems in solving the inequalities representing the dining
philosophers systems with this fairness assumption. The times required to solve the
system of inequalities were significantly larger in this case, and increased more rapidly
with the number of philosophers. For instance, it took approximately 8000 seconds to
solve the system with 60 philosophers and more than 7 hours to solve the system with
100 philosophers.

For comparison, we note that the BDD-based technique of [15] can verify similar prop-
erties of these systems up to 48 philosophers, but was unable to handle a 64 philosopher
system.

7. Conclusion

We have presented a technique for verifying many safety and liveness properties of
concurrent systems. The technique involves generating linear inequalities that represent
necessary conditions for the existence of a trace violating the property. The obvious
advantage of the approach is that it does not require enumeration of the system's many
states. The disadvantages are that spurious solutions to the inequality system can make
the analysis inconclusive and the tractability of integer linear programming in practice is
not well understood. Nevertheless, our experience [3] suggests that spurious solutions are
relatively rare and that our inequality systems, being largely network flow systems, have
a special structure that usually makes their solution tractable. Furthermore, a prototype
implementation of the technique has been successfully applied to several sample systems,
including systems with relatively few complex processes and systems with many simple
processes. In essence, our technique sacrifices some generality for tractability. If our
necessary conditions do not sufficiently restrict the order of interprocess interactions,
there may be spurious solutions to our inequalities, making our analysis inconclusive.
For many systems and properties, however, our necessary conditions are strong enough to
yield appropriate orderings of interprocess interactions, and the method is both tractable
and conclusive.

The practical utility of our technique depends on the strength of its necessary conditions
and the tractability of the integer programming problems it produces. Although it would
be desirable to have a formal characterization of the class of systems for which our
technique is practical, we believe that the best information about the practicality of our
method will come from accumulating experience in applying it to a wide range of systems.
The most important reason for this is that sufficient information about the tractability of
the integer programming problems is not available. Although there has been some effort
to develop special-purpose solvers for this particular type of problem, network flows
with certain side constraints, we are not aware of any theoretical results that indicate
precisely when such problems can be solved much more easily than the general integer

122 CORBETT AND AVRUNIN

linear p rog ramming problem. Even papers proposing new methods for solving such

problems validate those methods by present ing empir ical data on their per formance on

s tandard test problems (e.g., [1]). We therefore p lan a major project invo lv ing a thorough

empir ical evaluat ion of our technique, inc luding both its applicat ion to a large n u m b e r

of sample concurrent systems and compar ison with other techniques such as symbol ic

model checking.

Acknowledgments

The research described here was partially supported by Nat ional Science Founda t ion grant

CCR-9106645 and Office of Naval Research grant N00014-89-J-1064. M a n y thanks to

Dav id Mix-Bar r ing ton for clar ifying the expressibi l i ty of star-less expressions.

Notes

1. Not to be confused with a star-free regular expression, to be discussed below. We use the term star-less
since the expressions specify patterns of the el,j events using only concatenation and union (allowing the
intervening symbols specified by the Si,j).

References

1. A. I. Ali, J. Kennington, and B. Shetty. The equal flow problem. European J. Oper. Res., 36:107-115,
1988.

2. G. S. Avrunin, U. A. Buy, and J. C. Corbett. Integer programming in the analysis of concurrent systems.
In Larsen and Skou [16], pages 92-102.

3. G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon, and J. C. Wileden. Automated analysis of
concurrent systems with the constrained expression toolset. IEEE Trans. Softw. Eng., 17(11):1204-1222,
Nov. 1991.

4. J.A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction. Theoretical Comput.
Sci., 37(1):77-121, 1985.

5. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Com-
puters, C-35(8):677-691, 1986.

6. J. Butch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking: 1020 states and
beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, pages
428-439, 1990.

7. E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Proceedings of the Fourth
Annual IEEE Symposium on Logic in Computer Science, 1989.

8. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In Proceedings of the
19th ACM Symposium on Principles of Programming Languages, pages 343-354, Jan. 1992.

9. E.M. Clarke and R. P. Kurshan, editors. Computer-Aided Verification '90, number 3 in DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Providence, RI, 1991. American Mathematical
Society.

10. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A semantics based tool for the
verification of concurrent systems. ACM Trans. Prog. Lang. Syst., 15(1):36-72, Jan. 1993.

ll . J.C. Corbett. Automated Formal Analysis Methods for Concurrent and Real-Time Software. PhD thesis,
University of Massachusetts at Amherst, 1992.

12. H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system. J. ACM, 32(4):841-860,
Oct. 1985.

VERIFYING GENERAL SAFETY AND LIVENESS PROPERTIES 1 2 3

13. E Godefroid and E Wolper. Using partial orders for the efficient verification of deadlock freedom and
safety properties. In Larsen and Skou [16], pages 332-242.

14. C . A . R . Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.
15. R. Hojati, H. Touati, R. E Kurshan, and R. K. Brayton. Efficient w-regular language containment. In

G. v. Bochmann and D. K. Probst, editors, Computer Aided Verification, 4th International Workshop
Proceedings, volume 663 of Lecture Notes in Computer Science, pages 371-382, Montreal, Canada,
1992. Spdnger-Vedag.

16. K.G. Larsen and A. Skou, editors. Computer Aided Verification, 3rdlnternational Workshop Proceedings,
volume 575 of Lecture Notes in Computer Science, Aalborg, Denmark, July 1991. Springer-Verlag.

17. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
18. D. K. Probst and H. E L i . Using partial-order semantics to avoid the state explosion problem in

asynchronous systems. In Clarke and Kurshan [9], pages 15-24. Also LNCS 531, pp. 15-24.
19. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer

Science, volume B. MIT Press/Elsevier, 1990.
20. A. Valmari. Compositional state space generation. In European Conference on Petri Nets, pages 43--62,

1990.
21. A. Valmari. A stubborn attack on state explosion. In Clarke and Kurshan [9], pages 25-41.
22. W. J. Yeh and M. Young. Compositional teachability analysis using process algebra. In Proceedings

of the Symposium on Testing, Analysis, and Verification (TAV4), pages 178-187, New York, Oct. 1991.
ACM SIGSOFT, Association for Computing Machinery.

23. H. Zuidweg. Verification by abstraction and bisimulation. In J. Sifakis, editor, Proceedings of the
International Workshop on Automatic Verification Methods for Finite State Systems, pages 105-166,
June 1989. Appeared as Lecture Notes in Computer Science 407.

