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We consider the interaction of a set of atoms at random lattice sites with a decaying
resonator mode. The optical transition is supposed to possess a homogeneously
broadened Lorentzian line. The pumping is taken into account explicitly as a stochastic
process. After elimination of the atomic coordinates a second order nonlinear differen-
tial equation for the light amplitude is found. In between excitation collisions this
equation can be solved exactly if the resonator width is large as compared to all other
frequency differences. In contrast to linear theories there exists a marked threshold.
Below it the amplitude decreases after each excitation exponentially and the linewidth
turns out to be identical with those of previous authors (for instance WAGNER and
BIRNBAUM), if specialized to large cavity width. Above the threshold the light amplitude
converges towards a stable value, whereas the phase undergoes some kind of undamped
diffusion process. We then consider the general case with arbitrary cavity width. If
the general equation of motion of the light amplitude is interpreted as that of a par-
ticle moving in two dimensions, it becomes clear that also in this case the amplitude
oscillates above threshold around a stable value which is identical with that determined
in previous papers by HAKEN and SAUERMANN neglecting laser noise. This stable value
may, however, undergo shifts, if there are slow systematic changes of the cavity width,
inversion etc. On the other hand the phase still fluctuates in an undamped way.
After splitting off the phase factor the equations can be linearized and solved ex-
plicitly. With these solutions simple examples of correlation functions are calculated
in a semiclassical way, thus yielding expressions for the line width above threshold.
The results can also be used to evaluate from first principles correlation functions for
different laser beams. As an example the complex degree of mutual coherence of two
laser beams is determined. It vanishes if one of the lasers is still below threshold and
its value is close to unity well above threshold for observation times small compared
to the inverse laser linewidth.
§ 1. Introduction

There are nowadays two main groups of theoretical investigations
of laser oscillation which go beyond the application of rate equations®.
The one group?, which mainly investigates laser noise, treats laser action

by assuming that the noise of the spontaneous emission is amplified by

* Presented by H. SAUERMANN at Summerschool in Les Houches, 1964.
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stimulated emission. In these investigations a theory is used which is
basically linear in the light oscillator coordinate. The other group of
papers3, however, neglects spontaneous emission completely and in-
vestigates the free oscillation of the system where just the nonlinearities
play an essential role for the stabilisation of laser oscillation. Further-
more, only these nonlinearities make it possible to explain effects such
as coexistence of laser-modes in a homogeneously broadened line3:#
and hole-burning in an inhomogeneously broadened line leading to
frequency pushing?:°. In this nonlinear treatment a definite threshold
of the inversion occurs above and below which the behaviour of the system
differs quite essentially. Below threshold there is no emission at all
whereas above threshold there appears an infinitely sharp line. In the
present paper an attempt is made to develop the basic features of a noise
theory taking into account the nonlinearities from the very beginning.
As we shall see these nonlinearities play also in this case a decisive role
for the definition af a certain threshold. Below it we obtain essentially
expressions which are well known from the linear theory of noise?,
however, with some corrections depending on the underlying model for
the originally broadened line. Near threshold the expressions become
very complicated so that at present one can tell only about the qualitative
behaviour. Well above threshold the situation is easier again and will
be treated for high photon densities.

Our present treatment allows also to make contact with a group of
papers® in which coherence functions are investigated with adhoc
assumptions about the amplitude and phase of laser light. As we will
see below laser light can be described by a superposition of Glauber-
states © with random phases, but fixed amplitude. By calculation of the
complex degree of mutual coherence of two laser beams (well above
threshold) we can substantiate from first principles recent considerations
by JorRDAN and GHIELMETTI’, who conclude from experiments that the
expectation value (b} of a single mode amplitude must be basically
nonvanishing.

§2. The equations of motion

We assume a set of modes in the cavity which we describe by running
waves as verified in the Gyroscope. By this assumption we avoid
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W. E.: Phys. Rev. 134, A 1429 (1964). — The pumping process is introduced explicitly,
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6 MANDEL, L.: Phys. Rev. 134, A 10 (1964). — GLAURER, R. J.: Phys. Rev. 131,
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diffuculties which arise from an otherwise spatially inhomogeneous
inversion. We assume further that these modes are strongly discriminated
by different lifetimes within the cavity. We then may assume that only
one mode is important for our investigation of the nonlinearities, since
for sufficient high losses no essential wave amplitude and thus no essential
nonlinearity can build up; note however, that these modes would con-
tribute in the linear range to a linewidth. In the following we take this
contribution into account by describing the broadening of the line by
energy fluctuation (in the case of KuBo ®) respectively by an imaginary part
of the energy of the atoms.

If we neglect at first the pumping process the equations of motion
are the same as given in a preceding paper>:

b =iwb* +iYy h*etina), .1
n

a, =ie,a, —ihe tirg, b* 2.2)

with
o, =0y 0,0, 0, (2.3)

and
h=——e—]/2—ﬂj(p*npgo dt (2.4)

mil hoV | TPEXT2ET )

V is the volume of the cavity, p is the momentum operator, ¢, and ¢,

are the electronic states of one atom. b* is the creation operator of the
light quantum of the mode under consideration or classically spoken
its amplitude, whereas the « and a* are the transition operators for
electrons in upward or downward direction. @ is complex in order to
take into account a finite lifetime of the mode in the cavity.

The finite lifetime or linewidth of the atoms has to be described
differently according to the physical situation for which we give two
examples:

a) The atoms are in a fluctuating field (for instance by lattice vibra-
tions) which does not induce transitions but which changes steadily the
excitation energy. In this case we put e=g,-+#(¢) where g, is the frequency
of the atomic resonance and #(¢) a steadily fluctuating function (3 =0).

b) Due to their coupling to different modes the atoms may decay.
According to SeNITzKY® this decay can be described by providing &
with an imaginary part and adding to the equation of motion an operator
F with certain properties.

In the following we will consider as a concrete example case a) since
the representation becomes especially clear and one can also establish

8 Kuso, R.: J. Phys. Soc. Japan 9, 935 (1954).
9 SENITZKY, P.: Phys. Rev. 119, 1807 (1960); 123, 1525 (1961).
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immediately the connection with the model of fluctuating dipoles as
used by WAGNER and BirnauM2. The calculations in case b), however,
proceed quite similarly. By the transformation
oc: —>oc;r e ikru

we can eliminate the dependence of the atomic position so that now we
have to deal only with an equation of a mode with formally infinite
wavelength. In order to exhibit the essential features more clearly we
let the frequency of the cavity mode coincide with that of the atoms.
After the transformation

b+—>b+ei£at, O:+—>oc+ eisot
we obtain ]
b+=—xb++ih*2a:, (2.5)
7

o) =n,e, —iho,b". (2.6)

In it 2x=1Jt,. We assume that the distribution law of #,(¢) is inde-
pendent of u. Egs. (2.1) and (2.2) respectively (2.5) and (2.6) don’t yet
contain the pumping process. In our preceding papers we have taken it
into account in the following way:

By the pumping process after a time T an average inversion 02
will be established. The total change of ¢, is then given by

0

G,—C
“T £ 1 coherent change.

g =
Our earlier equations are thus to be interpreted in such a way that
already one has averaged over the pumping process within the single
equation for b*, o™ and ¢. In order to take into account the statistical
oscillation of the amplitude being brought about by the pumping process
this averaging may be performed only at the end of the whole calculation.
Therefore we consider now explicitly the single excitation collisions.
Because by a collision an atom g is brought again into the initial state
(an excited state) the operator a, (¢) is to be replaced by the operator
a; (0) e'®=~ after the collision at time ¢, , where ¢, , is a random phase.
Further by each excitation the inversion is changed and thus o,(f) to
be replaced by ¢ after each collision. The egs. (2.1) and (2.2) respectively
(2.5) and (2.6) are now valid only in between collisions. After each
collision at atom u at time ¢ however, new initial conditions are valid:

B,V
or (t, =0, (0)e %>, 2.7
0ty ) =0} (2.8)

7%
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Since in the eq. (2.5) there occurs a sum over oc;r we introduce it as new
variable
ST=Y« y (2.9)
n
and correspondingly
S,=1Y0,. (2.10)
B

The equation of motion (2.5) thus reads
bt=—xb* +ih*S". 2.5

By summing up over x4 in (2.6) we obtain operators which refer to macro-
scopic quantities (for instance “total spin™) and which we may treat with
some caution in a classical way. Further we may note that summing
over up over u corresponds to an average over the random variable
1,(t) where under some assumptions (compare KuBo ®) one has

<exp (ijtn () d‘c>> =exp(—17).

Thus we get from (2.6)
St=—9ST—ih2S,b". (2.6")
The equation for the pumping process (2.7) is transformed into

S*te ,+0=Y 0 (1, ,+0)= Y o (t, ,—0)+ao (0)e *"~
u

u¥p
=Y oF (ty,—0) +op (0)€ v —o (2, ,—0)
u

or

STty ,+0)=S" (1, ,~0)+da, .7
with

Soe =y (0) e o —at (1, ,—0). Q.79
Correspondingly (2.8) goes over into

S.(ty,+0)=S.(t,,-0)+d0, (2.8)
with
do,=%(op—0,(1,).
Provided k=y=0 a conservation law exists in between the collisions:
S,+(b" b)'=0

which 1s to be changed for finite cavity width and y" %0 into

S.+(b*b)'==2y'S,~2kb" b.
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After integration and taking into account the jump condition (2.8)
one obtains finally (2.11)

S,+b"b=D+ Y 60,(t,)—2y [S.dv—2k[b" bdr (2.11)
tav<t
where D is an integration constant.

The function described by Y da, can be split into a continuous func-
tion C;+(¢t—t,) F and a discontinuous function g(z). The integrals
S, dt and [b" bdz can be written in the form*

(t—1,)S,+9,(f) respectively (t—t5) b™ b+9,(1).

Because the integration smoothes fluctuations of S, and 5" b to a large
extent, we have 3;(t) €g(¢) so that §; can be neglected. Because in the
steady state the time average of the total number of excited atoms and
photons does not change one must have

F=2y'S,+2kn (with n=b" b averaged number of photons). (2.12a)
From (2.11) we thus obtain finally
S,+b" b=Gy+g(1) (2.12b)
with
G,=D+C,.
By means of (2.12) we can express S, in eq. (2.6') by b* b, Further we

can eliminate S from egs. (2.5") and (2.6") thus obtaining in between
collisions

b= —(c+7)b* +[21h|*(Go+g()—b* b)—ky]b*.  (2.13)

This is the basic equation for our further considerations, where we will
put (y+x)=a. One can extend (2.13) to an equation valid for all times
by taking into account the jump condition (2.8")

S*t=—9ST—i2hS, b + Y 8(t—1,,) 60" (1,..). (2.14)

Tu, v

If one eliminates again S from (2.14) and (2.5") we get instead of (2.13)
b* +(c+7) b —[21h*(Go+g(t)—b* b)—xy]b*
=lz h* 5(t_tu,v)5a: (tu,v)~

tu, v

(2.15)

By means of this equation one can most explicitly explain the essential
difference between the linear theory of laser noise and the treatment of
laser action as free oscillation. In the linearized theory the nonlinear

* From here on we exclude from our analysis switching-on effects and spiking.
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term b* b is either completely neglected or replaced by b*b=n and
one puts g(#)=0.* One then has to solve a linear inhomogeneous
differential equation that means to treat forced oscillation. On the other
hand, as we will show in §3, the treatment of HAKEN and SAUERMANN? is
equivalent to solving the homogeneous eq. (2.13) taking into account
the nonlinear term.

In the present paper we wish to investigate the range of validity of
both procedures by taking into account the nonlinearity as well as the
inhomogeneous term.

§3. Discussion of the completely steady state

Before treating the noise problem we investigate as an idealized
example the completely steady state. For this end we assume that the
pumping process takes place continuously so that the discontinuous
curve g(7) (compare eq. (2.12)) vanishes completely. We further assume
that we can neglect fully the fluctuation of the atomic amplitudes during
the pumping process. In this case the equation of motion is given by

b*=—ab* +[2|h[*(Go—b* b)—xy]b* 3.1

with no additional conditions for 6. In the steady state we have b* =bh* =0
from which we obtain the condition

21113 (Go—n)—x7=0. (3.2)

For a given adjusted pumping rate F we can determine the unknown
quantities S,, » and G, by means of the eqgs. (2.12a, b) and (3.2) thus
obtaining

G "V _

Sz—'2| iz (3.3)

ﬁ:L F_"LV' (3.4)
2K |h|% )’

Gy=S,+n.

Especially we obtain as lasing condition, e.g. a positive photon number,

KyY
>
Fzoymr (3.5)

* A first step beyond this scheme was done by H. SAUERMANN and the present
author (Talk given by H. SAUERMANN at HochfrequenzausschuB, Karlsruhe, Spring
1964), who also put b*b=hn, but took into account fluctuations of the inversion by
means of a correlation function method. As we shall see below, this treatment belongs
to the class of subthreshold theories which describe the line-narrowing but don’t give
rise to a stable light-amplitude.
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Since we treat in the present paper the pumping process in a formally
different way than in our preceding papers> we investigate the connection
between both descriptions more closely. The adjusted pumping rate
F is according to its definition on page 101 given by
IRCEALE|

F:7 Z *5(6”(0)—0u(tﬂv)). (36)
If T, is the mean time between two pumping processes at the same atom
we can transform the right hand side into

No(0) S,

3T, T, 3.7
Using eq. (2.12a) we get
- Na(0) 1 ,
2Kkn= 2T, Sz<~T;+2y>. (3.8)
On the other hand we have found in our preceding investigations
Nd, 1
2kn= T —Szvf (3.9)

and a relation identical with (3.3) which therefore will not be discussed
here. From a comparison of (3.7) and (3.8) follows that both descriptions
give in case of vanishing pumping fluctuations the same result where one
has for the effective pumping time T

1 1 ,
T,

}4
and further
do a(0)

T T,

p

§4. The limiting case of a large cavity linewidth

Eq. (2.15) cannot be solved in closed form on account of g(¢) and
especially on account of the nonlinear term 6" bb*. However, we want
to show that there are interesting limiting cases in which one can solve
(2.15) exactly or at least in a good approximation explicitly. For this
case we consider the characteristic frequencies of the system. These
are (compare (2.14), (2.3") and (2.15)) the resonator width ~x, the
reciprocal phase memory time of the atoms ~y and the frequencies in
g(¢) and on the right hand side of eq. (2.15). In general the frequencies
in g(¢) will be of the order of the pumping time itself. In the following
we will disregard this term since its contribution to the linewidth above
threshold is small as will be shown below, It should be noted, however,
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that our treatment is fully capable of taking into account that time-
dependence. We consider now

Y 6(t~1, )50, .

ty, v
o, still contains random phases. In this function again frequencies
of the order 1/T), are essential as can be shown by a more detailed investi-
gation*,

We now treat the limiting case that the cavity width x is large as

compared to the other frequencies of the system. In this case we obtain
as equation between collisions

Ki5+—[2|hl2(Go+g(t)—b+b)~xy] bt =0. 4.1)

If we denote the solution of eq.(4.1) between two collisions by
b (¢) the following recursive relation must hold on account of the
pumping condition

kb (t, )=Kb (1, ) +ih* s (1, ). 4.2)

For the complete solution of the problem we have to perform the follow-
ing steps:

1. The explicit solution between two collisions must be found.

2. The integration constants are to be determined using (4.2).

3. One has to construct correlation functions using a certain statistical
average over the collisions.

We start solving the first problem:

For g(t)=0 one could take the solution b* = constant as discussed
in §3 by which we cannot fulfill, however, the jump condition (4.2).
Thus we have to look for the general;solution valid also for g(z)=£0
which reads

7 —j‘tHd-x: t ;H(u')da' w*
b+=‘/7c e " <1+]c12je" dt) . 4.3)
tr

In it
, K
K—Zlhlz (4.4a)
and
2 Ky

C is an integration constant which may be in general complex and which
is to be determined from eq. (4.2) by recursion. Before solving this task
we discuss special cases of the general solution for low, middle and high

* 1 am grateful to Mr. CH. Scamip for this detailed investigation.
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pumping. In order to make the calculation as simple as possible we
assume that the function g(¢#) which describes the random fluctuations
of the inversion vanishes between two collisions. In this case we obtain

generally
D 2 2y -4
b+=c‘/7€7{e—zc(:—n) <1_12C(I;>+IZC(I;} @5)
where
G:2|h|2Go—1cy
—

Having the steady state solution of §3 in mind we may assume that for

A. small pumping G, is maller than « -9/2|h|>. Further in this case
the light amplitude and thus C will be small. Thus we can approximate
the eq. (4.5) by

+ o~ 7 +G(t—1t) !Clz +2G@—-tp)
b™ =~ 7Ce 1+w(1—e ) . (4.6)

For very small light amplitudes one can neglect also the quadratic term
in C thus obtaining finally

bt~ V% Cetdt—m, @.7)
B. Is G=0 we obtain

b+=‘/% C{l+|C]*(t—1)} % (4.8)

In this case we are on the average just at threshold.

C. The pumping is supposed to be still higher. In this case G, is
shurely bigger than x - /2| k2.

We assume further that the light amplitude (~ C) has become so
great that

ci*| _IcP?
‘1 2G < 2G *9)
holds.
Then we can approximate (4.5) by

+_ C el =2G(t—t) 1 2G

The solution (4.5) and its special cases are completely different as to

their time dependence depending on

21k Gy—k
I—Kf’__.lzo

G
(compare also (3.2)).



106 H. HAKEN:

For G<0 the light amplitude decreases exponentially after each
excitation collision. Its decay constant which for spontaneous emission
would be equal y is decreased on account of the inversion ~G,. As we
will show below explicity the linewidth becomes smaller by this effect.

For G>0 one would obtain for a linear equation an exponential
increase of the light amplitude. On account of the nonlinearity according
to eq. (4.5) the following behaviour results however. Let the amplitude
b* =b¢ be given at collision time ¢, - b approaches for large ¢ the value
(compare (4.10))

_C
IC]
or the number of photons the value
n=Go—xy/2|h|?

which agrees completely with that of the stationary state as discussed
in §3. After each collision the light amplitudes thus approach that of the
free oscillation.

We now consider how one can fulfill the recursion condition in the
limiting case A. We have immediately

Cii1=C, eG(tz+1—tz)+5l

it /2
o= Vvéoc:(t“)

and thus for the general solution at time ¢

b* V/ Go—xy/2|h}*

where

b+=l/—% eG'{Zé,e‘G'urcoe—Gfo}. (4.11)

<t

§5. Calculation of the line-width below threshold

In order to calculate the linewidth we have to determine the correla-
tion function {b* (¢ + t)b(¢)> where {---)> means the quantum mechanical
average as well as that over the collision process. By means of (4.11)
we have

(b 1+ b0
h|? = —
IS Y T Gl @, o,y 0.

usvu,v

.1

The sums over the atoms p respectively p' and the collision times 7, ,
respectively 7., run to the last collision. The bar means average over
the collision times. Because in the present case there is no phase relation
between different atoms we have u'= p.
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Since all atoms behave in the same manner we can neglect the index p
and can replace the sum over ¢ by N. Writing {---)> by means of the
definition of da, explicitly we obtain

2
|_Z7]_ NY G UFTmtI G (=t) ¢ 41 (5.2)

v, v’

where
{A} =<°C+ ()] e a2 (0) e_i(p“') - <OC+ (t,—0) x(0) el oy _

—<a" (@ ¢ alt,—0)> +<a" (1, ~ 0)alt, —0)). 2
Since there are no phase relations between the single collision the first
bracket is only non vanishing if v=1v'. If the o’s in the last bracket stem
from different collisions also this vanishes. On the other hand the «’s
occurring in the second and third bracket may refer to a common collision.
If in the second bracket a collision has appeared at time #¢, which
defines an initial phase ¢,., «* retains this phase* until the next collision
at time ¢,="¢, ;4.

This bracket is therefore non vanishing if v=v'+1. Correspondingly
we have for the third term v=v'—1. Thus we obtain for (5.2)

|h|2 < G (t+ )+ G( ) + G( )
—5—N e fht=ty =ty o’ o —e tyr—tyr ) %
N2 {Ca" @y

X (141 = 0)a(0) €7 Py — o8 D G4

x (o™ (0) €' (1, ~0)) +<a” (t, ~0) (2, — O}

For the evaluation of the expectation value {---> we have to use the
equations of motion (2.6) in which again the light amplitude occurs.
Because the lightfield is relatively small we may use in (5.4) for a™ the
zero’th approximation. This reads for the model of a fluctuating field

t
—ifn(z)dr
at(f)=e ° a® (0).
Thus we obtain

Tyt
—i § n(dz

<a+(tv/+1—0>a(0)e"wv'>=<oc+a>o<e R T

and
ot (ty—0)a(t, —0))={a" ado.

i
* There is of course an additional change of phase given by exp {i @) d r} which
we take into account below.
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Using N{a™ ady==N,=number of the excited atoms we have now to
determine
2
|h| N G(t+i—t,)+G(t—1ty)
2T 2@ x
&

(5.5)

> {Z_e—v(twrtvr)HGl (ors1=tyr) o= (ur—tyr - 1) —16] (Tv'_tv’—l)} .

In order to average over ¢, we use a Poisson-distribution. We treat
first the sums which stem from the first and third term in {---} in (5.5):

b1 o &1 [ —216e-7-( 6 \' 1
7122 szgo —T; e Tp —V—! dO'X
0 . (5.5a)
X 2—LJ‘6~(|GI+Y)U,—T_”CIJ' .
TP
0
The sum over [---] gives _ L and thus (5.5a) reads
Ve 31T T, ‘
|A* et 1 1
—=—N; ' 2— . 5.6
2 e 21G| T, T,(1GI+7)+1 (5:6)

Because the second term of {---} in (5.5) contains also a collision which
lies between ¢ and ¢ + 7, we transiorm the sum as follows

Yo
Z eG(H’T“tv')"’G(l‘—tw) eG(tv'—tv'—l) +eG(I+1—tvu+1)+G(l—tvn) (55 b)

v
with the condition ¢ <t¢, . <t-+7 and 7, <f.

Taking into account the factor e~?% =% -1 the sum yields

RPN, o 1 ! _
K 2[G| T, T,(IG|+y)+1

The average over the second term in (5.5b) is given by

t+ T

1 _ (t'—1) 1 yt,,_t~t”
____J‘ eG(t+z+l)+Gte Tp dt/e—'yt je—Gt e Tp dt//
TP TP
t —a

for which one obtains immediately

: (eG’—e_%;#M).
(LO=IGD+1) (T, +1GD+1)
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1 1
For — > | G| we obtain finally e%* - :
T, > Y GG ) (TG 16D +T)

If we collect all terms coming from (5.5) we have:

LRI & =161k 1 _ 2 _
©2 Nz e 2|G| T, 2 T,(1GI +7)+1

p

1
(Tp(v+lG|)+1)(T,,(v—IGI)H))}'
For |G|T,<1 this simplifies to

n|? _
I N, ot 7

|G|
The spectral distribution is given by
g(@)=]<b* (1+0)b(1) > dr
or
_ 2y|h|?
R T IR G A ey

where we have used that 2G,=N, — N, =inversion of the atomic levels.
Eq. (5.5) gives the same linewidth as the paper of WaGNER and BIRN-
BAUM? if we specialize the latter to the case: x larger as compared to
the other frequencies.

If we use the model of fluctuating dipoles we also get the same
intensity. Using other models there may occur, however, other inten-
sities which shall be treated in later papers. For slow pumping (7,7> 1)
one finds a lowering of the intensity. As final formula we obtain now

(w)_zNZ Ih|2
O ey =h PN, — N+’

with the same linewidth as above.

§ 6. Graphical discussion of light amplitude and linewidth above threshold

Whereas the light amplitude between collisions is already known from
eq. (4.5) we have now to determine the integration constant C by the
recursion formula (4.2)

_ _ C,\? _ el T
C1+1=C1{e 2G ”)+|2*l(|;(1-e 2G (e m)} +0p1, (6.1)

dl eG(tHl—fl)

ll/lcl|2+d12 1+1 ( )



110 H. HaxkEN:

where

d=)2G|CStm_71,

For a preliminary discussion we assume that the intervals ¢, —#; are
independent of [ putting 6¢t+1~ " =f>1, Tt follows

af
Ci1=G V!—CT—_FdT"“SlH- (6.3)
With D, ::%; K41 —él‘—';i we get
f

Diyy= (6.4)

Dj=ee—— 9y, ¢ .
4 V' Dl |2 +1 1+1
Neglecting for the moment 3,,; we consider the establishment of the

stationary state. For it D;= D is determined by the equation 1= ];_f
with D?=f%—1 which is consistent with D" +1

m=|b2=Go—rxp/2| |2

The dynamical approach to the equilibrium can be visualized in a simple
way by a graphical plot (Fig. 1). According to it we can obtain D, ,

from D, in the following manner. First
plot D, along the x-axis and go from there
T 8 parallel to the y-axis. Because cos a=
N I
P i ‘\ E l/iDziT— one obtains D,,, by plotting
Vi L s IA f along the line OB and projecting it on
i the x-axis. If D, lies on the right hand
i side from the equilibrium value D, D;,
7;"': is coming now to the left hand side of D,
) ! thus coming closer to the equilibrium
Fig. 1. Construction of the constant . . .
Dy 41 from Dy value. The corresponding situation appears

if D, lies in the beginning on the left hand
side of the equilibrium position. Thus one may recognize immediately
the approach to equilibrium. This approach is of course disturbed by
&, respectively 9,. Let us assume that D,,., is real. We investigate
first for which maximal D, the system cannot be further pushed from
its equilibrium value by collisions, This implies the condition

Dlmax_D?+lg|‘gl+ll (D?+1§Dlmax+]'gl+1|)
or

Dlmax.f

D P oot
tmax l/Dlmﬂx-l—]_ =

'9'l+1
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As follows from Fig. 1 such a value can always be found. The question
if also such value for D, ;, exists is of more importance:

0
Dl+1—Dlming|‘91+1|
or
Dlminf
2
VDlmin+1

—Dlmingl‘91+1| .

As one sees immediately from Fig. 1 this limiting value certainly does not
exist if one starts with D;=0. If on the other hand a certain value D,
is crossed over to the right hand side the system can get trapped. In this
case it further approaches its stable amplitude. One should bear in
mind that our present analysis was based on the assumption of constant
intervals 4¢,. In realistic cases, they will of course undergo fluctuations
and our discussion then refers to the most probable collision time,
As we will see below by a different analysis our conclusions are still
valid for such a statistical behaviour. If we insert realistic numbers we
can further show that for sufficient high inversion the minimum condition
can be fulfilled.

From our analysis we can understand the build up of the coherent
light amplitude: Assume that an inversion G is already present. First
we have D~C~b"=0. Then according to (6.3) the light amplitude
fluctuates around Zero. By a favourable combination of the randomly
fluctuating &’s the amplitude can reach a stable area, where it fluctuates
now around its equilibrium value. With a very low probability (depend-
ing on the pumping rate) the amplitude can jump out of the stable region
again if 4¢1< AT and the phases of the jumps are unfavourable.

In the next chapter we will discuss this question quantitatively.
So far the occurring quantities were assumed real. Because the §;’s are
complex, however, the D’s and thus also the C’s will become also complex
quantities. All our above considerations can be, nowever, easily extended
to the complex D-plane. What has been said about the real D is now
valid for its absolute value. However, we have now still collisions in
tangential direction, which cannot be stabilized and give rise to a finite
linewidth. For the determination of this linewidth Av on account of
phase jumps we treat these jumps as diffusion process along the circle
with length U=2n ]/]72— —1. If the length of the single step in tangential
direction is given by 9, the probability that the length x is reached at
time ¢ is given by

1 i _2T/AXT2<SZr>
@r{9* +ATN '

W(x,t)=
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2_

At the time z0=—2~n—(<19-2—7—,1>)A—T the diffusion process has reached the
phase 27. For (92> we have

1/ N1 |a)? 1

2\ . + 27 %k - L 2
<‘9 >'_N/ Z 5au(tuv)Tlh /dfz KZ s 0 NAT
N collisions
N

=V Z, <5a+(tv)T5a(tv')T>=_2 <5a+(t0)T5a+(tv)T>'
vy v=1,0, +1

N collisions

For the calculation of {---) one has to write du again as difference
at(0) ét?—at (¢t —0) where o* (r —0) stems from the last collision.

In order to determine ' (¢ —0) we have to take into account to
action of the lightfield on the atoms, where we can consider the lightfield
as a fixed quantity. If Ab* >VW we can neglect in first approximation
the fluctuations of the energy of atoms.

Further it is useful to use the Schrodinger picture:
(W*a* b+habM)p=igp
—_——
i

with the general solution

{(asmcot+ccoscot)(l)+ |h}|17117)| (acoswit—csinwi) (T)}

and the normalization |a]|?+|c|>=1 and o= |hb].

In order to determine the direction of the collision we calculate

g
<Oc+(t)>=——[l—}?l%{a*ccoszwt—ac*sinzwt#—lal lel” sm2wt}

Due to the collision condition (4.2) one has

+
dat=a"(0)e " —|h| ]bbl <|a|2—%) sin2wt  (where a>c¢).
Whereas the first term gives rise to a collision into an arbitrary direction
the second one gives rise to collisions parallel to »*. Its sign depends on
the collision time ¢t=7,2 1/2w. If the collision time is large as compared
to 1/2m which holds for high fieldstrength 4™, we have sin 2w#<0, the
atom is mostly in the groundstate. From there the electron falls down
into a lower level or a further change of sign occurs. This means that
the collision now occur in the direction of smaller b-values.
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If T,»>1/2w one can expect a strong cancellation of expressions
at(t «,v—0). The decisive contribution to the diffusion process therefore
stems in general from the first term «* (0) /¢ with random phases.
The calculation of the diffusion constant D? is now straight forward and
is given in §7 (compare (7.12)).

We now return to the discussion of the motion of the amplitude in
radial direction. As we have seen above the system makes small oscillations
around the stable position DG=]/f2—l. This suggests to extend D,
around Dg:

D= —1+¢.
Inserting this into (6.4) and treating &, as small quantity yields &, ;=
;’7—[—‘91 or on account of f=e%47
Aé=—-E2G ATH+S.

From this one obtains the differential equation

. ~ o9

(=-2EG+3  with S—ZT
which describes a diffusion process with a restoring force. Postponing
the explicit solution of the equation to the next paragraph we summarize
the results of the present paragraph: For a sufficiently high inversion a
stable value for |D|? and thus for »* b occurs around which the system
makes small fluctuations. On the other hand there are no restoring
forces for the phase of 5. It undergoes a diffusion process in the complex
b-plane. We thus must conclude that for treating a differential equation
for b one is usually not allowed to linearize. One has first to split off
the phase and must investigate its fluctuation separately.

§7. Lightamplitude and linewidth above threshold at high inversion

We now consider the general eq. (2.15). Our consideration of §6
suggests to put »* in the form ref¢.* Inserting into (2.15) and separating
the real and imaginary part gives

P+ r—[21h*Gy—xy—2]h|*-¥*— @*]r

PE—

& (1.1
=Re{e_i¢ih*za(t_tuv)5a: (tu,v)}

v

* Because b and therefore also » and ¢ are operators the Ansatz h=rel? requires
some precaution. Its exact definition were b=1Tr exp {j'(v:) dt} where T is the time
order operator. Since all calculations, however, go through the same way we disregard
of this sophisticated procedure here.

Z. Physik. Bd. 181 8
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and
2ro+ro+E+y)er=Im{-}. (7.2)

In analogy to §6 we expect that r will make only small oscillations around
an equilibrium value r,. Following up a remark by H. Korpe™* this can
be most easily visualized if one considers eq. (2.15) as that of a particle

Vo moving in two dimensions and hav-

ing the potentlal energy — |x|2

x ! |x|*
! ! +1h12—_ V(|x]). The plot of

1
\ /
\ N / L V(x) in Fig.2 shows in fact that
A i itive i i

onehas for positive inversion (G > 0)
an equilibrium value x,=+0. It is
interesting to see what happens
below threshold. In this case the
minimum exists only for x=0,
Fig. 2. Plot of “potential energy’” versus light that means after each collision pro-
oninear iheory); e above threshold, mesr 58 the light amplitude decreases

theory leads to instability; — above as has been discussed in §5 Mak-
threshold, nonlinear theory ing according to these conside-

rations for r the ansatz r=ry+p** where r%zz—‘%-z— we obtain the
following equations I
p+Ge+y) p—(ro+p) G+2|h[*rd+ 73
+3- 21k rg p—@° (ro+p)=Re {--} '
or
p+E+9)p+2pG—p*ro=Re{--} (7.4)
and
. .1 .
o+t e=-Im{-} (7.5)

where we have kept only linear terms of p.

The solution of eq. (7.4) and (7-5) seems still difficult because the term
e~ i¢ represents a strong nonlinearity. In §6, however, we have seen
that o, possesses random phases ***. Thus we may take e”'? into o
which can be treated again as random variable §&, . By means of the

* H. KoPPE, private communication.

** This ansatz where r is a C-number corresponds to a unitary transformation,
which preserves for instance commutation relations.

*** The non-stochastic part of da* has a phase factor which cancels out in (7.1)
and (7.2) completely.
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method of variation of the constant we can solve eq. (7.5) immediately:

t
! Y I,,(1—e *7%) with I,,=Imih*5&, (t,,). (7.6)

OCVO tuv>tg

P—Po=

With this solution we can enter into eq. (7.6) obtaining an inhomogeneous
linear equation for p. Its solution reads

t
p(t)=jF(a)K(t,a)da 1.7
with the abbreviations:

1

2i}/L
. — B
0)1,2:%i\/—%+2 G=%il/L,

F(a)={2 5(c—1, )R, v} +70 9%,

Tu, v

K(t O')= {eiw1(t—a)_e+imz(t—a)},
2

and
R,,=Ref{e *?ih*so; (1, )}

In the following we neglect the term @*r, due to its smallness. On
account of the é-function occurring in F(o) (7.7) simplifies to

p:iRuvK(t, Ly)- (7.8)

fuv

Since we are only interested in the stationary solution we need not add
a (damped) solution of the homogeneous equation. By means of (7.8)
and (7.6) one can calculate in principle all correlation functions. We
do this here for several simple examples:

1. Mean square of the phases as a function of time {(¢(£)—@,)*>

By means of (7.6) we obtain immediately

1 & P timts 2
<>=_rg Yy A (l—e a(t=tu)) (7.9)
tuvZto

where we suppose that the phases of 1,, are uncorrelated. From (7.7)
follows

1 I_Z—v & —a(t—ty1\2
<"'>=*7N ﬂz 2 (1_e v)
7'0 o VEV Y

Z. Physik. Bd. 181 8a
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where we have only to average over collisions between z, and ¢. Let
T,M =(t —t,)=T then we have

VZE1—1' fe_“(’_'”)*’ L (1—e"%T) (7.10)
V=V4 Tp, V=vg4y Tpa ) :

Thus we obtain

1

? 1
(d=3N>
ry

OCZ?{T—%(1—e‘“)+;—m(1—e‘2““)} (7.11)

p

which tends to Zero for aT <1 proportional to T, whereas it gives for
Ta>»1

<...>z;17N,p_, (7.12)
0

p. where g*=V[h|* (7.13)

The linewidth is thus given by

1 x gp
AVNF ZTD az . (7.14)

It is interesting to compare this formula with that obtained below
threshold. In the limit of large « it reads

o= 20h12 Ly
P=2 ” NZZ;
or
Sve 21827
Pk
where
N.
p2=—V—2. (7.15)

One thus obtains a very pronounced analogy where 27, corresponds
to 1/y. This analogy becomes still stronger, when we specialize below
threshold to large pumping time T,, that means if we assume strong
decrease of the atomic amplitude between collisions. The only difference
consists in the factor 2 p,, respectively p. The factor 2 is of no importance
because the linewidth comes in both cases from different relations.
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2. Correlation function of the phase factors

This correlation function reads

Cexp(ip(t)—ipty)). (7.16)

According to (7.6) we split ¢ into a sum over the single atomic contribu-
tion obtaining thus for (7.16) a product

[T <exp(@,(t2) = 0. (D)) (7.17)

¢, =part of the sum over u.

In it ¢, denotes just a partial sum with fixed atomic index but still going
over all collisions. We now assume that the contributions of a single atom
for the phase jumps are small. Thus we can expand the exponential
into a power series which we brake off with the second term:

TT{+i<0,(t2)— 0, (8> =3 {0, (1) — 0, (1))*>} - (7.18)

Putting the brackets into the exponent again we find

iT{douy -3 Z{4ow)?>
u 3

e (7.19)

Whereas {4¢,> vanishes, 1{(4 gou)2> has already been determined in
eq. (7.9). We thus find finally

(oo d=gmavH? (7.20)
where Av is given by (7.14).

3. Calculation of the correlation function of the amplitude

In this part we will show, that already slightly above threshold the
ftuctuations are not capable to throw the system out of its stable value
] b | =7t 0-

a) Influence of the fluctuation of atomic phases. The quantity to be
determined reads

rt+nr®) .
Using r=ry+ p this can be split into
ro+7o {p(t+1)> +1o p () +<{p(t+1) p()) .

Because {p) vanishes if averaged over the phases of the a’s we need only
to determine {p(¢+ 1) p(2)).
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Taking again the limit that the coherent parts of a™ vanish between
collisions we have immediately

PP =N K a+)K@e). (.20

The average over the collision ¢, can be performed as in §5. We confine
ourselves at first to the limiting case of large x. Because in this case

K(t, tv)=% e 20U (fort>t)

the calculation proceeds like in §5 with the result

B> N 561 1
= 3¢ 41G| T, (7.22)
On account of

_2|h[2GO—Ky __2|hi217
N % Tk

G

eq. (7.22) also can be written

1 N -2{Glt

A~ = e .

32 kT,n
From this expression is it evident that the contribution of {p*} is by
many orders of magnitude smaller than n when n is somewhat above
threshold. It should be noted, however, that these expressions as well

as the other neglected nonlinear terms of p might be important just
at threshold.

b) Influence of the fluctuation of the atomic inversion. In all our
above considerations we have neglected the influence on the amplitude
by the fluctuation of inversion. We want to show that this contribution
also is vanishingly small if laser action is considered somewhat above
threshold. In order to take into account the fluctuation of inversion
we have to replace on the left hand side of eq. (7.4) G4 by Gy +g(¢),
so that we have _

P+ p+2pG—ro2|h|* (1) (7.23)
where

gm=(z@o—mr~¥0dm

tuv p

For sake of simplicity we again consider only the limiting case of large .
The differential equation then reads

kp+2pG=21h|%rog()
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with the solution
t

p:e‘G‘2|h|zﬁ’~J‘eGT<Z@(t—tuv)—ﬁt)dtdo, G=— 2G . (1.29)
K T,
0

Carrying out the integration yields
—G{t~1ty v) N
22l do<2— ——

e R et
Tp G T,G
The first term of the sum cancels against the third term. The last term
vanishes, because it represents only a swiching-on effect. In order to
get an estimate of the contribution we consider

—e'G’)). (7.25)

;2 ”od2 4 N? __%ZV_ —G(t—tuv)
p™)=—=5=|h| ( : TPGZ[:e +

T, G)*
(7, 6) (7.26)
+Z Z e—ZGz+G(tuv+tu'v'))‘
. wv v
Using
N
N G- t,,) AN 2
Z NZ GT (7.27)

and splitting the average into that over different and equal molecules we
obtain

2 7'<2)dé 4 1 T3 GiTGHIG oy
pP=—ss |R|"N< — —l-z PG TOL S (7.28)
G (GTI,) v, v

After performing the average over the last sum we get

red:N 1 2
pr=1h|* =2 (1— ) (7.29)
G 2GT, T,G+2

Thus we find in any case that

pr el do ~AN N (7.30)
n

which is of the order of N/n and therefore somewhat above threshold

again many orders of magnitude smaller than r2=7 itself.

¢) Correlation function for the amplitudes for the general eq. (7.4).
Our above calculation of the correlation function were done for the
limiting case of large k. We want now to demonstrate by means of an
example that these results are not changed qualitatively when we consider
the general equation. The determination of {p(¢+ 7)p(¢)) using the
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general solution (7.7) yields

where o
A—_N_liw{l_n_}___}
(8G-a))T, l* (@+2i)/L)}"

G _ N _ . ..

Because ~R~7—~n we have A~—T— / (xn) from which we see that this is
pr

of exactly the same order of magnitude as discussed in a). It remains

limited for high inversion (for 7,—0 or N —c0) and is again orders of
magnitude smaller than n itself. Note, however, that this expression
might become important near threshold. As is obvious from the time
dependence of this correlation function there occur two satellits around
the frequency « with a dip in the middle. This represents just a kind of
hole burning within a homogeneously broadened line due to the build
up of the stationary amplitude of oscillation.

§8. Connection with Glauber states

All our considerations above were based on the Heisenberg picture. It
is interesting, however, to see how the corresponding wave function in
the Schrodinger picture would look like. For this purpose we realize
that the connection between Heisenberg and Schrodinger picture
requires

Ws QW Ye>=( (12O ¥ (1) (8.1)

where Q(¢) is the time dependent Heisenberg operator and i, the wave
function at initial time, whereas Q(0) is the time dependent operator in
the Schrodinger picture. As we have found above b can be written above
threshold in the form b - €?®. We thus require

boe' "o =by(2). (8.2)
The solution of this equation reads for ¢ =¢,
Wo=Norme™? b % ¢ (8.3)
This solution can be immediately extended to all times by putting
Y@)=N-e*? 0" Vg
(8.3) can be put into connection with Glauber states by taking (¢) as

Y(O=f3(p—p®) e 7 ydp (8.4)
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where the integral represents a superposition of Glauber-states with
fixed amplitude but variable ¢. Although the calculations above have
been performed as if ¢(¢) is a C-number all the considerations can also
well be done if ¢(¢) is an operator.

§9. The complex degree of mutual coherence of two laser beams

The coherence function under consideration reads

b+ b (D)) (9.1

Because the amplitudes b, and b, stem from two different kinds of
atoms we can (9.1) factorize

<bT (D) by (1)) . 9.2)

Above we have seen that

CHOE

0 below threshold
(9.3)

bo(e' ®®> above threshold.

This shows again that the amplitude of the laser light is stable in accord-
ance with recent conclusions by JorpAN and GHIELMETTI’ from experi-
ments 1% 1! whereas the visibility of interference fringes is limited by
phase fluctuations. If measurement is performed over a time T (which
means averaging over ¢ for a time interval T') one obtains for the complex
degree of mutual coherence

1 1
J/<b} byy<b;s by T

f(bf(t+f)> Kby (1)>dt
0

T
1 —ig(tt+1) L oa(t) (94)
S R R CAGU Y §
T
6

(020~ - 1
:el(¢20 (4’10)6 dvit

1__ —(4vit4v) T .
Tv, 1 4vy) L )

For times smaller than the inverse linewidth we obtain thus a fringe
visibility close to unity. It were interesting to compare these results
with that from two modes coming from the same laser. In this example
the factorization of (9.1) is no more valid and therefore one may obtain
other formulas for the fringe visibility. This will be investigated in
forth coming papers.

10 MAGYAR, G., and L. MANDEL: Nature 198, 255 (1963).
11 TreserT, M. S., and L. MANDEL: Nature 198, 553 (1963).
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§10. Concluding Remarks

The main objective of our paper was to bridge the gap between linear
and nonlinear theories of laser action. As we have shown linear theories
represent a very good approximation at small inversion. On the other
hand there is a marked threshold beyond which the system behaves
qualitatively very differently from below threshold, its amplitude
oscillating around a stable value. For the explicit evaluation of the line-
width by phase “diffusion” above threshold we have used a special
model in which it was assumed, that the pumping time T, is bigger than
h - b and that the lower optical level is emptied to a ground level before
the next excitation. The treatment of other situations is straight forward
and will be published elsewhere. In our above treatment we have
further assumed complete resonance between the atomic system and the
cavity mode. This limitation can easily be released. One then finds
linear, power independent mode pulling as given by TownNEs 2.

I am indebted to Mr. H. SAUERMANN for his careful and critical checking of the
calculations and for interesting remarks. [ am further very grateful to Professor
H. Kopre and especially Dr. W. WEIDLICH for valuable discussions,

Appendix
Extension of eq. (2.15) to standing waves and several modes

(Received August 31, 1964)

We want to show, how one can derive equations corresponding to eq. (2.15)
for this more general case. For this end we start with the basic equations

by =iw,bf +iY hi, o, (A.D)
N
o =ico, —iy h,, bio,+y 0(t—1,,) 00, (1,), (A.2)
A v
0,=—2y0,+2ia,y h,, bi—2ia, ¥ hy,b,+Y 6(t—1,,)80,(,,) (A3)
A A v

which are the same as those of our preceding papers3, being supplemented, however,
by the pumping terms. We take hﬂ ; in the form

h,,=h)/2sink; x, (A.4)
and assume the following properties:
Zhulhu}v’=Nh2 511’5 (AS)
I
;hﬂhu,Fthaw,. (A.6)

12 Townes, C.H.: Quantum Electronics, edit. by J. R. SINGER, New York:
Columbia University Press 1961.
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‘We construct now

1
ST =4 T hua, (A7)
J:1
. 1
A, z'=‘? Z h,u. hul' Gy (A.8)
B
Note, that on account of (A.6):

1

“;T:W;hul S;‘. (A.g)

Eq. (A.1) goes immediately over into
by=iw,b; +ihS; (A.1)
. ! . .
Muliiplying eq. (A.2) with Z h” , and summing up over u yields

S =ieS} —Zthb, S 2 +Y Y by, 5(t—1, )0t (t,). (A2)

1Y

A7

Finally we multiply (A.3) with —-

3 h‘“1 hul’ and sum up over ux. With help of (A.9)
we obtain: h

Si 2 =i(z Z by Spnh A A, A, A"y —con.compl.)—2y S5 ;. +
2]’!22250 tuv) hulhul 56 (tuv) (A?),)

z
Ay 2

where
A= h4 Zhﬂl h/ul' h#; th.
According to eq. (A.1") we express S; by bi:

5% = —{S b S by +iwh by) AL X, 27, )+
e a
+con.compl.} —2y S5 ;. +45 ;.

(A.10)

We confine ourselves now to a single mode:

’ - e 3
i:i :A//=i ,=j'09 Azj_
(A.10) then reads:

= —20"B)-3-2kcb b-3-2y 8% s +AL L. (AdD)



124 H. HAKEN: Nonlinear Theory of Laser Noise and Coherence. I

The further treatment is identical with that on page 101 leading to
bt +{k+y—i(wy+ep)} b™ —
—{2h*(Gy—3 b b)—(igo—)(iwe—x)} b* =ih 4],

In order to determine 5% for the completely steady state we put

(A.12)

b*=bge?"  (by: constant).

Splitting then (A. 12) into real and imaginary part yields for 2 the power independent
mode-pulling as mentioned in § 10, and for #, (photon number) an expression which
coincides for moderate pumping power with that determined in a previous paper3.

The simultaneous action of several modes can be treated similarly. Again the results
for the completely steady state coincide with those of a previous paper? for moderate
pumping power and if population pulsations are neglected.



