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Abstract. This paper describes a construction of the real numbers in the HOL theorem-prover by strictly defini- 
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1. The Real Numbers  

For some mathematical tasks, the natural numbers N = {0, 1, 2 , . . . }  are sufficient. However 
for many purposes it is convenient to use a more extensive system, such as the integers (Z) 
or the rational (Q), real (R) or complex (C) numbers. In particular the real numbers are 
normally used for the measurement of physical quantities which (at least in abstract models) 
are continuously variable, and are therefore ubiquitous in scientific applications. 

1.1. Properties of the Real Numbers 

We can characterize the reals as the unique 'complete ordered field'. More precisely, 
the reals are a set R together with two distinguished constants 0 E ~ and 1 E lt~ and 
the operations 

+ :  ~ x ~ R  

.: ~ x R ~ ] ~  

- .  p ~  

inv : L~ - {0} ~ 

having all the properties in the list given below. In what follows we use the more conventional 
notation xy for x.y and x -1 for inv(x). The use of such symbolism, including 0 and 1, is 
not intended to carry any connotations about what the symbols actually denote. 

Firstly, the structure is nontrivial, i.e. has more than one element (note that the other 
properties below do not exclude this possibility): 

�9 I ~ 0  

The reals form an abelian group under addition; i.e. addition is commutative and associative, 
there is an additive identity, and every element has an additive inverse: 
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�9 Vx y .  x + y = y + x  

�9 V x y z .  x + ( y + z ) = ( x + y ) + z  

�9 V x . O + x = x  

�9 V x . ( - x ) + z = o  

The nonzero reals form an abelian group under multiplication (of course 0 does not have a 
multiplicative inverse): 

�9 Vxy.  x y = y x  

�9 Vx y z. x(yz)  = (xy)z  

�9 Vx. l x = x  

�9 VX. (X r O) ~ (x - lx  ~-- 1)  

Addition and multiplication are related by the distributive law. Together with the above 
properties, this shows that the real numbers form afield. 

�9 V x y z .  x ( y + z ) = x y + x z  

The reals are totally ordered by < (i.e. the order is connected, transitive and irreflexive): 

�9 V x y . ( x = y )  V x < y V y < x  

�9 V x y z .  x < y A y < z ~ x < z  

�9 Vz. x e z  

The ordering relation interacts with the arithmetic operations in the following manner: 

�9 Vy z .  y < z - ~ V x . x + y < x + z  

�9 V x y .  O < x A O < y ~ O < x y  

All the above properties are also true of the rationals. The property which sets the reals 
apart is generally referred to as completeness, and can be stated in many equivalent forms. 
Perhaps the simplest is the supremum property which states that any nonempty set of reals 
which is bounded above has a least upper bound (supremum). 

�9 VS.(3x. x e S )  A (~M. V x e S .  x < M )  
3m. (Vx ~ S. x <_ m) A (Vm' < m. ~x e S. z > m ' ) )  

(Here we are using < and > as abbreviations for the obvious equivalents in terms of < 
and =.) For example, the two sets {x E N I x2 <- 2} and {x e N I x2 < 2} both have a 
supremum of x/2, although one of the sets contains v/-2, as a maximum element, and the 
other does not. 
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1.2. Uniqueness of the Real Numbers 

In higher-order logic, which allows the second-order quantification necessary to express 
completeness, the above properties determine the reals uniquely up to isomorphism, pro- 

vided the inverse is defined only on the subset of nonzero reals. (For a proof, see [7], [9] or 
[21].) The role of partial functions in mathematics is rather more obscure and difficult than 
is often appreciated; we shall have more to say about this later. HOL functions are total, 
so making the inverse a partial function is highly inconvenient in our formalization. We 
therefore have an extra 'degree of freedom' that does not exist traditionally: we can define 
0 -1 to be whatever we like. To avoid surprises we keep it 'undefined' (effectively ex.F) ,  
but it is important to realize that this is not the same as true undefinedness. For example we 
can prove Vz. 0x = 0 and so in particular, assuming we define z / y  = x y  -1 (as we do), 

o / o  = o 

Conversely, a theorem true classically which is not true in our framework is: 

Mz C 1~. (tan(x) = 0) ~ ~n C Z. z = nTr 

because we cannot exclude the possibility that cos(x)-1 is zero at odd multiples of 7r/2, in 
other words that 0-1 = 0. There is even something to be said for defining 0-1 = 0 since 
this makes the inverse into a bijection, so things like the following are true universally: 

vx. ( x - 1 ) - 1  : 

V x . O < x  ~ O < x  -1 

We feel these issues are unlikely to present problems in practice, because division by zero 
is normally treated as a special case anyway, but one should be aware of them. 

2. Constructing the Real Numbers 

One approach to defining the reals in HOL is simply to introduce a new type real and 
the various operators on that type, then assert the above properties as axioms. However it 
is traditional to extend HOL only definitionally, to guarantee that consistency is preserved 
without employing any metalogical reasoning (except for ML programming, which at least 
enforces recursive metalogical reasoning). 

Therefore we seek a way of creating a structure with the above properties out of previously 
defined objects. This problem has been solved by mathematicians in various different ways. 
Some leap in a single step from the natural numbers, others involve various intermediate 
stages such as the rational numbers. The following diagram shows a lattice of number 
systems under inclusion; the superscripted Q+ and ~ +  denote the positive or non-negative 
elements of Q and R respectively. 
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N 

2.1. Straight from Naturals (N) to Reals (]~) 

Perhaps the most obvious approach is to model the real numbers by infinite positional 
(e.g, binary or decimal) sequences. It is necessary to take into account the fact that the 
representation is not unique (for example 0.99999.. .  and 1.00000.. .  both represent the 
same real number). 

The definition of the ordering relation is reasonably straightforward, but addition is harder 
because it involves 'carries'. Nevertheless, a workable definition is carried through in [4]. 
An alternative, which is explored in [ 11 ], is to extend to sequences of arbitrary integers (not 
just those less than some base). The argument is that because of the non-uniqueness noted 
above, some form of equivalence relation would probably be used anyway, so we may as 
well avoid the problem of carries. 

In either case, multiplication is harder, since it has a much more complicated relationship 
with the position of digits. One solution [7] is to define multiplication of terminating 
sequences (i.e. those which are zero beyond a certain point) and extend it to all sequences 
by a limiting process. But this is rather ugly and complicated. A very elegant alternative 
is proposed by Behrend [1]. He proves that a set ~+ with operation +: ]~+ • R + --* R + 
and relation <: ]~+ • E+ ~ bool obeying a few basic algebraic laws will turn out to be 
isomorphic with the strictly positive reals. In particular, for each x C ]~+ there is a unique 
automorphism (i.e. bijection from ]~+ onto itself which respects the existing algebraic 
structure) x* which maps x*" 1 ~-+ z. It is now possible to define multiplication by 

x y  --  y*(x*(1) )  

and prove all its required properties. 

A more radical way of avoiding intermediate steps is to construct an extremely general 
number system using games, as explained by Conway [10]. In many ways this is a simple 
approach, but the recursive definitions of the operations seem hard to formalize in HOL. 
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2.2. From Naturals (N) to Integers (Z) 

There are various possible representations of the integers in terms of the natural numbers, 
such as: 

�9 A pair consisting of a boolean 'sign bit' and a natural number. For example (true, 1) 
might represent + 1 and (false, 2) represent - 2. 

�9 A pair of natural numbers, where one imagines (m, n) standing for m - n in the integers. 
Thus (1, 0) represents +1 and (5, 7) represents -2 .  

The main problem with both the above is non-uniqueness. Manifestly, every number has an 
infinity of representatives in the second case; +1 could equally well be represented by (2, 1), 
(3, 2), (4, 3) and so on. Less egregious is the first case, but there are still two representations 
of zero, (false, 0) and (true, 0). There are two natural ways round this problem: 

Consider only a minimal set of representatives, which are in some sense canonical. For 
example one might in the first case exclude (false, 0), and in the second insist that one 
or both numbers of the pair be zero. 

Define an equivalence relation expressing the effective identity of sets of terms, and use 
the equivalence classes under this relation, rather than the representatives themselves, 
to construct the new type. 

2.3. From Integers (Z) to Rationals (Q) 

This stage is a particular case of a well-known construction in abstract algebra, constructing 
the field of fractions of an integral domain, an integral domain being a nontrivial commu- 
tative ring with the property that 

v x  y. (xy = 0) = 0) v (y = 0) 

The procedure consists of considering pairs of integers, which one thinks of as the numerator 
and denominator of a fraction; it is necessary to exclude 0 from the possible denomina- 
tors. Then one uses equivalence classes of this subset of pairs under the obvious 'cross 
multiplication' equivalence relation 

y )  ~ ( x ' ,  y ' )  - = x ' y )  

As with the path from 1~ to Z, we have the option of eschewing equivalence classes in favour 
of choosing canonical elements. The natural choice of canonical form would be to insist 
that the pair of elements be coprime, i.e. represent a cancelled fraction (though this is not 
available in a general integral domain). 
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2.4. From the Rationals (Q) to the Reals (•) 

There are two well-established classical methods for constructing the reals from the ratio- 
nals, which were published independently by Cantor and Dedekind, both in 1872. (Cantor's 
method was largely anticipated by M6ray in 1869, and one can find precursors of Dedekind's 
method as far back as Eudoxus with his theory of proportion.) 

2.4.1. Cantor's Method 

This method identifies a real number with the set of all rational sequences that converge to 
it. To say that a sequence (sn) converges to s, written sn ~ s means: 

W > 0. 3N. Vn > N. Is,~ - sl < 

This is no good as a definition, because it contains the limit itself, which may not be 
rational. However the following variant is equivalent (as can be shown after completing 
the construction): 

Vr > O. 3N. Vm > N ,n  >__ N. Isr  - -  < 

(It does not matter that we will restrict e to rational values, since Q is dense in ~,  i.e. 
between any two distinct reals there is a rational.) A sequence which satisfies this property 
is called a Cauchy sequence. 

The fact that two series (sn) and (tn) converge to the same limit can also be expressed 
without using the limit itself: 

> o. 3N.  Vn N. - tnl < 

It is easy to see that this defines an equivalence relation on Cauchy sequences, and the 
real numbers can be defined as its equivalence classes. The arithmetic operations can be 
inherited from those of the rationals in a fairly natural way, although the supremum presents 
slightly more difficulty. A complete treatment is given by Thurston [22]. 

2.4.2. Completion of Metric and Uniform Spaces 

Cantor's method admits of abstraction to more general structures. Given any metric space, 
that is, a set equipped with a 'distance function' on pairs of points (see later for formal 
definition), the process can be carried through in essentially the same way. This gives an 
isometric (distance-preserving) embedding into a complete metric space, i.e. one where 
every Cauchy sequence has a limit. 

Since generality and abstraction are to be striven for in mathematics, it seems desirable 
to regard the construction of the reals as a special case of this procedure. Taken literally, 
however, this is circular, since the distance returned by a metric is supposed to be real- 
valued! On the other hand if we move to the more general structure of a topological 
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space, the procedure seems to have no natural counterpart, since the property of being a 
Cauchy sequence is not preserved by homeomorphisms. Consider the action of the function 
from the set of strictly positive reals onto itself which maps z ~ 1/x. Clearly this is a 
homeomorphism (under the induced topology given by the usual topology on N) but it maps 
the sequence of positive integers, which is not a Cauchy sequence, to a Cauchy sequence. 

Nevertheless there is a suitable structure lying between a metric and a topological space 
in generality. This is a uniform space, which while not equipped with an actual notion 
of distance, has nevertheless a system of entourages which intuitively indicate that certain 
pairs of points are the same distance apart. The completion procedure can be extended 
in a natural way to show that any uniform space can be embedded in a complete one by 
a uniformly continuous mapping which has an appropriate universal property. (From a 
categorical perspective, the 'morphisms' natural to topological, uniform and metric spaces 
are respectively continuous, uniformly continuous and isometric.) 

A topological group is a structure which is both a group and a (Hausdorff) topological 
space, such that the group operations are continuous. It is not hard to see that a topological 
group has enough structure to make it a uniform space, where addition amounts to a 'rigid 
spatial translation'. Bourbaki [3] constructs the reals by first giving the rational numbers 
a topology, regarding this topological group as a uniform space and taking its completion. 
Although elegant in the context of general work in various mathematical structures, this is 
too complicated per se for us to emulate. 

2.4.3. Dedekind's Method 

Dedekind's method identifies a real number with the set of all rational numbers less than 
it. Once again this is not immediately satisfactory as a definition, but it is possible to give 
an equivalent definition without referring to the bounding real number. We shall call such 
a set a cut. The four properties required of a set C for it to be a cut are as follows: 

1. 3x. x E C  

2. 3 x . x • C  

3. V x ~ C .  V y < x .  y e C  

4. V x ~ C .  3 y > x .  y E C  

These state respectively that a cut is not empty, is not Q in its entirety, is a 'down set', 
and has no greatest element. Again the arithmetic operations can be inherited from Q in a 
natural way, and the supremum of a set of cuts is simply its union. 

3. The Choice 

It is harder than it might appear at first sight to make the above rigorous. Defining the integers 
as sign/magnitude pairs excluding (false, 0) means that even proving the associative law 
of addition for integers represents a considerable amount of work, because there are eight 
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different cases according to the sign of each of the three integers. (Ostensibly at any rate; 
avoiding the case split requires careful exploitation of symmetry and the distributivity of 
negation over addition.) 

Defining the rationals as pairs of integers is even worse. Using cancelled fractions seems 
a bad idea because the proofs of the elementary theorems require some nontrivial lemmas 
about coprimality and divisibility. It seems that the use of equivalence classes is better; 
essentially we would have to prove similar theorems anyway in the case of cancelled 
fractions, with the added complexity of canonicalization. However the use of equivalence 
classes is slightly harder than intuition would suggest, particularly since the equivalence 
relation is not an equivalence relation over the whole type, but only on the subset with 
nonzero denominators. To see this, observe that 

(1, 2) ~ (o, o) A (o, o) ~ (1, 3) 

But clearly (1, 2) ~ (1, 3), so transitivity fails globally. Therefore many of the proofs are 
hedged with conditions about membership of the admissible subset, which renders them 
more complicated. (An alternative which is slightly cleaner, but still tedious, is to define 
the 'subtype' of nonzero integers and prove the closure of the arithmetic operators under 
certain conditions.) Finally, when it comes to constructing the reals from the rationals, 
neither of the classical methods is very appealing. 

Cauchy's method requires the generation of a significant body of 'analytical' lemmas 
about the rational numbers. Moreover, the problem of defining equivalence relations 
over subsets of types would have to be faced, which as noted above is tiresome. 

When proving the axioms for the structure, Dedekind's method requires several case- 
splits according to the sign of variables. This is mainly because the product of two 
negative rationals is positive, so the natural definition of multiplication on cuts 

X Y = { x y ] x e X  A y E Y }  

does not work. The two cuts X and Y extend to -c~ ,  so there will exist products of 
these large and negative numbers which are arbitrarily large and positive. Therefore 
the set is not a cut. 

This difficulty is usually noted in sketch proofs given in books, but to carry through in 
detail the complicated case splits they gloss over would be extremely tedious. 

A rather more sophisticated approach is suggested by Conway. Although the novel method 
for constructing the reals explained in [ 10] did not seem to be possible to formalize in HOL, 
his incidental discussion of the classical methods is perceptive. Firstly, he emphasizes the 
difficulty of constructing • from Q by Dedekind cuts: 

Nobody can seriously pretend that he has ever discussed even eight cases in such 
a theorem--yet I have seen a presentation in which one theorem actually had 64 
cases . . .  Of course an elegant treatment will manage to discuss several cases at 
once, but one has to work very hard to find such a treatment. 
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He advocates instead following the path on the lattice diagram through Q+ and R+, at least 
if Dedekind's method is to be used. This avoids the case splits (otherwise it is essentially 
the same as the signed case presented above), and as we shall see, has other advantages 
as well. 

One apparent drawback of using this path is that we lose the potentially useful intermediate 
types Z and Q. However this is not really so, because the method used to construct It( from 
~+  can be used almost unchanged (and this is where a computer theorem prover scores 
over a human) to construct Z and Q from their positive-only counterparts. 

Landau's book [19] is one of the few to present Dedekind's construction in more or 
less full detail. This also, significantly, uses the path through Q+ and ]~+. Landau takes 
the step from $~+ to R by introducing zero and negative numbers, which is similar to the 
sign/magnitude representation, and with the same problems of case splitting. Conway 
anticipates this and prefers instead the use of equivalence classes of pairs of numbers. In 
fact there is then quite a close analogy with the construction of the rationals, with addition 
taking the role of multiplication. 

4. The Theory of Semirings 

To journey along the path through Q+ and ~+,  we must know which algebraic laws for 
these structures we are going to need to get R out at the other end, and whether we are 
going to include 0. We will refer to structures like N, Q+ and ~+ as semirings, although 
to some authors [12] this implies that they contain a zero. 

Semirings can be characterized by relatively few axioms. Ordering does not have to be 
primitive; we can define an ordering as follows, whether or not the structure contains a zero: 

x < y -~ (x # y) A (9d. y : x + d )  

Investigation reveals that the following set of axioms is sufficient to allow the derivation of 
a nontrivial ordered ring by the method of equivalence classes of pairs of numbers under 
(x, y) ~ (x', y') -- (x + y' ---- x'  + y). They are chosen to be true whether or not the 
semiring contains a zero, which explains why the penultimate one looks a bit peculiar. 

. 

2 .  

3. 

4. 

5. 

6. 

7. 

8. 

Vxy .  x + y : y + x  

Vxyz.x+(y+z):(x+y)+z 

Vx y .  xy : yx  

Vx y z.  x (yz )  : ( x y ) z  

V x y z .  x ( y +  z) = x y + x z  

Vx. l x  : x 

V x y . ( x = y )  V ( 3 d . x : y + d )  V ( 3 d . y : x + d )  

I+i#i 
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9. 

10. 

It is not hard to see that the last three axioms can all be derived from the single axiom 

V x y .  x + y r  

This is a strong argument for not including a zero in the structure: we will have to prove fewer 
axioms as primitive for the semirings we construct. Further; it allows certain theorems such 
as the field axiom and the Archimedean property (see below) to be written in a simpler form. 

There is unfortunately a problem: the standard HOL theory of natural numbers does 
contain a zero. We could have defined a new type of nonzero natural numbers, but that 
seemed rather wasteful, so instead we wrote a procedure which works whether or not the 
semiring contains a zero. The procedure requires the full list of axioms above. However 
where it is possible, it is easier to prove Vx y. x + y r x and derive the others from that in 
a general way. 

There are a few extra axioms we need for particular semirings. To get from IR + to N, we 
require a form of the supremum property for ]R +. And to get from Q+ to R + we need to 
prove for Q+ both the field axiom 

VX. x - - l x  -~- 1 

and also a form of the A r c h i m e d e a n  proper ty .  This states that if we define a function 

addn n x = x + . . . + x 

where there are n terms in the sum (of course if we are sloppy with types, regarding N as a 
'subset' of the semiring, addn n x is just n x ) ,  then the following is true 

Vxy .~n .  addn n x > y  

Note that neither of the above would be true if Q+ contained a zero; they would both be 
consequent on x r O. 

5. Equivalence Relations 

Every step we are to take in the lattice, with the sole exception of the line from Q+ to 
N +, involves constructing a set of equivalence classes. To make this easier, we wrote a 
procedure to automate it, given: 

�9 A name for the new type 

* A theorem asserting that a (2-place curried) relation (say R) is an equivalence relation, 
in the following simple form: 

V x  y .  x R y  = ( R x  = R y )  
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(Here we are using infix notation for the first instance of R; we might write instead Rxy.) 

Supposing we are constructing the integers from pairs of natural numbers as explained 
above, the relation would be defined by 

(Xl, yl)R(x2, Y2) = (zl  + Y2 = z2 + Yl) 

A list of operations on the representatives together with the desired name of the cor- 
responding operators over the equivalence classes. For example, we might give it an 
addition operation defined on pairs of numbers as follows: 

(xl,  yl) + (~2, y2) = (x~ + x~, y~ + y~) 

A list of theorems asserting that the operations on representatives are all well-defined, 
in the sense that, taking addition as our example again: 

(x R x') A (y R y') ~ (x + y) R (~' + y') 

When the relevant argument or result is not of the representing type, equality takes the 
place of R. 

A list of theorems about the operations on representatives, e.g. the associative law: 

x + ( y + z ) = ( x + y ) + z  

The procedure first constructs a type of equivalence classes. The characteristic predicate 
required to select the set {R x} is formally: 

AC. 3x. C = R x 

Next, the appropriate operations on the new type are defined. For example + gives rise to 
a new operator +* (we use the star consistently, but in fact the user specifies the name of 
the operator) on the equivalence relation as follows: 

x +* Y = n((~x, x e x )  + (~y. y e Y))  

In other words, pick using the ~ operator arbitrary representatives of each equivalence 
class, operate on them and then take the equivalence class of the result. If  arguments or 
result are not of the representing type, then we avoid picking representatives or applying 
R, respectively. For example, an 'is positive' predicate would be elevated as follows: 

ispos*X = ispos(ex, x E X)  

and the addn function mentioned above as 

addn* n X = R(addn n (r x E X))  
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Finally, the proof procedure tries to convert the theorems on representatives into theorems 
about the new type. This is the only part which requires R to be an equivalence relation 
and the operations to be well defined. In the case of the associative law, we get: 

X +* (Z  +* Z) = (X +* Y) +* Z 

Our procedure does not work if we have to deal with a subset of the basic type. We could 
have generalized the procedure: one would also have to supply it with theorems expressing 
the closure of the operations with respect to this subset, and the other theorems may become 
conditional on the variables belonging to the subset. The extra complexity was not necessary 
for the task in hand. Furthermore, there are a few problems to be resolved. Consider a 
definition of multiplicafive inverse for a field of fractions in an integral domain: 

(x, y ) - I  = (y, x) 

Then one needs a condition x ~ 0 on the closure theorem. Dealing with things like this in 
a regular way seems quite awkward. 

6. Details of the HOL Construction 

We now look in a little more technical details at how the various parts were implemented 
inside HOL. 

6.1. From N to Q+ 

This is reasonably straightforward, but we do have to deal with the problem that the natural 
numbers contain 0 when we would rather they did not. The solution chosen was to use 
(x, y) to represent (x + 1)/(y + 1). 

The use of y + 1 avoids zero denominators without using subsets, which would defeat the 
equivalence class procedure. Using x + 1 avoids including zero in the rational semiring, 
which is what we want, and also makes the proofs more symmetrical and regular. The only 
drawback is that the definitions of the operations are somewhat more complicated. For 
example the addition of (Xl, Yl) and (x2, Y2) is defined as 

( ( x 1 + 1 ) ( y 2 + 1 ) + ( x 2 + 1 ) ( y 1 §  - 1 , ( y l + l ) ( y z + l )  - 1) 

The apparent extra difficulty of the proofs can be overcome by a simple tactic which manages 
to eliminate a lot of the above complexity. 

6.2. From Q+ to ~,+ 

This is the most difficult part of the whole procedure. Although we are dealing with 
semirings, the Dedekind cuts procedure is essentially identical to the full case, but includes 
none of the complicated case splits. We define the operations on cuts as follows (taking 
some liberties with the HOL notation): 
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�9 sup S = U S  

�9 X + Y = { z + y I x E X  A y E Y }  

�9 X Y = { x y l z E X  A y c Y }  

�9 X - l = { w l 3 d < l .  VxEX.  w x < d }  

Only the last of these is unobvious; the more natural definition is 

X -1 = { w l V x ~ X .  w x < l  } 

However this would mean that unless a cut denoted an irrational real, its inverse would not 
be a cut, e.g.: 

{ x ~ Q +  ]x < l } - l =  { x ~ Q +  l x <  l } 

The construction then consists of proving closure, i.e. showing that when applied to cuts, all 
the operations yield a cut (including the trivial instance of proving that the set representing 
real 1 is a cut) and that all the required axioms hold. These proofs, while mostly routine, 
are sometimes quite long, so it is not possible to discuss them all here. We sketch only the 
proof of the axiom 

V X . X - 1 X  = 1  

which is a fairly representative example. In the above and what follows, we assume X 
denotes a cut, without stating it explicitly; in fact in the HOL proofs X becomes cutX ,  
where cut is the type bijection from the real number type to the set of rational cuts. This 
means that no explicit set constraint is necessary since cut X is always a cut. Firstly we 
need the following sequence of lemmas. 

LEMMA 1 V X x y .  x E X  A y r  ~ x < y 

This follows easily from cut property 3. 

LEMMA 2 V X x y .  x ~ X A x < y ~ y f [ X  

Also a straigh(forward consequence of cut property 3. 

LEMMA 3 This states that we can get arbitrarily close to the "top" of a cut. 

VX  e. 3 x . x  E X A x  + e  ~ X 

To prove this, choose any xo E X ,  and xl  ~ X (this is possible by virtue of cut properties 
1 and 2). Then consider the sequence of rationals 

{xo + addn n e I n E 1~} 
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It is a simple consequence o f  the Archimedean property that there is an n with 

xo + addn n e > x l  

Then from Lemma 2 and the wellfoundedness o f  the naturals, we know there is a least n such 
that xo + addn n e ~ X ,  say k. Further, k ~ 0 because we know xo E X .  Consequently 

x = xo + addn ( k - 1 )  e 

has the required property. (Strictly, addn is not defined at 0 because Q+ has no zero, but 
the reasoning is essentially the same as the above.) 

LEMMA 4 This is just  a multiplicative rather than additive version o f  Lemma 3. 

V X u .  u > 1 ~ ~ x . x  �9 X A u x  C X  

To prove this, choose any xo �9 X ,  possible by cut proPertY 1. I f  uxo r X ,  then we are 
f inished Otherwise let 

e = xo(u  - 1) 

so by Lemma 3, we can pick an x with 

x c X A x + e r  

But now we have 

zo + z o ( u  - 1) �9 x A z + z o ( u  - 1) r x 

Consequently, using Lemmas I and 2, together with simple properties o f  <, we deduce that 
xo < x, and therefore x + x ( u  - 1) ~ X ,  as required 

MAIN THEOREM 

VX.  X - 1 X  = 1 

Translated into cuts, we want to show 

{ w x  I x C X A 3 d  < 1. Vy E X .  w y  < d} = {z [z < 1} 

Expressed formally in HOL, this means establishing the following logical equivalence 

Vz. (3w x . ( z  = wx )  A x  E X A (~d < 1. Vy C X .  wy  < d)) = z < 1 

This reduces to two implications. A little thought will show that the left to right implication 
is straightforward. For the other, suppose z < 1. Then it is a simple property o f  the 
rationals that we can find a d such that z < d and d < 1 (for example d = (z + 1)/2). 
Therefore z -  l d > 1. By Lemma 4, we can choose an x such that 
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X c X A z - l d x  C X  

Now let w = zx -1 .  Then w, x and d are going to be witnesses for  the correspondingly 
named existentially quantified variables. It remains only to prove 

Vy c X .  w y  < d 

But i f  y E X ,  then by Lemma 1, y < z - l d x ;  and z = wx, so we have y < w - l x - l d x ,  i.e. 
w y  < d, as required. 

6.3. From ~+ to R 

Most of this is the same as the construction of Z and Q from their half-counterparts. The 
extra theorem that has to be transferred across is the supremum property. The supremum 
property for the positive reals states that 

Every nonempty set of positive reals which is bounded above has a supremum. 

The first step is to transfer this result to the type of reals. Although not vacuous (formally, 
the positive reals are a completely different type), this is straightforward because the type 
bijections define an isomorphism between the type of positive reals and the positive elements 
of the type of reals. The theorem now becomes 

Every nonempty set of real numbers which is bounded above, and all of whose 
elements are strictly positive, has a supremum. 

We generalize this in two stages. Firstly it is simple to prove the following strengthening: 

Every nonempty set of real numbers which is bounded above, and which contains 
at least one strictly positive element, has a supremum. 

(The property 'nonempty' is actually superfluous here, but we keep it in for regularity.) This 
follows because 1 is a supremum of the whole set if and only if it is a supremum of the strictly 
positive elements of it, since any positive number is greater than any negative number. 

Finally we prove the lemma that for any d, positive or negative, l is a supremum of S if 
and only if I + d is of {x + d ] z c A'}. Now this can be used to reduce the case of any 
nonempty bounded set to the above, by choosing a d to 'translate' it such that it has at least 
one strictly positive element. We now have the full result: 

Every nonempty set of real numbers which is bounded above has a supremum. 

7. Interface Issues 

It is desirable to use the normal arithmetic symbols like + both for the real numbers and the 
natural numbers (not to mention the integers, the rationals, and other uses such as binary 



50 HARRISON 

summation in process calculi). At present, HOL does not have a mechanism to support 
overloading of constant names, but it is hoped to add something in the future. At present 
the interface map feature is used to allow the user to swap easily between using + etc. for 
different purposes, but it is not possible to use the same symbols for different operations in 
the same term. Furthermore, a different notation is required for real number constants. At 
present the ampersand is used as an interface map for the 'inclusion' function L : N ~ ~,  so 
the real constants can be written &0, &l  etc. This is reminiscent of programming languages 
like C and Standard ML where the floating-point constants are distinguished syntactically 
from integer ones by being written 1.0 or 1el etc. One could in fact fix the HOL parser to 
allow just such notation; this is largely a matter of personal taste. 

8. Building on the Real Number Axioms 

To make the reals useful as a library, we have built a fair amount of theory on top of the basic 
construction. This includes a large number of algebraic lemmas, and enough mathematical 
analysis to define and prove the main properties of the transcendental functions like exp 
and sin. We will outline the main results. 

8.1. Topology and Metric Spaces 

A metric on a set S is an abstraction of the notion of distance between a pair of points 
in ordinary Euclidean space R n. A function p : S • S ~ R is a metric iff it has the 
following properties: 

1. Vxy. p ( x , y ) = O - - x = y  

2. vx  y z. p(y, z) < p(:~, y) + p(x, z) 

The latter is usually called the triangle law; in the usual metric on ~2 it states that one 
side of a triangle is no greater than the sum of the other two sides. From the above two 
properties, it follows quite easily that a metric is both nonnegative (Vx y. p(x, y) >_ 0) and 
symmetric (Vx y. p(x, y) = p(y, x) ). 

In subsequent developments we invariably use the usual metric on ~, namely: 

p(x ,  v) = Ix - ul 

but many of the theorems we prove are true in a more general framework. (In fact some are 
proved in the even more general structure of a topological space.) Since on any set we can 
define the discrete metric: 

p (x ,  y) = (x  = y) ~ 0 1 1  

we can define a type operator (a)metric. (HOL insists that all types be inhabited.) 
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8.2. Convergence Nets 

Nets generalize the notions of  sequences and pointwise limits. They are simply functions 
out of  a set with a directed partial order, i.e. one where for any x and y there is a z with z > x 
and z > y. Together with their now more popular relatives, filters, they are important in 
their own right since many results about metric spaces remain true in arbitrary topological 
spaces if we consider nets, rather than merely sequences. For example, a generalization 
of  the Bolzano-Weierstrass theorem is as follows: a set is compact iff every net has a 
limit point. 

Our use of  nets is quite prosaic: they avoid proving twice various theorems about com- 
bining limits both for the limits of sequences of  reals, and for pointwise limits of  functions 

~ ]~. An example is the theorem which asserts ' the limit of a sum is the sum of the 
limits' ,  i.e: 

From the general net theorems, the two cases we are interested in can be derived by 
instantiating the partial order as follows: 

�9 The usual order > on the natural numbers. 

�9 Closeness under a metric to the limit, i.e. x _> x '  if p(x, Xo) < p(x 1, Xo). In fact 
reverse inclusion of neighbourhoods works in an arbitrary topological space, but we do 
not need such generality. 

More details of  the theory of nets are given in the classic book by Kelley [17] and many 
more modem books on general topology. 

8.3. Sequences and Series 

Firstly some net theorems are specialized to sequences, yielding various combining theo- 
rems for sequences. Further theorems specifically about sequences are then proved, includ- 
ing the following: 

A bounded and monotonic sequence converges. Suppose the sequence is increasing, 
the other case being analogous. Consider the set {xn I n E N}. This must have a 
supremum l such that for any e > 0, there exists an N with IXN - - / I  < c. But because 
the sequence is increasing, this means that Vn > N. I - e < Xn < l, so the sequence 
in fact converges to l. 

Every sequence has a monotonic subsequence. Call n a terrace point if we have 
Vm > n. xm < xn. If  there are infinitely many such terrace points, we can just form 
a decreasing sequence by successively picking them. If  on the other hand there are 
only finitely many terrace points, then suppose N is the last one (or N = 0 if there are 
none). Now for any n > N,  there is an m with Xm > xn (otherwise n would be a 
terrace point). Hence we can choose a (strictly) increasing subsequence by repeatedly 
making such choices. 
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�9 Every Cauchy sequence converges. A Cauchy sequence is bounded because for any 
c > 0, say e = 1, we can find an N such that Vn >__ N, m > N. Ixm - x~ I < e, so 

ma~x(X0,...,ZN-1;XN + s 

is an upper bound. Hence we can find a subsequence which is both bounded and 
monotonic, and hence convergent. But now because of the Cauchy criterion, the limit 
of the subsequence is in fact a limit for the sequence itself. 

We also prove a very useful general principle, codifying Bolzano's notion of proof by 
bisection. Suppose we want to establish that a property holds for an interval [a, b] (usual 
notation for {x I a < x A x < b}). Suppose that this property is such that when it is true of 
two adjacent intervals, it is true for the combined interval. Then the principle of bisection 
states that it is sufficient to prove that it is true for any sufficiently small interval containing 
any given point of the original interval. 

For the proof, suppose the property is false for some interval. Then we can divide the 
interval in half, and the property must fail for one of the halves (otherwise by the composition 
property it would be true of the whole interval). Picking the interval (or one of the intervals) 
where it is false, we can repeat the process of bisection. In this way we get a decreasing 
nest of intervals. Since both sets of successive endpoints form monotone sequences, it is 
not hard to show that there is precisely one point common to all of them. But we know 
the property is true of all sufficiently small intervals surrounding this point, which gives a 
contradiction. The formal statement of the principle is as follows: 

VP. (Va b c. a < b A b < c A P(a,b) A P(b,c) 
P(a,c))  A (Vx. 36. 0 < t A (Ya b. a _< x A x < b A ( b -  a) <(5 
P(a, b)) ~ Va b. a < b ~ P(a, b) 

Next, we move on to infinite series, defined as limits of a finite sums. Additional theorems 
proved are mainly tests for convergence such as the comparison test and ratio test. 

8.4. Limits, Continuity and Differentiability 

Once again we specialize the net theorems to give various combining theorems for pointwise 
limits. Next we define the notion of continuity; a function f is continuous at a point x when, 
as h --~ 0, 

(Ah. f ( x  + h)) , f ( x )  

and proceed to prove some of the classic theorems of elementary real analysis: 

A function continuous on a closed interval is bounded. This can be proved by bi- 
section, since boundedness obviously has the required composition property, and the 
boundedness for sufficiently small regions follows immediately from continuity. 
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A function continuous on a closed interval attains its supremum and infimum. The 
following slick proof is taken from [5]. Suppose f does not attain its supremum M.  
Then the function defined by Ax. ( M - f ( x ) ) - 1  is continuous on the interval (a previous 
theorem about continuity assures us of  this because the denominator is never zero), and 
therefore it is bounded, by K say, which must be strictly positive. But this means that 
we have M - f ( x )  > K -1, which is a contradiction because M is a least upper bound. 

Rolle 's theorem: if f is continuous for a < x < b and differentiable for a < x < b, 
and in addition f (a )  = f(b),  then there is some a < x < b with f ' ( x )  = 0. We know 
that f attains its bounds, and in fact its derivative must be zero there, otherwise it would 
exceed its bounds on one side or the other. 

The Mean Value Theorem states that if f is continuous for a < x < b and differentiable 
for a < x < b, then there is some a < x < b with f (b)  - f (a )  = (b - a ) f ' ( x ) .  A 
proof is easy by applying Rolle's theorem to the function: 

f ( x )  - ( f ( b )  - - a )  

A function whose derivative is zero on an interval is constant on that interval. This is 
an immediate corollary of  the Mean Value Theorem. Note that it can also be proved 
directly by bisection, using the property: 

P(x,  y) =- f ( y )  - f ( x )  < C(y - x) 

�9 Bolzano's  Intermediate Value Theorem. This states that for any continuous function 
f and interval [a, b], if f (a )  < f(b),  then for any y between f (a )  and f (b)  there is 
an x between a and b such that f ( x )  = y. Intuitively this says that if a continuous 
function starts below a horizontal line and ends above it, then it must cross the line 
(this corresponds well with the intuitive idea of continuity). This, or to be precise its 
contrapositive, is also proved by bisection. Suppose f is continuous on [a, b] but never 
attains the value y. Then it is easy to see by bisection that y cannot lie between f (a )  
and f(b).  

We then move on to defining differentiation in the usual manner. The various combining 
theorems are mostly straightforward; one exception is the chain rule. In Leibnizian notation 
the theorem is very suggestive: 

dy dy du 
dx du dx 

It would seem that to prove it we need simply observe that the above is true for finite 
differences, and consider the limit. However this does not work easily, because we have 
to consider the possibility that du may be zero even when dx is not; crudely speaking, 
the problem is that limits are not compositional. However continuity is compositional, 
and the theorem follows quite easily from the following alternative characterization of 
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differentiability, due to Carath6odory, namely that f is differentiable at x with derivative 
f r (x )  if there is a function g~, continuous at x and with value f ' ( x )  there, such that 

f ( x ' )  - f ( x )  = gx(x) (x '  - x)  

for all x'. The equivalence with the usual definition is easy to establish. 
We also prove results about the continuity and differentiability of inverse functions; the 

latter is also eased somewhat by using the Carath6odory definition [18]. 
We define next a useful piece of ML code, a function DI FF_CONV. This is a conversion 

which is given an expression denoting a function R ~ R and a list of known derivatives. 
It will return a theorem about the derivative of the given function, applying the chain rule, 
product rule etc. recursively, and automatically generating necessary conditions, such as 
nonzero denominators. This is very useful for reasoning about the transcendental functions, 
where we will want to differentiate some quite complicated expressions which would be 
tedious to do by hand. 

8.5. Power Series 

Here we bring together the theories of infinite series and differentiability, proving a few 
results about power series, in particular that they are characterized by a 'circle of conver- 
gence' within which they can be differentiated term-by-term. This latter result was in fact 
the most difficult proof in the whole undertaking. Had we been developing analysis for 
its own sake, we would have proved some general results about uniform convergence. As 
it is, we prove the result by direct manipulation of the definition of derivative, following 
Theorem 10.2 in [6]. The theorem requires both the first and second formal derivative series 
to converge within the radius of convergence. This does in fact follow in general, but we 
did not need to prove it because the power series we are concerned with differentiate to 
'each other', so we already have convergence theorems. 

We also prove Taylor's theorem in its full infinite series form. In fact it is no longer used 
in the subsequent development, but could be useful for giving error bounds when truncating 
infinite series. 

8.6. The Transcendental Functions 

The functions exp, sin and cos are defined by their power series expansions (we do not 
need Taylor's theorem to do this): 

X 2 X 3 
exp(x) -- l + x + ~ - .  -F~-. + . . .  

X 3 X 5 X 7 

sin(x) ---- x - ~ +  5--[- 7 - [ + " "  

X 2 X 4 X 6 

cos(x) = 1 - ~ +  4--[. - 6-]-. + " "  
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We show using the ratio test that the series for exp converges, and by the comparison test 
that the other two do. Now by our theorem about differentiating infinite series term by term, 
we can show that the derivative of  sin is cos, and so on. Furthermore, a few properties like 
cos(0) = 1 are more or less immediate from the series. Now we are in a position to prove 
more interesting properties. As an example, to show that exp(x  + y) = exp(x)  exp(y) ,  
consider the function: 

Ax. exp(x  + y) exp(x)  -1 

Our automatic conversion, with a little manual simplification, shows that this has a derivative 
which is 0 everywhere. Consequently, by a previous theorem, it is constant everywhere. 
But at x = 0 it is just exp(y) ,  so the result follows. 

The addition formulas for sin and cos can also be proved in this way, but we need the 
slight trick of combining the two as follows to make the procedure work: 

Ax. (sin(x + y) - (sin(x) cos(y) + cos(x) sin(y)))  2 
+ (cos(x + y) - (cos(x) cos(y) - sin(x) sin(y)))  2 

By the same method as above we can prove that this function is always zero, and the addition 
formulas follow easily. Periodicity of the trigonometric functions follows from the addition 
formulas and the fact that there is a least x > 0 with cos(x) = 0. This latter fact is proved 
by observing that cos(0) > 0 and cos(2) < 0. The Intermediate Value Theorem tells us 
that there must therefore be a zero in this range, and since sin(z)  is positive for 0 < x < 2, 
cos is strictly decreasing there, so the zero is unique. (These proofs involve some fiddly 
manipulations of  the first few terms of the series for sin and cos.) The zero is of course 
7r/2, and this serves as our definition of ~r. 

The functions In, asn, acs and am are defined as the inverses of their respective counter- 
parts exp, sin, cos and tan.  Their continuity and differentiability (in suitable ranges) follow 
from the general theorems about inverse functions, with a bit of algebraic simplification. 

9. Applications 

There seem to be several promising areas of application, which have only been partially 
investigated so far. 

9.1. Verification o f  Floating-Point Hardware 

This seems an ideal area for theorem-proving; it is hard to see how one could verify by 
model-checking a circuit to calculate logarithms, for example. We have already done a 
verification of a toy floating-point square root circuit. (By toy we mean that it uses a 
simple floating point format rather than the full IEEE [14] standard with special cases and 
denormalized numbers. Also our circuit is probably inefficient compared with a commercial  
design.) It is hoped fn the future to do verifications of  more realistic circuits and/or circuits 
for more complicated functions like sin. 
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9.2. Numerical Work 

It would be quite easy to program HOL to produce mathematical tables with high assurance 
(for human consumption or insertion of constants into hardware or software). After all, this 
is what Babbage designed his Difference Engine to do! More generally, there are many 
areas of application in the error analysis of numerical methods [23]. 

9.3. Computer Algebra 

Computer algebra systems are widely used by applied mathematicians and others. In view 
of their complexity it seems likely that they include bugs, or consciously implement rules 
of a theoretically dubious nature. 

Theorem proving offers two possible solutions. Firstly, we can implement a computer 
algebra system using a system like HOL as a rigorous base. Our differentiation conversion 
provides a (rather trivial) example of how this can be done--however to match the com- 
plicated algorithms and heuristics of commercial computer algebra systems would be an 
enormous undertaking. 

An alternative is simply to link a theorem prover and computer algebra system, because 
many problems, such as solving equations, factorizing polynomials and finding integrals, 
require complicated methods, but the answers can be checked quite easily, so it is quite 
feasible to do only this part in the theorem prover. 

These possibilities are explored, using the example of integration, in our forthcoming 
paper [13]. 

9.4. Hybrid Systems 

Hybrid systems are those which involve both analogue and digital components, or both 
discrete and continuous models. These are of course very important when computers are 
used in real-world applications such as chemical plant controllers. Various formalisms for 
dealing with hybrid systems have been proposed [20], and it may well be useful to have a 
real numbers theory. 

10. Conclusion and Related Work 

As far as we are aware, the only previous construction of the classical reals in a computer 
theorem prover was by Jutting [16], who translated Landau's book [19] into Automath. 

The reals can also be developed in a way which is 'constructive' in the sense of Bishop [2]. 
The usual construction is an elaboration of Cauchy's method where the rate of convergence 
of a Cauchy sequence is bounded explicitly. The resulting objects do not enjoy all the 
properties of their classical counterparts; for example Vx y. x < y V y < x is not provable. 

The definition of the constructive reals has been done in NuPRL, with a proof of their 
completeness, i.e. that every Cauchy sequence converges [8]. Much of the construction, 
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as well as some work on completing a general metric space, has been done in the LEGO 
prover [15], which is also based on a constructive logic. 

The full construction described here, from N to •, took about two weeks, but it would 
have taken much longer without careful selection of strategy. In particular, it seems that 
a quotient procedure tends to be much easier than picking canonical elements. Previous 
constructions of the integers from the naturals have been made by others using canonical 
representations, and their greater complexity seems to bear out this point. 

The additional work on mathematical analysis took several months, on and off. Analytical 
proofs tend to have quite a lot of minor details which need to be filled in, particularly tedious 
bits of arithmetic reasoning. In the near future, derived decision procedures will become 
available which will greatly ease this sort of task without compromising the security of 
the system. 

The fact that the HOL system can be programmed easily (the presence of ML rather than 
just an ad-hoc macro language, together with the simplicity of the underlying term struc- 
tures) is a major advantage. Implementing procedures like the quotient types function and 
the differentiation conversion would otherwise be very difficult. Furthermore, even though 
some proofs are long and tedious, one can always get there with a little patience because 
of the system's great flexibility. 

Here are some indicators of the 'size' of the proof. The complete theories described here 
generated 167608 primitive inferences, and took 92 minutes to build on a 48Mb SPARC- 
server. The total ML source is 10080 lines, including comments. The parts leading just to 
the real number "axioms" generated 49017 primitive inferences, took 14 minutes to build, 
and consisted of 2098 lines of ML. 

The nature of the underlying logic has some impact on the formalization. We have already 
discussed the effect of total functions on the division operation. They also mean that certain 
traditional notations are less useful; for example we cannot infer from lim(x~) = l that 
the sequence (xn) actually tends to a limit; the lim function is always defined. Instead, we 
tend to use relational notations like x ---+ l in preference. In most cases this is no handicap; 
indeed it is often clearer. 

If analysis were to be taken further, some extensions to the logic would be convenient. 
For example, it is difficult to reason in a clean way about arbitrary n-ary Cartesian products 
without some simple form of dependent types. Furthermore, subtypes would allow more 
transparent embedding of one number system in another. It is perhaps difficult to know how 
difficult some parts of mathematics are to formalize without actually trying. Devices like ad- 
joining infinities to the real line are easily waffled over, but perhaps not so easily formalized. 

Formalization itself can be clarifying. One is forced to be less sloppy about things like 
variable binding (for example, what does f~(x) = g(x) mean?). To avoid proving almost 
identical theorems twice, we saw the need for some common framework for limiting pro- 
cesses before we were actually aware that such frameworks (nets and filters) already existed. 
This constitutes an example of how abstraction can be driven by mundane considerations 
of economy, rather than of beauty. 

We still have a long way to go in providing specialized proof support for reasoning about 
the real numbers. Certain recurring themes, such as proof by bisection, have been codified 
in actual HOL theorems, but more experience is required to find out what else is desirable. 
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Applications have only just got off the ground, but it seems to be fertile territory for 
computer-aided verification by theorem proving, 
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