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Abstract. We describe how the HOL theorem prover can be used to check and apply rules of 
program refinement. The rules are formulated in the refinement calculus, which is a theory of 
correctness preserving program transformations. We embed a general command notation with a 
predicate transformer semantics in the logic of the HOL system. Using this embedding, we express 
and prove rules for data refinement and superposition refinement of initialized loops. Applications 
of these proof rules to actual program refinements are checked using the HOL system, with the 
HOL system generating these conditions. We also indicate how the HOL system is used to prove 
the verification conditions. Thus, the HOL system can provide a complete mechanized environment 
for proving program refinements. 
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1. Introduction 

Stepwise refinement is a methodology for developing programs from high-level 
program specifications into efficient implementations. In this approach to pro- 
gram development, the development of a program includes the proof of its 
correctness. This can be compared with program verification, where the pro- 
gram is first developed, using informal methods, and then checked for desired 
correctness properties. The refinement calculus [1, 2] is a formalization of the 
stepwise refinement approach, based on the weakest precondition calculus of 
Dijkstra [3]. The refinement calculus is a calculus of program transformations 
that preserve total correctness. If 6' and G" are commands (program fragments), 
then the refinement C <_ C' holds if and only if C' satisfies every total correctness 
assertion that C satisfies. 

The refinement relation is reflexive and transitive. Furthermore, the ordinary 
control structures of sequential programming (sequential composition, conditional 
composition, and iteration) are monotonic with respect to the refinement relation. 
This means that if the refinement 6" _< 6"~ holds, then we can replace 6' by C" in 
any program context. 

A refinement step 6" < 6" is often proved by appealing to a high-level re- 
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finement rule. Particularly important are rules which encode useful program 
development principles. One example of such a principle is data refinement 
(sometimes called data retification), where a data structure is replaced by an- 
other one in such a way that total correctness of the program is preserved. Data 
refinement has been extensively studied [4, 5, 6] and it is a central program 
development principle, e.g., in the VDM method [7]. Another high-level refine- 
ment principle is superposition, where a layer of computation is added on top 
of an existing program [8, 9, 10]. Rules for data refinement and superposition 
make it possible to develop programs from specifications in just a small number 
of major refinement steps. 

In recent years, there has been a growing interest in using mechanized formal 
systems (theorem provers) in the design of software. Most of this work has been 
directed at verification where the correctness of an already-developed program is 
checked. Examples of this can be found in [11], using the Boyer-Moore prover, 
in [12], using the Larch theorem prover (LP), and in [13], using the Nuprl 
system. The HOL theorem prover, which has previously been used mostly for 
hardware verification [14], has also been used for program verification. Various 
programming notations have been semantically embedded in the HOL logic. 
Examples include a simple while-language [15], CSP [16], UNITY [17], and 
guarded command languages [18, 19]. 

To our knowledge, there have been very few attempts to construct tools 
that support program refinement, based on theorem proving. Jim Grundy has 
implemented a system to support a transformational style of reasoning in HOL. 
He has used it to construct a tool for refinement in a framework where programs 
are represented by predicates [20]. There are also a few examples of refinement 
editors, which support program refinement in the same style as we consider in this 
paper [21, 22]. However, these tools generally work on two independent levels. 
A verification condition generator produces formulas that must be checked for 
validity, in order for a given refinement to hold. These formulas are then checked 
using a separate system, e.g., by manual inspection or using a theorem prover. 

The aim of this paper is to show that it is possible to use a theorem prover 
as a basis for a unified system for program refinement. Such a system would 
consist of three parts, all represented in the theorem prover. First, we need 
a programming notation, semantically embedded in the logic of the theorem 
prover. Second, we need a set of refinement laws, the correctness of which 
have been established by proving the laws as theorems in the logic. Third, 
we need infrastructure for handling program refinements within the logic. We 
describe a mechanization of some aspects of the refinement calculus in the HOL 
theorem prover. 

We represent the semantics of a simple programming notation in HOL. As 
a basis for this we use previously reported work on mechanizing a command 
language with a weakest precondition semantics using the HOL system [19, 23]. 
The main contribution of this paper is the representation in HOL of three high- 
level refinement principles. These are data refinement, backward data refinement, 
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and a special formulation of superposition refinement. For each of these principles, 
we have formulated proof rules and proved their correctness using HOL. We also 
show by means of small examples how these proof rules can be used to check 
actual program refinements using HOL. Thus, our intention is to show how the 
HOL system can be used both to prove the correctness of high-level refinement 
rules and to check applications of these rules in actual program developments. 

2. The HOL system 

The HOL system is an interactive theorem-proving environment for higher-order 
logic. Its logic is an extension of Church's Simple Type Theory [24], with type 
variables. Essentially, it extends typed first-order logic by permitting lambda 
expressions that denote functions. It also permits higher-order functions and 
quantification over arbitrary types. 

All HOL terms must have a well-defined type. Atomic types are, e.g., 
bool (the booleans) and ntm (the natural numbers). Compound types can be 
constructed using the pairing operator x and the function space operator ---,. 
HOL also permits polymorphic types, through the use of type variables. Type 
variables always begin with an asterisk ,. 

The user accesses HOL through an ML interface. By evaluating ML expres- 
sions, the user can create new theories, access existing theories, make definitions, 
and prove theorems. 

An important feature of the HOL system is the amount of existing infrastruc- 
ture for defining concepts and for proving theorems. Theorems can be proved 
by forward proof, applying inference rules (ML functions) to terms and existing 
theorems. The HOL system also supports goal-directed proof: the user sets up 
a goal and then proves it using goal-reducing functions called tactics. Elaborate 
tactics can be programmed in the ML language. There are a number of libraries 
in the HOL system. In these libraries, the user can find theorems about different 
data structures proved and ready to use, e.g., theorems about natural numbers, 
lists, trees, sets, etc. 

A more detailed description of the HOL system and its logical foundations 
can be found in [14]. 

Notation. We use standard symbols for the logical connectives, and the symbols 
F and T for truth values (values of boolean type). Also, we let the scope 
of binders and quantifiers extend as far to the right as possible. We usually 
write function application without parentheses, and for higher-order functions 
application associates to the left. Thus f x is the same as f(x) and f x y is the 
same as (f  z)y. 

HOL terms and interaction with the HOL system are written in t e l e t y p e  
font. Theorems that have actually been proved using HOL are indicated by a 
leading turnstile symbol t-. To make formulas more readable, we generally omit 
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type information that can be inferred from the context. We use small letters to 
denote the H O L  representation of  objects. For example, we write P or Q for 
predicates, and p or q for the H O L  representation of predicates. 

The reader should note the following features of the H O L  syntax. Lists are 
written in square brackets, with semicolon separating the elements, e.g., [1; 2, 
3]. NIL is the empty list and the list functions liD, TL, APPEND, and LENGTH have 
their obvious meaning. 

3. Predicates and predicate transformers 

The notion of refinement that we have represented in H O L  is based on weakest 
preconditon semantics [3]. In such a semantics, the meaning of a command is a 
predicate transformer, i.e., a function from predicates to predicates. In order to 
define this semantics, we first explain what predicates are, and how we represent 
them in HOL.  

3.1. States 

Let u be an arbitrary list of distinct variable names. The state space ~ ,  over 
the variables u is a mapping which assigns a value to every variable in u. We 
may assume that every variable x is associated with a value set (the type of x). 
For example, (b = T,x  = 0, x = 1) is a state in ~]~, where u is the list (b, x, y) 
and b is boolean while x and y range over the natural numbers. 

In HOL,  this state space is represented by the type boo l •215  and a 
state is represented by a tuple of values. Note  that in the H O L  representation 
there are no variable names. Instead, each position in a state tuple corresponds 
to a variable. Thus, the state mentioned above is simply represented as (T, 0, 1). 

When  we work in H O L  with state spaces in general, we assume that they 
have the polymorphic type *s. In particular cases, this type will be instantiated 
to a state tuple. 

3.2. Predicates 

For a given list of variables u, we define the predicate space Predu to be the set 
of all functions from )--~ to the set of truth values {F, T}. The elements of 
Pred,, are called predicates of arity u. We say that a predicate P holds in the state 
c r i f P a  = T. 

A predicate P is said to be  stronger than a predicate Q if Q holds whenever 
P holds. This gives us a partial order < ("stronger-than" or "implies") on Pred,: 

p _< Q d~ (Va. P a  ~ Qa) 
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We also lift logical connectives from booleans to predicates. For example, 
P A Q is the predicate which holds in a state ~ if and only if both P and Q hold 
in ~r. Negation, disjunction, and implication on predicates are defined similarly. 
The predicate which is everywhere false is called false. Similarly, the predicate 
which is everywhere true is called true. 

The predicate space Pred~ with the partial order _< is a complete lattice, which 
means that we can generalize conjunctions and disjunctions to be taken over 
arbitrary sets of predicates. For example, /~ie~ Pi is the weakest predicate which 
is stronger than all the predicates Pi, where i ranges over an arbitrary index set L 

Representing predicates in HOL. Since states have generic type *s, predicates 
have type , s ~ b o o l ,  which we abbreviate ( , s )pred.  As an example, consider 
the predicate z < y on the same state space as in the example above. It is 
represented in HOL as the term 

A(b, x, y). x < y 

Similarly, any given predicate can be written as a term in higher-order logic, 
provided that we know what the underlying state space is. 

Substitution in predicates is represented by a combination of function appli- 
cation and lambda abstraction. As an example, the substitution of 2 for z in the 
above predicate is represented as 

A(b ,x ,y ) .  (A(b ,x ,y) .  x < y ) ( b ,  2, y) 

which by the HOL rule of beta conversion is equal to 

a(b, x, y) .  2 < y 

This corresponds exactly to the syntactic substitution of 2 for x in z < y. 
The partial order on predicates is defined in the obvious way: 

F-d~f p implies q = Vs. p s :~ q s 

We define the logical operators on predicates as indicated above. For example, 
the defining theorem for conjunction is as follows: 

~-def P and q = As. p s A q s 

where s has type *s. We define the operators not, or, imp, and the predicates 
false and true similarly. 

We also define greatest lower bounds (generalized conjunctions) and least up- 
per bounds (generalized disjunctions) over sets of predicates. Sets are represented 
by their characteristic functions so the defining theorems are as follows: 

~-def glb P = As. Vp. P p =~ p s 
~def lub P = As. 3p. P p A p s 
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where p has type (*s )p red~boo l ,  i.e., it represents a set of predicates. 
For simplicity, we have defined and, or ,  imp, and imp l i e s  to be infix 

curried operators. 

Chains and limits. A sequence A = (a0, a l , . . . )  of elements of some type * is 
formalized as a function A :num~ . .  Thus the ith element ai is represented by A 
i .  

An ascending sequence of predicates is called a chain. The join of such a 
chain is called its limit. This leads us to make the following definitions: 

~-aeI chain Q = Vn. (Q n) implies (Q(n + i)) 

~-dey limit Q = lub (Aq. 3n. q = Q n) 

Limits of chains are used in Section 5.2, to give an alternative characterization 
of the semantics of iteration. 

3.3. Predicate transformers 

A predicate transformer is a function that maps predicates to predicates. If the 
predicate transformer f has type Predv ~Predu, we say that f has ar/ty u +-- v. 
The reason for the reverse arrow notation is that such a predicate transformer 
f can be interpreted as a command executed in an initial state in ~ u  and 
terminating in a final state in ~ v  (see Section 4). 

The conjunction and disjunction operators on predicates can be lifted to 
predicate transformers. Thus, e.g., f /x  f '  is a predicate transformer which maps 
a predicate P to the predicate f P A f '  P. Similarly, the partial order can 
be lifted: 

f <_f'~fVP. f P<_f' P 

Since predicate transformers are functions, they can be composed. The 
composition f o f '  is defined and has arity u ~ w if f has arity u ~ v and f '  
has arity v ~ w. 

Characteristic properties of predicate transformers. A predicate transformer f is 
monotonic if it preserves the partial order on predicates, i.e., if 

P ~ Q ~ f P ~ f Q  

holds for all predicates P and Q. Monotonicity is important, since nonmonotonic 
predicate transformers never denote programs in our framework. 

In addition to monotonicity, we define a number of other properties that 
predicate transformers may have. A predicate transformer f is said to be 
conjunctive if it distributes over nonempty conjunctions, i.e., if 
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/ (A n) = A ( / n )  
iCI iEI 

holds for arbitrary nonempty index set I. Similarly, f is disjunctive if it dis- 
tributes over nonempty disjunctions and continuous if it distributes over chains of 
predicates. Furthermore, f is said to be strict if f false = false. The importance 
of these properties will become clear in Section 4. 

3.4. Predicate transformers in HOL 

In HOL, predicate transformers are represented by the type 
(*s ' )p red  --+ (*s)pred, which we abbreviate (* s ,* s ' ) p t r ans .  Here, *s and 
*s'  are the types of the underlying initial and final state spaces (note that these 
state spaces need not be the same). 

Characteristic properties of predicate transformers are defined in a straight- 
forward way. For example, monotonicity is defined as follows 

~y monotonic f =Vp q. p implies q: :~( f  p) implies (f q) 

We will return to predicate transformers in HOL in Section 5. 

A least fixpoint operator. For the semantics of iteration, we need least fixpoints 
of mototonic predicate transformers. We do not go into details here, we simply 
assume that f i x  f gives the least fixpoint of an arbitrary monotonic predicate 
transformer f. The definition of f i x  and the proofs of basic fixpoint properties 
are quite straightforward in HOL. In particular, the following two theorems 
together show that f i x  really is the least fixpoint operator: 

monotonic f (f(fix f )  = fix f )  

u (f p) implies p ~ (fix f) implies p 

4. A c o m m a n d  notat ion 

In the weakest precondition semantics, a command C denotes a predicate trans- 
former wp(C, .) such that wp(C, Q) holds in a state a if and only if execution of 
C from initial state a is guaranteed to terminate in a final state where Q holds 
[3]. For example, the weakest precondition semantics of sequential composition 
and assignment are given as follows: 

wp(C; C', Q) = wp(C, wp(C', Q)) 
wp(x := E, Q) = Q[E/x] 

In this section, we introduce a command notation with a weakest precondition 
semantics. For simplicity, we identify commands with their semantic functions, 
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so we write C Q rather than wp(C, Q). If C Q holds in a state a, we say that 
C establishes the postcondition Q when executed in initial state a. 

4.1. A basic command notation 

We do not define a language with a close syntax. Instead, we define a number 
of useful constructs, by describing what predicate transformers they denote. The 
notation can then be extended by introducing new commands later on. 

First of all, we introduce some constructs that have traditionally been used in 
weakest precondition semantics. The assert command, (multiple) assignment, se- 
quential composition, and conditional composition denote predicate transformers 
according to the following definitions: 

{P}Q 

(x := E)Q 

(c; C')Q 

(if G ~ C11G' --. C' fi)Q 

def 
= P A Q  
def 
= Q[E/x] 
def 
= c(c 'Q) 

de___f (G V G l) A (G ~ C Q) A (G' :=~ C' Q) 

The assert command {P} is an assertion about the state. If P holds, then it does 
nothing, otherwise it does not establish any postcondition, not even true (in this 
case, it can be interpreted as being nonterminating). The other commands have 
their standard intuitive interpretation [3]. 

Each command in our notation has an ar/ty, which is the same as the arity of 
the predicate transformer it denotes. The arity indicates an assumption about 
what the global state space is. For example, if we work in the global state space 
(b, x, y), then the arity of the assignment x := E is (b, x, y) ~ (b, x, y). Note 
that the arity of a command is not directly related to the free variables occurring 
in a syntactic representation. The free variables of the assignment command 
x := x + y are z and y, but the arity of this command depends on what the 
underlying global state space is. Generally speaking, the arity of this assignment 
is u ~ u for any u containing both x and y. 

For iteration, we use the notation 

do G1 ~ C1 rl... I1G• ~ Cn od 

Intuitively speaking, an iteration is executed by repeatedly evaluating all the 
guards Gi and nondeterministically executing one of the commands Ci whose 
guard evaluated to T. This is repeated until no guard evaluates to T, at which 
point execution terminates. The semantics of iteration is most easily given by 
using least fix points. Details about how this is achieved can be found elsewhere, 
e.g., in [25]. 

Healthiness conditions. The commands introduced so far all satisfy the so-called 
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"healthiness conditions" of Dijkstra [3], They are monotonic, conjunctive, strict, 
and continuous. Conjunctivity can intuitively be interpreted as saying that the 
nondeterminism associated with the iteration is "demonic." Strictness means that 
a command can never establish the postcondition false. It can be interpreted as 
saying that commands are total, in the sense that they can always be executed, 
no matter what the initial state is. Continuity corresponds to the assumption 
that nondeterminism is bounded, i.e., there is never a choice between an infinite 
number of possible final states. 

4.2. A nondeterministic assignment 

We define a notation for a nondeterministic assignment, which generalises the 
ordinary assignment. The intention is to define a command which nondetermin- 
istically chooses among a number of possible final states. A similar command was 
introduced in [26], as a way of expressing arbitrary input-output specifications. 

Assume that M is a relation on ~ x ~ ,  written as a curried function. The 
nondeterministic assignment (u , v ~ . M )  is then defined as follows: 

def vt Vt (u * v ' .  M ) Q  u = Vv' .  M u =~ Q 

The nondeterministic assignment is not strict. If the initial state u is such that 
M u v does not hold for any choice of v, then the above definitions say that 
( u .  v' .  M) establishes any postcondition Q, even false. In this case we say that 
the nondeterministic assignment is miraculous, because it seemingly can make 
the predicate false hold. These kinds of "miracles" have been shown to be useful 
in program development [27]. They represent nonimplementable commands, but 
they can be useful in intermediate steps of program development. 

A nondeterministic assignment can be noncontinuous. This is the case if 
it permits unbounded nondeterminism (i.e., if there is an infinite number of 
possible final states for some initial state). 

A nondeterministic assignment has arity u ~ v. Intuitively, this means that it 
can remove some variables from the state space and add other, new variables. 
The priming of the final state v in the definition above is needed to distinguish 
variables that occur in both the initial and the final state. 

As an example, consider the following command: 

(x ,  y *  x t, yt,  z I.  x I =  x A yt = Y A z t > y) 

Given an initial state where x = 0 and y = 1 it adds a variable z which is 
assigned a nondeterministically chosen value, greater than the initial value of y. 
The values of x and y are left unchanged. 

The nondeterministic assignment generalizes the multiple assignment, which 
is deterministic. As an example, consider the assignment x := x + y !n the state 
space (b, x, y). This assignment is written as a nondeterministic assignment in 
the following way: 
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(b, x, y * b', x ~, y' . b' = b A x' = x + y A y' = y) 

Note that we explicitly have to state that the variables b and y remain unchanged. 

Special cases o f  noncleterrainistic assignments. The guard command [P] represents 
the assumption that the predicate P holds in the state. It is an abbreviation for 
the nondeterministic assignment 

( u * u ' .  P u A  u' = u) 

If the predicate P holds then the command [P] does nothing, otherwise it is 
miraculous. It is easy to check that it denotes the following predicate transformer: 

[plQ def p ~ Q 

Guard commands are used as components in actions (also known as guarded 
commands). An action G -~ C is the sequential composition [G]; C. In this 
notation, G is called the guard and C the body of the action. 

We also introduce special notation for commands that add or remove variables. 
The initialization command (+x .  P} adds variables x to the state and assigns them 
values so that P is established (if this is not possible, then it is miraculous). Dually, 
the finalization command (-x)  removes the variables x from the state without 
changing the values of the remaining variables. The initialization command has 
arity u +- x, u while the finalization command has arity x, u +- x. Their formal 
definitions are as follows: 

( +x .  p )Q  ~ fVx .  p =~ Q 

( - x } Q  do=f Q 

It is easy to see that both of these commands are special cases of the nondeter- 
ministic assignment. 

Blocks with local variables. Using initialization and finalization commands we can 
define initialized blocks: we consider l[ vat x. P; C ]l to be an abbreviation for the 
command (+x. P); C; (-x).  The initialized block then has the following meaning: 

I[var x. P; C ]IQ =Vx. P=~ C Q 

This definition corresponds to previous definitions of the semantics of a block 
with local variables [28]. 

4.3. The refinement relation 

Recall that commands C and C' are ordered C <_ C' if C Q < C ~ Q holds for 
all predicates Q. When this is the case, we say that C is refined by C'. 
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Refinement can also be expressed in terms of total correctness. We say that 
command 6' is totally correct with respect to precondition P and postcondition 
Q whenever P _< 6' Q holds, i.e., if C is guaranteed to establish Q whenever 
it is executed in an initial state where P holds. The refinement 6` _< C t then 
holds exactly when 6" satisfies every total correctness specification satisfied by 
C. Thus, C _< 6" means that 6`' can be used as a replacement for C in any 
program. Since we can write general specifications in our command notation, the 
refinement relation is useful in program development; if we want to show that a 
program 6`' satisfies a specification 6', we show that the refinement 6' _ 6; holds. 

Refinement of initialized loops. Our main interest lies in the refinement of 
initialized loops. These are commands of the form 

][var z. P;do GI --* C1D... 0Gn ~ Cn od]t 

Some of our rules consider initialized loops with only one action. 
The initialized loop is a basic building block in sequential programs. It can 

also be given a parallel interpretation (the action systems of [29]). Furthermore, 
initialized loops can be interpreted as reactive components [30]. Thus, the 
initialized loop is a very useful program construct. 

5. Representing commands in HOL 

Recall that commands (i.e., predicate transformers) have generic type 
(*s, * s ' ) p t r a n s .  

We represent commands by defining new constants that correspond to the 
command notation introduced in Section 4. Below are the definitions for those 
commands that will be used later: 

5a~/ guard p q = 

~aef assert p q = 
~-deI assign e q = 

5ae/ nondass m q = 

~def (C seq c')q = 

~def add p q = 
~-def remove q = 
5def if2(g,c)(~,c') q = 

?aeI dol(g,c) q 

p imp q 
p andq 
q (e s) 
AS. VS'. m s s'~ q s 
c(c '  q) 
As. Vx. p (x , s )  =~ q (x , s )  
A(x ,s ) .  q s 
(g or g') and (g imp (c q)) 
and (g' imp (c' q)) 

fix (Ap, ((not g) and q) or (g and (c p))) 

A few remarks are appropriate here. In the ass ign command, e is a state-state 
function. In the definitions of the add and remove commands, we explicitly say 
that the added (removed) variable(s) must be the first component of the state 
space. In the iteration, the pair (g ,c)  represents the action G ~ 6". 
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The assign command is used to model ordinary multiple assignments. As an 
example, consider the assignment x := x + y in the state space (b, x, y), which 
is represented as 

ass ign  A(b, x, y) (b, x + y, y). 

As explained in Section 4.2, any multiple assignment can also be written as 
a nondeterministic assignment. For example, the assignment considered above 
can be written as 

nondass A(b, x, y)(b', x', y'). (b' = b) A (x' = x + y) A (y~ = y) 

Here we use the following convention: the initial state is represented by a tuple 
of unprimed variables while the variables in the final state are primed. This 
makes the HOL representation easily readable. Note, however, that it is just a 
convention. It would be equally correct to represent the same assignment as 

n o n d a s s  /~(b, x, x ' ) ( z ,  y ' ,  y). (z = b)  A (y '  = x + x ' )  A (y  = x ' )  

since the two representations are alpha-equivalent. 
The block with local variables is defined in terms of the simpler commands, 

as in (1): 

}-def block p c = (add p) seq c seq remove 

Note that the name of the local variable does not show in the definition. This is 
because variables are identified by their position in the state tuple. In particular, 
the local variable of the block is the first component in the state tuple. 

General iteration. Our representation of the iteration, dol, permits only one 
action (g ,c) .  To define the general iteration we can use the fact that it can be 
rewritten as a simple iteration, using a conditional composition: 

do G1 ---* C1 [] . . .  I1Gn ~ Cn od 

= do  G 1 V . . .  V G n ----+ i f  G1 ---* C1 D . . .  D G n  -"* C ,  fi od 

In order to represent the general iteration in HOL, we first make a few preliminary 
definitions. These make use of the HOL facility for making definitions by 
primitive recursion over lists. We first define the guard of a list a l  of actions: 

}-~cY (iguard NIL = f a l s e )  A (iguard (CONS (g, c) al)  = g or (iguard al))  

Here al  is a list of actions, so it has type ( ( * s ) p r e d •  
Next, we define a generalized conditional composition as a recursive binary con- 
ditional: 

}-des (lif NIL = abort) h 
( l i f  (coNs (g, c) a l )=  (g, c) (lgn d al, al)) 

We can then easily define the general iteration command ldo. 
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~-aey ldo al  = dol ( lguard al, l i f  al)  

Reasoning about ldo can generally be reduced to reasoning about do1. 

Initialized loops. It is now straightforward to represent an initialized loop using 
block and ldo. The loop l[var x. P;do G1 ---* GIII...DGn ~ Cn od]l is 
represented as follows: 

block p (ldo [(gl, c l ) ; . . . ; (gn ,  cn)]) 

where p represents the initialization predicate P, and each action Gi ~ Gi is 
represented by a pair ( g i , c i ) .  

The refinement relation. The refinement relation is defined as an infix constant 
in the obvious way: 

~a~y c r e f  c ' =  Vq. (c q) implies (c' q) 

This relation is then easily proved to be a partial order. A large number of 
useful refinement rules can be proved directly from the definitions. Two simple 
rules are given in the following theorems: 

p implies p'~(assert p) ref (assert p~) 
skip seq c =c 

Note that the second one of the above rules is an equality (i.e., a mutual 
refinement). Although refinement is the interesting relation between commands, 
it is useful to prove equalities whenever they hold. This is because equalities 
can be used directly as rewrite rules by the HOL system. In contrast, rewriting 
using refinements may require extensive interaction with the system. 

5.1. Characteristic properties of commands 

Monotonicity, conjunctivity, disjunctivity, and continuity are defined in a straight- 
forward way: 

~def monotonic c =Vp q. p implies q~ (c p) implies (c q) 
F~f conjunctive c =VP. c (glb P) = glb (Aq. 3p. P p A (q = c p)) 
~&f disjunctive c =VP. c (lub P) = lub (~q. 3p. P p A (q = c p)) 
~&f continuous c =VQ. chain Q ~ (c (limit Q) =,limit (An. c(Q n))) 

where P has type (*s)pred--*bool and Q has type num~ (*s)pred (i.e., P represents 
a set and Q a sequence of predicates). 

In predicate transformer semantics, it is usually implicitly assumed that all 
commands are monotonic and conjunctive. When working with HOL, we must 
make such assumptions explicit. An example is the following rule: 
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c; {P} = {c P}; c 

which is valid when C is a conjunctive command. It is easy to prove this rule as 
an H O L  theorem, but we have to make the conjunctivity assumption explicit: 

conjunctive c ~ (c seq (assert p)= (assert(c p)) seq c) 

This is an example of a rule for propagating assertions. Such rules are important 
in the refinement calculus, since they permit context-dependent information to 
be introduced at different places in a program. This information can then be 
used in the refinement process [1]. 

5.2. Continuity and bounded nondeterminism 

In Section 8 we encounter a situation where loop bodies are assumed to be 
continuous. In such cases, we can use another formulation of the semantics of 
iteration. In our H O L  theory, we have proved the theorem 

continuous c ~ (dol(g, c) q = limit (H g c)) 

where the chain of approximations is defined by primitive recursion: 

~-def (H g c 0 q = (not g) and q) A 
(H g c (n+l) q = ((not g) and q) or (g and c(H g c n q))) 

This corresponds to the original definition of the semantics of iteration, given by 
Dijkstra [3]. 

As noted in Section 4.2, a nondeterministic assignment is noncontinuous if 
there are an infinite number of possible final states for some initial state. To be 
able to identify continuous assignments, we have proved the following theorem: 

(Vs. finite (As'. m s s'))=~ continuous (nondass m) 

where finiteness is defined using functions from natural numbers: 

~d~/ finite A= 3f n. Va. A a~3i.(i<n) A(f i -- a) 

(i.e., a set A is finite if and only if there is an onto function from the set 
{1, 2, .. . , n} to A, for some n). 

6. Data  ref inement  

Data refinement means replacing local variables in a program with new local 
variables of another type so that the new program is a refinement of the original. 
Typically, the purpose of a data refinement is to replace variables that represent 
an abstract view of data (e.g., sets) with new variables that are more concrete, 
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in the sense that they are more easily implemented (e.g., bit strings). Data 
refinement is generally proved by exhibiting an abstraction relation which shows 
how that abstract and concrete states are related. 

In our framework, a data refinement is a refinement step of the following form: 

I[var a. P;Cll < [[var k. P';C']l (2) 

In what follows, we consider a method of proving such refinements, which is easily 
represented in HOL. We only give a brief overview of the method; background 
and detailed correctness proofs can be found in [31, 32]. 

6.1. Abstraction commands 

We consider the refinement (2) assuming that the list of global (universal) 
variables is u. We call the local variables a the abstract variables and k the 
concrete variables. Assume that R is a predicate on a, k, u (an abstraction 
relation). We then define two new commands corresponding to the relation 
R: the angelic abstraction command (v + a - k. R} and the demonic abstraction 
command (A + a -- k. R). The definitions are the following: 

(v + a - k .  R)Q~f3a. RAQ 

(A + a - k. R}Q ~fVa. R ~ Q 

Intuitively, these commands can be described as follows. Both commands start in 
a concrete state (k, u). They both add the abstract variables a, choosing values 
so that R is established. Finally, they remove the concrete variables, so that 
they terminate in an abstract state (a, u). In the angelic abstraction command 
the choice of final state is made angelically, while it is made demonically in the 
demonic abstraction command. 

This means that the demonic abstraction command establishes a postcondition 
Q if Q holds in the final state, regardless of how the choice of final state is 
made. In contrast, the angelic abstraction command establishes a postcondition 
Q if there exists at least one choice of final state that makes Q hold. For a more 
detailed discussion of how angelic choice can be interpreted, we refer to [33]. 

6.2. A data refinement relation 

For an arbitrary command a we define the indexed refinement relation _<4 as 
follows: C _<~ C' is defined to hold when the following refinement holds: 

ct; C < C'; o~ (3) 

In the special case when a is the angelic abstraction command (v + a - k. R) 
we call _<~ the data refinement relation. In this case, definition (3) is equivalent 
to the condition that 
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R A CQ ~ C'(3a. R A Q) 

holds universally for all predicates Q. This means that our definition coincides 
with the traditional notion of data refinement between commands [4, 6, 27]. 

Proof rules for data refinement. Now let R be an abstraction relation and let 
be the corresponding angelic abstraction command, a = (v + a -  k. R}. The 
following general rule of data refinement shows how to data-refine blocks with 
local variables, i.e., it gives conditions under which we can replace one data 
representation by another one in a program: 

Theorem 1. Assume that o~ is an angelic abstraction command. Then the re- 
finement 

[[var a. P; CI[ < [[var k. P'; C' ]1 

is valid if the following conditions hold: 

1. P'  <_ a P  
2. C <_,~ C I 

Condition 1 can be rewritten, using the definition of the angelic abstraction 
command, as 

P' ~ 3a. R A P  

In order to prove data refinements correct, we need rules for proving refinements 
of the form C <4 C .  We concentrate on those rules that are needed to prove 
data refinements of initialized loops, where the action bodies are nondetermin- 
istic assignments. 

For the nondeterministic assignment, we quote a rule from [32]. Intuitively, 
the rule says that given initial states related by the abstraction relation R and 
given an execution of C ~ = (k, u �9 k', u'. P} ,  there must exist an execution of 
C = (a, u �9 a', u'. P} such that the final states are related by R. The rule encodes 
what is often called simulation: every possible execution of C t must simulate a 
possible execution of C (see figure 1). 

This rule has the following formulation in our framework: 

Theorem 2. The data refinement 

(a, u �9 a', u'. P) _<4 (k, u * k', u'. P'} 

is valid if the following condition holds: 

w,, k, u, k', u'. R(a, k, u) ^ P'(k, ,~, k', u') 
=~ 3a'. R(a', k', u') A P(a, u, a', u') 
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This rule can also be used for multiple assignments, since they are special cases 
of the nondeterministic assignment. 

A rule for iterations. Data refinement between two iterations is most easily proved 
by showing that the concrete action simulates the abstract one, and that the two 
iterations have equivalent termination conditions. Thus the data refinement 

do G ~ C o d < ~ d o  G ' ~ C " o d  (4) 

is valid if the following two conditions hold: 

1. C _% [a']; C' 
2. ~(G) = G' 

For general iterations, this rule is generalized as follows: 

Theorem 3. The data refinement 

do G1 --* 6'1[]... rlOn --* C,~ od <~ do G i - ,  C~O... DG'~ --, e L od 

is valid if the following conditions hold: 

1. o~(--,Gi) < ~G~ for all i 
2. C'~ <~ [G~]; C' i for all i 
3. ~(Vi ad  _< V~ a~ 
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Note that in this rule, condition 1 contains a separate enablement condition for 
each action, condition 2 is a simulation condition for each action, and condition 
3 is a termination condition for the iteration as a whole. 

The rules in Theorems 1-3 give us all we need to prove data refinements 
between initialized loops when the action bodies are written as nondeterminis- 
tic assignments. 

7. Representing data refinement in HOL 

We now show how data refinements can be expressed and proved correct in 
HOL. We begin by representing the angelic abstraction command (V + a - k. R) 
as abs t  r: 

F-def abs t  r q = A(k, ll). 3a. :r(a, k, u) A q(a, u) 

Here r is the abstraction relation, a stands for the abstract variables, k for the 
concrete variables, and u for the common (global) variables. Then the data 
refinement relation is defined in a straightforward manner: 

i-d~f datare:f r c c' = ((abst r) seq c) ref (c' seq (abst r)) 

7.1. Rules of data refinement 

We begin by showing the H O L  theorem corresponding to the basic rule for data 
refinement of blocks (Theorem 1). 

i- (Vk u. p~(k,u) =~3a. r ( a , k , u )  A p ( a , u ) )  A d a t a r e f  r c c ~ 
=~ (block p c) r e f  (block p~ c t) 

The proof of this theorem in HOL is quite extensive. However, it contains no 
surprises; it is essentially a coding of the informal paper-and-pen proof of the 
corresponding theorem. 

The rule for data-refining nondeterministic assignments (Theorem 2) is rep- 
resented in the following theorem: 

~- (Va c u c I u I. r(a,c,u) A Q(c,u)(c',u ~) 

=~3a'. r(a',c',u') A P(a,u)(aP,ul)) 
=~ dataref r (nondass P) (nondass Q) 

The proof of this rule in HOL is straightforward. In fact, the implication can 
be strengthened to equality. 

Finally, we have the rule for data-refining iterations (Theorem 3). As an HOL  
theorem, the rule is expressed as follows: 
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(LENGTH al = LENGTH al') 
A EVERY (A(g,c). monotonic c) al' 
A EVERY ( A ( ( g , c ) , ( g ' , c ' ) ) .  dataref r c ((guard gt) seq ci)) 

(ZIP al al p) 
A EVERY (A((g,c),(g~,cP)). (Va k u. r(a,k,u) A ~(k,u) 

g(a,u))) (ZIP al al p ) 
A (Va k u. r(a,k,u) A (lguard al)(a,u) ~ (lguard al p) (k,u)) 
~(ldo al) ref (ldo al p ) 

where EVERY P xl  means that the property P holds for all elements of the list xl  
and ZIP zips together two lists (both EVERY and ZIP are built-in H O L  constants). 

The proof in HOL of this rule is rather tricky. It involves an inductive 
argument which requires rewriting the general conditional statement as 

n 

i f  G1 --e C1 D. . .  I1Gn --~ Cn fi = { V  Gi}; ([G1]; C1 A ... A [Gn]; Cn) 
i=1 

where A is a separately defined conjunction operator on commands. 
As mentioned before, these three rules together give us all we need to prove 

a data refinement between two initialized loops when the bodies are written as 
nondeterministic assignments. In practice, the bodies may contain other con- 
structs, e.g., assignments, sequential compositions, and conditionals. However, 
such commands can always be mechanically rewritten as nondeterministic assign- 
ments. 

7.2. Applying the rule to a case 

In order to show how our formalization can be used in practice, we describe the 
outline of a refinement example. We consider two programs searching for the 
maximal value of some function f within the interval 0...n - 1. The first program 
performs the search by computing the function values as they are needed, whereas 
the second program computes all the necessary function values in the beginning 
and stores them in a list. The second program requires more memory, but it 
may be more efficient in some cases. 

We assume that f is the function and m the variable where the maximal value 
is stored. Our goal is then to prove that the 'abstract' program 

][var a, i . (a  = f O A i  = O A m  = 0); 
do ( i < n A m < a ) - - * a , i , m : =  f ( i + l ) , i + l , a  
D( i < n A a < m ) - - ~ a , i : =  f ( i +  l ) , i +  l 
od 

]1 
is refined by the "concrete" program 
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I[var k. (k = [ f  O; . . ; f ( n - 1 ) ]  Am = 0); 
do ( k ~ N I L A m < H D k ) ~ m , k : = H D k ,  TLk 
D (k ~ N I L  A H D k  ~ m) -* k := T L k  
od]L 

The occurrence of m = 0 in the initialization indicates that both programs assume 
that m has been initialized to 0 before the blocks are entered. 

The abstraction relation used in the proof of data refinement is 

R :  (i  < n ::~ a = H D  k)  A n = L E N G T H  k 

A (Vj.i + j  < n = V  k d = f ( i + j ) )  

where we use the notation kj for the j th  element of the list k. 
In the HOL formalization of this problem, both f and n are global constants, 

i.e., they do not appear in the state tuple. The global state component is re:num. 
The 'abstract' program has the local component (a:num,i:num) while the local 
component of the 'concrete' program is k: (aura)list .  

Before we represent the programs in HOL, we define a function s e q l i s t  
which returns the list [f 0 ; . .  ; f (n -1 ) ] ,  given f and n as arguments: 

?de] (seqlist f 0 = NIL) 

A (seqlist f (n + 1 )=  APPEND (seqlist f n)[f n]) 

Now the two programs are written in the HOL command notation and the goal 
is set up: 

"(block (A((a,i),m). (a = f 0) A (i = 0) A (m = 0)) 
(Ido [(A((a,i),m). i < n A m < a), assign A((a,i),m). 

((f (i+l) ,i+l) ,a) ; 

(A((a,i),m). i < n A a _< m), assign A((a,i),m). 
((~ (i+i) ,i+i) ,m)] )) 

ref 
(block (A(k,m). (k = seqlist f n) A (m = 0)) 

(ido [(A(k,m). ~(k = NIL) A m < (HD k)), assign A(k,m). 
(TL k,HD k); 

(A(k,m). ~(k = NIL) A (HD k) _< m), assign A(k,m). 
(TL k,m)]))" 

In order to prove the goal, we first match it against the rule for data refinement 
of blocks. As a part of this matching, we supply the abstraction relation, which 
in HOL has the form 

"A((a,i),k,m). ((i < n) ~ (a = HD k)) A (n = (LENGTH k) + i) A 
(Vj. (i + j < n) => (EL j k = f (i + j)))" 

where EL j k is the jth element of the list k. This yields two subgoals: 
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"Vk m. (k = seqlist f n) A (m = 0) 

(3a. R((a,i),k,u) A (a = f O) A (i = 0) A (m = 0))" 

"dat aref R 

(ido [(A((a,i),m). i < n A m < a), assign A((a,i),m). 

( (f (i+1), i+I), a) ; 

(A((a,i),m). i < n A a _< m), assign A((a,i),m). 

( (~ (i+I), i+l) ,m) ] ) 

(ido [(A(k,m). ~(k = NIL) A m < (HD k)), assign A(k,m). 
(TL k, HD k); 

(A(k,m). ~(k = NIL) A (HD k) _< m), assign A(k,m). 

(TL k,m)] )" 

where _R is an abbreviation for the abstraction relation. The first subgoal is proved 
using built-in tools for arithmetic reasoning and some theorems characterizing 
the s e q l i s t  function. 

Matching the second subgoal against the rule for data-refining iterations, we 
obtain eight subgoals (after some rewriting, which among other things proves 
automatically that the two action lists have equal length): 

"V a i k u. R((a,i),k,u) A (i < n A u < a V i < n A a _< u) 

~(k = NIL) A u < (HD k) V ~(k = NIL) A (HD k) _< u" 

"Va i k u. R((a,i),k,u) A ~(k = NIL) A (HD k) _< u ~ i < n A a _< u" 

"Va i k u. R((a,i),k,u) A ~(k = NIL) A u < (HD k) ~ i < n A u < a" 

"dataref R 

(assign A((a,i),m). ((f(i+l),i+l),m)) 

((guard (A(k,m). ~(k = NIL) A (HD k) < m)) seq (assign A(k,m). 

(TL k,m)))" 

"dataref R 

(assign(A((a,i),m). ((f(i+l),i+l),a))) 

((gnard(A(k,m). ~(k = NIL) A m < (HD k))) seq (assign A(k,m). 

(TL k,HD k)))" 

"monotonic(assign A(k,m). (TL k,m))" 

"monotonic(assign A(k,m). (TL k,HD k))" 

The two monotonicity subgoals are proved automatically by a simple standard 
tactic that we have written in ML. 

The first three subgoals (which correspond to the termination condition and 
the two enablement conditions) require reasoning over the data domains of the 
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program variables, in this case natural numbers and lists. The proofs are not 
very difficult using the arithmetic and list libraries of the HOL system. 

The two remaining subgoals can be matched against the rule for data-refining 
nondeterministic assignments. However, we must first rewrite the commands 
as nondeterministic assignments. We show what happens in the first case (the 
second one is similar). A simple automatic rewrite procedure that we have 
implemented produces the following goal: 

"dataref R 

(nondass (A((a,i),m) ((a',i'),m'). (a',i'),m' = (f(i+l),i+l),m)) 
(nondass (A(k,m) (k',m'). -~(k = NIL) A (HD k) _< m 

A (k',m' = TL k,m)))" 

Now we can match this goal against the rule for data refinement of nondetermin- 
istic assignments. After some automatic rewriting, we obtain the following goal: 

"((i < n) ~ (a = HD k)) A (n = (LENGTH k) + i) A 
(Vj. (i + j < n) ~ (EL j(TL k) = f((i+l) + j))) A 

-~(k = NIL) A (HD k < m) 

((i+l) < n) ~ (f(i+l) = HD(TL k))) A 
(n = LENGTH(TL k) + (i+l)) A 

(Vj. ((i+l) + j < n) ~ (EL j(TL k) = f((i+l) + j)))" 

This goal is easily proved using basic facts from the arithmetic and list libraries. 

Comments on the data refinement. Our example shows that HOL can handle a 
small data refinement well. Simple subgoals, such as tautologies and monotonicity 
conditions, can be proved automatically (that is, we have written proof strategies 
that do these proofs). The main innovative step in a data refinement proof 
is finding the abstraction relation R. Here, HOL does not help; users must 
supply the abstraction relation themselves. Our example also shows that the 
abstraction relation is at the same time an invariant. The first conjunct of R is 
the "real" abstraction relation, while the two other conjuncts are an invariant of 
the concrete program, needed to make the proof go through. 

Once the abstraction relation is given, the steps needed to obtain the low-level 
subgoals (verification conditions) are straightforward. In our case, these subgoals 
were not too difficult, given some basic properties of the seqlist function. In 
fact, proving these properties was the hardest part of the proof. 

8. Backward data ref inement  

In most cases, a simulation between two initialized loops can be proved using 
the ordinary rule of data refinement. However, it is well known that the rule is 
not complete [26]. In particular, it is not sufficient in some situations where a 
nondeterministic choice is made later in the concrete loop than in the abstract 
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one. In such cases, a dual notion of backward data refinement can be used. This 
method is investigated in [32], where proofs of the basic results of this section 
can be found. The backward data refinement method is closely related to the 
methods of upward simulation and backward simulation described in [34, 35]. 

Backward data refinement can be defined using the indexed refinement relation 
(3). Assume that a is the demonic abstraction command (A + a - k. R). We 
then say that C is backward data-refined by C' if C <<_~ C' holds. 

8.1. Rules for backward data refinement 

The rules needed for proving refinement of initialized loops by backward data re- 
finements are similar to the rules for ordinary data refinement, given in Section 6. 

We first state the rule for data-refining a block. This rule shows that backward 
data refinement is a sound method for data-refining blocks with local variables. 

Theorem 4. Assume that a is the demonic abstraction command (A + a -  k. R). 
Then the refinement 

I[var a. P;C][  _< I[var k. P';C']I 

is valid if the following conditions hold: 

1. P' < aP  
2. C <,~ C I 
3. Vk, u. 3a. R(a, k, u) 

In this case, condition 1 can be rewritten as 

R A P I  <_P 

Condition 3 says that the abstraction relation R must be total in concrete states, 
i.e., every concrete state must correspond to at least one abstract state. 

Backward data refinement of nondeterministic assignments is proved using the 
following rule: 

Theorem 5. The backward data refinement 

(a, u * a', u'. P) _% (k, u * k', u'. P') 

is valid if the following condition holds: 

Vk, ~, ~', k', u'. n(a ' ,  k', ~') ^ P'(k,  u, k', ~') 
(3~. R(a, k, u) ^ P(~, u, a', u')) 

Compare this to the rule for ordinary data refinement (Theorem 2), where we 
find a final state, given initial states related by R. Here we must find an initial 
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This justifies calling the 

8.2. Backward data refinement of iterations 

We consider only the simple case when the iteration has a single action. In this 
case, we have a rule which closely resembles the corresponding rule for ordinary 
data refinement, given in theorem 3. 

Theorem 6. The backward data refinement 

do G --+ C o d  <_~ do G' ---+ C' od 

is valid if the following conditions hold: 

1. c~(~G) _< ~G' 
2. C _<~ [G']; C' 
3. ~(a) _< G' 
4. C and C' are continuous 
5. Vk, u. 3a. R(a, k, u) 
6. a is continuous. 

Condition 6 can be reformulated as follows: the abstraction relation R must be 
image-finite, i.e., every concrete state must correspond to at most a finite number 
of abstract states. 
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8.3. Backward data refinement in HOL 

The demonic abstraction command used in backward data refinement is repre- 
sented in our formalization by the command dabst  r: 

l--de f dabst r q = A(k, u). Va. r(a, k, u) =~ q(a, u) 

We then define the backward data refincment relation bwdref in the following way: 

~-def bwdref r c c'= ((dabst r) seq c) ref (c' seq (dabst r)) 

In our HOL theory of backward data refinement we have proved a number 
of theorems that show how individual commands can be refined. For instance, 
the rule for blocks (theorem 4) is represented by the following theorem: 

t-- (Vk u. 3a. r ( a , k , u ) )  
A (Va k u. r(a,k,u) A p'(k,u) ~ p(a,u)) 
A bwdref r c c p 

(block p c) ref (block pt c I) 

The rule for backward data refinement of a nondeterministic assignment 
(theorem 5) is as follows: 

(Vk u a' k I u'. r(a',k',u') A Q(k,u)(kl,u ') ~ 3a. r(a,k,u) 

A P(a ,u)  (a ' ,u ' ) )  
bwdref r (nondass P) (nondass Q) 

Finally, we have the rule for backward data refinement of a one-action iteration 
(theorem 6): 

F (Va k u. r(a,k,u) ~ (g(a,u) = gf(k,u))) 

A bwdref r c ((guard ~) ssq c 0 

A continuous c A continuous c ~ 
A (Vk u. 3a. r(a,k,u)) 
A continuous (dabst r) 

bwdref r (do1(g,c)) (do1(~,c,)) 

The proof in HOL of this rule is quite difficult. However, it was worth the 
effort, since it constitutes a check that the proof reported in [32] is correct. 
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8.4. Applying the rule to a case 

We have applied the rule to a small example. This is a standard example of 
a situation where the ordinary rule of data refinement is not sufficient. Both 
programs decrement the value of the variable z arbitrarily. In the first program, 
the final value of z is chosen in the initialization, while this decision is postponed 
in the second program. 

The refinement we want to prove is as follows: 

[[var a. a <_ z;do a < z ~ z := x - 1 od]l 

< 

I[var k. 0 < x;do  k ^ ( 0  < x ) ~  (k, x �9 k', x ' . x '  = z - 1) od]l  

In the first program, the variable a ranges over the natural numbers. It is initially 
given a nondeterministically chosen value, which eventually becomes the final 
value of z. In the second program, the boolean variable k is assigned T or 
F (nondeterministically) at each loop, while z is decremented. The iteration 
terminates when k is assigned the value F. The abstraction relation used in the 
proof of this refinement is 

R : (a _< ~) ^ (k ^ (0 < x))  = (~ < ~) 
The application of the proof rules for backward data refinement is straight- 

forward. First both programs are coded in HOL. Then the goal is set up, the 
abstraction relation is supplied and the goal is matched against the proof rules 
after rewriting the action bodies as nondeterministic assignments. In this case 
we get seven subgoals (verification conditions). The continuity conditions on 
the action bodies can be proved automatically. The five remaining subgoals are 
as follows: 

"~a. (k A (0 < x) = (a < x)) A (a <_ x)" 

"continuous (dabst ( /~(a ,k ,x) .  (k A (0 < x) = (a < x)) A (a < x ) ) ) "  

"(k A (0 < x) = (a < x)) A (a < x) A (0 < x) =~ (a _< x)" 

"(k A (0 < x) = (a < x)) A (a < x) ~ ((a < x) = k A (0 < x) )"  

"(k ~ A 0 < u ~ = a ~< u ~) A a~_< u ~ A (k A 0 < u) A (u ~ = u - i) =~ 

(3a. (k A 0 < u = a < u) A a < u A a ~ = a A u ~ = u -- I)" 

Of these, all but the second require only simple arithmetic reasoning. Since 
the demonic abstraction command is a special case of the nondeterministic 
assignment, we can prove continuity in the same way as for nondeterministic 
assignments. In order to facilitate such continuity proofs, we have proved the 
following lemma: 
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F (Vk u. finite (Aa. r(a,  k, u))) =~ continuous (dabst r)  

Comments on the backward data refinement. Backward data refinement is more 
theoretically interesting than practically useful. Its theoretical interest comes 
from the fact that there are cases when a data refinement cannot be proved by 
the ordinary method and that in certain situations, the ordinary and backward 
methods together provide a complete method [32, 34]. 

We chose the example above because it is one in which the ordinary method 
would not have worked. Exactly as for ordinary data refinement, the HOL  
system produces the verification conditions once the abstraction relation is given. 
Since the example was so simple, the verification conditions were easy to prove. 

9. Superposition refinement 

Data refinement replaces old local variables with new ones. It can also add 
new local variables to the state. One important use of this is explored in 
[29], where initialized loops (called action systems) are interpreted as parallel 
programs. In this application, the new local variables are used for distributing 
global information. 

Sometimes we would like to add global variables to the state, in order to add 
functionality to a program. In this case, the rules of data refinement cannot be 
used, since they only permit addition of a local state component. In this section 
we consider a modified refinement relation, which permits the addition of new 
global variables. 

9.1. A superposition refinement relation 

Superposition is a notion which has been used in many different contexts, see, 
e.g., [8, 10]. Here we use it to mean the addition of components to the global 
state space and of computations which affect only the added state components. 
Given commands C of arity u ~ u and C' of arity x, u ~ x, u, we say that C is 
superposition refined by C', written C E_ C', if the following refinement holds: 

C _< [[var x. true;C'][ (5) 

Thus the variables z may give C' some additional functionality, but without 
affecting the input-output behavior on the variables u. The superposition refine- 
ment relation is easily shown to be reflexive and transitive, if we permit the use 
of an empty state component and assume that the following equality holds: 

I[var e. true;C][ = C 

where e is an empty list of variables. 
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A proof rule for superposition. We give, without proof, a rule for superposition of 
initialized loops with one action in the iteration. Intuitively, the rule is obviously 
correct, and the proof is not difficult. 

Theorem 7. The superposition refinement 

I[var z. P ;do  G --* C od][ __ [[var z. P ' ;do G ~ C' odll 

is valid if the following conditions hold: 

1. P ' < P  
2. CZ_C' 

The rule for superposition refinement of nondeterministic assignments is equally 
simple. 

Theorem 8. The superposition refinement 

�9 P) _ (x, �9 x', r  P') 

is valid if P'  <_ P holds. 

9.2. Representing superposition in HOL 

We can translate our definition of the superposition refinement relation directly 
into HOL: 

~-def C sre~ c I= c ref (block true c I) 

Here c '  has one state component (the first) more than c. Thus, if the state 
space of c is *s, then c '  works on the extended state space , x , s .  

It should be noted that our definition does not capture the intended idea of 
(5) completely. For example, the relation s re f  cannot be proved to be reflexive 
or transitive. This is because HOL does not permit empty tuples and because 
the two levels of local variables in block p (block p '  c) cannot be treated as 
a single component. 

In proving superposition theorems about our command constructors, we need 
to be able to relate predicates and relations on the two state levels involved. We 
make the following definitions: 

~-def s a m e _ p r e d  p p '  = 'v'x u .  p u = p ' ( x , u )  
~-deI weaker_pred p p '= Vx u. p '(x,u) =~ p u 
[-&I weaker_tel P P' = Vx u y v. P ' (x ,u ) (y ,v )=~P u v 

Thus, e.g., weaker_pred p p' means that the predicate p on the state space *s 
is weaker than the predicate p '  on the state space * • Dually to weaker_pred 
and weaker__rel, we can also define stronger_pred and s t ronger_te l .  
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We can now prove some theorems about superposition of different program 
constructs. The main rule is for superposition of initialized loops (theorem 7): 

monotonic c A monotonic c' A weaker_pred p p' A samo_pred g 
A c sref c I 

(block p (dol(g,c))) sref (block p' (dol(~,ct))) 

We also need a rule for nondeterministic assignments (theorem 8): 

weaker_rel P P'=~ (nondass P) sref (nondass P') 

In practice some additional rules are helpful. In particular, we need the 
following 'pseudo-transitivity' rules: 

cl sref c2 A c2 ref c3 ~ el sref c3 
cl ref c2 A c2 sref c3 ~ cl sref c3 

9.3. Applying the rule for initialized loops 

As a simple example, we consider a superposition which counts the number of 
times that a loop is executed. The original program is an arbitrary loop: 

l[var z. P;do G - *  C od]] 

and the new program has an added counter t: 

[[var z. P A t  = O;flo G--~ C ; t : =  t +  i od]l 

In the HOL formalization of this example, we assume that the body C is 
written as a nondeterministic assignment. The old program is simply 

block p (dol(g, nondass R)) 

where p, g, and R are unspecified. However, the new program is more compli- 
cated, since all predicates must be lifted to the extended state space: 

block (A( t ,u ) .  p u A (t=0)) 
( d o l ( ( A ( t , u ) .  g u,(nondass A ( t , u ) ( t ' , u ' ) .  R u u') 

seq (ass ign A( t , u ) .  ( t + l , u ) ) )  

As a first step in solving it, we rewrite the body of the new program as a 
nondeterministic assignment. The goal we want to prove is then the following: 

"(block p (dol(g,nondass It))) 
sref 

(block (A(t,u). p u A (t = 0)) 

( d o t ( ( A ( t , u ) .  g u) ,nondass A ( t , u ) ( t ' , u ' ) .  R u u' 
A ( t  ~ = t + l ) ) ) )  
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We now match this goal against the proof rule for loops to obtain five subgoals 
(verification conditions). Two are monotonicity conditions which are proved by 
a simple specialized monotonicity-proving tactic. The three remaining subgoals 
are the following 

"weaker_pred p ( A ( t , u ) .  p u A (t=O))" 

"same_pred g (A(t,u). g u)" 

"(nondass R) sref (nondass A(t,u) (t',ul). R u u' A (t' = t+l))" 

All these subgoals are straightforward to prove in HOL In fact, it is not 
very difficult to compose  a strategy, which proves them all (and other similar 
goals) automatically. 

I0. Conclusion 

We have shown how the refinement calculus can be formalized as a theory 
in HOL. In particular, we have shown how to formalize three advanced and 
theoretically interesting refinement methods. For each of these methods there 
is a number of proof rules, which we have proved correct within the refinement 
calculus theory in HOL. Our proofs can be seen as a check that the rules 
are in fact valid. However, the main aim of these rules is to let the H O L  
system generate verification conditions for a refinement step. By proving these 
verification conditions using the system, we obtain an HOL  theorem which states 
that the refinement is valid. 

Our approach can be seen as a basis for program development in a totally 
secure environment. We have embedded the semantics of our programming 
notation in the logic by defining a new HOL constant for each construct in the 
programming notation. Thus our refinement theory is a conservative extension 
of the logic, so it is certain to be consistent [14]. This means that when we 
have proved a theorem stating that a refinement holds, then this refinement is 
guaranteed to be valid. 

The examples given in this paper are quite small. The examples in Sections 8 
(backward data refinement) and 9 (superposition refinement) are merely intended 
to show the spirit of the approach. The example in Section 7 (ordinary data 
refinement) is less trivial. It also indicates one problem of our approach, i.e., that 
the HOL system is not always well suited for reasoning over the data structures 
that occur in programs. 

To our knowledge, the notion of superposition that we define in Section 9 is new. 
It is a simple notion, intended to permit the addition of new global components 
to the state of a program. Our example shows that this notion of superposition 
can easily be handled in our HOL formalization of the refinement calculus. 
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Refinement of larger programs is done most easily by refining subcomponents 
of the program separately [1]. For this, one needs a tool that makes it possible 
to focus on a subcomponent of a program, do a refinement and replace the 
original component by its refinement. Grundy's window inference tool [20] 
should be well suited for this. In a preliminary experiment, we have performed 
the data refinement of the example in Section 7 by data-refining each program 
component separately, using the window inference tool. The experience was 
very encouraging. 

Before one can use the HOL system as a tool for refinement of larger 
programs, it is also necessary to provide a better user interface. The syntax used 
in interaction with HOL is primitive, but it is possible to build an extra layer for 
parsing and pretty-printing on top of the system. This makes it possible to use 
a syntax which is closer to ordinary programming notation. For an example of 
how this can be done, we refer to [15]. 

Doing proofs in HOL is tedious. In particular, reasoning in basic data domains 
(e.g., arithmetic and list theory) can be frustrating. Since most verification con- 
ditions from refinement rules require such reasoning, we would need automated 
(or semiautomated) strategies for proving different kinds of verification condi- 
tions produced by the proof rules. We already have such strategies for some of 
the simplest verification conditions, i.e., monotonicity and continuity conditions. 
However, the more difficult verification conditions often require elaborate rea- 
soning over lists of natural numbers or other data-type--dependent reasoning for 
which no efficient procedures may exist. 
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