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Until now, most results reported for parallelism in production systems (rule- 
based systems) have been simulation results--very few real parallel implemen- 
tations exist. In this paper, we present results from our parallel implementation 
of OPS5 on the Encore multiprocessor. The implementation exploits very fine- 
grained parallelism to achieve significant speed-ups. For one of the applications, 
we achieve 12.4 fold speed-up using 13 processes. Our implementation is also 
distinct from other parallel implementations in that we parallelize a highly 
optimized C-based implementation of OPS5. Running on a uniprocessor, our 
C-based implementation is 10-20 times faster than the standard lisp implemen- 
tation distributed by Carnegie Mellon University. In addition to presenting the 
performance numbers, the paper discusses the details of the parallel implemen- 
t a t ion- the  data structures used, the amount of contention observed for shared 
data structures, and the techniques used to reduce such contention. 
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1. INTRODUCTION 

As the technology of production systems (rule-based systems) is maturing, 
larger and more complex expert systems are being built both in industry 
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and in universities. Often these large and complex systems are very slow 
in their execution, and this limits their utility. Researchers have been 
exploring many alternative ways for speeding up the execution of 
production systems. Some efforts have been focusing on high-performance 
uniprocessor implementations, ~1,2) while others ~3-a~ have been focusing on 
high-performance parallel implementations. This paper focuses on parallel 
implementations. 

Until now, most results reported for parallelism in production systems 
have been simulation results. In fact, very few real parallel implementations 
exist. In this paper, we present results from our parallel implementation of 
OPS5 on an Encore Multimax shared-memory multiprocessor with sixteen 
CPUs. The implementation, called PSM-E (Production System Machine 
project's Encore implementation), exploits very fine-grained parallelism 
to achieve up to 12.4 fold speed-up for match using 13 processes. Our 
implementation is distinct from other parallel implementations in that we 
parallelize a highly optimized C-based implementation of OPS5. Running 
on a uniprocessor, our C-based implementation is 10-20 times faster than 
the lisp implementation of OPS5 distributed by Carnegie Mellon Univer- 
sity. A consequence of parallelizing a highly-optimized implementation is 
that one must be very careful about overheads, else the overheads may 
nullify the speed-up. One need not be as careful when paratlelizing an 
unoptimized implementation. In this paper, we first discuss the design of an 
optimized implementation of OPS5, and then discuss the additions that 
were made for the parallel implementation. For the parallel implemen- 
tation, we discuss the synchronization mechanisms that were used, the 
contention observed for various shared data structures, and the techniques 
used to reduce such contention. 

The paper is organized as follows. Section 2 presents some 
background information about the OPS5 language, the Rete match 
algorithm, and the Encore Multimax multiprocessor. Section 3 gives an 
overview of the parallel interpreter and then goes into the implementation 
details describing how the rules are compiled and how various syn- 
chronization and scheduling issues are handled. Section 4 presents the 
results of the implementation on the Encore multiprocessor. Finally, in 
Section 5 we summarize the results and conclude. 

2. B A C K G R O U N D  

This section is divided into three parts. The first subsection describes 
the basics of the OPS5 production-system language--the language which 
we have implemented in parallel. The second subsection describes the Rete 
algorithm--the algorithm that forms the basis for our parallel implemen- 
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tation. The third subsection describes the Encore Multimax computer 
system--the multiprocessor on which we have done the parallel implemen- 
tation. 

2.1 .  O P S 5  

An OPS5 (11) production system is composed of a set of if-then rules 
called productions that make up the production memory, and a database of 
temporary assertions called the working memory. The assertions in the 
working memory a r e  called working memory elements (wmes). Each 
production consists of a conjunction of condition elements corresponding to 
the if part of the rule (also called the left-hand side of the production), and 
a set of actions corresponding to the then part of the rule (also called the 
right-hand side of the production). The actions associated with a produc- 
tion can add, remove or modify working memory elements, or perform 
input-output. Figure 1 shows a production named find-colored-block with 
two condition elements in its left-hand side and one action in its right-hand 
side. 

The production system interpreter is the underlying mechanism that 
determines the set of satisfied productions and controls the execution of the 
production system program. The interpreter executes a production system 
program by performing the following recognize-act cycle: 

�9 Match: In this first phase, the left-hand sides of all productions are 
matched against the contents of working memory., As a result a 
conflict set is obtained, which consists of instantiations of all satisfied 
productions. An instantiation of a production is an ordered list of 
working memory elements that satisfies the left-hand side of the 
production. 

�9 Conflict-Resolution: In this second phase, one of the production 
instantiations in the conflict set is chosen for execution. If no 
productions are satisfied, the interpreter halts. 

�9 Act: In this third phase, the actions of the production selected in the 
conflict-resolution phase are executed. These actions may change the 
contents of working memory. At the end of this phase, the first 
phase is executed again. 

(p find-colored-block 
(goal ^type flnd-block ^color <c>) 
(block ^id <i> ^color <c>) 
(color ^code <c> ^name <sl>) 

--> 

(write "Found Block of Color <sl>")) 

Fig. 1. A sample production. 
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A working memory element is a parenthesized list consisting of a con- 
stant symbol called the class of the element and zero or more attribute- 
value pairs. The attributes are symbols that are preceded by the operator ~. 
The values are symbolic or numeric constants. For example, the following 
working memory element has class C1, the value 12 for attribute attrl and 
the value 15 for attribute attr2. 

(C1 Aattrl 12 ^attr2 15) 

The condition elements in the left-hand side of a production are 
parenthesized lists similar to the working memory elements. They may 
optionally be preceded by the symbol- .  Such condition elements are then 
called negated condition elements. Condition elements are interpreted as 
partial descriptions of working memory elements. When a condition 
element describes a working memory element, the working memory 
element is said to match the condition element. A production is said to be 
satisfied when: (1) For  every nonnegated condition element in the left-hand 
side of the production, there exists a working memory element that 
matches it; (2) For every negated condition element in the left-hand side of 
the production, there does not exist a working memory element that 
matches it. 

Like a working memory element, a condition element contains a class 
name and a sequence of attribute-value pairs. However, the condition 
element is less restricted than the working memory element; while the 
working memory element can contain only constant symbols and numbers, 
the condition element can contain variables, predicate symbols, and a 
variety of other operators as well as constants. Variables are identifiers that 
begin with the character " ( "  and end with " ) " - - f o r  example, ( i )  and ( c )  
are variables. A working memory element matches a condition element if 
they belong to the same class and if the value of every attribute in the con- 
dition element matches the value of the corresponding attribute in the 
working memory element. The rules for determining whether a working 
memory element value matches a condition element value are: (1) If the 
condition element value is a constant, it matches only an identical constant. 
(2) If the condition element value is a variable, it will match any value. 
However, if a variable occurs more than once in a left-hand side, all 
occurrences of the variable must match identical values. (3) If the condition 
element value is preceded by a predicate symbol, the working memory 
element value must be related to the condition element value in the 
indicated way. 

The right-hand side of a production consists of an unconditional 
sequence of actions which can cause input/output, and which are respon- 
sible for changes to the working memory. Three kinds of actions are 
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provided to effect working memory changes. Make creates a new working 
memory element and adds it to working memory. Modify changes one or 
more values of an existing working memory element. Remove deletes an 
element from the working memory. 

2.2. The Rete Match Algorithm 

In this subsection, we describe the Rete algorithm used for performing 
the match-phase in the execution of production systems. The match-phase 
is critical because it takes 90% of the execution time and as a result it 
needs to be speeded up most. Rete is a highly efficient algorithm for match 
that is also suitable for parallel implementations. (A detailed discussion of 
Rete and other match algorithms can be found in Refs. 4 and 12.) The Rete 
algorithm gains its efficiency from two optimizations. First, it exploits the 
fact that only a small fraction of working memory changes each cycle by 
storing results of match from previous cycles and using them in subsequent 
cycles. Second, it exploits the similarity between condition elements of 
productions (both within the same production and between different 
productions) to reduce the number of tests that it has to perform to do 
match. It does so by performing common tests only once. 

The Rete algorithm uses a special kind of a data-flow network com- 
piled from the left-hand sides of productions to perform match. The 
network is generated at compile time, before the production system is 
actually run. Figure 2 shows such a network for productions pl and p2, 
which appear in the top part of this illustration. In Fig. 2 lines have been 
drawn between nodes to indicate the paths along which information flows. 
Information flows from the top-node down along these paths. The nodes 
with a single predecessor (near the top of the figure) are the ones that are 
concerned with individual condition elements. The nodes with two 
predecessors are the ones that check for consistency of variable bindings 
between condition elements. The terminal nodes are at the bottom of the 
figure. Note that when two left-hand sides require identical nodes, the 
algorithm shares part of the network rather than building duplicate nodes. 

To avoid performing the same tests repeatedly, the Rete algorithm 
stores the result of the match with working memory as state within the 
nodes. This way, only changes made to the working memory by the most 
recent production firing have to be processed every cycle. Tfius, the input 
to the Rete network consists of the changes to the working memory. These 
changes filter through the network updating the state stored within the 
network. The output of the network consists of a specification of changes 
to the conflict set. 

The objects that are passed between nodes are called tokens, which 
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(p pl (CI ^attrl <x> ^attr2 12) 
(C2 ^attrl 15 ^attr2 <x>) 

- (C3 ^attrl <x>) 
--> 

(remove 2)) 

constant- 
test 
nodes 

(p p2 (C2 ^attrl 15 ^attr2 <y>) 
(C4 ^attrl <y>) 

--> 
(modify i ^attrl 12)) 

root 

cl C1 .... ~ attrl--/15 .... C2~ ~ c~as s-C4 / -- 

L attr2~12 = class=C3 / 

mem-node~ ~mem-node / n/e _node 
TM 

/ ~2 te rminal-nOde 

ftwoinp-node _ Pte rmina 1-node 2 

pl 

Fig. 2. The Rete network. 

consist of a tag and an ordered list of working-memory elements. The tag 
can be either a + ,  indicating that something has been added to the 
working memory, or a - ,  indicating that something has been removed 
from it. No special tag for working-memory element modification is needed 
because a modify is treated as a delete followed by an add. The list of 
working-memory elements associated with a token corresponds to a 
sequence of those elements that the system is trying to match or has 
already matched against a subsequence of condition elements in the left- 
hand side. 

The data-flow network produced by the Rete algorithm consists of 
four different types of nodes. These are: 

1. Constant-test nodes: These nodes are used to test if the attributes 
in the condition element which have a constant value are satisfied. 
These nodes always appear in the top part of the network. They 
have only one input, and as a result, they are sometimes called 
one-input nodes. 

2. Memory nodes: These nodes store the results of the match phase 
from previous cycles as state within them. The state stored in a 
memory node consists of a list of the tokens that match a part of 
the left-hand side of the associated production. For  example, the 
right-most memory node in Fig. 2 stores all tokens matching the 
second condition-element of production p2. 
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3. Two-input nodes: These nodes test for joint satisfaction of con- 
dition elements in the left-hand side of a production. Both inputs 
of a two-input node come from memory nodes. When a token 
arrives on the left input of a two-input node, it is compared to 
each token stored in the memory node connected to the right 
input. All token pairs that have consistent variable bindings are 
sent to the successors of the two-input node. Similar action is 
taken when a token arrives on the right input of a two-input node. 

4. Terminal nodes: There is one such node associated with each 
production in the program, as can be seen at bottom of Fig. 2. 
Whenever a token flows into a terminal node, the corresponding 
production is either inserted into or deleted from the conflict set. 

The most commonly used interpreter for OPS5 is the Rete-based 
Franz Lisp interpreter. In this interpreter a significant loss in the speed is 
due to the interpretation overhead of nodes. In the OPS5 implementation 
we present in this paper, the interpretation overhead has been eliminated 
by compiling the network directly into machine code. While it is possible to 
escape to the interpreter for complex operations during match or for setting 
up the initial conditions for the match, the majority of the match is done 
without an intervening interpretation level. This has led to a speed-up of 
10-20 fold over the Franz Lisp interpreter (see Table I). In addition to this 
speed-up, our parallel implementation gets further speed-up by evaluating 
different node activations in the Rete network in parallel. 

2 .3 .  E n c o r e  M u l t i m a x  

In this subsection, we describe the Encore Multimax shared-memory 
multiprocessor--the computer system on which parallel OPS5 runs. The 
Multimax consists of 2-20 CPUs, each of which is connected to the shared- 
memory through a high performance bus. The shared-memory is equally 

Table I. Speed-up of C-based over Franzlisp-based Implementation 

VS-lisp VS2 
Lisp-based Hash-based 

implementation memories Speed-up 
PROGRAM (sec) (sec) VS-lisp/VS2 

Weaver 1104.0 85.8 12.9 
Rubik 1175.0 96.9 12.1 
Tourney 2302.0 93.5 24.6 
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accessible to all of the processors, in that each processor sees the same 
latency for memory accesses. 

The processors .used in our Encore Multimax are National Semi- 
conductor NS32032 chips along with NS32081 floating point coprocessors, 
each processor capable of approximately 0.75 million instructions per 
second. There are two processors packaged per board and they share 
32 Kbytes of cache memory. The processor boards use a combination of 
write-through strategy and bus-watching logic to keep the caches on dif- 
ferent processor boards consistent. The bus used on the Encore Multimax 
is called the Nanobus. It is a synchronous bus and it can transfer 8 bytes of 
new information every 80 nanoseconds, thus providing a data transfer 
bandwidth of 100 Mbytes/second. 

The version of Encore Multimax available to us at CMU  has 16 
processors, 32 Mbytes of memory, and runs the MACH operating system 
developed at Carnegie Mellon University. The operating system provides a 
UNIX-like interface to the user, although the internals are different and 
several extensions have been made to support the underlying parallel 
hardware. It provides facilities to automatically distribute processes 
amongst the available processors and it provides facilities for multiple 
processes to share memory for communication and synchronization pur- 
poses. The results reported in this paper correspond to this configuration of 
the Encore Multimax. 

3. ORGANIZATION AND DETAILS OF THE PARALLEL 
IMPLEMENTATION 

3.1, High-Level Structure of the Parallel Implementation 

The parallel OPS5 implementation on the Encore (PSM-E) consists of 
one control process and one or more match processes. The number of match 
processes is a user specified parameter, but it is fixed for the duration of 
any particular run. The system is generally used in a mode where the com- 
puter contains at least as many free processors as there are processes in the 
matcher; this permits each process to be assigned to a distinct processor for 
the duration of the run (provided the operating system is reasonably clever 
about assigning processes to processors). 

The control process is responsible for performing conflict resolution, 
evaluating the right-hand side of rules, handling input/output, and all the 
other functions of the interpreter except for performing match. It is also 
responsible for starting up the match processes at the beginning of the run 
and killing them at the end of the run. The match processes do nothing 
except perform the match. The match processes pipeline their operation 
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with the control process. Thus when RHS evaluation begins, the match 
processes are idle. However, as soon as the first working memory change is 
computed, information about that change is passed to the match processes 
and they start to work. The control process continues evaluating the RHS, 
and as more changes are computed, the information is passed immediately 
to the match processes for them to handle as soon as they are able. When 
the control process finishes evaluating the RHS, it becomes idle and waits 
for the match processes to finish. When the last match process finishes, the 
control process performs conflict resolution and then begins evaluating the 
next RHS, thus starting the cycle over again. 3 

To perform match, the match processes use the Rete algorithm 
described in Section 2.2. The match processes exploit the dataflow-like 
nature of the Rete algorithm to achieve speed-up from parallelism. In par- 
ticular, a single copy of the Rete network is held in shared memory, The 
match processes cooperate to pass tokens through the network and update 
the state stored in the memory nodes as indicated by the tokens. The match 
is broken into fairly small units of work called tasks, where a task is an 
independently schedulable unit of work that may be executed in parallel 
with other tasks. In our parallel implementation: 

�9 All of the constant-test node activations constitute a single task. All 
these constant-test nodes are processed as a g roup ,  because 
individual constant-test node activations take only 2 machine 
instructions to execute, and that is too fine a granularity. 

�9 The memory nodes in the Rete network are coalesced with the two- 
input nodes that are below them. Each activation of these coalesced 
two-input nodes constitutes a single task. The reasons for this 
coalescing are discussed in Ref. 13. As an example, the task 
corresponding to the left activation of a two-input node involves: (i) 
the addition/deletion of the incoming token to the left memory 
node; (ii) comparison of this token with all tokens in the opposite 
memory node checking for consistent variable bindings; and (iii) 
scheduling of matching token pairs for execution as new tasks. Note 
that multiple activations of the same two-input node constitute dif- 
ferent tasks and these can be processed in parallel. 

�9 Each individual terminal node activation constitutes a task. 

3 For simplicity, we are ignoring two kinds of optimizations that are possible. First, it is 
possible to overlap conflict-resolution with match. Second, if speculative parallelism is used 
(we are willing to be wrong in our prediction sometimes and know how to recover from the 
error), it is possible to make a guess about the production that will fire next and to evaluate 
its right-hand side before conflict-resolution is completely finished. We choose to ignore 
these two optimizations for the present, because conflict-resolution and RHS evaluation are 
not the bottlenecks in our current implementation. 
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In our current implementation, each task is represented by a data 
object called a token. The token in the parallel implementation is essen- 
tially the same as that used in the sequential Rete matcher (as described in 
Section 2.2), except that it has two extra items of information: the address 
of the node to which the token is to be sent, and if that node is a two-input 
node, an indication of whether to send it to the left or right input. The list 
of tokens that are awaiting processing is held in a central data structure 
called a task queue. The individual match processes perform match by 
executing the following loop. 

1. Remove a token from the task queue. If the queue is empty, wait 
until something is added. 

2. Process the token. If new tokens are to be sent out, push them 
onto the task queue. 

3. Go to step 1. 

3.2. Implementation Details 

When studying parallelism in production systems (or in any other 
application for that matter), it is important to compute the speed-ups with 
respect to the performance of the most efficient uniprocessor implemen- 
tations. It is indeed quite easy to obtain large speed-ups with respect to 
inefficient implementations of the application, but such results have little 
practical utility. In the case of OPS5, the most efficient uniprocessor 
implementations are currently based on the Rete algorithm and they com- 
pile the Rete network into machine code and use global register allocation. 
Such compilation into machine code gives approximately 10-20 fold speed- 
up over Rete-based lisp implementations of OPS5 (see Table I). For this 
reason, our parallel implementation of OPS5 on the Encore is also Rete- 
based and compiles the Rete network directly into machine code. 4 Another 
effect of parallelizing a highly efficient implementation versus an inefficient 
one is that the number of instructions executed in each parallel subtask (for 
the same task decomposition) is smaller in the highly efficient implemen- 
tation. This is equivalent to exploiting parallelism at a finer granularity, 
and as a result, the issues of synchronization and scheduling are more 
critical. 

As stated in the previous paragraph, the nodes in the Rete network are 
compiled directly into NS32032 machine code. Some of the operations per- 

4 Note that the argument  in the beginning of this paragraph does not say that one has to use 
the same algorithm (as the most  efficient uniprocessor one) for the parallel implementation. 
It just  turns out in our case, that the efficient uniprocessor algorithm is also very good for 
parallel implementation. (131 
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formed by the nodes are too complex to make it reasonable to compile the 
necessary code in-line. For these operations, subroutine calls are compiled 
into the network�9 The subroutines themselves are coded in C and assem- 
bler. For example, a two-input node is compiled into a combination of sub- 
routine calls for modifying and searching through the node memories plus 

!!! Rule for which code is presented below 
(p p2 

(cl ^al 7 ^a2 <x> ^a3 <y>) 
(c2 ^al <x> ^a2 15 ^a3 <y>) 

--> 

(write fired successfully )) 

_ops rete root : 
movd 
movd 
cmpd 
bne 
cmpd 
bne 
addr 
bsr 
br 

.LI3: movd 
xord 
xord 
andd 
movd 
movd 

bsr 
adjspb 
cmpqd 
bne 

empqd 
beq 

�9 Ltop0 : movd 

bsr 
~qd 
beq 
bsr 
br 

.LII: cn~d 

r6, r4 
@ curdir, @ succdir 
4 (r6), ~ops ~ymbols+4 
�9 L11 

12 (r6) , $30 
�9 LII 

@. LI3, r0 
_PushTaskQueue 
�9 LII 

$0, r3 
16 (r6), r3 
8 (r6) , r3 
$0xfff, r3 
@ curdir, @_succdir 
$0, tos 

$-4 
$0, r0 
@LeaveBetaTask 

$0, 0(_itokHT) [r3:d] 
@LeaveBetaTask 
$0, r2 
_ops__inext 
$0, r5 
@ LeaveBetaTask 
�9 LI2 
�9 L~op0 

4 (r6) @ops symbols 

Register r4 gets pointer to wme 
Successor direc = Current_direc 
Test if c~ass = c2 
If test fails try next node 
Test if ^a2 = 15 
If test fails try next node 
Push task on to task_queue to 
begin evaluation at .LI3 
Start evaluating next node 
v ............................. v 
Compute hash index for 
token 
^ ............................. ^ 

v ............................. v 
Code + procedure call to add/ 
del token to right memory node 
^ ............................. ^ 

Done with node activation if 
matching conjugate token found. 
Done with node activation if 
opposite m e m-node empty 
Lev-of-node-actvn as param in r2 
Locate next token in oppmem 
If all tokens have been examined 
then exit 
Evaluate two-inp node tests 
Loop back to get next token 
Test if class = cl 

�9 LI2 : movd 
movd 
cmpd 
bne 
cmpd 
bne 
br 

.LI6: ret 
�9 LI7 : addr 

bsr 
ret 

0 (r4) r2 
8 (r5) rl 

�9 16(r2) ,12 (rl) 
.L16 
8 (r2) , 8 (rl) 

.L16 
�9 LI7 

$0 
.LI8, r0 
PushTaskQueue 

g0 

! v  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

! Perform tests to check if vats 
! are consistently bound �9 If tests 
! fail, then return immediately, 

! else push successor nodes on 
! task queue and then return 

! Push address of successor node 
! activation on to task queue 
! and return 

Fig. 3. Code generated for matching a production. 
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in-line code to perform the node's variable binding tests. The OPS5 com- 
piler uses global register allocation to make the code significantly more 
efficient. For  example, register r6 always contains the pointer to the 
working-memory element currently being matched. The NS32032 assembly 
code generated to perform match for a simple production is shown in 
Fig. 3. The code is presented here to provide a feel for the compiler and the 
level of optimization. For example, it shows that to evaluate a constant-test 
node it requires only 2 machine instructions, a compare followed by a 
branch. It is not essential to understand the code to understand the rest of 
the paper. 

All communication between processes (both the match processes and 
the control process) takes place via shared memory. The virtual address 
spaces are set up so that the objects in shared memory have the same 
virtual address in every process. Hence processes can simply pass pointers 
around in essentially the same way routines within a single process can. 
For example, the tokens are created in shared memory, and the address of 
a given token is the same in every virtual address space in the system. Thus 
when a process places a token onto the central task queue, all it really has 
to do is to put the address of the token into the task queue. Figure 4 shows 
how the shared-memory is used to communicate between the various 
processes. 

Synchronization within the program is handled explicitly by executing 
interlocked test-and-set instructions. The synchronization primitives 

match processes 

oo 

task 
queue 

lock 

I 

Rete network 

left I right hash hash 
table table 

token memories 

shared memory 

Fig. 4. Use of shared-memory by various processes. 
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provided by the operating system (for example, semaphores, barriers, 
signals, etc.,) are not used because of the large overhead associated with 
them. When a process finds that it is locked out of a critical region it spins 
on the lock, waiting for a chance to enter the region. In order to minimize 
the amount of bus traffic generated by the spinning processes, a "test and 
test-and-set" synchronization mechanism is used. In this scheme, a process 
uses ordinary memory-read instructions to test the status of a lock until it 
finds that it is free; then the process uses a test-and-set interlocked instruc- 
tion to re-read the lock and set it (if it is still free). Note that while the lock 
is busy, the process spins out of its cache and does not use the bus. This is 
more efficient than using only the "test-and-set" interlocked instruction for 
the lock. In this case, the process generates bus traffic to perform the writes 
while it is busy waiting. 

The control process communicates with the match processes primarily 
through the shared task queue. Whenever the evaluation of an RHS results 
in a change to working memory, a token is created and marked as being 
destined for the root node of the network. The control process pushes these 
tokens onto the task queue in exactly the same way as the match processes 
push the tokens they create. The tokens are picked up and processed by 
waiting match processes. When the evaluation of an RHS begins, the 
match processes are idle. The first token created by the control process 
causes the match processes to start up. After the first token, the control 
process proceeds in parallel with the match processes. 

Depending on the granularity of tasks (number of instructions 
executed per task) that are scheduled using the task queue and depending 
on the number of processors that are trying to access the task queue in 
parallel, it is quite possible that a single task queue would become a 
bottleneck. For  this reason, Gupta ~13) proposed a hardware task scheduler 
for scheduling the fine-grained tasks. So far we have not implemented the 
hardware scheduler, and in this paper we present results only for the case 
when one or more software task queues are used. 

After the control process finishes evaluating the RHS, it must wait for 
the match processes to finish before it can perform the next conflict 
resolution operation. A global counter, TaskCount, is used to determine 
when all the match processes have finished. This counter contains the sum 
of: 

�9 the number of tokens that are currently on the task queue, and 

�9 the number of tokens that are being processed by the match 
processes. 

This count is maintained quite simply. Every time a token is put onto the 
task queue, the counter is incremented. Every time a match process finishes 
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working with a token, the counter is decremented. The match phase is 
finished when the counter goes to zero. 

Shifting our focus back to the evaluation of individual two-input node 
activations, we note that instead of having separate memories for each two- 
input node, the matcher has two large hash tables which hold all the 
tokens for the entire network. One hash table holds tokens for left 
memories of two-input nodes, and the other for right memories of two- 
input nodes. An alternative scheme is to have separate hash tables for each 
two input node, but such a scheme was considered to be wasteful of space. 
The hash function that is applied to the tokens takes into account: 

�9 The values in the token which will have equality tests applied at 
the two-input node, and 

�9 The unique identifier of the two-input node which stored the 
tokens. The unique identifier is randomized to minimize the 
number of hash-table collisions. 

This permits the two-input nodes to locate any tokens that are likely 
to pass the equal-variable tests quickly. It also permits multiple activations 
of the same two-input node to be processed in parallel. 

The processing performed by the individual node activations in the 
parallel implementation is similar to the processing done in the sequential 
matcher with two exceptions: 

�9 Code has been added to the two-input nodes to handle conjugate 
token pairs. 

�9 Sections of code that access shared resources are protected by spin 
locks to insure that only one process at a time can be accessing 
each resource. 

A conjugate pair is a pair of tokens with opposite signs (an add token 
request and a delete token request), but which refer to the same working 
memory element or list of working memory elements. Conjugate pairs arise 
in the match operation for a variety of reasons, which are too complex to 
go into here (see [Ref. 13]). They occur in both sequential and parallel 
implementations of Rete, but they present much greater problems in a 
parallel system. The reason for this is that in a parallel system it is not 
possible to insure that the tokens will be processed in the order in which 
they are generated, and consequently in some cases a token with a - 
(delete) flag will arrive at a two-input node before the corresponding token 
with the + (add) flag. The parallel matcher code handles this by saving the 
- t o k e n s  that arrive early on an extra-deletes-list without otherwise 
processing the token. When the corresponding + token arrives both tokens 
are discarded. 
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Many resources in a parallel system have to be protected with mutual- 
exclusion locks-- the  task queues, the count of the number of active tokens, 
the conflict set, etc. Most of these are relatively straight-forward to protect 
and a simple variation of standard spin locks is used. The exception is the 
locks used to control access to the token hash tables. There are several dif- 
ferent operations that are performed on the token hash tables, for example, 
searching for matching tokens, adding and removing tokens, adding and 
removing conjugate tokens, and we would like many of these operations to 
proceed in parallel without having any undesirable effects. Because of the 
importance of the hash tables to the performance of the system, several 
locking schemes were implemented and tried. Two of these schemes are 
described here. 

The first scheme, the simple one, is easy to describe and it provides a 
departure point for describing the second more complex one. We define a 
"line" as a pair of corresponding buckets (buckets with the same hash 
index) from the left and right hash tables along with their associated 
extra-deletes lists. In this scheme, each line in the hash table has a flag 
controlling its use. 5 The flag takes on two values: Free and Taken. When a 
process has to work with the hash table, it examines the flag for the line it 
needs. If the flag is Free, it sets the flag to Taken and proceeds to perform 
the necessary operations; when it finishes, it sets the flag back to Free. If a 
process finds the flag set to Taken, it waits until the flag is set to Free. Of 
course, the act of testing and setting the flag must be an atomic operation. 
This synchronization scheme works, but it is a potential bottleneck when 
several tokens arrive at a node about  the same time, and if all of them 
require access to the same hash table line. 

The second scheme is a complex variant of the multiple-reader-single- 
writer locking scheme. It permits several tokens to be processed in the same 
line at the same time, though even here, some serialization of the process- 
ing is necessary when destructive modifications to the lists of tokens are 
performed. This scheme requires two locks, a flag, and a counter for each 
line in the hash table. The flag takes on three values: Unused, Left, and 
Right, to indicate respectively that the line is not currently being processed, 
that it is being used to process tokens arriving from the left, or that it is 
being used to process tokens arriving from the right. The counter indicates 
how many processes are using that line in the hash' table; it is needed only 
so that the last process to finish using the line can set the flag back to 
Unused. The first lock insures that onl~r one process at a time can access the 

5 Note that any given operation on the token hasb tables requires access to only a single line 
of the hash tables. In other words, processing a single node activation never requires access 
to multiple hash table lines. 
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flag and the counter. When a process first tries to use a line in the hash 
table, it gets this lock, and checks the flag. If the flag indicates that tokens 
from the other side are being processed, the process releases the lock and 
tries again. If the flag allows the process to continue, it sets the flag if 
necessary, increments the counter, and releases the lock. For the remaining 
time that the process uses this line in the hash table, it leaves the flag and 
the counter untouched; finally, when the process finishes using the line it 
decrements the counter and if appropriate sets the flag to Unused (again, 
all within a section of code protected by this lock). All this is to insure that 
tokens from two different sides are not processed at the same time. The 
second lock is used to insure that only one process at a time can be 
modifying the token lists. Recall that the first task in processing a two- 
input node is to update the list of tokens stored in the memory node. To do 
this, the process gets the modification lock, searches the conjugate or 
regular token list, and it either adds the token to or deletes it from one of 
these lists. When it has finished, it releases the modification lock and 
proceeds with searching the tokens in the opposite hash-table bucket to 
find those that satisfy the variable binding tests. 

More complex locking schemes can be devised and, in fact, were 
implemented and tested. One other scheme that was tried permitted more 
than one process to search the token lists to find tokens to delete; in this 
scheme the only serialization of the tasks occurred when the actual destruc- 
tive modification of the token list was performed. As in all implemen- 
tations, the main tradeoff to keep in mind is that in an attempt to speed-up 
the rare cases, one should not slow down the normal case. 

3.3. RHS Evaluation and Conf l ict  Resolution 

In our system, the rules' RHSs are compiled into a form of threaded 
code which is interpreted at run time. (t4~ Figure 5 shows a small piece of 
such threaded code. Interpreting the threaded code is slower than executing 
the compiled code, but since RHS evaluation is not a bottleneck to the 
performance, threaded code, which is simpler to compile was considered 
fast enough. Conflict resolution in the system is handled by code written in 
the C language. This code is executed by the control process. 

4. RESULTS A N D  ANALYSIS  

In this section, we present results obtained from the execution of three 
production-system programs. We first present some statistics from our 
uniprocessor implementation, and we then present the speed-ups obtained 
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pl: # -- pl -- ! Begin code for RHS of rule pl 

.double bmake ! Begin a make-wme action 

�9 double _symcon ! v ............................. v 

.double ops_symbols ! Set class of wme to cl 

.double rval ! ............ -' .................. 

�9 double tab ! v ............................. v 

. double 4 ! 

.double fixcon ! Set 4th field of wme to 5 

�9 double ~ ! 

�9 double rval ! ^ ............................. ^ 

�9 double tab ! v ............................. v 

. double ~ ! 

.double fixcon ! Set 3rd field of wme to 10 

�9 double 50 ! 

�9 double rval ! ^ ............................. ^ 

.double emake i End of make-wine action 

.double _opsret ! End code for RHS of rule pl 

Fig. 5. Threaded code used to execute RHS actions. 

by our parallel implementation. We also present a detailed analysis of  the 
speed-ups observed. The three programs that we have studied are: 

�9 Weaver, (15) a VLSI routing program by Rostom Joobbani with 637 
rules. 

�9 Rubik, a program that solves the Rubik's cube by James Allen with 
70 rules�9 

�9 Tourney, a program that assigns match schedules for a tournament 
by Bill Barabash from DEC with 17 rules. 

We have chosen Weaver because it represents a fairly large program 
and it demonstrates that our parallel OPS5 can handle real systems. Rubik 
is a smaller program that demonstrates some of the strengths of our 
parallel implementation and the Tourney program demonstrates some of 
the weaknesses of our parallel implementation�9 

4.1. Results for the Uniprocessor Implementations of OPS5 

Before we did a parallel implementation on the Encore, we initially did 
several uniprocessor C-based implementations of OPS5. In this subsection, 
we present results for two of  these uniprocessor implementations, vsl and 
vs2, for the Microvax-II workstation. 6 The performance results for vsl and 
vs2 implementations are shown in Table II. The base version is vsl, and it 

6 The results are presented for Microvax-II and not for Encore, because the uniprocessor 
implementations were done on the Microvax and only one of these was later taken over to 
the Encore. 

828/17/2-2 
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Table II. Uniprocessor Versions on Microvax-I I  

PROGRAM 

VS1 VS2 
List-based Hash-based Total number Total number 
memories memories of WM-changes of node 

(sec) (sec) processed activations 

Weaver 101.5 85.8 1528 371173 
Rubik 235.2 96.9 8350 554051 
Tourney 323.7 93.5 987 72040 

is characterized by the use of l inear lists to store tokens in node memories, 
just  as uniprocessor lisp implementat ions  do. 7 

The second version, vs2,  uses a global hash table to store all memory-  
node tokens, as discussed in the previous section. If there are equality tests 

at the two-input  node, the hash-table based scheme (i) reduces the number  

of tokens that have to be examined in the opposite memory  to locate those 

that have consistent variable bindings,  and (ii) for deletes, it reduces the 
number  of tokens that  have to be examined in the same memory  to locate 
the token to be deleted. The statistics for the reduct ion in tokens examined 
in the opposite memory for the three programs are given in Table III. Note 

the statistics are computed only for those node activations where the 
opposite memory  is not  empty. The statistics for the reduct ion in tokens 
examined in the same memory  for delete requests are given in Table VI. As 
can be seen from the Tables III  and IV, the savings are substantial ,  

v Note that memory nodes are not shared in either vsl or vs2 versions of OPS5, unlike in the 
Franzlisp version of OPS5. This optimization was not used in vsl or vs2 because it is not 
possible to share memory nodes in the parallel implementations of OPS5 (see [5]), and we 
did not want to spend the effort just for the uniprocessor implementations. 

Table III. Number of Tokens Examined in Opposite Memory 

Tokens in opp mere Tokens in opp mem 
for left actvns for right actvns 

PROGRAM lin mem hash mem lin mem hash mere 

Weaver 10.1 7.7 5.2 1.0 
Rubik 31.0 3.8 1.6 1.8 
Tourney 47.6 5.9 270.1 23.3 
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Table IV. Number of Tokens Examined in Same Memory for Deletes 

Tokens in same mem Tokens in same mem 
for left actvns for right actvns 

PROGRAM lin mem hash mem lin mem hash mem 

Weaver 6.2 3.6 7.0 5.1 
Rubik 23.5 2.6 8.1 3.7 
Tourney 254.4 40.1 3.8 2.9 

especially for the Tourney program. The time-saving effect of hash-based 
memories can be seen from numbers in Table II. 

The second last column in Table II gives the total number of wine- 
changes processed during the run for which data are presented, and the last 
column gives the total number of node activations processed during the 
run (this is also equal to the number of tasks that are pushed/popped from 
the task queue in the parallel version). Dividing the time in column vs2 by 
the number of tasks, we get the average duration for which a task executes. 
This has implications for the amount  of synchronization and scheduling 
overhead that may be tolerated in the parallel implementation. Doing 
this division we get that the average duration of a task for Weaver is 
230 microseconds (or approximately 115 machine instructions, as the 
VAX executes about 500,000 instructions per second), for Rubik is 
175 microseconds, and for Tourney is 1300 microseconds. 

4.2 .  R e s u l t s  fo r  t h e  M u l t i p r o c e s s o r  I m p l e m e n t a t i o n  o f  O P S 5  

While the unaprocessor C-based implementations of OPS5 were done 
on the Microvax-II,  the parallel version was done on the Encore mul- 
tiprocessor. In this subsection, we present speed-up numbers for our 
implementation on the Encore as we vary (i) the number of task queues 
that are used and (ii) the locking structures used for token hash-table 
buckets. The speed-ups reported here are with respect to a parallel version 
of the program running on a uniprocessor. We also present a detailed 
analysis of the speed-ups observed. 

Figure 6 shows results for the" case when a single task queue is used 
and when simple locks (described in Section 3.2) are used with the token 
hash-table buckets. Figure 6 also shows the uniprocessor times (in seconds) 
for the three programs. Note that the numbers along the X-axis represent 
the number of match processes; they do not include the control process. 
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Fig. 6. Speed-up for single task queue and simple hash-table locks. 

The speed-ups for all three programs are quite disappointing. This is 
especially true for Tourney, where the maximum speed-up is 2.6-fold with 5 
match processes and it decreases even further as the number of match 
processes is increased. 

There are several possible reasons for the low speed-up: (i) contention 
for access to the single task queue, (ii) contention for access to the hash- 
table buckets, (iii) low intrinsic parallelism in the programs, (iv) contention 
for hardware resources, and so on. We now explore the effects of removing 
the first two bottlenecks and provide some data on the intrinsic parallelism 
in the programs. 

4.2.1. Reducing Contention for the Centralized Task Queue 

The contention for the single task queue can be reduced by the 
introduction of multiple task queues. Every process has its own queue, onto 
which it pushes and pops tasks. If it runs out of tasks then it cycles through 
the other processes' task queues, searching for a new task. Figure 7 presents 
the speed-up obtained when multiple task queues are used, while still using 
simple hash-table locks. The speed-up increases significantly for both 
Weaver and Rubik, indicating that the contention for pushing and popping 
task queues must have been a bottleneck. The speed-up for Weaver for 13 
processes goes up from 3.9-fold to 8.2-fold and that for Rubik goes up from 
6.3-fold to 11.4-fold. The speed-up for Tourney remains about the same at 
2.4-fold. 

To get more insight into these results, we instrumented the task queue 
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Fig. 7. Speed-up for multiple task queues and simple hash-table locks. 

to get data on contention. The results are shown in Fig. 8. Here we plot the 
number of times a process spins on the task-queue lock as a function of the 
number of match processes. We see from Fig. 8 that as the number of 
processes is increased, there is indeed significant contention for the single 
task queue in case of Weaver and Rubik. For Tourney, there does not seem 
to be as much contention for the task queue, and that is why the speed-up 
does not increase when multiple task queues are used. Since the speed-up is 
still very low for Tourney (only 2.4-fold with 13 processes), in the next sub- 
section we will explore if contention for the hash-table buckets is causing 
the poor speed-up. 

30.00 
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20.0e , Tc~urn~.v 
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~o.oo / . ~  

S 5 ,00  -~ 
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Fig. 8. Contention for the centralized task queue. Measured by the number 
of times a process spins on the lock before it gets access to the task queue. 



116 Gupta e t  al. 

Another question that arises when using multiple task queues is: "How 
many task queues should one use to maximize speed-up?". For example, 
when using 12 match processes, should we have 2, 4, 8, or 12 task queues. 
Too few task queues have the disadvantage that the contention for the task 
queues may still be a bottleneck. An excessive number of task queues has 
the disadvantage that most of the task queues will be empty, and the 
processes will waste time scanning several empty task queues before finding 
one with a task. Figure9 plots the speed-up obtained for 12 match 
processes, as the number of task queues is increased. What the graph shows 
is that the optimal number of task queues varies for different programs. 
For Rubik, the more the task queues the better the speed-up. For Weaver, 
the speed-up increases up to 4 task queues, then remains the same up to 8 
task queues, and then decreases slowly. For Tourney, the number of task 
queues really does not seem to matter. However, as a design decision, it 
seems that erring on the side of too many task queues is better than having 
too few task queues. 

Finally, examining the speed-up for Rubik in Fig. 7, it is interesting to 
note that we get 3.9-fold speed-up using only 3 match processes. This 
apparently anomalous behavior of the speed-up being greater than the 
number of match processes can be explained as follows. When the Rete 
network is evaluated in parallel, it is quite possible that the total number of 
node activations evaluated and their complexity is less than that of the 
sequential implementation. Of course, the final result of the match is still 
the same as the sequential implementation. 
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Speed-up with 12 match processes as the number of task queues is 
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4.2.2. Reducing Contention for the Hash-Table Buckets 

As discussed in Section 3.2, tokens associated with memory nodes in 
the Rete network are stored in two large hash tables. These hash tables are 
shared among all the processes. A single lock controls the access to a line, 
i.e., a pair of corresponding buckets from left and right hash tables. This 
lock provides a spot of contention for the various processes. The conten- 
tion for a hash bucket lock can be measured by the number of times a 
process spins on a lock before it gets access to a line of hash table buckets. 
For right tokens, that activate the two-input nodes along the right inputs, 
the contention for the lock is very low--1 or 2 spins per access--for all 
three programs, and it does not change as the number of processes is 
increased. This is because the right tokens are distributed evenly and most 
right tokens typically require very little processing. (13) The right and the left 
tokens do not typically contend with each other, as the right tokens are 
evaluated in the beginning of the cycle; while the left tokens are evaluated 
only later in the cycle. 

For  the left tokens, which activate the two input nodes from their left 
inputs, the contention is much higher. Figure 10 shows the contention 
observed by left tokens when the per-bucket lock used is a simple one (an 
ordinary spin lock), as discussed in Section 3.2. With 11 match processes, 
Rubik processes spin 23 times, Tourney processes spin 377 times, and 
Weaver processes spin 51 times on average before getting access to the 
hash-table bucket. While the contention for Rubik and Weaver is quite 
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Fig. 10. Contention for hash-table locks for left tokens. Measured by the 
number of times a process spins on a lock before it gets access to the hash- 
table bucket. 
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high, it is enormous for Tourney given that each spin takes several 
microseconds. 

In Fig. 11, we present results for the case when multiple task queues 
are used and when complex multiple-reader-single-writer locks (described in 
Section 3.2) are used for controlling entry to the token hash tables. We 
expected the complex locks to benefit those programs that (i) generate 
cross-products, that is, there are multiple activations of the same two-input 
node from the same side that need concurrent processing, and (ii) have 
long lists of tokens in hash-table buckets, where the complex locks help by 
allowing multiple processes to read the opposite memory at the same time. 
However, programs for which the previous two conditions are not true 
may slow down when complex locks are used, because of the extra 
overhead that they incur due to complex locks. Figure 12 presents some 
results about contention when complex locks are used. Comparing with 
Fig. 10, we see that the contention for the hash-table buckets decreases for 
all three programs, although the contention for Tourney is still very high in 
alsolute terms. Analyzing the Tourney program in more detail, we found 
that the large contention for the hash-table locks is resulting from multiple 
node activations trying to access the same hash-table bucket. This in turn, 
is the result of a few culprit productions in Tourney that have condition 
elements with no common variables. By modifying two such productions 
using domain specific knowledge, we could increase the speed-up achieved 
using 13 processes from 2.7-fold to 5.1-fold. 
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4.2.3. Other Causes for Low Speed-Up 

In this subsection, we explore reasons other than contention for 
shared-memory objects that limit the speed-up achieved by our implemen- 
tation. To this end, we examine the speed-ups obtained in individual 
recognize-act cycles for the programs. (Recall that the computation of an 
OPS5 program involves a series of recognize-act cycles.) Figure 13 presents 
the speed-ups obtained in each cycle as a function of the number of tasks 
(node activations) executed in that cycle. 8 These numbers are presented for 
Weaver; but they are representative of other OPS5 programs too. The 
speed-ups were measured with 11 match processes and the implementation 
used multiple task queues and simple hash-table locks. The 7.5-fold 
speedup obtained for weaver (shown in Fig. 7), is a weighted average of the 
speedups for individual cycles shown in Fig. 13. 

The data points in Fig. 13 can be divided into two regions: 

�9 Short Cycles Region: Points in the left quarter of the graph 
(corresponding to cycles with less than 250 tasks), generally 
achieving a speed-up of 2 to 7-fold. 

�9 Long Cycles Region: Points in the right three quarters of the graph 
(corresponding to cycles with 250-1000 tasks), generally achieving 
a speed-up of 6 to 10-fold. 

8 For presentation purposes, the cycles with more than 1000 tasks are shown as containing 
1000 tasks. 
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Fig. 13. Weaver: Speed-up as a function of tasks/cycle. 

Let us first look at short cycles more closely. To understand the speed- 
up achieved, we plot the number of tasks in the system (which is the sum of 
the number of tasks waiting to be processed and these being processed) as 
a function of time during a cycle. Figure 14 shows such a plot for one of the 
short cycles in Weaver with about 100 tasks. The graph is plotted for 11 
match processes and the time is measured in units of 100 microseconds. 
The graph may be interpreted as showing the number of processors that 
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can be kept busy if infinite processors were present. 9 The average height of 
this graph (about 6.5 for this cycle) indicates the maximum speed-up that 
we should expect. In general, the smaller cycles tend to provide such low 
available parallelism. 

Some additional speed-up losses occur due to the fixed overheads 
associated with match cycles; for example, having to check all the task 
queues to ensure that the match is actually finished and to inform the 
control process about the completion of the match. These almost fixed 
duration overheads affect the speed-up obtained by small cycles much more 
than that obtained by large cycles, as they form a larger fraction of the 
small cycle processing} cost. 

We now explore speed-up limits in long cycles. In Fig. 15, we show a 
plot similar to that in Fig. 14, except this time for a longer cycle with about 
300 tasks. We see that in the early part of the graph (until time 30) the 
potential parallelism increases slowly, then it rises very steeply peaking at 
the point (62,66), then it falls rapidly (until time 65), and finally it has a 
slow spiky decline to the end of cycle (time 120). The portion of the graph 
that hurts the average speed-up most, however, is the porti6n from time 90 
to time 120, where the system keeps processing a few tasks; each time 
generating only a few tasks. This behavior is caused by the presence of 
chains of dependent node activations, (i3) which can get especially bad for 

9 This interpretation is not totally correct for portions of the graph where the height of the 
shaded region is greater than the number of match processes used to produce the graph. 
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productions that have a large number of condition elements. The impact of 
long chains on speed-ups increases with increasing number of processes. 
With more processes, the system can get through the earlier part of the 
computation (the one marked up to the first 90time units, in Fig. 15) 
faster, but it cannot get through the latter part much faster. To counter 
these long chains, we plan to change the Rete network organization for 
productions with large number of condition elements. This new network 
organization is called a constrained bilinear organization and it will allow 
us to reduce the dependencies between tokens (see Refs. 13 and 16 for 
details). 

5. C O N C L U S I O N S  A N D  FUTURE W O R K  

In this paper, we have presented the details of a parallel implemen- 
tation of OPS5 running on the Encore Multimax. The first observation is 
that it is important to speed-up an optimized sequential implementation, 
otherwise most of the benefits are lost. For example, speeding-up the 
Franzlisp implementation by 10-20 fold from parallelism would just bring 
us to the uniprocessor speed of the C-based implementation. Furthermore, 
the issues in parallelizing an optimized implementation are different from 
those in an unoptimized implementation, because only very limited 
oveerheads can be tolerated in an optimized implementation. 

The second observation we make is that it is possible to obtain 
significant speed-ups for OPS5 using fine-grained parallelism on a shared- 
memory multiprocessor. However, this does not work for all programs. 
The Tourney program, because of the presence of short cycles and cross- 
products resisted all our attempts to obtain higher speed-up. 

Our third observation is regarding the contention for shared memory 
objects. The average length of the individual tasks in our parallel 
implementation varies between 100-700 machine instructions for the three 
programs that we studied. In trying to exploit this fine-grained parallelism, 
we found that scheduling tasks using a single task queue formed a major 
bottleneck for the system. We found it essential to use multiple task queues 
(instead of a single task queue) to obtain reasonable speed-up. For the 
Rubik program, going from one task queue to multiple task queues 
increased the speed-up from 6.3-fold to 11.4-fold. 

The other variation that we explored to reduce the contention for 
shared data structures was in the complexity of locks used for hash-based 
memory nodes. We used both simple spin-locks and complex multiple- 
reader-single-writer locks. We observed that special note must be taken of 
rare-case versus normal-case execution. Trying to handle rare cases 
efficiently can slow down the normal case, and can result in overall poorer 
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performance. For example, the provision of complex hash-table locks 
reduced the contention for the hash-table buckets, but it slowed down the 
overall execution speed of the Rubik program. 

In the future, we plan to investigate alternative computer architectures 
for implementing production systems; especially the message-passing 
architectures. Our analysis indicates that the message-passing architectures 
are quite suitable for implementing production systems/~7) Currently, 
simulations of implementing production systems on such machines are in 
progress. 

Our other direction of investigation has been an exploration of the 
parallelism in Soar, (18~ a leaming production system. The parallelism in 
Soar is expected to be higher than OPS5. (~3) Our current implementation 
of Soar on the Encore Multimax has provided good speedups in the 
match. (~6) The next step there is to parallelize other areas of Soar besides 
match. 
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