
International Journal of Parallel Programming, Vol. 17, No. 2, 1988

Parallel Implementation of OPS5
on the Encore Multiprocessor:
Results and Analysis

Anoop Gupta, 1 Milind Tambe, 2 Dirk Kalp, 2
Charles Forgy, 2 and Allen Newell 2

Received November 1987; Revised August 1988

Until now, most results reported for parallelism in production systems (rule-
based systems) have been simulation results--very few real parallel implemen-
tations exist. In this paper, we present results from our parallel implementation
of OPS5 on the Encore multiprocessor. The implementation exploits very fine-
grained parallelism to achieve significant speed-ups. For one of the applications,
we achieve 12.4 fold speed-up using 13 processes. Our implementation is also
distinct from other parallel implementations in that we parallelize a highly
optimized C-based implementation of OPS5. Running on a uniprocessor, our
C-based implementation is 10-20 times faster than the standard lisp implemen-
tation distributed by Carnegie Mellon University. In addition to presenting the
performance numbers, the paper discusses the details of the parallel implemen-
t a t ion- the data structures used, the amount of contention observed for shared
data structures, and the techniques used to reduce such contention.

KEY WORDS: Production Systems; Rule-based Systems; OPS5, Parallel
Processing; Fine-Grained Parallelism; AI Architectures.

1. INTRODUCTION

As the technology of production systems (rule-based systems) is maturing,
larger and more complex expert systems are being built both in industry

1 Department of Computer Science, Stanford University, Stanford, California 94305
2 Department of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania

15213

95

0885-7458/88/0400-0095506.00/0 �9 1988 Plenum Publishing Corporation

828/17/2-1

96 Gupta et al.

and in universities. Often these large and complex systems are very slow
in their execution, and this limits their utility. Researchers have been
exploring many alternative ways for speeding up the execution of
production systems. Some efforts have been focusing on high-performance
uniprocessor implementations, ~1,2) while others ~3-a~ have been focusing on
high-performance parallel implementations. This paper focuses on parallel
implementations.

Until now, most results reported for parallelism in production systems
have been simulation results. In fact, very few real parallel implementations
exist. In this paper, we present results from our parallel implementation of
OPS5 on an Encore Multimax shared-memory multiprocessor with sixteen
CPUs. The implementation, called PSM-E (Production System Machine
project's Encore implementation), exploits very fine-grained parallelism
to achieve up to 12.4 fold speed-up for match using 13 processes. Our
implementation is distinct from other parallel implementations in that we
parallelize a highly optimized C-based implementation of OPS5. Running
on a uniprocessor, our C-based implementation is 10-20 times faster than
the lisp implementation of OPS5 distributed by Carnegie Mellon Univer-
sity. A consequence of parallelizing a highly-optimized implementation is
that one must be very careful about overheads, else the overheads may
nullify the speed-up. One need not be as careful when paratlelizing an
unoptimized implementation. In this paper, we first discuss the design of an
optimized implementation of OPS5, and then discuss the additions that
were made for the parallel implementation. For the parallel implemen-
tation, we discuss the synchronization mechanisms that were used, the
contention observed for various shared data structures, and the techniques
used to reduce such contention.

The paper is organized as follows. Section 2 presents some
background information about the OPS5 language, the Rete match
algorithm, and the Encore Multimax multiprocessor. Section 3 gives an
overview of the parallel interpreter and then goes into the implementation
details describing how the rules are compiled and how various syn-
chronization and scheduling issues are handled. Section 4 presents the
results of the implementation on the Encore multiprocessor. Finally, in
Section 5 we summarize the results and conclude.

2. B A C K G R O U N D

This section is divided into three parts. The first subsection describes
the basics of the OPS5 production-system language--the language which
we have implemented in parallel. The second subsection describes the Rete
algorithm--the algorithm that forms the basis for our parallel implemen-

0P$5 on the Encore Multiprocessor 97

tation. The third subsection describes the Encore Multimax computer
system--the multiprocessor on which we have done the parallel implemen-
tation.

2.1 . O P S 5

An OPS5 (11) production system is composed of a set of if-then rules
called productions that make up the production memory, and a database of
temporary assertions called the working memory. The assertions in the
working memory a r e called working memory elements (wmes). Each
production consists of a conjunction of condition elements corresponding to
the if part of the rule (also called the left-hand side of the production), and
a set of actions corresponding to the then part of the rule (also called the
right-hand side of the production). The actions associated with a produc-
tion can add, remove or modify working memory elements, or perform
input-output. Figure 1 shows a production named find-colored-block with
two condition elements in its left-hand side and one action in its right-hand
side.

The production system interpreter is the underlying mechanism that
determines the set of satisfied productions and controls the execution of the
production system program. The interpreter executes a production system
program by performing the following recognize-act cycle:

�9 Match: In this first phase, the left-hand sides of all productions are
matched against the contents of working memory., As a result a
conflict set is obtained, which consists of instantiations of all satisfied
productions. An instantiation of a production is an ordered list of
working memory elements that satisfies the left-hand side of the
production.

�9 Conflict-Resolution: In this second phase, one of the production
instantiations in the conflict set is chosen for execution. If no
productions are satisfied, the interpreter halts.

�9 Act: In this third phase, the actions of the production selected in the
conflict-resolution phase are executed. These actions may change the
contents of working memory. At the end of this phase, the first
phase is executed again.

(p find-colored-block
(goal ^type flnd-block ^color <c>)
(block ^id <i> ^color <c>)
(color ^code <c> ^name <sl>)

-->

(write "Found Block of Color <sl>"))

Fig. 1. A sample production.

98 Gupta e t at.

A working memory element is a parenthesized list consisting of a con-
stant symbol called the class of the element and zero or more attribute-
value pairs. The attributes are symbols that are preceded by the operator ~.
The values are symbolic or numeric constants. For example, the following
working memory element has class C1, the value 12 for attribute attrl and
the value 15 for attribute attr2.

(C1 Aattrl 12 ^attr2 15)

The condition elements in the left-hand side of a production are
parenthesized lists similar to the working memory elements. They may
optionally be preceded by the symbol- . Such condition elements are then
called negated condition elements. Condition elements are interpreted as
partial descriptions of working memory elements. When a condition
element describes a working memory element, the working memory
element is said to match the condition element. A production is said to be
satisfied when: (1) For every nonnegated condition element in the left-hand
side of the production, there exists a working memory element that
matches it; (2) For every negated condition element in the left-hand side of
the production, there does not exist a working memory element that
matches it.

Like a working memory element, a condition element contains a class
name and a sequence of attribute-value pairs. However, the condition
element is less restricted than the working memory element; while the
working memory element can contain only constant symbols and numbers,
the condition element can contain variables, predicate symbols, and a
variety of other operators as well as constants. Variables are identifiers that
begin with the character " (" and end with ") " - - f o r example, (i) and (c)
are variables. A working memory element matches a condition element if
they belong to the same class and if the value of every attribute in the con-
dition element matches the value of the corresponding attribute in the
working memory element. The rules for determining whether a working
memory element value matches a condition element value are: (1) If the
condition element value is a constant, it matches only an identical constant.
(2) If the condition element value is a variable, it will match any value.
However, if a variable occurs more than once in a left-hand side, all
occurrences of the variable must match identical values. (3) If the condition
element value is preceded by a predicate symbol, the working memory
element value must be related to the condition element value in the
indicated way.

The right-hand side of a production consists of an unconditional
sequence of actions which can cause input/output, and which are respon-
sible for changes to the working memory. Three kinds of actions are

OPS5 on the Encore Mu l t i p rocessor 99

provided to effect working memory changes. Make creates a new working
memory element and adds it to working memory. Modify changes one or
more values of an existing working memory element. Remove deletes an
element from the working memory.

2.2. The Rete Match Algorithm

In this subsection, we describe the Rete algorithm used for performing
the match-phase in the execution of production systems. The match-phase
is critical because it takes 90% of the execution time and as a result it
needs to be speeded up most. Rete is a highly efficient algorithm for match
that is also suitable for parallel implementations. (A detailed discussion of
Rete and other match algorithms can be found in Refs. 4 and 12.) The Rete
algorithm gains its efficiency from two optimizations. First, it exploits the
fact that only a small fraction of working memory changes each cycle by
storing results of match from previous cycles and using them in subsequent
cycles. Second, it exploits the similarity between condition elements of
productions (both within the same production and between different
productions) to reduce the number of tests that it has to perform to do
match. It does so by performing common tests only once.

The Rete algorithm uses a special kind of a data-flow network com-
piled from the left-hand sides of productions to perform match. The
network is generated at compile time, before the production system is
actually run. Figure 2 shows such a network for productions pl and p2,
which appear in the top part of this illustration. In Fig. 2 lines have been
drawn between nodes to indicate the paths along which information flows.
Information flows from the top-node down along these paths. The nodes
with a single predecessor (near the top of the figure) are the ones that are
concerned with individual condition elements. The nodes with two
predecessors are the ones that check for consistency of variable bindings
between condition elements. The terminal nodes are at the bottom of the
figure. Note that when two left-hand sides require identical nodes, the
algorithm shares part of the network rather than building duplicate nodes.

To avoid performing the same tests repeatedly, the Rete algorithm
stores the result of the match with working memory as state within the
nodes. This way, only changes made to the working memory by the most
recent production firing have to be processed every cycle. Tfius, the input
to the Rete network consists of the changes to the working memory. These
changes filter through the network updating the state stored within the
network. The output of the network consists of a specification of changes
to the conflict set.

The objects that are passed between nodes are called tokens, which

100 Gupta et al.

(p pl (CI ^attrl <x> ^attr2 12)
(C2 ^attrl 15 ^attr2 <x>)

- (C3 ^attrl <x>)
-->

(remove 2))

constant-
test
nodes

(p p2 (C2 ^attrl 15 ^attr2 <y>)
(C4 ^attrl <y>)

-->
(modify i ^attrl 12))

root

cl C1 ~ attrl--/15 C2~ ~ c~as s-C4 / --

L attr2~12 = class=C3 /

mem-node~ ~mem-node / n/e _node
TM

/ ~2 te rminal-nOde

ftwoinp-node _ Pte rmina 1-node 2

pl

Fig. 2. The Rete network.

consist of a tag and an ordered list of working-memory elements. The tag
can be either a + , indicating that something has been added to the
working memory, or a - , indicating that something has been removed
from it. No special tag for working-memory element modification is needed
because a modify is treated as a delete followed by an add. The list of
working-memory elements associated with a token corresponds to a
sequence of those elements that the system is trying to match or has
already matched against a subsequence of condition elements in the left-
hand side.

The data-flow network produced by the Rete algorithm consists of
four different types of nodes. These are:

1. Constant-test nodes: These nodes are used to test if the attributes
in the condition element which have a constant value are satisfied.
These nodes always appear in the top part of the network. They
have only one input, and as a result, they are sometimes called
one-input nodes.

2. Memory nodes: These nodes store the results of the match phase
from previous cycles as state within them. The state stored in a
memory node consists of a list of the tokens that match a part of
the left-hand side of the associated production. For example, the
right-most memory node in Fig. 2 stores all tokens matching the
second condition-element of production p2.

OPS5 on the Encore Multiprocessor 101

3. Two-input nodes: These nodes test for joint satisfaction of con-
dition elements in the left-hand side of a production. Both inputs
of a two-input node come from memory nodes. When a token
arrives on the left input of a two-input node, it is compared to
each token stored in the memory node connected to the right
input. All token pairs that have consistent variable bindings are
sent to the successors of the two-input node. Similar action is
taken when a token arrives on the right input of a two-input node.

4. Terminal nodes: There is one such node associated with each
production in the program, as can be seen at bottom of Fig. 2.
Whenever a token flows into a terminal node, the corresponding
production is either inserted into or deleted from the conflict set.

The most commonly used interpreter for OPS5 is the Rete-based
Franz Lisp interpreter. In this interpreter a significant loss in the speed is
due to the interpretation overhead of nodes. In the OPS5 implementation
we present in this paper, the interpretation overhead has been eliminated
by compiling the network directly into machine code. While it is possible to
escape to the interpreter for complex operations during match or for setting
up the initial conditions for the match, the majority of the match is done
without an intervening interpretation level. This has led to a speed-up of
10-20 fold over the Franz Lisp interpreter (see Table I). In addition to this
speed-up, our parallel implementation gets further speed-up by evaluating
different node activations in the Rete network in parallel.

2 .3 . E n c o r e M u l t i m a x

In this subsection, we describe the Encore Multimax shared-memory
multiprocessor--the computer system on which parallel OPS5 runs. The
Multimax consists of 2-20 CPUs, each of which is connected to the shared-
memory through a high performance bus. The shared-memory is equally

Table I. Speed-up of C-based over Franzlisp-based Implementation

VS-lisp VS2
Lisp-based Hash-based

implementation memories Speed-up
PROGRAM (sec) (sec) VS-lisp/VS2

Weaver 1104.0 85.8 12.9
Rubik 1175.0 96.9 12.1
Tourney 2302.0 93.5 24.6

102 Gupta et al.

accessible to all of the processors, in that each processor sees the same
latency for memory accesses.

The processors .used in our Encore Multimax are National Semi-
conductor NS32032 chips along with NS32081 floating point coprocessors,
each processor capable of approximately 0.75 million instructions per
second. There are two processors packaged per board and they share
32 Kbytes of cache memory. The processor boards use a combination of
write-through strategy and bus-watching logic to keep the caches on dif-
ferent processor boards consistent. The bus used on the Encore Multimax
is called the Nanobus. It is a synchronous bus and it can transfer 8 bytes of
new information every 80 nanoseconds, thus providing a data transfer
bandwidth of 100 Mbytes/second.

The version of Encore Multimax available to us at CMU has 16
processors, 32 Mbytes of memory, and runs the MACH operating system
developed at Carnegie Mellon University. The operating system provides a
UNIX-like interface to the user, although the internals are different and
several extensions have been made to support the underlying parallel
hardware. It provides facilities to automatically distribute processes
amongst the available processors and it provides facilities for multiple
processes to share memory for communication and synchronization pur-
poses. The results reported in this paper correspond to this configuration of
the Encore Multimax.

3. ORGANIZATION AND DETAILS OF THE PARALLEL
IMPLEMENTATION

3.1, High-Level Structure of the Parallel Implementation

The parallel OPS5 implementation on the Encore (PSM-E) consists of
one control process and one or more match processes. The number of match
processes is a user specified parameter, but it is fixed for the duration of
any particular run. The system is generally used in a mode where the com-
puter contains at least as many free processors as there are processes in the
matcher; this permits each process to be assigned to a distinct processor for
the duration of the run (provided the operating system is reasonably clever
about assigning processes to processors).

The control process is responsible for performing conflict resolution,
evaluating the right-hand side of rules, handling input/output, and all the
other functions of the interpreter except for performing match. It is also
responsible for starting up the match processes at the beginning of the run
and killing them at the end of the run. The match processes do nothing
except perform the match. The match processes pipeline their operation

OPS5 on the Encore Mult iprocessor 103

with the control process. Thus when RHS evaluation begins, the match
processes are idle. However, as soon as the first working memory change is
computed, information about that change is passed to the match processes
and they start to work. The control process continues evaluating the RHS,
and as more changes are computed, the information is passed immediately
to the match processes for them to handle as soon as they are able. When
the control process finishes evaluating the RHS, it becomes idle and waits
for the match processes to finish. When the last match process finishes, the
control process performs conflict resolution and then begins evaluating the
next RHS, thus starting the cycle over again. 3

To perform match, the match processes use the Rete algorithm
described in Section 2.2. The match processes exploit the dataflow-like
nature of the Rete algorithm to achieve speed-up from parallelism. In par-
ticular, a single copy of the Rete network is held in shared memory, The
match processes cooperate to pass tokens through the network and update
the state stored in the memory nodes as indicated by the tokens. The match
is broken into fairly small units of work called tasks, where a task is an
independently schedulable unit of work that may be executed in parallel
with other tasks. In our parallel implementation:

�9 All of the constant-test node activations constitute a single task. All
these constant-test nodes are processed as a g roup , because
individual constant-test node activations take only 2 machine
instructions to execute, and that is too fine a granularity.

�9 The memory nodes in the Rete network are coalesced with the two-
input nodes that are below them. Each activation of these coalesced
two-input nodes constitutes a single task. The reasons for this
coalescing are discussed in Ref. 13. As an example, the task
corresponding to the left activation of a two-input node involves: (i)
the addition/deletion of the incoming token to the left memory
node; (ii) comparison of this token with all tokens in the opposite
memory node checking for consistent variable bindings; and (iii)
scheduling of matching token pairs for execution as new tasks. Note
that multiple activations of the same two-input node constitute dif-
ferent tasks and these can be processed in parallel.

�9 Each individual terminal node activation constitutes a task.

3 For simplicity, we are ignoring two kinds of optimizations that are possible. First, it is
possible to overlap conflict-resolution with match. Second, if speculative parallelism is used
(we are willing to be wrong in our prediction sometimes and know how to recover from the
error), it is possible to make a guess about the production that will fire next and to evaluate
its right-hand side before conflict-resolution is completely finished. We choose to ignore
these two optimizations for the present, because conflict-resolution and RHS evaluation are
not the bottlenecks in our current implementation.

104 Gupta e t al.

In our current implementation, each task is represented by a data
object called a token. The token in the parallel implementation is essen-
tially the same as that used in the sequential Rete matcher (as described in
Section 2.2), except that it has two extra items of information: the address
of the node to which the token is to be sent, and if that node is a two-input
node, an indication of whether to send it to the left or right input. The list
of tokens that are awaiting processing is held in a central data structure
called a task queue. The individual match processes perform match by
executing the following loop.

1. Remove a token from the task queue. If the queue is empty, wait
until something is added.

2. Process the token. If new tokens are to be sent out, push them
onto the task queue.

3. Go to step 1.

3.2. Implementation Details

When studying parallelism in production systems (or in any other
application for that matter), it is important to compute the speed-ups with
respect to the performance of the most efficient uniprocessor implemen-
tations. It is indeed quite easy to obtain large speed-ups with respect to
inefficient implementations of the application, but such results have little
practical utility. In the case of OPS5, the most efficient uniprocessor
implementations are currently based on the Rete algorithm and they com-
pile the Rete network into machine code and use global register allocation.
Such compilation into machine code gives approximately 10-20 fold speed-
up over Rete-based lisp implementations of OPS5 (see Table I). For this
reason, our parallel implementation of OPS5 on the Encore is also Rete-
based and compiles the Rete network directly into machine code. 4 Another
effect of parallelizing a highly efficient implementation versus an inefficient
one is that the number of instructions executed in each parallel subtask (for
the same task decomposition) is smaller in the highly efficient implemen-
tation. This is equivalent to exploiting parallelism at a finer granularity,
and as a result, the issues of synchronization and scheduling are more
critical.

As stated in the previous paragraph, the nodes in the Rete network are
compiled directly into NS32032 machine code. Some of the operations per-

4 Note that the argument in the beginning of this paragraph does not say that one has to use
the same algorithm (as the most efficient uniprocessor one) for the parallel implementation.
It just turns out in our case, that the efficient uniprocessor algorithm is also very good for
parallel implementation. (131

OPS5 on the Encore Mult iprocessor 105

formed by the nodes are too complex to make it reasonable to compile the
necessary code in-line. For these operations, subroutine calls are compiled
into the network�9 The subroutines themselves are coded in C and assem-
bler. For example, a two-input node is compiled into a combination of sub-
routine calls for modifying and searching through the node memories plus

!!! Rule for which code is presented below
(p p2

(cl ^al 7 ^a2 <x> ^a3 <y>)
(c2 ^al <x> ^a2 15 ^a3 <y>)

-->

(write fired successfully))

_ops rete root :
movd
movd
cmpd
bne
cmpd
bne
addr
bsr
br

.LI3: movd
xord
xord
andd
movd
movd

bsr
adjspb
cmpqd
bne

empqd
beq

�9 Ltop0 : movd

bsr
~qd
beq
bsr
br

.LII: cn~d

r6, r4
@ curdir, @ succdir
4 (r6), ~ops ~ymbols+4
�9 L11

12 (r6) , $30
�9 LII

@. LI3, r0
_PushTaskQueue
�9 LII

$0, r3
16 (r6), r3
8 (r6) , r3
$0xfff, r3
@ curdir, @_succdir
$0, tos

$-4
$0, r0
@LeaveBetaTask

$0, 0(_itokHT) [r3:d]
@LeaveBetaTask
$0, r2
_ops__inext
$0, r5
@ LeaveBetaTask
�9 LI2
�9 L~op0

4 (r6) @ops symbols

Register r4 gets pointer to wme
Successor direc = Current_direc
Test if c~ass = c2
If test fails try next node
Test if ^a2 = 15
If test fails try next node
Push task on to task_queue to
begin evaluation at .LI3
Start evaluating next node
v v
Compute hash index for
token
^ ^

v v
Code + procedure call to add/
del token to right memory node
^ ^

Done with node activation if
matching conjugate token found.
Done with node activation if
opposite m e m-node empty
Lev-of-node-actvn as param in r2
Locate next token in oppmem
If all tokens have been examined
then exit
Evaluate two-inp node tests
Loop back to get next token
Test if class = cl

�9 LI2 : movd
movd
cmpd
bne
cmpd
bne
br

.LI6: ret
�9 LI7 : addr

bsr
ret

0 (r4) r2
8 (r5) rl

�9 16(r2) ,12 (rl)
.L16
8 (r2) , 8 (rl)

.L16
�9 LI7

$0
.LI8, r0
PushTaskQueue

g0

! v . v

! Perform tests to check if vats
! are consistently bound �9 If tests
! fail, then return immediately,

! else push successor nodes on
! task queue and then return

! Push address of successor node
! activation on to task queue
! and return

Fig. 3. Code generated for matching a production.

106 Gupta et al.

in-line code to perform the node's variable binding tests. The OPS5 com-
piler uses global register allocation to make the code significantly more
efficient. For example, register r6 always contains the pointer to the
working-memory element currently being matched. The NS32032 assembly
code generated to perform match for a simple production is shown in
Fig. 3. The code is presented here to provide a feel for the compiler and the
level of optimization. For example, it shows that to evaluate a constant-test
node it requires only 2 machine instructions, a compare followed by a
branch. It is not essential to understand the code to understand the rest of
the paper.

All communication between processes (both the match processes and
the control process) takes place via shared memory. The virtual address
spaces are set up so that the objects in shared memory have the same
virtual address in every process. Hence processes can simply pass pointers
around in essentially the same way routines within a single process can.
For example, the tokens are created in shared memory, and the address of
a given token is the same in every virtual address space in the system. Thus
when a process places a token onto the central task queue, all it really has
to do is to put the address of the token into the task queue. Figure 4 shows
how the shared-memory is used to communicate between the various
processes.

Synchronization within the program is handled explicitly by executing
interlocked test-and-set instructions. The synchronization primitives

match processes

oo

task
queue

lock

I

Rete network

left I right hash hash
table table

token memories

shared memory

Fig. 4. Use of shared-memory by various processes.

OPS5 on the Encore Multiprocessor 107

provided by the operating system (for example, semaphores, barriers,
signals, etc.,) are not used because of the large overhead associated with
them. When a process finds that it is locked out of a critical region it spins
on the lock, waiting for a chance to enter the region. In order to minimize
the amount of bus traffic generated by the spinning processes, a "test and
test-and-set" synchronization mechanism is used. In this scheme, a process
uses ordinary memory-read instructions to test the status of a lock until it
finds that it is free; then the process uses a test-and-set interlocked instruc-
tion to re-read the lock and set it (if it is still free). Note that while the lock
is busy, the process spins out of its cache and does not use the bus. This is
more efficient than using only the "test-and-set" interlocked instruction for
the lock. In this case, the process generates bus traffic to perform the writes
while it is busy waiting.

The control process communicates with the match processes primarily
through the shared task queue. Whenever the evaluation of an RHS results
in a change to working memory, a token is created and marked as being
destined for the root node of the network. The control process pushes these
tokens onto the task queue in exactly the same way as the match processes
push the tokens they create. The tokens are picked up and processed by
waiting match processes. When the evaluation of an RHS begins, the
match processes are idle. The first token created by the control process
causes the match processes to start up. After the first token, the control
process proceeds in parallel with the match processes.

Depending on the granularity of tasks (number of instructions
executed per task) that are scheduled using the task queue and depending
on the number of processors that are trying to access the task queue in
parallel, it is quite possible that a single task queue would become a
bottleneck. For this reason, Gupta ~13) proposed a hardware task scheduler
for scheduling the fine-grained tasks. So far we have not implemented the
hardware scheduler, and in this paper we present results only for the case
when one or more software task queues are used.

After the control process finishes evaluating the RHS, it must wait for
the match processes to finish before it can perform the next conflict
resolution operation. A global counter, TaskCount, is used to determine
when all the match processes have finished. This counter contains the sum
of:

�9 the number of tokens that are currently on the task queue, and

�9 the number of tokens that are being processed by the match
processes.

This count is maintained quite simply. Every time a token is put onto the
task queue, the counter is incremented. Every time a match process finishes

108 Gupta et al.

working with a token, the counter is decremented. The match phase is
finished when the counter goes to zero.

Shifting our focus back to the evaluation of individual two-input node
activations, we note that instead of having separate memories for each two-
input node, the matcher has two large hash tables which hold all the
tokens for the entire network. One hash table holds tokens for left
memories of two-input nodes, and the other for right memories of two-
input nodes. An alternative scheme is to have separate hash tables for each
two input node, but such a scheme was considered to be wasteful of space.
The hash function that is applied to the tokens takes into account:

�9 The values in the token which will have equality tests applied at
the two-input node, and

�9 The unique identifier of the two-input node which stored the
tokens. The unique identifier is randomized to minimize the
number of hash-table collisions.

This permits the two-input nodes to locate any tokens that are likely
to pass the equal-variable tests quickly. It also permits multiple activations
of the same two-input node to be processed in parallel.

The processing performed by the individual node activations in the
parallel implementation is similar to the processing done in the sequential
matcher with two exceptions:

�9 Code has been added to the two-input nodes to handle conjugate
token pairs.

�9 Sections of code that access shared resources are protected by spin
locks to insure that only one process at a time can be accessing
each resource.

A conjugate pair is a pair of tokens with opposite signs (an add token
request and a delete token request), but which refer to the same working
memory element or list of working memory elements. Conjugate pairs arise
in the match operation for a variety of reasons, which are too complex to
go into here (see [Ref. 13]). They occur in both sequential and parallel
implementations of Rete, but they present much greater problems in a
parallel system. The reason for this is that in a parallel system it is not
possible to insure that the tokens will be processed in the order in which
they are generated, and consequently in some cases a token with a -
(delete) flag will arrive at a two-input node before the corresponding token
with the + (add) flag. The parallel matcher code handles this by saving the
- t o k e n s that arrive early on an extra-deletes-list without otherwise
processing the token. When the corresponding + token arrives both tokens
are discarded.

OPS5 on the Encore Multiprocessor 109

Many resources in a parallel system have to be protected with mutual-
exclusion locks-- the task queues, the count of the number of active tokens,
the conflict set, etc. Most of these are relatively straight-forward to protect
and a simple variation of standard spin locks is used. The exception is the
locks used to control access to the token hash tables. There are several dif-
ferent operations that are performed on the token hash tables, for example,
searching for matching tokens, adding and removing tokens, adding and
removing conjugate tokens, and we would like many of these operations to
proceed in parallel without having any undesirable effects. Because of the
importance of the hash tables to the performance of the system, several
locking schemes were implemented and tried. Two of these schemes are
described here.

The first scheme, the simple one, is easy to describe and it provides a
departure point for describing the second more complex one. We define a
"line" as a pair of corresponding buckets (buckets with the same hash
index) from the left and right hash tables along with their associated
extra-deletes lists. In this scheme, each line in the hash table has a flag
controlling its use. 5 The flag takes on two values: Free and Taken. When a
process has to work with the hash table, it examines the flag for the line it
needs. If the flag is Free, it sets the flag to Taken and proceeds to perform
the necessary operations; when it finishes, it sets the flag back to Free. If a
process finds the flag set to Taken, it waits until the flag is set to Free. Of
course, the act of testing and setting the flag must be an atomic operation.
This synchronization scheme works, but it is a potential bottleneck when
several tokens arrive at a node about the same time, and if all of them
require access to the same hash table line.

The second scheme is a complex variant of the multiple-reader-single-
writer locking scheme. It permits several tokens to be processed in the same
line at the same time, though even here, some serialization of the process-
ing is necessary when destructive modifications to the lists of tokens are
performed. This scheme requires two locks, a flag, and a counter for each
line in the hash table. The flag takes on three values: Unused, Left, and
Right, to indicate respectively that the line is not currently being processed,
that it is being used to process tokens arriving from the left, or that it is
being used to process tokens arriving from the right. The counter indicates
how many processes are using that line in the hash' table; it is needed only
so that the last process to finish using the line can set the flag back to
Unused. The first lock insures that onl~r one process at a time can access the

5 Note that any given operation on the token hasb tables requires access to only a single line
of the hash tables. In other words, processing a single node activation never requires access
to multiple hash table lines.

110 Gupta e t al.

flag and the counter. When a process first tries to use a line in the hash
table, it gets this lock, and checks the flag. If the flag indicates that tokens
from the other side are being processed, the process releases the lock and
tries again. If the flag allows the process to continue, it sets the flag if
necessary, increments the counter, and releases the lock. For the remaining
time that the process uses this line in the hash table, it leaves the flag and
the counter untouched; finally, when the process finishes using the line it
decrements the counter and if appropriate sets the flag to Unused (again,
all within a section of code protected by this lock). All this is to insure that
tokens from two different sides are not processed at the same time. The
second lock is used to insure that only one process at a time can be
modifying the token lists. Recall that the first task in processing a two-
input node is to update the list of tokens stored in the memory node. To do
this, the process gets the modification lock, searches the conjugate or
regular token list, and it either adds the token to or deletes it from one of
these lists. When it has finished, it releases the modification lock and
proceeds with searching the tokens in the opposite hash-table bucket to
find those that satisfy the variable binding tests.

More complex locking schemes can be devised and, in fact, were
implemented and tested. One other scheme that was tried permitted more
than one process to search the token lists to find tokens to delete; in this
scheme the only serialization of the tasks occurred when the actual destruc-
tive modification of the token list was performed. As in all implemen-
tations, the main tradeoff to keep in mind is that in an attempt to speed-up
the rare cases, one should not slow down the normal case.

3.3. RHS Evaluation and Conf l ict Resolution

In our system, the rules' RHSs are compiled into a form of threaded
code which is interpreted at run time. (t4~ Figure 5 shows a small piece of
such threaded code. Interpreting the threaded code is slower than executing
the compiled code, but since RHS evaluation is not a bottleneck to the
performance, threaded code, which is simpler to compile was considered
fast enough. Conflict resolution in the system is handled by code written in
the C language. This code is executed by the control process.

4. RESULTS A N D ANALYSIS

In this section, we present results obtained from the execution of three
production-system programs. We first present some statistics from our
uniprocessor implementation, and we then present the speed-ups obtained

OPS5 on the Encore Multiprocessor 111

pl: # -- pl -- ! Begin code for RHS of rule pl

.double bmake ! Begin a make-wme action

�9 double _symcon ! v v

.double ops_symbols ! Set class of wme to cl

.double rval ! -'

�9 double tab ! v v

. double 4 !

.double fixcon ! Set 4th field of wme to 5

�9 double ~ !

�9 double rval ! ^ ^

�9 double tab ! v v

. double ~ !

.double fixcon ! Set 3rd field of wme to 10

�9 double 50 !

�9 double rval ! ^ ^

.double emake i End of make-wine action

.double _opsret ! End code for RHS of rule pl

Fig. 5. Threaded code used to execute RHS actions.

by our parallel implementation. We also present a detailed analysis of the
speed-ups observed. The three programs that we have studied are:

�9 Weaver, (15) a VLSI routing program by Rostom Joobbani with 637
rules.

�9 Rubik, a program that solves the Rubik's cube by James Allen with
70 rules�9

�9 Tourney, a program that assigns match schedules for a tournament
by Bill Barabash from DEC with 17 rules.

We have chosen Weaver because it represents a fairly large program
and it demonstrates that our parallel OPS5 can handle real systems. Rubik
is a smaller program that demonstrates some of the strengths of our
parallel implementation and the Tourney program demonstrates some of
the weaknesses of our parallel implementation�9

4.1. Results for the Uniprocessor Implementations of OPS5

Before we did a parallel implementation on the Encore, we initially did
several uniprocessor C-based implementations of OPS5. In this subsection,
we present results for two of these uniprocessor implementations, vsl and
vs2, for the Microvax-II workstation. 6 The performance results for vsl and
vs2 implementations are shown in Table II. The base version is vsl, and it

6 The results are presented for Microvax-II and not for Encore, because the uniprocessor
implementations were done on the Microvax and only one of these was later taken over to
the Encore.

828/17/2-2

112 Gupta e t al.

Table II. Uniprocessor Versions on Microvax-I I

PROGRAM

VS1 VS2
List-based Hash-based Total number Total number
memories memories of WM-changes of node

(sec) (sec) processed activations

Weaver 101.5 85.8 1528 371173
Rubik 235.2 96.9 8350 554051
Tourney 323.7 93.5 987 72040

is characterized by the use of l inear lists to store tokens in node memories,
just as uniprocessor lisp implementat ions do. 7

The second version, vs2, uses a global hash table to store all memory-
node tokens, as discussed in the previous section. If there are equality tests

at the two-input node, the hash-table based scheme (i) reduces the number

of tokens that have to be examined in the opposite memory to locate those

that have consistent variable bindings, and (ii) for deletes, it reduces the
number of tokens that have to be examined in the same memory to locate
the token to be deleted. The statistics for the reduct ion in tokens examined
in the opposite memory for the three programs are given in Table III. Note

the statistics are computed only for those node activations where the
opposite memory is not empty. The statistics for the reduct ion in tokens
examined in the same memory for delete requests are given in Table VI. As
can be seen from the Tables III and IV, the savings are substantial ,

v Note that memory nodes are not shared in either vsl or vs2 versions of OPS5, unlike in the
Franzlisp version of OPS5. This optimization was not used in vsl or vs2 because it is not
possible to share memory nodes in the parallel implementations of OPS5 (see [5]), and we
did not want to spend the effort just for the uniprocessor implementations.

Table III. Number of Tokens Examined in Opposite Memory

Tokens in opp mere Tokens in opp mem
for left actvns for right actvns

PROGRAM lin mem hash mem lin mem hash mere

Weaver 10.1 7.7 5.2 1.0
Rubik 31.0 3.8 1.6 1.8
Tourney 47.6 5.9 270.1 23.3

OPS5 on the Encore Multiprocessor 113

Table IV. Number of Tokens Examined in Same Memory for Deletes

Tokens in same mem Tokens in same mem
for left actvns for right actvns

PROGRAM lin mem hash mem lin mem hash mem

Weaver 6.2 3.6 7.0 5.1
Rubik 23.5 2.6 8.1 3.7
Tourney 254.4 40.1 3.8 2.9

especially for the Tourney program. The time-saving effect of hash-based
memories can be seen from numbers in Table II.

The second last column in Table II gives the total number of wine-
changes processed during the run for which data are presented, and the last
column gives the total number of node activations processed during the
run (this is also equal to the number of tasks that are pushed/popped from
the task queue in the parallel version). Dividing the time in column vs2 by
the number of tasks, we get the average duration for which a task executes.
This has implications for the amount of synchronization and scheduling
overhead that may be tolerated in the parallel implementation. Doing
this division we get that the average duration of a task for Weaver is
230 microseconds (or approximately 115 machine instructions, as the
VAX executes about 500,000 instructions per second), for Rubik is
175 microseconds, and for Tourney is 1300 microseconds.

4.2 . R e s u l t s fo r t h e M u l t i p r o c e s s o r I m p l e m e n t a t i o n o f O P S 5

While the unaprocessor C-based implementations of OPS5 were done
on the Microvax-II, the parallel version was done on the Encore mul-
tiprocessor. In this subsection, we present speed-up numbers for our
implementation on the Encore as we vary (i) the number of task queues
that are used and (ii) the locking structures used for token hash-table
buckets. The speed-ups reported here are with respect to a parallel version
of the program running on a uniprocessor. We also present a detailed
analysis of the speed-ups observed.

Figure 6 shows results for the" case when a single task queue is used
and when simple locks (described in Section 3.2) are used with the token
hash-table buckets. Figure 6 also shows the uniprocessor times (in seconds)
for the three programs. Note that the numbers along the X-axis represent
the number of match processes; they do not include the control process.

114 G u p t a e t al.

14.00

12.00 rD
I ubik: Uni ~roc. Time = 257.8s

Tourn~.v: Inioroc Tirr e = 97 9~

< ,Weaver: L niproc. Tim = 119.8s

6.00 ~

2.004" O0 ~ ~ ~ O, O~

0.0%
2 4 6 8 I0 12 14

Number of Match Processes

Fig. 6. Speed-up for single task queue and simple hash-table locks.

The speed-ups for all three programs are quite disappointing. This is
especially true for Tourney, where the maximum speed-up is 2.6-fold with 5
match processes and it decreases even further as the number of match
processes is increased.

There are several possible reasons for the low speed-up: (i) contention
for access to the single task queue, (ii) contention for access to the hash-
table buckets, (iii) low intrinsic parallelism in the programs, (iv) contention
for hardware resources, and so on. We now explore the effects of removing
the first two bottlenecks and provide some data on the intrinsic parallelism
in the programs.

4.2.1. Reducing Contention for the Centralized Task Queue

The contention for the single task queue can be reduced by the
introduction of multiple task queues. Every process has its own queue, onto
which it pushes and pops tasks. If it runs out of tasks then it cycles through
the other processes' task queues, searching for a new task. Figure 7 presents
the speed-up obtained when multiple task queues are used, while still using
simple hash-table locks. The speed-up increases significantly for both
Weaver and Rubik, indicating that the contention for pushing and popping
task queues must have been a bottleneck. The speed-up for Weaver for 13
processes goes up from 3.9-fold to 8.2-fold and that for Rubik goes up from
6.3-fold to 11.4-fold. The speed-up for Tourney remains about the same at
2.4-fold.

To get more insight into these results, we instrumented the task queue

OPS5 on the Encore Multiprocessor 115

14.00

12.00

i0.00

B,O0

6.00

4.00

2.0C

o.oc

Rubik: Uni~roc. Time 2 5 3 . 5 s

Tourney: Iniproe Tin o = 9 7 7s

< ,Weaver: L niproc. T i m = 1 1 8 . 2 s

f
/

J - Z

2 4 6 0

J

J

f

f -

i~ .7.

I0 12 14

Number ot Match Processes

Fig. 7. Speed-up for multiple task queues and simple hash-table locks.

to get data on contention. The results are shown in Fig. 8. Here we plot the
number of times a process spins on the task-queue lock as a function of the
number of match processes. We see from Fig. 8 that as the number of
processes is increased, there is indeed significant contention for the single
task queue in case of Weaver and Rubik. For Tourney, there does not seem
to be as much contention for the task queue, and that is why the speed-up
does not increase when multiple task queues are used. Since the speed-up is
still very low for Tourney (only 2.4-fold with 13 processes), in the next sub-
section we will explore if contention for the hash-table buckets is causing
the poor speed-up.

30.00

2s.oo , Rubik

"a'69 f /
20.0e , Tc~urn~.v

is.oo W~.Rver /

~o.oo / . ~

S 5 ,00 -~

o.o%
2 4 6 0 I0 12 14

Number of processes

Fig. 8. Contention for the centralized task queue. Measured by the number
of times a process spins on the lock before it gets access to the task queue.

116 Gupta e t al.

Another question that arises when using multiple task queues is: "How
many task queues should one use to maximize speed-up?". For example,
when using 12 match processes, should we have 2, 4, 8, or 12 task queues.
Too few task queues have the disadvantage that the contention for the task
queues may still be a bottleneck. An excessive number of task queues has
the disadvantage that most of the task queues will be empty, and the
processes will waste time scanning several empty task queues before finding
one with a task. Figure9 plots the speed-up obtained for 12 match
processes, as the number of task queues is increased. What the graph shows
is that the optimal number of task queues varies for different programs.
For Rubik, the more the task queues the better the speed-up. For Weaver,
the speed-up increases up to 4 task queues, then remains the same up to 8
task queues, and then decreases slowly. For Tourney, the number of task
queues really does not seem to matter. However, as a design decision, it
seems that erring on the side of too many task queues is better than having
too few task queues.

Finally, examining the speed-up for Rubik in Fig. 7, it is interesting to
note that we get 3.9-fold speed-up using only 3 match processes. This
apparently anomalous behavior of the speed-up being greater than the
number of match processes can be explained as follows. When the Rete
network is evaluated in parallel, it is quite possible that the total number of
node activations evaluated and their complexity is less than that of the
sequential implementation. Of course, the final result of the match is still
the same as the sequential implementation.

~. 14.oo

09 12.oo

io. oo

8.00

6,00

4.00

2. D%

Fig. 9,

Rubik

Taurno.v ~

...,.......,.......-~ / /

2 4 6 8 10 12 14 16

Number of Queues (12 processes)

Speed-up with 12 match processes as the number of task queues is
varied.

O P S 5 o n the Encore Multiprocessor 1 1 7

4.2.2. Reducing Contention for the Hash-Table Buckets

As discussed in Section 3.2, tokens associated with memory nodes in
the Rete network are stored in two large hash tables. These hash tables are
shared among all the processes. A single lock controls the access to a line,
i.e., a pair of corresponding buckets from left and right hash tables. This
lock provides a spot of contention for the various processes. The conten-
tion for a hash bucket lock can be measured by the number of times a
process spins on a lock before it gets access to a line of hash table buckets.
For right tokens, that activate the two-input nodes along the right inputs,
the contention for the lock is very low--1 or 2 spins per access--for all
three programs, and it does not change as the number of processes is
increased. This is because the right tokens are distributed evenly and most
right tokens typically require very little processing. (13) The right and the left
tokens do not typically contend with each other, as the right tokens are
evaluated in the beginning of the cycle; while the left tokens are evaluated
only later in the cycle.

For the left tokens, which activate the two input nodes from their left
inputs, the contention is much higher. Figure 10 shows the contention
observed by left tokens when the per-bucket lock used is a simple one (an
ordinary spin lock), as discussed in Section 3.2. With 11 match processes,
Rubik processes spin 23 times, Tourney processes spin 377 times, and
Weaver processes spin 51 times on average before getting access to the
hash-table bucket. While the contention for Rubik and Weaver is quite

o i
~ 35o .00

200 .00

250 ,00

200 ,00 "~.
CO

150 .00

. Ruhik

Tourne'j
�9 W~.RVRr

/
/

..>

J
f

f

0"002 3 4 5 ~ ? 8

J / f

9 lO 11

Number of processes

Fig. 10. Contention for hash-table locks for left tokens. Measured by the
number of times a process spins on a lock before it gets access to the hash-
table bucket.

118 Gupta et al.

high, it is enormous for Tourney given that each spin takes several
microseconds.

In Fig. 11, we present results for the case when multiple task queues
are used and when complex multiple-reader-single-writer locks (described in
Section 3.2) are used for controlling entry to the token hash tables. We
expected the complex locks to benefit those programs that (i) generate
cross-products, that is, there are multiple activations of the same two-input
node from the same side that need concurrent processing, and (ii) have
long lists of tokens in hash-table buckets, where the complex locks help by
allowing multiple processes to read the opposite memory at the same time.
However, programs for which the previous two conditions are not true
may slow down when complex locks are used, because of the extra
overhead that they incur due to complex locks. Figure 12 presents some
results about contention when complex locks are used. Comparing with
Fig. 10, we see that the contention for the hash-table buckets decreases for
all three programs, although the contention for Tourney is still very high in
alsolute terms. Analyzing the Tourney program in more detail, we found
that the large contention for the hash-table locks is resulting from multiple
node activations trying to access the same hash-table bucket. This in turn,
is the result of a few culprit productions in Tourney that have condition
elements with no common variables. By modifying two such productions
using domain specific knowledge, we could increase the speed-up achieved
using 13 processes from 2.7-fold to 5.1-fold.

14.00

12.00 (1)

io.00

8 . 0 0

6 . 0 0

4.00

2.00

0,0%

Rubik: Uni)roc. Time = 289.3s

�9 Tourney: nigroc. Tin" e = 1007s

.Weaver: LJ niproc. "lqm = 134.9s

/
/

_ / J

f
J

f J

J

J

f

I
iO 12 14

Number of Match Processes

Fig. 11. Speed-up for multiple task queues and multiple-reader-single-
writer hash-table locks.

OPS5 on the Encore Mult iprocessor 119

_ • 400.00
o

3 s 0 . 0 o , RtJhik

~. ~ Tourne !

300m O0 ~ Wnnv~ r

"~ 25O.D0

200.00
"~.
(,9

150.00

i00.00

50.00

Fig. 12.

0"002 3 4

/ /
J

/

5 6 7 8 9 i0 ii

N u m b e r o f p rocesses

Contention for hash-table locks when multiple-reader single-writer
locks are used.

4.2.3. Other Causes for Low Speed-Up

In this subsection, we explore reasons other than contention for
shared-memory objects that limit the speed-up achieved by our implemen-
tation. To this end, we examine the speed-ups obtained in individual
recognize-act cycles for the programs. (Recall that the computation of an
OPS5 program involves a series of recognize-act cycles.) Figure 13 presents
the speed-ups obtained in each cycle as a function of the number of tasks
(node activations) executed in that cycle. 8 These numbers are presented for
Weaver; but they are representative of other OPS5 programs too. The
speed-ups were measured with 11 match processes and the implementation
used multiple task queues and simple hash-table locks. The 7.5-fold
speedup obtained for weaver (shown in Fig. 7), is a weighted average of the
speedups for individual cycles shown in Fig. 13.

The data points in Fig. 13 can be divided into two regions:

�9 Short Cycles Region: Points in the left quarter of the graph
(corresponding to cycles with less than 250 tasks), generally
achieving a speed-up of 2 to 7-fold.

�9 Long Cycles Region: Points in the right three quarters of the graph
(corresponding to cycles with 250-1000 tasks), generally achieving
a speed-up of 6 to 10-fold.

8 For presentation purposes, the cycles with more than 1000 tasks are shown as containing
1000 tasks.

120 Gupta et al.

"•c 16.00

~0 14.oo
g

i 0 . o o w u]

. . . . ", " m!
�9 ~ ~ V I I �9

4.00 ~ St ~ ~qu~ o 0 e

2.oo ~ i . e 7 m �9
- q l

0.0% 100 200 300 400 500 600 700 800 900 1000

Number of Tasks/Cycle

Fig. 13. Weaver: Speed-up as a function of tasks/cycle.

Let us first look at short cycles more closely. To understand the speed-
up achieved, we plot the number of tasks in the system (which is the sum of
the number of tasks waiting to be processed and these being processed) as
a function of time during a cycle. Figure 14 shows such a plot for one of the
short cycles in Weaver with about 100 tasks. The graph is plotted for 11
match processes and the time is measured in units of 100 microseconds.
The graph may be interpreted as showing the number of processors that

E

z

16.00

14,00

1200

10.00

B.O0

4OO

Z.00

o,oo
15 20 25 30 35

"lTme

Fig. 14. Weaver: Number of node activations available for parallel processing as a
function of time during a short cycle. Each unit of time on the X-axis corresponds
to lOOps.

OPS5 on the Encore Multiprocessor 121

E zo.oo

.E

N

z

Peak at (6,2, 66)

140

T ime

Fig. 15. Weaver: Number of node activations available for parallel processing as a
function of time during a long cycle.

can be kept busy if infinite processors were present. 9 The average height of
this graph (about 6.5 for this cycle) indicates the maximum speed-up that
we should expect. In general, the smaller cycles tend to provide such low
available parallelism.

Some additional speed-up losses occur due to the fixed overheads
associated with match cycles; for example, having to check all the task
queues to ensure that the match is actually finished and to inform the
control process about the completion of the match. These almost fixed
duration overheads affect the speed-up obtained by small cycles much more
than that obtained by large cycles, as they form a larger fraction of the
small cycle processing} cost.

We now explore speed-up limits in long cycles. In Fig. 15, we show a
plot similar to that in Fig. 14, except this time for a longer cycle with about
300 tasks. We see that in the early part of the graph (until time 30) the
potential parallelism increases slowly, then it rises very steeply peaking at
the point (62,66), then it falls rapidly (until time 65), and finally it has a
slow spiky decline to the end of cycle (time 120). The portion of the graph
that hurts the average speed-up most, however, is the porti6n from time 90
to time 120, where the system keeps processing a few tasks; each time
generating only a few tasks. This behavior is caused by the presence of
chains of dependent node activations, (i3) which can get especially bad for

9 This interpretation is not totally correct for portions of the graph where the height of the
shaded region is greater than the number of match processes used to produce the graph.

122 Gupta et al.

productions that have a large number of condition elements. The impact of
long chains on speed-ups increases with increasing number of processes.
With more processes, the system can get through the earlier part of the
computation (the one marked up to the first 90time units, in Fig. 15)
faster, but it cannot get through the latter part much faster. To counter
these long chains, we plan to change the Rete network organization for
productions with large number of condition elements. This new network
organization is called a constrained bilinear organization and it will allow
us to reduce the dependencies between tokens (see Refs. 13 and 16 for
details).

5. C O N C L U S I O N S A N D FUTURE W O R K

In this paper, we have presented the details of a parallel implemen-
tation of OPS5 running on the Encore Multimax. The first observation is
that it is important to speed-up an optimized sequential implementation,
otherwise most of the benefits are lost. For example, speeding-up the
Franzlisp implementation by 10-20 fold from parallelism would just bring
us to the uniprocessor speed of the C-based implementation. Furthermore,
the issues in parallelizing an optimized implementation are different from
those in an unoptimized implementation, because only very limited
oveerheads can be tolerated in an optimized implementation.

The second observation we make is that it is possible to obtain
significant speed-ups for OPS5 using fine-grained parallelism on a shared-
memory multiprocessor. However, this does not work for all programs.
The Tourney program, because of the presence of short cycles and cross-
products resisted all our attempts to obtain higher speed-up.

Our third observation is regarding the contention for shared memory
objects. The average length of the individual tasks in our parallel
implementation varies between 100-700 machine instructions for the three
programs that we studied. In trying to exploit this fine-grained parallelism,
we found that scheduling tasks using a single task queue formed a major
bottleneck for the system. We found it essential to use multiple task queues
(instead of a single task queue) to obtain reasonable speed-up. For the
Rubik program, going from one task queue to multiple task queues
increased the speed-up from 6.3-fold to 11.4-fold.

The other variation that we explored to reduce the contention for
shared data structures was in the complexity of locks used for hash-based
memory nodes. We used both simple spin-locks and complex multiple-
reader-single-writer locks. We observed that special note must be taken of
rare-case versus normal-case execution. Trying to handle rare cases
efficiently can slow down the normal case, and can result in overall poorer

OPS5 on the Encore Multiprocessor 123

performance. For example, the provision of complex hash-table locks
reduced the contention for the hash-table buckets, but it slowed down the
overall execution speed of the Rubik program.

In the future, we plan to investigate alternative computer architectures
for implementing production systems; especially the message-passing
architectures. Our analysis indicates that the message-passing architectures
are quite suitable for implementing production systems/~7) Currently,
simulations of implementing production systems on such machines are in
progress.

Our other direction of investigation has been an exploration of the
parallelism in Soar, (18~ a leaming production system. The parallelism in
Soar is expected to be higher than OPS5. (~3) Our current implementation
of Soar on the Encore Multimax has provided good speedups in the
match. (~6) The next step there is to parallelize other areas of Soar besides
match.

6. A C K N O W L E D G M E N T S

This research was sponsored by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 4864, monitored by the Air
Force Avionics Laboratory under Contract N00039-85-C-0134 and by the
Encore Computer Corporation. Anoop Gupta is also supported by
DARPA contract MDA903-83-C-0335 and an award from the Digital
Equipment Corporation.

REFERENCES

1. Charles L. Forgy, The 0PS83 Report, Technical Report CMU-CS-84-133, Carnegie-
Mellon University, Pittsburgh, (May 1984).

2. Theodore F. Lehr, The Implementation of a Production System Machine, In Hawaii
International Conference on System Sciences (January 1986).

3. P. L. Butler, J. D. Allen, and D. W. Bouldin, Parallel Architecture for OPS5, In
Proceedings of the Fifteenth International Symposium on Computer Architecture,
pp. 452-457 (1988).

4. Anoop Gupta, Charles Forgy, Allen Newell, and Robert Wedig, Parallel Algorithms and
Architectures for Production Systems, In 13th International Symposium on Computer
Architecture. (June 1986)

5. Bruce K. Hillyer and David E. Shaw, Execution of OPS5 Production Systems on a
Massively Parallel Machine, Journal of Parallel and Distributed Computing 3:236-268
(1986).

6. Daniel P. Miranker, TREAT. A New and Efficient Algorithm for AI Production Systems,
PhD thesis, Columbia University (1987).

7. Edward J. Krall and Patrick F. McGehearty, A Case Study of Parallel Execution of a
Rule-Based Expert System, International Journal of Parallel Programming 15(1):5-32
(1986).

124 Gupta et al.

8. Kemal Oflazer, Parallel Execution of Production Systems, In International Conference on
Parallel Processing. IEEE (August 1984).

9. Raja Ramnarayan, Gerhard Zimmerman, and Stanley Krolikoski, PESA-I: A Parallel
Architecture for OPS5 Production Systems, In Hawaii International Conference on System
Sciences (January 1986).

10. M. F. M. Tenorio and D. I. Moldovan, Mapping Production Systems into Multi-
processors, In International Conference on Parallel Processing IEEE (1985).

11. Lee Brownston, Robert Farell, Elaine Kant, and Nancy Martin, Programming Expert
Systems in OPS5: An Introduction to Rule-Based Programming, Addison-Wesley (1985).

12. Pandurang Nayak, Anoop Gupta, and Paul Rosenbloom, Comparison of the Rete and
Treat Production Matchers for SOAR, In National Conference on Artificial Intelligence,
AAAI-88.

13. Anoop Gupta, Parallelism in Production Systems, PhD thesis, Carnegie-Mellon Univer-
sity, (March 1986); also available from Morgan Kaufmann Publishers Inc.

14. Peter M. Kogge, An Architectural Trail to Threaded-Code Systems, Computer (March
1982).

15. Rostam Joobbani and Daniel P. Siewiorek, Weaver: A Knowledge-Based Routing Expert,
In Design Automation Conference (1985).

16. Milind Tambe, Dirk Kalp, Anoop Gupta, Charles Forgy, Brian Milnes, and Allen Newell,
Soar/PSM-E: Investigating Match Parallelism in a Learning Production System, In Sym-
posium on Parallel Programming: Experience with Applications, Languages, and Systems,
pp. 146-161 (July 1988).

17. Anoop Gupta and Milind Tambe, Suitability of Message Passing Computers for
Implementing Production Systems, In National Conference on Artificial Intelligence,
AAAI-88.

18. John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: An Architecture for General
Intelligence, Artificial Intelligence 33:1-64 (1987).

