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We consider the interaction of a set of atoms at random lattice sites with a decaying 
resonator mode. The optical transition is supposed to possess a homogeneously 
broadened Lorentzian line. The pumping is taken into account explicitly as a stochastic 
process. After elimination of the atomic coordinates a second order nonlinear differen- 
tial equation for the light amplitude is found. In between excitation collisions this 
equation can be solved exactly if the resonator width is large as compared to all other 
frequency differences. In contrast to linear theories there exists a marked threshold. 
Below it the amplitude decreases after each excitation exponentially and the linewidth 
turns out to be identical with those of previous authors (for instance WAGNER and 
BIRI~AUM), if specialized to large cavity width. Above the threshold the light amplitude 
converges towards a stable value, whereas the phase undergoes some kind of undamped 
diffusion process. We then consider the general case with arbitrary cavity width. If 
the general equation of motion of the light amplitude is interpreted as that of a par- 
ticle moving in two dimensions, it becomes clear that also in this case the amplitude 
oscillates above threshold around a stable value which is identical with that determined 
in previous papers by HAKEN and SAUERMANN neglecting laser noise. This stable value 
may, however, undergo shifts, if there are slow systematic changes of the cavity width, 
inversion etc. On the other hand the phase still fluctuates in an undamped way. 
After splitting off the phase factor the equations can be linearized and solved ex- 
plicitly. With these solutions simple examples of correlation functions are calculated 
in a semiclassical way, thus yielding expressions for the line width above threshold. 
The results can also be used to evaluate from first principles correlation functions for 
different laser beams. As an example the complex degree of mutual coherence of two 
laser beams is determined. It vanishes if one of the lasers is still below threshold and 
its value is close to unity well above threshold for observation times small compared 
to the inverse laser linewidth. 

w 1. Introduction 
T h e r e  a re  n o w a d a y s  t w o  m a i n  g r o u p s  of t h e o r e t i c a l  i n v e s t i g a t i o n s  

of  l a se r  o s c i l l a t i o n  w h i c h  go  b e y o n d  t h e  a p p l i c a t i o n  of  r a t e  e q u a t i o n s  1. 

T h e  o n e  g r o u p  2, w h i c h  m a i n l y  i nves t i ga t e s  l a se r  noise ,  t r e a t s  l a se r  a c t i o n  

b y  a s s u m i n g  t h a t  t h e  no i se  of t h e  s p o n t a n e o u s  e m i s s i o n  is a m p l i f i e d  b y  

* Presented by H. SAUERMANN at Summerschool in Les Houches, 1964. 
1 S T A T Z ,  H . ,  and G. A. DE MARS: Quantum Electronics, edit. by (2. H. TOWNES. New 

York: Columbia University Press 1960. - -  T A N G ,  (2. L. : J. Appl. Phys. 34, 2935 (1963). 
2 Sr A. L., and (2. H. TOWNES: Phys. Rev. 112, 1940 (1958). - -  W A G N E R ,  

W. G., and G. BIRNBAUM: J. Appl. Phys. 32, 1185 (1961). --  FLECK jr., J. A.: J. Appl. 
Phys. 34, 2997 (1963). -- POUND, R. V.: Ann. Phys. (N.Y.) 1, 24 (1957). -- WEBER, J.: 
Rev. Mod. Phys. 31, 681 (1959). - -  S T R A N D B E R G ,  M. P. W." Phys. Rev. 106, 617 
(1957). --  Fully quantum theoretical treatments are given by McCuMBER, D. E. : Phys. 
Rev. 130, 675 (1962). -- WELLS, W. H. : Ann. Phys. (N.Y.) 12, 1 (1961). - -  K E M E N Y ,  G.: 
Phys. Rev. 133 (1A), A 69 (1964). - -  S C H W A B L ,  F., U. W. THIRRING: Ergeb. exakt. 
Naturw. 36, 219 (1964). 
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stimulated emission. In these investigations a theory is used which is 
basically linear in the light oscillator coordinate. The other group of 
papers 3, however, neglects spontaneous emission completely and in- 
vestigates the free oscillation of the system where just the nonlinearities 
play an essential role for the stabilisation of laser oscillation. Further- 
more, only these nonlinearities make it possible to explain effects such 
as coexistence of laser-modes in a homogeneously broadened line 3' , 
and hole-burning in an inhomogeneously broadened line leading to 
frequency pushing 3' 5. In this nonlinear treatment a definite threshold 
of the inversion occurs above and below which the behaviour of the system 
differs quite essentially. Below threshold there is no emission at all 
whereas above threshold there appears an infinitely sharp line. In the 
present paper an attempt is made to develop the basic features of a noise 
theory taking into account the nonlinearities from the very beginning. 
As we shall see these nonlinearities play also in this case a decisive role 
for the definition af a certain threshold. Below it we obtain essentially 
expressions which are well known from the linear theory of noise 2, 
however, with some corrections depending on the underlying model for 
the originally broadened line. Near threshold the expressions become 
very complicated so that at present one can tell only about the qualitative 
behaviour. Well above threshold the situation is easier again and will 
be treated for high photon densities. 

Our present treatment allows also to make contact with a group of 
papers 6 in which coherence functions are investigated with adhoc 
assumptions about the amplitude and phase of laser light. As we will 
see below laser light can be described by a superposition of Glauber- 
states 6 with random phases, but fixed amplitude. By calculation of the 
complex degree of mutual coherence of two laser beams (well above 
threshold) we can substantiate from first principles recent considerations 
by JORDAN and GHIELMETTI 7, who conclude from experiments that the 
expectation value (b)  of a single mode amplitude must be basically 
nonvanishing. 

w 2. The equations of motion 

We assume a set of modes in the cavity which we describe by running 
waves as verified in the Gyroscope. By this assumption we avoid 

a HArdEN, H. : Talk at the Conference on Optical Pumping. Heidelberg 1962. -- 
HAgeN, H., and H. SAtnaRMANN: Z. Physik 173, 261 (1963); 176, 47 (1963). -- LAMB jr., 
W. E.: Phys. Rev. 134, A 1429 (1964). -- The pumping process is introduced explicitly, 
however, in a different way by BEWNSEE, R. M.: J. Math. and Phys. 5, 308 (1964). 

4 TANG, C. L., H. STATZ, and G. A. DE MARS: J. Appl. Phys. 34, 2289 (1963). 
s BENNETt, W. R.: Phys. Rev. 128, 1013 (1962). 
6 MANDEL, L.: Phys. Rev. 134, A 10 (1964). -- GLAtrRER, R. J.: Phys. Rev. 131, 

2766 (1963). 
JORDAN, T. F., and G. GmELMErrI: Phys. Rev. Letters 12, 607 (1964). 

Z. Physik. Bd, 181 7 
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diffuculties which arise from an otherwise spatially inhomogeneous 
inversion. We assume further that these modes are strongly discriminated 
by different lifetimes within the cavity. We then may assume that only 
one mode is important for our investigation of the nonlinearities, since 
for sufficient high losses no essential wave amplitude and thus no essential 
nonlinearity can build up; note however, that these modes would con- 
tribute in the linear range to a linewidth. In the following we take this 
contribution into account by describing the broadening of the line by 
energy fluctuation (in the case of KuBo 8) respectively by an imaginary part 
of the energy of the atoms. 

If we neglect at first the pumping process the equations of motion 
are the same as given in a preceding paper 3 : 

i, + = i c o b  + + i ~ h *  d~ ' - .~  + (2.1) 
P 

�9 + . + 

c~ u = l a u ~ - i h e - i ~ s  ~ a ,  b + (2.2) 
x~ith 

+ - c u e 2  (2.3) 
a1~d 

h=  e V - ~ - - n  I - m  ~ ~~ (2.4) 

V is the volume of the cavity, p is the momentum operator, cp 1 and ~o 2 

are the electronic states of one atom. b + is the creation operator of the 
light quantum of the mode under consideration or classically spoken 
its amplitude, whereas the ~ and ~+ are the transition operators for 
electrons in upward or downward direction, co is complex in order to 
take into account a finite lifetime of the mode in the cavity. 

The finite lifetime or linewidth of the atoms has to be described 
differently according to the physical situation for which we give two 
examples: 

a) The atoms are in a fluctuating field (for instance by lattice vibra- 
tions) which does not induce transitions but which changes steadily the 
excitation energy. In this case we put a = r + ~/(t) where 8o is the frequency 
of the atomic resonance and I/(t) a steadily fluctuating function (F =0). 

b) Due to their coupling to different modes the atoms may decay. 
According to SEYITZKY 9 this decay can be described by providing e 
with an imaginary part and adding to the equation of motion an operator 
F with certain properties. 

In the following we will consider as a concrete example case a) since 
the representation becomes especially clear and one can also establish 

8 KuBo, R.: J. Phys. Soc. Japan 9, 935 (1954). 
9 SENITZKY, P.: Phys. Rev. 119, 1807 (1960); 123, 1525 (1961). 
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immediately the connection with the model of fluctuating dipoles as 
used by WAGNER and BmNBATJN 2. The calculations in case b), however, 
proceed quite similarly. By the transformation 

+__+ + e-ikS,  

we can eliminate the dependence of the atomic position so that now we 
have to deal only with an equation of a mode with formally infinite 
wavelength. In order to exhibit the essential features more clearly we 
let the frequency of the cavity mode coincide with that of the atoms. 
After the transformation 

b + ~ b  + eieot ~+...~o~ + eieO t 

we obtain 
" ~ + 

b + - t r  + + z h  ~]e u, (2.5) 
/t  

a,  + = t/, (t) ~2 - i h ~r, b +. (2.6) 

In it 2 x = l / t o .  We assume that the distribution law of t/u(t) is inde- 
pendent of #. Eqs. (2.1) and (2.2) respectively (2.5) and (2.6) don't  yet 
contain the pumping process, tn our preceding papers we have taken it 
into account in the following way: 

0 By the pumping process after a time T an average inversion o-u 
will be established. The total change of a u is then given by 

o 
~ _  a u -  a, ~-coherent change. 

T 

Our earlier equations are thus to be interpreted in such a way that 
already one has averaged over the pumping process within the single 
equation for b +, e+ and o-. In order to take into account the statistical 
oscillation of the amplitude being brought about by the pumping process 
this averaging may be performed only at the end of the whole calculation. 
Therefore we consider now explicitly the single excitation collisions. 
Because by a collision an atom # is brought again into the initial state 

+ 
(an excited state) the operator c~ u (t) is to be replaced by the operator 
~ ( 0 )  e ~",v after the collision at time tu, v where ~0u, v is a random phase. 
Further by each excitation the inversion is changed and thus a , ( t )  to 
be replaced by o ~ after each collision. The eqs. (2.1) and (2.2) respectively 
(2.5) and (2.6) are now valid only in between collisions. After each 
collision at atom # at time t , ,v,  however, new initial conditions are valid: 

~+ (t,, ~) = ~2 (0) e i ~o,, ,,, (2.7) 

~,, (t,,, v ) = ~ ,  ~ . (2 .8)  
7* 



100 H. HAKEN : 

Since in the eq. (2.5) there occurs a sum over  a ,  + we introduce it as new 
variable 

S + = ~ a  + (2.9) 

and correspondingly 

S z = � 8 9  (2.10) 
# 

The equat ion of mot ion  (2.5) thus reads 

/9+ = - ~: b + + i h* S +. (2.5') 

By summing  up over  # in (2.6) we obtain operators  which refer to macro-  
scopic quantit ies (for instance " to ta l  spin")  and which we m a y  treat  with 
some caut ion in a classical way. Fur ther  we may  note tha t  summing  
over  up over  # corresponds to an average over  the r a n d o m  variable 
t/#(t) where under  some assumptions (compare  K u u o  8) one has 

(exp ( i jJ l (z)  d~))av. = e x p ( -  t Y) . 

Thus we get f rom (2.6) 

S+ = - 7  S+ - i h 2Sz b +. (2.6') 

The equat ion for  the pumping  process (2.7) is t ransformed into 

S + (t . , , .  + 0 ) =  Z a~ + (t..v + 0 ) =  E a~ + (t.., ~ -  0) + ~ (0) e; ~""~ 
/t # ~ # '  

=Z%+ + e , 0)  
# 

o r  

S + (t,,~ + 0 ) = S  + (t~,, ~ - 0 )  + t a ~ ,  (2.7') 
with 

+ i ~p~, v + ~5 a,,, = %, (0) e - ~,, (tu,, v - 0). (2.7") 

Correspondingly  (2.8) goes over into 

S= (t~, ~ + O) = Sz (t,,~ - O) + ~5 a#, (2.8') 
with 

1 0 a o , .  = 0 ) .  

Provided tc = ~ = 0 a conservat ion law exists in between the collisions: 

S~+(b+  b ) ' = 0  

which is to be changed for  finite cavity width and V' =#0 into 

Sz+(b + b ) ' =  - 2 7 ' S z - 2 ~ a b  + b .  
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After integration and taking into account the jump condition (2.8') 
one obtains finally (2.11) 

S~+b +b=D+ Z 6a~(t,,v)-27'SSzdz-2tcS b+bdz (2.11) 
t~v<t 

where D is an integration constant. 

The function described by ~ a .  can be split into a continuous func- 
tion Cl+(t- to)F and a discontinuous function g(t). The integrals 
SS~ dz and Sb + bdz can be written in the form* 

( t -  to) S= +Ol(t) respectively ( t -  to) b + b + 0 2 ( 0 .  

Because the integration smoothes fluctuations of S= and b+b to a large 
extent, we have Oj(t)<g(t) so that 0j can be neglected. Because in the 
steady state the time average of the total number of excited atoms and 
photons does not change one must have 

F = 2 7 ' S ~ + 2 ~ c n  (with n = b  + b averaged number of photons). (2.12a) 

From (2.11) we thus obtain finally 

S~ + b + b = G O + g (t) (2.12 b) 
with 

Go=D+Ct . 

By means of (2.12) we can express Sz in eq. (2.6') by b + b. Further we 
can eliminate S + from eqs. (2.5') and (2.6') thus obtaining in between 
collisions 

t)+=-(~:+7)b+ +[2lh[2(Go+g(t)-b+ b)-~cT]b +. (2.13) 

This is the basic equation for our further considerations, where we will 
put (7 + ~)=  a. One can extend (2.13) to an equation valid for all times 
by taking into account the jump condition (2.8') 

S+=-TS+-i2hS~b+ + ~ 6(t-tu,,)6c~+ (t~,~). (2.14) 
t ~ ,  v 

if one eliminates again S + from (2.14) and (2.5') we get instead of (2.13) 

l;+ +(to +7) b + - [ 2 ]  h [2 (Go+g( t ) -b  + b)-~c 7] b + 
(2.15) 

i ~ h* 6 ( t -  t,, ~) + 
l~/x, v 

By means of this equation one can most explicitly explain the essential 
difference between the linear theory of laser noise and the treatment of 
laser action as free oscillation. In the linearized theory the nonlinear 

* From here on we exclude from our analysis switching-on effects and spiking. 
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term b+b is either completely neglected or replaced by b + b = ~  and 
one puts g ( t ) = 0 . *  One then has to solve a linear inhomogeneous 
differential equation that means to treat forced oscillation. On the other 
hand, as we will show in w 3, the treatment of HAm~x and SAtmR~ANN 3 is 
equivalent to solving the homogeneous eq. (2.13) taking into account 
the nonlinear term. 

In the present paper we wish to investigate the range of validity of 
both procedures by taking into account the nonlinearity as well as the 
inhomogeneous term. 

w 3. Discussion of the completely steady state 

Before treating the noise problem we investigate as an idealized 
example the completely steady state. For this end we assume that the 
pumping process takes place continuously so that the discontinuous 
curve g( t )  (compare eq. (2.12)) vanishes completely. We further assume 
that we can neglect fully the fluctuation of the atomic amplitudes during 
the pumping process. In this case the equation of motion is given by 

[, + = -c~b + + [ 2 1 h l Z ( G o - b  + b ) -  ~:~] b + (3.1) 

with no additional conditions for b. In the steady state we have ~; + =/9 + = 0 
from which we obtain the condition 

2 l h lZ ( Go - h ) -  tr 7=O . (3.2) 

For a given adjusted pumping rate F we can determine the unknown 
quantities S z, n and G O by means of the eqs. (2.12a, b) and (3.2) thus 
obtaining 

S z = 2 T - h  [ 2 ,  (3.3) 

~=! /  ~ ' \  
2tr ~ F -  I - ~ - ) '  (3.4) 

G o = S z + n .  

Especially we obtain as lasing condition, e.g. a positive photon number, 

: 

""-- I -hT" (3.5) 

* A first step beyond this scheme was done by H. SAVERMANN and the present 
author (Talk given by H. SAU~ANN at HochfrequenzausschuB, Karlsruhe, Spring 
1964), who also put b+b=F~, but took into account fluctuations of the inversion by 
means of a correlation function method. As we shall see below, this treatment belongs 
to the class of subthreshold theories which describe the line-narrowing but don't give 
rise to a stable light-amplitude. 
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Since we treat in the present paper the pumping process in a formally 
different way than in our preceding papers 3 we investigate the connection 
between both descriptions more closely. The adjusted pumping rate 
F is according to its definition on page 101 given by 

t~v<t 1 1 
F = T  ~ -~ (o-. (0 ) -  %(t ,  v))- (3.6) 

If Tp is the mean time between two pumping processes at the same atom 
we can transform the right hand side into 

N o-(0) ~ 
(3.7) 

2r,  r ,"  
Using eq. (2.12a) we get 

2 ~ ' -  Na(0) 2Tp ( 1  ,) Sz -~-+27 . (3.S) 

On the other hand we have found in our preceding investigations 

2~cn= N d~ 1 
2 T Sz T (3.9) 

and a relation identical with (3.3) which therefore will not be discussed 
here. From a comparison of (3.7) and (3.8) follows that both descriptions 
give in case of vanishing pumping fluctuations the same result where one 
has for the effective pumping time T 

1 1 
~ = ~ + 2 7 '  

and further 
do _ ~ (0) 
r r~ 

w 4. The limiting case of a large cavity linewidth 

Eq. (2.15) cannot be solved in closed form on account of g(t) and 
especially on account of the nonlinear term b+bb +. However, we want 
to show that there are interesting limiting cases in which one can solve 
(2.15) exactly or at least in a good approximation explicitly. For this 
case we consider the characteristic frequencies of the system. These 
arc (compare (2.14), (2.3') and (2.15)) the resonator width ~tc, the 
reciprocal phase memory time of the atoms "~7 and the frequencies in 
g(t) and on the right hand side of eq. (2.15). In general the frequencies 
in g(t) will be of the order of the pumping time itself. In the following 
we will disregard this term since its contribution to the linewidth above 
threshold is small as will be shown below. It should be noted, however, 
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that our treatment is fully capable of taking into account that time- 
dependence. We consider now 

t# ,  v 

3a,  + still contains random phases. In this function again frequencies 
of the order 1/Tp are essential as can be shown by a more detailed investi- 
gation*. 

We now treat the limiting case that the cavity width ~ is large as 
compared to the other frequencies of the system. In this case we obtain 
as equation between collisions 

~cD + - [ 2 l h l 2 ( G o + g ( t ) - b  + b)-~cy] b + = 0 .  (4.1) 

If we denote the solution of eq. (4.1) between two collisions by 
b~-(t) the following recursive relation must hold on account of the 
pumping condition 

tc b + l  (tu, ~) = tc bt + (tu, ~) + i  h* 6c~ + (tu, ~). (4.2) 

For the complete solution of the problem we have to perform the follow- 
ing steps: 

1. The explicit solution between two collisions must be found. 

2. The integration constants are to be determined using (4.2). 

3. One has to construct correlation functions using a certain statistical 
average over the collisions. 

We start solving the first problem: 

For g ( t ) = 0  one could take the solution b + =constant as discussed 
in w by which we cannot fulfill, however, the jump condition (4.2). 
Thus we have to look for the general 'solution valid also for g(t)~sO 
which reads 

b+=  C e tl I + ] C  dz (4.3) 
t l  

In it 

and 

K 
K'= 2 ~ J ~  (4.4a) 

2 G Ky H ( t ) = ~  ( o  + g ( t ) -  2 ~ ) .  (4.4 b) 

C is an integration constant which may be in general complex and which 
is to be determined from eq. (4.2) by recursion. Before solving this task 
we discuss special cases of the general solution for low, middle and high 

* I a m  grateful to Mr.  CH. SCHMID for this detailed investigation.  
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pumping. In order to make the calculation as simple as possible we 
assume that the function g(t) which describes the random fluctuations 
of the inversion vanishes between two collisions. In this case we obtain 
generally 

(4.5) 

where 
2lhl2 Go-1~7 

G -  
tr 

Having the steady state solution of w 3 in mind we may assume that for 

A. small pumping Go is maller than ~:. y/2lhl 2. Further in this case 
the light amplitude and thus C will be small. Thus we can approximate 
the eq. (4.5) by 

( .  ICl 2 G(~-m)l 
b+ ~ V T  ce+a"-") ~.l + 4G-(1-e+2 a " (4.6) 

For  very small light amplitudes one can neglect also the quadratic term 
in C thus obtaining finally 

b +~- VTcT-2Ce +G(t-t'). (4.7) 

B. Is G = 0 we obtain 

b +=  C { l + ] C I 2 ( t - O }  . (4.8) 

In this case we are on the average just at threshold. 

C. The pumping is supposed to be still higher. In this case G o is 
shurely bigger than ~c �9 7/21 h ]2. 

We assume further that the light amplitude ( ~  C) has become so 
great that 

--IC[2 1C12 (4.9) 

holds. 
Then we can approximate (4.5) by 

b+ C V~{I+e_2G(,_t,)I(I_~__~]G2_)} (4.10) 
=l T g " ~. \ ' l / J  

The solution (4.5) and its special cases are completely different as to 
their time dependence depending on 

G=  21h12G~ <>0 
/r 

(compare also (3.2)). 
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For G < 0  the light amplitude decreases exponentially after each 
excitation collision. Its decay constant which for spontaneous emission 
would be equal 7 is decreased on account of the inversion ~ Go. As we 
will show below explicity the linewidth becomes smaller by this effect. 

For G > 0  one would obtain for a linear equation an exponential 
increase of the light amplitude. On account of the nonlinearity according 
to eq. (4.5) the following behaviour results however. Let the amplitude 
b + =bo + be given at collision time t t �9 b + approaches for large t the value 
(compare (4.10)) 

b+ = C -~c~ V G o -  K T/Z l h l2 

or the number of photons the value 

~ = G o - K g / 2 l h l  e 

which agrees completely with that of the stationary state as discussed 
in w After each collision the light amplitudes thus approach that of the 
free oscillation. 

We now consider how one can fulfill the recursion condition in the 
limiting case A. We have immediately 

C t  + 1 = C t  e G  (t, + ~ - t~) + ~ 
where 

ih* 1 / 2 -  

and thus for the general solution at time t 

} (4.11) 

w 5. Calculation of the line-width below threshold 

In order to calculate the linewidth we have to determine the correla- 
tion function <b+(t + z)b(t)> where ( . . . }  means the quantum mechanical 
average as well as that over the collision process. By means of (4.11) 
we have 

<b+(t+z) b(t)> 

2 (5 .1 )  Ih[  v v e ~ ( t + ~ - t . , v ) + ~ ( t - t .  'v') (~5~+(t.,~)cSc~.(t~,,~,)>. 
I~ II, Vlt', V' 

The sums over the atoms # respectively #' and the collision times t, ,~ 
respectively t~,~, run to the last collision. The bar means average over 
the collision times. Because in the present case there is no phase relation 
between different atoms we have #' =/~. 
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Since all a toms behave in the same manner  we can neglect the index # 
and can replace the sum over # by N. Writ ing ( . - . )  by means of the 
definition of 6 ~, explicitly we obtain 

where 

1hi 2 tc z N ~  eG(t+~-t")+~(t-t"'){A} 
`9, "9" 

(5.2) 

{A}=(c~ + (O) eiOv a(O)e- iOv'}- (a  + (t`9-O)a(O)e-iO~'}-} 

_(~+(O)ei~Ovc~(t`9,_O))+(a+(t _O)a(t`9,_O)}. (5.3) 

Since there are no phase relations between the single collision the first 
bracket is only non  vanishing if v = v'. If the c~'s in the last bracket stem 
f rom different collisions also this vanishes. On the other hand  the e's 
occurring in the second and third bracket may refer to a c o m m o n  collision. 
If in the second bracket  a collision has appeared at time t`9, which 
defines an initial phase q~,, ~+ retains this phase* until the next collision 
at time t̀ 9 = t ~, + 1 �9 

This bracket  is therefore non vanishing if v = v' + 1. Correspondingly 
we have for  the third term v = v' - 1. Thus we obtain for  (5.2) 

ihl2 9̀0 
~c 2 N ~  e G(t+~-'~')+a('-t~') {(c~ + C~}o-e~('~'-'v'+~)x 

v I 

x ( a  + (t~,+ 1 - 0) c~(0) e- i  e~,} _ e 6 (, , ,-~,- ,) x (5.4) 

x ( e  + (0) e ~ o ~' ( t~,-  0)} + ( e  + (t`9,- 0) e (t`9,- 0)}} 

For  the evaluation of the expectation value ( . . . )  we have to use the 
equations of mot ion  (2.6) in which again the light amplitude occurs. 
Because the lightfield is relatively small we may use in (5.4) for  e+ the 
zero ' th  approximation.  This reads for  the model  of a fluctuating field 

- - i ;~ l (~)dT 
e+ ( t ) = e  o c~+ (0). 

Thus we obtain 

/ 
(c~+(t`9"+l-O)c~(O)e-i~ ~+ •)o \e "(~)d~/= (C~+ \ C~)0 e - ' ( t  

and 
(c~ + (t`9,- O) ~(tr - 0)') = (o~ + C~)o. 

{' 1 * There is of course an additional change of phase given by exp i f  r/( 0 dr which 
we take into account below. 
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Using N<e+ @o=Nz=number of the excited atoms we have now to 
determine 

I h [2 N2 E eG('+~-~v')+G(t-t~') x [ 
~c2 ~' (5.5) 

J x { 2 -  e -r(t~'+ ,-t~,)+ I~[ (t~, + ~-t~o _ e - r  (t~,-t~,_ ~)-lal (t~,-t~,- 1)}. 

In order to average over t ,  we use a Poisson-distribution. We treat 
first the sums which stem f rom the first and third term in {.. .  } in (5.5): 

_ !  a v ] 
[ h l 2  oo e -2]GI~ Tv dry• 

(5.5a) 
( 1 ~-(1o1+,),'-~ ,I 

1 
The sum over [...] gives 2 IT  I T  and thus (5.5a) reads 

Ihl2_ e_lOlM 1 {2 1 } 
-~-N2 2101Tp rp({G]+y)+l " (5.6) 

Because the second term of {.. .  } in (5.5) contains also a collision which 
lies between t and t + z, we t ransform the sum as follows 

VO 
ZeO(t+z-t~')+G(t-tv')eG(t~'-tv'-l)-[-e G(t+z-tv~176 (5.5 b) 

with the condit ion t < t~o+ 1 < t + -c and t~o < t. 

Taking into account  the factor  e-~ (tv,-tv,-1) the sum yields 

IhlZNz e_lOl i,i " 1 1 
~z 2[GITp Tp(IGI+y)+I" 

The average over the second term in (5.5b) is given by 

t+~ ( t ' - t )  . , -~t" 1 r v  d t "  1 e~(t+~+r)+Gt e Tp at e ~ e -~r ' e  ~'t'" 

t - -o~  

for which one obtains immediately 

( T p ( ? - [ G  D +1)  (Zp(? -f- IG]) +1)  
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1 1 
For -~,  > I G I we obtain finally e G ~ 

(Tp(y + IG I) + I ) (Tp(y-  [G ]) + I) 
If we collect all terms coming from (5.5) we have: 

[hi2 N "-tGI '*l { 1 (2  2 
--~7- 2o 2161 T, Zp(Ial+7)+l  

(Tp(~+[GL)+I)(T,(~_IG[)_t_I) �9 

For ] G [ Tp ~ 1 this simplifies to 

Ihl ~ 
tr 2 N 2 e - I O l  I~[ ? 

ICl  " 

The spectral distribution is given by 

or 
g(o)  = ~ (b  + (t +z) b(t) ) e ~ ~ dz 

2ylhl  2 
g(m)=N2 

I ~ - I h  12 (N2-N1)  I 2 +~2co 2 

where we have used that 2 Go = N 2 -  N1 = inversion of the atomic levels. 
Eq. (5.5) gives the same linewidth as the paper of WAGNER and BmN- 
BAUM 2 if we specialize the latter to the case: ~: larger as compared to 
the other frequencies. 

If we use the model of fluctuating dipoles we also get the same 
intensity. Using other models there may occur, however, other inten- 
sities which shall be treated in later papers. For slow pumping (Tpv >> 1) 
one finds a lowering of the intensity. As final formula we obtain now 

2N 2 Ihl 2 
g(o))=~--p  (~:y_ [h [2(N 2 - N 1 ) )  2 "}-IC2(.0 2 

with the same linewidth as above. 

w 6. Graphical discussion of light amplitude and linewidth above threshold 

Whereas the light amplitude between collisions is already known from 
eq. (4.5) we have now to determine the integration constant C by the 
recursion formula (4.2) 

{~-2 G(,,+,-,,).  'Ct' 2 }-~  
C I + I = C t  ~ - r - ~ - ( 1 - e - 2 G ( t ' + t - t ' ) )  +a t+ , ,  (6.1) 

d l e  G (tl +, -tD 
= Ct ]/~C~Tq_~ 7 Fat+, (6.2) 
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where 
dl =]/2 G/C e 2 ~(n+~-n)- 1. 

For a preliminary discussion we assume that the intervals f i + ~ - h  are 
independent of l putting ea(t~+~-to=f> 1. It follows 

df 
C,+~ = C 1 ] /~-~T-d~-  + 61+1. (6.3) 

~ /  6l+1 
With D 1 == ; 01 + ~ = - - d - -  we get 

f 
Dt + a = DI ]/~ff--t lT-+~ +'gt +1" (6.4) 

Neglecting for the moment 0l+ 1 we consider the establishment of the 

f stationary state. For it D 1 = D is determined by the equation 1 = ~  
with D 2 =f2  _ 1 which is consistent with V U - + t  

ff=lblZ=Go-~C~/2lhl 2. 

The dynamical approach to the equilibrium can be visualized in a simple 
way by a graphical plot (Fig. 1). According to it we can obtain DI+ 1 

I \ \  I 

/4f ', I~,1 ', 

[ 
I 

Fig. 1. Construction of the constant 
Dz+l from Dt 

from D 1 in the following manner. First 
plot D z along the x-axis and go from there 
parallel to the y-axis. Because cos ~=  

Dl 
} / ~ q - - T  one obtains Dz+l by plotting 

f along the line OB and projecting it on 
the x-axis. If D l lies on the right hand 
side from the equilibrium value D, Dr+ I 
is coming now to the left hand side of Dl, 
thus coming closer to the equilibrium 
value. The corresponding situation appears 
if Dt lies in the beginning on the left hand 

side of the equilibrium position. Thus one may recognize immediately 
the approach to equilibrium. This approach is of course disturbed by 
61 respectively 0 t. Let us assume that Dr+ 1 is real. We investigate 
first for which maximal D~ the system cannot be further pushed from 
its equilibrium value by collisions. This implies the condition 

Dtm.x-D~ (D~ 
or  

D1 maxJ 
DI mox > 0 l+1 .  
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As follows f rom Fig. 1 such a value can always be found. The question 
if also such value for D t mln exists is of more importance: 

or 
D~ 1--Dlmi.~ [~Z+l[ 

Ol mlnf 
]/Dl mln+ 1 Dlmin~=[~ql+ 1[ 

As one sees immediately from Fig. 1 this limiting value certainly does not 
exist if one starts with D r = 0 .  If on the other hand a certain value Dt 
is crossed over to the right hand side the system can get trapped. In this 
case it further approaches its stable amplitude. One should bear in 
mind that our present analysis was based on the assumption of constant 
intervals A t , .  In realistic cases, they will of course undergo fluctuations 
and our discussion then refers to the most probable collision time. 
As we will see below by a different analysis our conclusions are still 
valid for such a statistical behaviour. If we insert realistic numbers we 
can further show that for sufficient high inversion the minimum condition 
can be fulfilled. 

From our analysis we can understand the build up of the coherent 
light amplitude: Assume that an inversion G is already present. First 
we have D~-,C~b+=O. Then according to (6.3) the light amplitude 
fluctuates around Zero. By a favourable combination of the randomly 
fluctuating 6's the amplitude can reach a stable area, where it fluctuates 
now around its equilibrium value. With a very low probability (depend- 
ing on the pumping rate) the amplitude can jump out of the stable region 
again if A t ~ A T and the phases of the jumps are unfavourable. 

In the next chapter we will discuss this question quantitatively. 
So far the occurring quantities were assumed real. Because the 6z's are 
complex, however, the D's and thus also the C's will become also complex 
quantities. All our above considerations can be, however, easily extended 
to the complex D-plane. What  has been said about the real D is now 
valid for its absolute value. However, we have now still collisions in 
tangential direction, which cannot be stabilized and give rise to a finite 
linewidth. For  the determination of this linewidth A v on account of 
phase jumps we treat these jumps as diffusion process along the circle 
with length U=2rc ] / ~ 2  1. If the length of the single step in tangential 
direction is given by Or the probability that the length x is reached at 
time t is given by 

1 x2 

W(x, t )=  (2rc(,92) +IAT[)~ e 2T/JT(,9u 
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2 n ( f 2 - 1 ) A T  
the diffusion process has reached the At the time to = ( 0  2 T )  

phase 2zc. For (02)  we have 

(92)  = N1--7( ~ ~e+(t.v)rih* 2\1/~f2 2 Ih[2 "/c2 ~2~ 1 
~ ' AT 

N coll is ions 

N 
= N~;- ~ ((~Ct+(tv)r(50'~(tv')r)= ~" (~C~+(t0)T~+(tv)r)" 

vv* v = l , O ,  + 1  
N col l is ions 

For the calculation of ( . . .5  one has to write c~ again as difference 
~+(0) d~'-~+(t - 0 )  where ce+(t - 0 )  stems from the last collision. 

In order to determine ~+ ( t - O )  we have to take into account to 
action of the lightfield on the atoms, where we can consider the lightfield 

as a fixed quantity. If h b + > l / l~ l  2 we can neglect in first approximation 
the fluctuations of the energy of atoms. 

Further it is useful to use the SchrSdinger picture: 

(h* a + b+hab+)(?=i~o 

71 
with the general solution 

(a sin co t +c  cos co t) (4) + - ~ 7  I-~-I (a cos co t - c sin co t) (]') 

and the normalization I a 12 + I c l 2 = 1 and co = Ih b 1. 

In order to determine the direction of the collision we calculate 

(e+ ( t ) ) -  ]b[ a*cc~ 

Due to the collision condition (4.2) one has 

6~+=~+(O)ei~'-lhi~ff~ ]a] 2 -  sin2co t 

l a [2 - ] c l2  sin 2co t} 
2 " 

(where a >> c). 

Whereas the first term gives rise to a collision into an arbitrary direction 
the second one gives rise to collisions parallel to b +. Its sign depends on 
the collision time t---Tp~ 1/2co. If the collision time is large as compared 
to 1/2co which holds for high fieldstrength b +, we have sin 2cot<0,  the 
atom is mostly in the groundstate. From there the electron falls down 
into a lower level or a further change of sign occurs. This means that 
the collision now occur in the direction of smaller b-values. 
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If Tp>>l/2co one can expect a strong cancellation of expressions 
~+ (tu, ~ -0 ) .  The decisive contr ibut ion to the diffusion process therefore 
stems in general f rom the first term cz + ( 0 ) d  ~'v with r andom phases. 
The calculation of the diffusion constant  D z is now straight forward and 
is given in w (compare (7.12)). 

We now return to the discussion of the mot ion  of the amplitude in 
radial direction. As we have seen above the system makes small oscillations 
a round the stable posit ion D G = V f 2 - - 1 .  This suggests to extend Dt 
around DG: 

D, = V j  "2-1  + 4z. 

Inserting this into (6.4) and treating 4z as small quanti ty yields 41+1 = 
4, 
f2  ~- OI or on account  of f =  e a A r 

A 4 = - 4 2 G A T + O .  

F r o m  this one obtains the differential equation 

~ = - 2 4 G + ~  with 0 =  0 
A T  

which describes a diffusion process with a restoring force. Postponing 
the explicit solution of the equation to the next paragraph  we summarize 
the results of the present paragraph:  For  a sufficiently high inversion a 
stable value for  r DI 2 and thus for  b+b occurs a round which the system 
makes small fluctuations. On the other hand  there are no restoring 
forces for  the phase of b. It  undergoes a diffusion process in the complex 
b-plane. We thus must  conclude that  for treating a differential equation 
for b one is usually not  allowed to linearize. One has first to split off 
the phase and must  investigate its f luctuation separately. 

w 7. Lightamplitude and linewidth above threshold at high inversion 

We now consider the general eq. (2.15). Our consideration of w 
suggests to put  b + in the form rei~. * Inserting into (2.15) and separating 
the real and imaginary par t  gives 

i : + ( x + y ) [ , _ [ R ] h l 2 a o _ t c T _ R ] h  12. r z _  s r I 

I (7.1) 
= Re {e- i  ~ i h* Z ~ (t - t u v) ~ c~+ (tu, v)} 

�9 Because b and therefore also r and q~ are operators the Ansatz b=  re ie requires 
some precaution, its exact definition were b=  Tr exp{S(~) dr} where T is the time 
order operator. Since all calculations, however, go through the same way we disregard 
of this sophisticated procedure here. 

Z. Physik. Bd. 181 8 
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and 

2 r  b + r  ~b +(to +7)  ~ r =  Im {...}. (7.2) 

In  analogy to w 6 we expect that  r will make only small oscillations a round 
an equilibrium value r o. Following up a remark by H. Kom, E* this can 
be most  easily visualized if one considers eq. (2.15) as that of a particle 

V(LxO 

/ 
// 

'".... 

moving in two dimensions and hav- 

2 
ing the potential energy - 21 x l + 

'4 + ] h l  2 = V(Ix[).  The plot of 

V(x) in Fig. 2 shows in fact that  
, I< one has for  positive inversion (G > 0) 

an equilibrium value Xo 30 .  It  is 
interesting to see what  happens 
below threshold. In  this case the 
min imum exists only for  x = 0 ,  
that  means after each collision pro- 
cess the light amplitude decreases 
as has been discussed in w 5. Mak- 
ing according to these conside- 

2 
r = ro + p** where ro = 2 ~ :  we obtain the 

Fig. 2. Plot  of "potent ial  energy" versus light 
amplitude. - - - -  below threshold (linear and 
nonlinear theory); . . . . . . . .  above threshold, linear 

theory leads to instability; - - - -  above 
threshold, nonlinear theory 

rations for r the ansatz 
following equations 

o r  

and 

P+(~c+7 )p - ( r~1 7 6  } (7.3) 

+ 3 -  2 l h  12 r~ p -(oZ(ro + p )  = Re {...} 

+ ( x  +7)r + 2 p  C,-f ;2  ro = Re {...} (7.4) 

+7)  ~ = 1  Im {...} (7.5) +(~c 
/- o 

where we have kept only linear terms of p. 

The solution of eq. (7.4) and (7-5) seems still difficult because the term 
e - in  represents a strong nonlinearity. In  w however, we have seen 
that 6c~ + possesses r andom phases***. Thus we may take e - ie  into 6e  + 
which can be treated again as r andom variable ~ ~+. By means of the 

* H. KOPPE, private communication. 
** This ansatz where r 0 is a C-number corresponds to a unitary transformation, 

which preserves for instance commutation relations. 
*** The non-stochastic part of fia + has a phase factor which cancels out in (7.1) 

and (7.2) completely. 
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method of variation of the constant we can solve eq. (7.5) immediately" 

q ) - - q ) o  - -  1 ~ I , , ( 1 - e  -=(t-t"'l) wi thlu~=Imih*a~f( t ,~ ). (7.6) 
~ r o  t # v > t o  

With this solution we can enter into eq. (7.6) obtaining an inhomogeneous 
linear equation for p. Its solution reads 

t 

p (t) = 5 F (a) K (t, or) d cr (7.7) 

with the abbreviations: 

1 _e+i 
K ( / , a ) =  2i]/L, {e'~176 ,o2(t-~)}, 

ic~ l /  ~2 ~ ic~ - 
o o , , 2 = T + V - T w 2 G = T + - V L ,  

and 
R u v=Re {e - ' "  i h* 6c~ 2 (t,, ~)}. 

In the following we neglect the term (oZro due to its smallness. 
account of the a-function occurring in F(a) (7.7) simplifies to 

t 

P = E R.~ K (t, tu ~)- 
t u v 

On 

(7.8) 

Since we are only interested in the stationary solution we need not add 
a (damped) solution of the homogeneous equation. By means of (7.8) 
and (7.6) one can calculate in principle all correlation functions. We 
do this here for several simple examples: 

1. Mean square of the phases as a function of time ((q)(t)-q~o) 2) 

By means of (7.6) we obtain immediately 

__ V I~v (1-e-~(t-t,~))2 ( . . . ) _  1 ' 2 

- -  r 2  z..a 2 
tu v>tO O~ 

(7.9) 

where we suppose that the phases of Iu~ are uncorrelated. From (7.7) 
follows 

1 1 2  vE 

( . . . > = r ~ N * - ~  y '  ( l_e-~( ' - t~))  2 
0 ~t~ V=VA 

Z.  Phys ik .  Bd.  181 8 a  



116 H. HAKEN: 

where we have only to average over collisions between t o and t. Let 
Tp M = (t - to) = T then we have 

vE T ,,E E 1 = - - ;  Z e -~ ( t - t~ )~ l - ! - - ( l - e - ~ r )  �9 (7.10) 
v=vA r~ . . . .  B ~  

Thus we obtain 

f, r_2 T) 
(" - r 2  c~2 T p { e ( l - e - "  + 2 ~ - ( 1 - e - Z ~ r ) }  (7.11) 

which tends to Zero for c~T,~ 1 proportional to T 3, whereas it gives for 
Tc~ >> 1 

1 12 T (7.12)  

Introducing the photon flux P = 2 ~: ~ we obtain 

) 2 toNi  -~ T 1 T g2~ g2 
( . . . .  ~ r p - P  2rp ~2 P. where =Vlh l  z (7.13) 

The linewidth is thus given by 

Av~, 
1 ~ g2p 

P 2T~, c~ 2 
(7.14) 

It is interesting to compare this formula with that obtained below 
threshold. In the limit of large x it reads 

or  

where 

P = 2 ~ f f = 2 l h l Z  - 7 
x -N2Av 

2 lg l epe7  
A v =  

P.tr  

N2 P2 =-V"  (7.15) 

One thus obtains a very pronounced analogy where 2Tp corresponds 
to 1/7. This analogy becomes still stronger, when we specialize below 
threshold to large pumping time Tp, that means if we assume strong 
decrease of the atomic amplitude between collisions. The only difference 
consists in the factor 2p2, respectively p. The factor 2 is of no importance 
because the linewidth comes in both cases from different relations. 
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2. Correlation function of the phase factors 

This correlat ion funct ion reads 

( exp( i  q~ ( t z ) - i  ~o ( t 0 ) )  . (7.16) 

According to (7.6) we split q~ into a sum over the single a tomic  contr ibu-  
t ion obtaining thus for  (7.16) a p roduc t  

17[ (exp(tp~(t2) - ~p~ (tl))> (7.17) 
// 

~o. = p a r t  o f  the sum over # .  

In  it q~. denotes just  a part ial  sum with fixed a tomic index but  still going 
over  all collisions. We now assume that  the contr ibut ions of a single a tom 
for  the phase jumps  are small. Thus we can expand the exponential  
into a power  series which we brake  off with the second term:  

[ I  {1 + i  <qgu(t2) -- (p. (t i)  > -- �89 ((tpt~(t2) -- (pu(ti))2>}. 
tt 

Putt ing the brackets  into the exponent  again we find 

Whereas  
eq. (7.9). 

(7.18) 

i X <A tptt > - � 8 9  X <(A 9.u.)2> 

e ~ ~ (7.19) 

<A ~pu> vanishes, �89 q~u)/> has already been determined in 
We thus find finally 

<... > = e -  ~ v t/2 (7.20) 

where A v is given by (7.14). 

3. Calculation of the correlation function of the amplitude 

In  this par t  we will show, that  a l ready slightly above threshold the 
f luctuations are not  capable  to throw the system out  of its stable value 

Ibl = r o .  

a) Influence of the fluctuation of atomic phases. The quant i ty  to be 
determined reads 

(r(t +z)  r ( t )> .  

Using r = r 0 + p this can be split into 

ro z + r o ( p ( t  +z)> + ro (p( t )>  + ( p ( t  + z )  p( t )> .  

Because (p>  vanishes if averaged over  the phases of the ces we need only 
to determine < p ( t +  z)p( t )> .  
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Taking again the limit that the coherent parts of 6 c~ + vanish between 
collisions we have immediately 

VO 

(p(t+r)p(t))=NR~K*(t+'c, tv)K(t,t~). (7.21) 
v 

The average over the collision t, can be performed as in w 5. We confine 
ourselves at first to the limiting case of large x. Because in this case 

K(t,t~)= ~1 e -z~(t-t~ ( f o r t > t 0  
1s 

the calculation proceeds like in w 5 with the result 

lhl 2 N e_2~l~ t 1 
-U- -4- 41GI Zp 

On account of 

G =  
21h[2 Go-gO7 _ 2lh[Zff 

eq. (7.22) also can be written 

1 N 

(7.22) 

e-21al~ 
32 

From this expression is it evident that the contribution of (p2)  is by 
many orders of magnitude smaller than ~ when ~ is somewhat above 
threshold. It  should be noted, however, that these expressions as well 
as the other neglected nonlinear terms of p might be important just 
at threshold. 

b) Influence of the fluctuation of the atomic inversion. In all our 
above considerations we have neglected the influence on the amplitude 
by the fluctuation of inversion. We want to show that this contribution 
also is vanishingly small if laser action is considered somewhat above 
threshold. In order to take into account the fluctuation of inversion 
we have to replace on the left hand side of eq. (7.4) Go by G o + g ( t ) ,  
so that we have 

+ (to + 7) r + 2 p G - r o 21 h 12 g (t) (7.23) 
where 

(' ) 
do. g ( t )=  ~ O(t--tuv)--~pt 

\ t t ,  v 

For sake of simplicity we again consider only the limiting case of large x. 
The differential equation then reads 

~c~o+2pG=21hl2 rog(t) 
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with the solution 
t 

p=e-at2[h] 2 -  e s O ( t - t ~ , ~ ) - ~ t  d tdo,  

0 

Carrying out the integration yields 

2 I h l 2 ~ - d ~  ~ 1-e-G(~-"  ~ ) G  

G= 2 ~  . (7.24) 
/s 

The first term of the sum cancels against the third term. The last term 
vanishes, because it represents only a swiching-on effect. In order to 
get an estimate of the contribution we consider 

r~d 2 { N 2 2N ~ -~(t-,~ ) 
(p2)___ 82 lh14\(TpG)~ . . . .  TpG ~,Le ~ + 

(7.26) 
+2,. ,'~'E e- 2 a '+ G('"" +'"' ~')) - 

Using 

E = N E e _ 6 ( t _ t o  - N ,v ~ O T~ (7.27) 

and splitting the average into that over different and equal molecules we 
obtain 

= 8 ~ [ h  N (GTp)2+~e-2~t+Gtv+Gtv' (7.28) 

After performing the average over the last sum we get 

p2= Ihl 4 

Thus we find in any case that 

2 2 h2  n N  N 2 -  ro do N (7.30) 
p ~ 8---5--1 ~ ~ 2  

which is of the order of N/~ and therefore somewhat above threshold 
again many orders of magnitude smaller than r 2 = ~ itself. 

c) Correlation function for the amplitudes for the general eq. (7.4). 
Our above calculation of the correlation function were done for the 
limiting case of large to. We want now to demonstrate by means of an 
example that these results are not changed qualitatively when we consider 
the general equation, The determination of <p(t+ r)p(t)> using the 

N ,  N ) 
Tp G + T - - ~  ( l - e - o r )  " (7.25) 
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general solution (7.7) yields 

e-~{e-~VZ~A + eil/z ~ A *} 
where 

A ( 8 G - a 2 )  Tp 

Because ]~--~- ~ we have A ~ ( t~)  

1 

(~ + 2 i V c ) }  

from which we see that this is 

of exactly the same order of magnitude as discussed in a). It remains 
limited for high inversion (for Tp~0  or N-+oo) and is again orders of 
magnitude smaller than ~ itself. Note, however, that this expression 
might become important near threshold. As is obvious from the time 
dependence of this correlation function there occur two satellits around 
the frequency co with a dip in the middle. This represents just a kind of 
hole burning within a homogeneously broadened line due to the build 
up of the stationary amplitude of oscillation. 

w Connection with Glauber states 

All our considerations above were based on the Heisenberg picture. It 
is interesting, however, to see how the corresponding wave function in 
the Schr6dinger picture would look like. For this purpose we realize 
that the connection between Heisenberg and Schr6dinger picture 
requires 

<0~ 0(0 4,o> = (4, (t) 0(0) 4,(0) (8.1) 

where 0 ( 0  is the time dependent Heisenberg operator and 0o the wave 
function at initial time, whereas 0(0) is the time dependent operator in 
the Schr6dinger picture. As we have found above b can be written above 
threshold in the form bo �9 e ~ ~ % We thus require 

bo ei~'(t) Oo = b O (t) . (8.2) 

The solution of this equation reads for t = t o 

~'o = Norm e + b + bo e~ ~o ~o.  (8.3) 

This solution can be immediately extended to all times by putting 

0 ( t ) = N " ' e  +b+ hoe'S-, 40- 

(8.3) can be put into connection with Glauber states by taking ~,(t) as 

Ip ( t )  = S 15((0 - -  ~o( t ) )  g b+ bo e ~ ~ (7]) 0 d (  D (8.4) 
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where the integral represents a superposition of Glauber-states with 
fixed amplitude but variable ~0. Although the calculations above have 
been performed as if q)(t) is a C-number all the considerations can also 
well be done if (p (t) is an operator. 

w 9. The complex degree of mutual coherence of two laser beams 

The coherence function under consideration reads 

(b ;  ~ (t +z) b2 ( t)) .  (9.1) 

Because the amplitudes b 1 and b z stem from two different kinds of 
atoms we can (9.1) factorize 

(b~ (t)) @ 2 ( 0 ) .  (9.2) 
Above we have seen that 

{ 0 below threshold } (9.3) 

( b + ( t ) ) =  bo(e io(~ above threshold. 

This shows again that the amplitude of the laser light is stable in accord- 
ance with recent conclusions by JORDAN and GHIELMETTI 7 from experi- 
ments 1~ ~ ,  whereas the visibility of interference fringes is limited by 
phase fluctuations. If measurement is performed over a time T (which 
means averaging over t for a time interval T) one obtains for the complex 
degree of mutual coherence 

T 

]/(b[ b~) (b~ b2) (b-~(t+z)) @2(0) dt 
0 

w (9.4) 
(e;O=(t))dt 

0 

__ei(~o2o-~o~o) e - A  vl ~ 1 T(A v, +a v2) (1 --e-(Avl+av2)T). 

For times smaller than the inverse linewidth we obtain thus a fringe 
visibility close to unity. It were interesting to compare these results 
with that from two modes coming from the same laser. In this example 
the factorization of (9.1) is no more valid and therefore one may obtain 
other formulas for the fringe visibility. This will be investigated in 
forth coming papers. 

10 MAGYAR, G., and L. MANDEL: Nature 198, 255 (1963). 
11 LIPSETT, M. S., and L. MANDEL: Nature 198, 553 (1963). 
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w Concluding Remarks 

The main  object ive of our  paper  was to br idge the gap between l inear  
and  nonl inear  theories of laser action.  As we have shown l inear  theories 
represent  a very good  app rox ima t ion  at  small  inversion.  On the other  
hand  there is a m a r k e d  threshold  beyond  which the system behaves  
qual i ta t ively  very differently f rom below threshold ,  its ampl i tude  
osci l lat ing a round  a stable value.  F o r  the explicit  eva lua t ion  of the line- 
width by  phase "d i f fus ion"  above  threshold  we have used a special 
mode l  in which it was assumed,  tha t  the pumping  t ime Tp is bigger  than  
h �9 b and  tha t  the lower opt ical  level is empt ied  to a g round  level before  
the next excitat ion.  The t r ea tment  of o ther  s i tuat ions is s t raight  fo rward  
and will be p u n i s h e d  elsewhere. In  our  above  t r ea tment  we have 
fur ther  assumed comple te  resonance  between the a tomic  system and the 
cavi ty  mode.  This l imi ta t ion  can easily be released. One then finds 
linear, power  independent  mode  pul l ing as given by  TOWNES ~ 2 

I am indebted to Mr. H. SAUERMANN for his careful and critical checking of the 
calculations and for interesting remarks. I am further very grateful to Professor 
H. KOP~E and especially Dr. W. WEIOLICH for valuable discussions. 

Appendix 

Extension of eq. (2.15) to standing waves and several modes 

(Received August 31, 1964) 

We want to show, how one can derive equations corresponding to eq. (2.15) 
for this more general case. For this end we start with the basic equations 

b2 =ie)z b f  +i hu* z c~u + , (A.I)  
# 

�9 + , + 

~u=tec~ _ i Z h u z b +  a u + Z 6 ( t _ t u ~ )  + 6 ~. (tu~), (A.2) 
4 v 

~u = - 2 ~ a, + 2i ~, 2 h,4 b +-  2ic~ + Z h*4 b4 + Z 6 ( t -  t, ~) 3 a, (t u ~) (A.3) 
z 4 v 

which are the same as those of our preceding papers 3, being supplemented, however, 
by the pumping terms. We take hu 4 in the form 

h,  4-- h 1/2 sin k~ x~ 

and assume the following properties: 

12 TOWNES, C. H. : 

(A.4) 

h ,  4 h~ ;: = N h 2 644', (A.5) 
# 

hu4 hu, 4= N h2 6,, ,  . (A.6) 
2 

Quantum Electronics, edit. by J. R. SINGER. New York: 
Columbia University Press 1961. 
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We construct now 
1 

S+ = ~-  Z h~ h eu+, (A.7) 
U 

1 
Sz, h" = - 2 ~  ~ hu;" huh, Gu " (A.S) 

U 

Note, that on account of (A.6): 

+ 1 + 
c~u = - N h - ~  h,,, Sh.  (A.9) 

Eq. (A.1) goes immediately over into 

b [  = i o) h bh + + i h S )  (A.I ' )  

1 
MuItiplying eq. (A.2) with ~ huz and summing up over/t yields 

�9 + Z (1.23 
).' /~ v 

A]  
1 

Finally we multiply (A.3) with h S-hu,~ huz, and sum up over/z. With help of (A.9) 
we obtain: 

S~, z' = i ( Z  Z b ; ,  S~,,, h A (2, 2', 2", 2 ' " )  - con. compl.) - 2 ? S], x, + 
A'"  2 " '  

1 
+ 2 ~  Z Z (5 (t -- t u,) h u h h, h" 6 a u (t u,) 

# v 

where 
A ~ ,  z, 

A 1 = h ~ - ~  huh huh' huh,, hua .... 
# 

According to eq. (A. 1') we express S + by b~- : 

S [ ' z ' = - { Z  b [ ' Z ( @ " + i h "  z'" c%,,* bh,,,)A(2,2',2",2'")+ } 

+con .  compl.} - 2 7  S~., a, +A~, ; : .  

We confine ourselves now to a single mode: 

t . i t  t t t  3 2 = 2  = z  = 2  = 2 o ,  A = ~ .  
(A.10) then reads: 

~z 2rt ,+b) .~_2~cb+b.3 2~S~Xo,~o+A~o,~o. 

(A.3') 

(1.1o) 

(A.11) 
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The further treatment is identical with that on page 101 leading to 

i; + + { ~  + ~ -  i(~o0 +Co)}  b + - 
(A.12) 

- {2  h 2 (Co - ~ b + b) - ( i  Co - ~) ( i  ~ o  - ~ )}  b + = i h A +o 
In order to determine b + for the completely steady state we put 

b + = . +  ~et Oo e (b~-: constant).  

Splitting then (A. 12) into real and imaginary part yields for g? the power independent 
mode-pulling as mentioned in w 10, and for n o (photon number) an expression which 
coincides for moderate pumping power with that determined in a previous paper 3. 

The simultaneous action of several modes can be treated similarly. Again the results 
for the completely steady state coincide with those of a previous paper 3 for moderate 
pumping power and if population pulsations are neglected. 


