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Practical parallel algorithms, based on classical sequential Union-Find algo- 
rithms for computing transitive closures of binary relations, are described and 
implemented for both shared memory and distributed memory paraliel com- 
puters. By practical algorithms, we mean algorithms that are efficient for 
parallel systems with bounded numbers of processors as opposed to algorithms 
where the number of processors grows with the problem size. Transitive closures 
are useful for decomposing many applications problems into independent 
subproblems. The implementations were on an ENCORE Multimax shared 
memory machine and an NCUBE hypercube. Our implementations indicate 
that transitive closure computations are intrinsically difficult for distributed 
memory parallel machines because of the need for global information. By 
contrast, our results for shared memory machines exhibited excellent speedups. 
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1. INTRODUCTION 

This paper studies parallel algorithms for computing the transitive closure 
of a reflexive binary relation which we believe is a fundamental problem in 
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many large scale applications. The algorithms we develop are based on 
parallelizations of Union-Find algorithms which are simple to implement 
and extremely efficient in the sequential case. The problem we study is 
simple to state and its utility in many applications should be immediately 
evident. Suppose that an application problem, called the global problem, 
involves some number of objects that may or may not be related to one 
another. Whenever two objects are related they determine an element of a 
binary relation and they belong to the same subproblem of the gobal 
problem. The computation of the transitive closure identifies the maximal 
number of independent subproblems as determined by the global problem 
data. We will use the term clustering to refer to the general problem 
of computing the transitive closure of a binary relation. The resulting 
equivalence classes are called clusters. 

Clustering is an important general technique for problem decomposi- 
tion. The basic goal of clustering is to decompose a computational problem 
into subproblems (clusters) that can be independently solved. The benefits 
of this are apparent for both sequential and parallel implementations of 
many problems. The overall computational complexity of an algorithm is 
typically reduced by such a decomposition while the independence of 
subproblems has the extra benefit that different clusters can be handled by 
different processors in a parallel implementation. A particular feature 
of the clustering problem is that clusters are typically only determined 
during runtime, so that clustering represents a form of dynamic problem 
decomposition. 

This paper studies practical parallel algorithms for computing clusters 
on parallel computers. In our opinion, this work represents a significant 
departure from the numerous other works on parallel algorithms for com- 
puting connected components of graphs or transitive closures of binary 
relations. Our approach involves the parallelization of the most efficient 
sequential algorithm, namely a well-known version of the Union-Find algo- 
rithm whereas all other research on this problem typically deals with algo- 
rithms that require at least O(n2/log 2 n) processors to solve a problem of 
size n. Such approaches are not practical for systems with a bounded 
number of processors because simulation attempts do not lead to efficient 
parallel algorithms. We describe parallel algorithms for both shared 
memory and distributed memory machines. Computational experiments 
have been performed on machines of these two distinct types--a shared 
memory architecture (the ENCORE MultiMax computer) and a dis- 
tributed memory, message passing machine (NCUBE hypercubes). 

Our experience suggests that distributed memory parallel architectures 
are not well suited for general clustering computations because of intrinsic 
reasons. This is due to the fact that the problem involves global informa- 
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tion that appears to be difficult to compress or encode and so severe com- 
munications penalties are encountered our hypercube algorithms actually 
experienced slowdowns instead of speedups as the number of processors 
increased while keeping the problem size and algorithmic strategy fixed. 
Moreover, our clustering algorithms have linear complexity as functions of 
problem size so that area/perimeter effects ~1) never play a role. It turns out 
that scaling to increasingly larger problems has an effect if the scaling is 
with respect to the ratio between the number of relation pairs and total 
number of objects. In that case, very high speedups can be observed. The 
hypercube performance should not be interpreted as a negative result about 
distributed memory machines in general since clustering is a preprocessing 
step to some subsequent algorithm (which presumably will benefit 
significantly from the decomposition of the large problem into smaller 
independent subproblems). 

By contrast, our parallel algorithm for a shared memory system did 
exhibit some excellent speedups over a range" of machine sizes. The shared 
memory version of our algorithm used a single global shared data structure 
for accumulating information about clusters. Moreover, we used busy-wait 
locks to implement exclusive write access during critical sections of the 
algorithms. The role of using busy-wait locks and cache refreshing appears 
to be a second order influence on algorithm performance. 

Section 2 of this paper formulates the basic problem precisely and 
surveys a few applications where this problem arises. Section 3 is devoted 
to a review of the well-known Union-Find algorithm for the sequential 
computation of the transitive closure of a reflexive binary relation. The 
Union-Find algorithm turns out to be a basic building block of all our 
parallel algorithms so the review is justified as background. Section 4 
describes a hypercube algorithm while Section 5 is devoted to a shared 
memory parallel algorithm based closely on the sequential Union-Find 
algorithm. Section 6 is a discussion of our experimental results. 

2. P R O B L E M  F O R M U L A T I O N  A N D  A P P L I C A T I O N S  

Suppose that in a particular problem instance, a total of m objects are 
present and these objects are indexed by integers j for 1 ~< j ~< m. The under- 
lying problem determines a reflexive binary relation on the set of 
objects--two objects are related if and only if they are related via the 
underlying problem. We will simply write (i, j)  to indicate that object i is 
related to object j. We call an element, (i, j)  of the relation, R, a relation 
pair of R instead of an element of R in order to avoid confusion with array 
elements which we will introduce shortly. The transitive closure of this 
relation is an equivalence relation and the resulting equivalence classes are 
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precisely what we call clusters. For the purpose of completeness, recall that 
the transitive closure of the relation R =  {(i, j)} is the smallest relation 
satisfying the recursive definition: 

T= { (i, j)] there exists a k for which (i, k)e R and (k, j ) e  T} (1) 

and 

R _~ T (2) 

A simple graph theoretic analogy of transitive closure is obtained by 
thinking of the objects and relations of the original relation, R, as forming 
the vertices and edges of a undirected graph respectively. The resulting 
equivalence classes in the transitive closure are precisely the connected 
components of that graph. 

At this point it is appropriate to give some examples of applications 
where this problem arises. 

�9 Linear system o f  equations (2) Associate the nonzero entries of the 
coefficient matrix with edges in a graph in which the nodes are 
labeled by rows and columns. The connected components of this 
graph then determine permutations of the rows and columns so 
that the permuted matrix is block diagonal. The associated linear 
system decouples into independent systems with one subsystem for 
each component. 

�9 Data association problems The authors of this paper were 
originally motivated to study the clustering problem because of 
their work on tracking and data fusion problems/3-5) The way in 
which clustering arises naturally in a data association problem can 
be easily illustrated. Suppose that some number of objects are 
being observed by a collection of sensors. Each sensor reports 
spatial and possibly other types of measurements about objects but 
with errors. Loosely speaking, the data association problem is to 
decide which measurements from each sensor correspond to which 
measurements from other sensors. A standard approach to such 
problems is to first make gross pairwise correlations of the form: 
measurements i and j are possibly measurements for the same 
object--these correlations are the relation pairs of a reflexive 
binary relation. The equivalence classes of the transitive closure of 
this relation identify independent subproblems. 

�9 Pattern recognition ~6) The use of clustering in pattern analysis 
and recognition problems is well documented in the literature. A 
common situation for example is to group patterns according to 
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their proximity in some pattern feature space. Two patterns belong 
to the same cluster if their features are within a threshold distance 
according to some metric. The resulting equivalence classes or 
clusters are taken to be the number of distinct, identifiable patterns 
in the recognition problem. 

A few words about the abstract PRAM-model (see Refs.7 and 8) of 
parallel complexity of this problem are appropriate. Suppose that we have 
a PRAM with concurrent reads and exclusive writes (the CREW model). 
Then there is a simple O(logZm) algorithm for computing transitive 
closures of binary reflexive relations so that the problem belongs to the 
class NC (see Ref. 9). Here m is the number of objects given in the problem. 
We assume that the initial data of the problem consists of distinct pairs, 
(i, j). We form the node-adjacency matrix, M, of a graph determined by 
this relation in O(1) PRAM steps. Next we compute the mth Boolean 
power of this matrix, M " .  The matrix M m has a 1 in position (i, j) if and 
only if i and j are in the same connected component of the graph since 
the shortest path from i to j must be less than m in length. By using the 
iteration 

m o = m  (3) 

M j =  z M j_ 1 for j =  1 ..... l-log2 m7 (4) 

and noting that a PRAM can compute the product of two m by m matrices 
in O([-log2 m-I) steps, we have a PRAM algorithm that uses O(log 2 m) 
steps and no more than m 3 processors. 

A more complete discussion of PRAM-model and other algorithms for 
computing transitive closures and other path algebra problems can be 
found in Refs. 10-13. Additionally, recent work on parallel algorithms for 
transitive closure of database relations can be found in Refs. 14 and 15. By 
contrast, our interest is in deriving parallel algorithm for realistic parallel 
machines where the number of processors is fixed and independent of the 
problem size. The PRAM algorithms for these problems typically require 
unrealistically many processors in order to achieve their stated perfor- 
mance and they are not efficient in the sense that using fewer processors to 
simulate the algorithm does not result in efficient algorithms. 

3. T H E  BASIC  U N I O N = F I N D  A L G O R I T H M  

The Union-Find aigorithm takes a number of set relations of the form 

i and j belong to the same set 

and maintains a data structure that stores the resulting set memberships. 
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The way in which we use the Union-Find algorithm in our algorithms is 
quite straightforward--a relation pair of the form (l, j ) ~  R means that i 
and j belong to the same set (equivalence class) in the transitive closure. 
The Union-Find algorithm builds these sets by processing a list of such 
relation pairs. We review the basic ideas in this section and refer the reader 
to standard references for a more thorough treatment of this method (for 
examples see Refs. 16-18). 

A set is represented by a tree data structure. The particular way that 
a tree represents a set is that all vertices in the tree belong to the same set. 
The root of the tree stores a nonpositive number that is 1 minus the 
number of vertices in the tree. The collection of all trees (a forest) is stored 
in an array as follows. 

�9 Objects are labeled and henceforth identified with integers, i, 
l <~ i<~m. 

�9 Each nonroot  vertex in a tree is represented by the corresponding 
array element and points to its parent by storing the array index 
for its parent vertex. 

�9 A tree's root vertex, as outlined above, stores the tree size in the 
form 1 -  (size of the tree). The size of the tree is the number of 
vertices in the tree. 

�9 The array is initialized to have all entries 0 which corresponds to 
every vertex being the root of a singleton tree. 

The basic idea is to use the root of a tree as a unique representative 
element of the set. Thus two objects belong to the same set if the trees that 
they belong to have the same root. This can be checked by following 
pointers to the roots of the trees and comparing for equality. If we find 
that two elements are not in the same set and we want them to be in the 
same set we union the two sets. In the forest data structure used, this is 
done by having one root point to the other. This merging of trees requires 
performing the appropriate update on the representation of the tree 
size. The demoted root now points to the surviving root and the number 
stored in the surviving root is the sum of the two previous root numbers 
minus 1. 

Depicted in Figure 1 is a forest. Figure 2 illustrates the array represen- 
tation of this forest. Note that nonpositive values indicate a root node and 
the nonpositive value is 1 minus the size of the tree. 

We introduce two functions that will help subsequent discussions. 
The specific forest being manipulated by the Union-Find algorithm is a 
parameter of the function. Thus, 

root(F, i) 
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Fig. 1. A forest of trees. 

is a function whose value is the root of the tree to which i belongs in the 
forest F. The function root requires pointer chasing only. Furthermore, 

update(F, i, j )  

is the procedure that updates the forest, F, using the information that (i, j)  
is a relation pair. Note that 

update(F, i, j )  = update(F, root(F, i), root(F, j )  ) 

and that update is implemented by calling root twice to find which vertices 
require updating. 

The key performance factor in the Union-Find algorithm is the 
average number of times a pointer has to be advanced to find the root of 
the tree to which it belongs. In order to keep this number small, it is 
important to try to keep the trees as shallow and as broad as possible. This 
can be accomplished by using two standard techniques: path compression 
and weighted unions. (~6-1s) 

Path compression involves the following construct: after starting with 
a vertex and following pointers to the root of its tree, retrace the path 
taken from the vertex to the root and arrange for all vertices on that path 
to point directly to the root. Clearly, path compression brings all vertices 
on the path to a depth of one from the root. At the same time it decreases 
the depth of subtrees hanging off vertices on that path. Another common 
form of keeping trees shallow is path halving whereby nodes along a 
searched path are made to point to their grandparants: that is, their 
parent's parent. The performance of halving based Union-Find algorithms 

1 2 3 4 5 6 7 8 9 10 11 

Fig. 2. Array representation of the forest in Fig. 1, 
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is identical to those using path compression(16 ) and our choice to use path 
compression was strictly arbitrary. 

The other important scheme used in the basic implementation of 
Union-Find algorithms is weighted union when merging trees. The 
weighted union rule is simply a protocol for determining which of two 
roots remains a root and which is demoted when merging two trees. As 
noted above, two trees are joined by having one root point to the other 
root. The weighted union protocol specifies that the root of the smaller tree 
(as indicated by the size of the tree that is stored in the root entry) should 
point to the root of the larger tree. That is, the root of the smaller tree is 
demoted to non-root status. The role that this plays in keeping trees 
shallow is quite clear. Since the smaller tree gets demoted, fewer nodes are 
at a deeper level in the merged tree. The depth of the nodes in the larger 
tree is not affected and so the average depth of a node in the merged tree 
is minimized. 

The use of path compression and weighted unions greatly improves 
the performance of Union-Find algorithms. A complete analysis of the 
algorithm and its variants can be found in Ref. 16. In that paper, it was 
shown that for serial algorithms the Union-Find algorithm with path com- 
pression and weighted unions is optimal in a reasonably exhaustive class of 
algorithms for set union type problems. (16~ The basic result is that building 
a set structure of the type described here when k relations of the form 
"i and j belong to the same set" are processed, the algorithm requires no 
more than 

~(k) k 

steps. A step is either a pointer update or a pointer reference. The increas- 
ing function e(k) is related to second order logarithms (and the inverse of 
the Ackermann function) and is bounded by 4 for k less than 2 65536. Hence, 
for practical purposes, we can treat this factor as a constant smaller than 
4 and one can regard this algorithm to have linear worst case behavior. 

Our parallel algorithms use the basic Union-Find algorithm with path 
compression and weighted unions in the same way always--our parallel 
algorithms use an array to represent a forest and new relation pairs are 
added to this data structure using the Union-Find algorithm. In the case 
of hypercube algorithms, different processors may build different array 
representations based on the relation pairs available to them. Those arrays 
must then be merged and the Union-Find algorithm is used for that as 
well. In the shared memory algorithm, all processors simultaneously update 
a single array using the Union-Find algorithm but some updates require 
exclusive access. 
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4. H Y P E R C U B E  A L G O R I T H M  

We assume that each processor stores locally some number of relation 
pairs. We represent the information available to each processor as a list of 
such relation pairs. 

There is always a simple possible solution to clustering on a hyper- 
cube: collect all the relation pairs at a single processing node and solve the 
problem serially on that node. Alternatively, we can perform a sequence of 
merging steps whereby the forest information is successively merged 
between pairs of adjacent processors until all information is collected in a 
single forest. It turns out that there is a whole family of algorithms with 
these two algorithms as extreme cases. 

In our hypercube algorithm, information about the relation is 
constantly updating forest data structures. The information that updates 
the forest is in one of two forms: 

1. A relation pair, (i, j), updates a forest; 

2. One forest, F2, updates another forest, F1. 

A relation pair, (i, j), updates the forest using update(F, i, j). To update one 
forest, F1, by another, F2, we must scan one forest array element by 
element, constructing a relation pair of the form 

(j, root(F2, j)) (5) 

for each object j. This collection of relation pairs is iteratively incorporated 
into the other forest using the simple relation pair scheme in item 1. 
Namely using 

update(F1, j, root(F2, j)  ) 

To be more specific, suppose that we have a d dimensional hypercube, 
Hj. According to the usual convention, we use the binary integers between 
0 and 2 d ~ as labels for the nodes. Nodes whose labels differ by exactly one 
bit are neighbors in the hypercube. 

Select some integer k so that 0 ~< k ~< d. Consider the k dimensional 
subcube, denoted by Hk, that consists of nodes from H a whose d -  k least 
significant bits are cleared. Thus, for example, H0 is the zero dimensional 
hypercube consisting of the node 0, H~ is the subcube consisting of 00 . . .  0 
and 10.. .  0 while H a is the whole hypercube itself. The class of algorithms 
we describe here depend on the choice of the dimension of subcubes in a 
critical way--the best performance is obtained by selecting a subcube 
dimension whose size is derived from the problem size itself. 

Forest merging in our hypercube algorithm proceeds according to the 
well-known embedded binary tree scheme. The idea is that at step j, all 
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~ 1 1 1  / ~  ~111 110~ ~111 
010 0 1 0 ~  010~ 011 

~100 L~IOI ~ /  100 ~r162 '00 1/10' 
000 001 000 001 000 001 

j=l j=2 j=3 

Fig. 3. 3-dimensional gather and merge operation. 

processors send their forest arrays to their neighbors whose binary labels 
differ in precisely the j th  bit with the convention that information is sent 
from the node with its j th  bit set to the neighboring node with its j th  bit 
cleared. We need k such steps, one for each dimension in a k-dimensional 
binary hypercube. It can be easily checked that after all k steps, all local 
information has been collected at node 0. Figure 3 illustrates the three steps 
required to gather and merge the forest arrays for k = 3. 

We now describe an algorithm for each k, 0 ~< k ~< d. 

Hypercube Clustering Algorithm(k) 

1. Hypercube node, labeled bib2.., ba, communicates its list of rela- 
tion pairs directly to the node in Hk with label blb2.., bkO0... O. 

2. Each node in Hk collects the relation pairs sent to it and builds a 
forest based on them using the simple function, update. 

3. Through a sequence of dimension exchanges within Hk as 
described earlier, the forests are merged using the forest merging 
scheme. 

The particular dimension k that is optimal in this algorithm depends 
significantly on the problem instance. Recall that m is the total number of 
objects. In addition, assume that each processor has n distinct relation 
pairs. Roughly speaking, the algorithm consists of two communication/ 
computation phases. 

In the first phase, relation pairs are sent to the closest node in H k. 
This requires collecting ( 2 a - k - 1 ) n  relation pairs by each node in Hk 
which is equivalent to communicating (2 d k_ 1)2n integers (two integers 
per relation pair). Next each node in H~ must use the Union-Find algo- 
rithm to incorporate 2 a kn relation pairs into the forest. This requires no 
more than 2 a-k+2n pointer updates by the Union-Find algorithm. Next, 
these forests on the nodes of H k must be merged in a total of k steps. At 



Union-Find Algorithms for Transitive Closure and Clustering 413 

each step, m relation pairs of the form (i, R(i ) )  where R(i)  is the root of i 
and 1 ~< i ~< m must be incorporated into a forest. This requires a total 
communication of k m  integer words. The actual merging takes no more 
than 4krn pointer updates. 

Summarizing the total communication requirements, we see that 

(2 a - k  - 1) 2n + k m  (6) 

integers must be serially communicated. This expression does not take into 
account the startup overhead. The distance that a message must travel is 
not relevant in the first phase of the algorithm because processors in Hk 
collect messages from neighbors at all distances between 1 and k. Hence, 
the nodes in Hk are continuously engaged in the serial reading of 
(2 a - ~ -  1)2n integers. The merging of forest arrays within Hk requires k 
communications between nearest neighbors. 

Similarly, a rough total of 

2 a k + 2 n + 6 k m  (7) 

pointer updating operations are required. The first term in Eq. (7) comes 
from each node of Hk using the Union-Find algorithm on the 2 d kn rela- 
tion pairs that it has collected. The second term comes from merging forest 
arrays. About 2m steps are required for finding the root of each element in 
the forest array. Next, about 4m steps are required to update the other 
forest array with the resulting relation pair. This must be repeated a total 
of k times, giving 6km steps. 

Comparing these two expressions, we see that the computation and 
communication times are almost proportional. We will minimize the 
expression in Eq. (7) because the speed of the processors compared 
with the speed of communication suggest that pointer updating will be 
more time consuming. The minimums of the expression in Eq. (7) is 
approximately achieved for 

3m 
2 d-k - - -  (8) 

2n log 2 

This is approximate because d - k  must be a nonnegative integer. Now 
d - k  is the dimension of the subcubes that are complimentary to H k and 
2 a - ~ -  1 is the number of nodes that send their relation pairs to a single 
node within H k. The more objects there are relative to the number of 
relation pairs, the more overhead there is in the third phase of the 
algorithm Since it involves both computation and communication costs 
that are proportional to the number of objects. 
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Asymptotically, the more relation pairs there are relative to the 
number of objects, the better the distributed memory performance of the 
previous algorithm will be. To see this, note that there are a total of 2dn 
relation pairs in the whole problem. A serial algorithm would require about 
2d+2n steps while if 2m ~< 3n log 2 we would get k =  d for the optimal algo- 
rithm so that the parallel algorithm would involve about 4n + 6dm steps. 
For n ~> m, the speedup of the parallel algorithm approaches 2 d which is 
impressive for large d. Note that in the number of distinct relation pairs is 
bounded by m2/2 so there is an upper bound to the meaningful size of n 
in relation to m. 

5. S H A R E D  M E M O R Y  A L G O R I T H M  

The shared memory parallel algorithm we describe is also based on 
the Union-Find algorithm but now there is only a single shared array that 
maintains all the forest information. A list of relation pairs is stored in 
shared memory as well. A processor goes to the list and obtains the first 
relation pair that has not already been merged into the forest array. The 
processor searches the array to find the roots of the two objects in the rela- 
tion. There are two parts of the Union-Find algorithm that require writing 
to the array: path compression and root updating (tree merging). These 
writing phases are the only parts of the shared memory algorithm that 
require close inspection in order to verify that the consistency of the data 
structure is maintained. We will treat those two cases separately. 

First consider the case of root updating. We claim that root updating 
forms a critical section of the parallel algorithm and requires exclusive 
write privileges on the root vertices specifically and the forest array more 
generally. To see this consider the example of the forest in Fig. 4. There are 
three root nodes in this example--i, j, k that are roots of trees of sizes 6, 
11 and 21 respectively. Suppose we have the two relation pairs (i, j) and 
(i, k). If we do not require exclusive write access to the root vertices, then 
it would be possible to interleave the two steps: 1. find the root vertices and 
2. update the root vertices. Suppose that processor A finds the two root 
vertices i and j and processor B finds the two root vertices i and k. Now 

Fig. 4. A sample forest. 
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Fig. 5. 

k 

Incorrectly updated forest. 

processor A has i point to j and updates the tree size stored at root j. Next 
processor B makes i point to k and updates the tree size of k. This results 
in two trees (see Fig. 5) whereas the correct forest would have only one tree 
with all three vertices in it (see Fig. 6). Hence, root updating is a critical 
section and requires exclusive access to root vertices for writing. This could 
be accomplished by using fine-grained locks, one for each array element. 
However, we implemented the exclusive access by using a single busy-wait 
lock (called a spin-lock on the ENCORE) for write privileges on the whole 
array. The ENCORE spin-lock is a find grained lock that is most useful in 
situations where short waits are expected. Our decision to use a single 
busy-wait lock for the whole array arose from the observation that the 
total time consumed by waiting for locks to be released was a very small 
part of the total execution time. Accordingly, the increased memory 
requirements (namely doubly the storage of the forest array) did not 
appear to be worth the marginal performance improvement obtained. 

Fig. 6. A correctly updated forest. 

828/17/5-4 
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The locking protocol works as follows. A processor determines that 
two root vertices should be updated: one must be made to point to the 
other and the tree size must be updated. That  processor goes into a busy- 
wait state until the write lock is free. It sets the lock and checks again that 
the two vertices are still roots since in the intervening time some other pro- 
cessor may have updated those vertices and made them nonroots. If either 
of the two vertices is no longer a root, pointers must be followed to find 
the new roots. Once the two roots are found (they must indeed be the 
required roots since the write lock is set and no other processors are 
allowed to update the array), the updating occurs and then the lock is 
released. 

The other vertex updating step in the Union-Find algorithm is path 
compression. We claim that path compression is a safe operation in the 
sense that no exclusive write access is required for updating during path 
compression. To see this, assume that we implement the algorithm with 
root updating as above and path compression without any locking 
mechanism. We claim that the data structure always enjoys the following 
two invariants: vertices always point to other vertices in the same tree as 
them, and vertices never becomes roots once they are nonroots. Using 
these invariants, it is easy to see that updating vertices for path compres- 
sion without any exclusive access is safe. Assume that vertex i is a descen- 
dant of root j. Between the time that j was determined to be the root of t"s 
tree, either j has remained the root or it has been demoted to nonroot 
status. Regardless of the case, having i point directly to j is correct 
although it may actually lengthen the path instead of shortening it. This 
latter case can happen when j was made to point to some other root say 
k and i was made to point directly to k. Now having i point to j lengthens 
the path in this situation. 

The Union-Find algorithm for shared memory outlined above is dif- 
ficult to analyze because of the possibility of such (admittedly modest) path 
lengthening possibilities. Moreover, it appears difficult to predict the time 
wasted during busy-waiting on write locks for root updating. At present, 
there are no noninvasive performance analysis tools for measuring the 
degradation due to the use of fine grained locks in a shared memory 
machine. 

6. C O M P U T A T I O N A L  E X P E R I M E N T S  

We used comparable data in our experiments on the NCUBE hyper- 
cube and ENCORE shared memory multiprocessor. The problems we 
tested had N =  3200 and m = 10, 100, 1000. Note that for m = 10 the binary 
relation would be extremely dense while for m = 1000 the relation would be 
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extremely sparse. The case m = 100 is intermediate. Both shared and dis- 
tributed memory experiments showed worst performance for sparse 
problems with best performance on dense problems. 

6.1. Hypercube Experiments 

Our hypercube, distributed memory experiments were performed on a 
64 processor, NCUBE parallel processor. Each processing node in the 
NCUBE is rated at being about 1/4 MIPS performance with 512 kilobytes 
of local memory. Communications performance is about a millisecond to 
send one kilobyte from a node to a neighboring node. Communication 
times between neighboring processors are affine functions of the message 
size with a fixed overhead for initiating a communication of any size. This 
overhead is small enough compared to the actual cost of sending data in 
our experiments that we did not model it in this paper. 

Figures 7-9 illustrate the hypercube performance for 3200 relation 
pairs and varying numbers of objects, m. The horizontal axes are the values 
of k so that data can only be obtained for hypercubes whose dimensions 
are greater than or equal to k. The vertical axes are compute time in 
milliseconds. The legend at the bottom indicates which bar textures 
correspond to different dimensioned hypercubes, d. The times do not 
include the time required to download data to each processing node since 
we expect that the basic clustering problem will in general result in data 
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already distributed to the nodes. The relational data used was generated 
randomly--uniformly distributed integers between 1 and m were generated 
and paired together to form the relation pairs. 

One fact about the results that should be immediately visible is the 
insensitivity of performance to the hypercube dimension itself and the sole 
dependence on k, the dimension of the embedded hypercube that collects 
relation pairs. This can be verified by going back to Eq. (7) and noting that 
a total N =  2an relation pairs exist in a problem of fixed size. Using N 
instead of n, we write the Eq. (7) as 

2 - k + Z N +  6km (9) 

which is independent of d altogether. Thus, for a fixed k, the dependence 
on d is not very significant, although close inspection does show a modest 
slow down as d grows in most cases. 

To see how the theoretical results compare with our experiments, 
rewrite (8) using N=2an as the total number of relation pairs in the 
problem. We then get that 

2k 2Nlog 2 
3m (10) 

which again is independent of d providing that k ~< d. In our experiments, 
we used N = 2an = 3200 giving 

1478.71 
2k= ( l l )  

m 

For m =  10, we get 2k= 148.1 suggesting that k should be taken as the 
largest possible subcube. Looking at Fig. 7, we see that the optimal algo- 
rithm does in fact correspond to the largest possible value of k within a 
cube. For m = 100, we get 2 k = 14.8 so k = 3 or k = 4. Figure 8 supports this 
with the minimum actually occurring at k = 4. Finally, with m = 1000 we 
get 2~= 1.48 so k = 0  or k = 1. Indeed, Fig. 9 shows that the minimum 
occurs at k = 1. Hence, we appear to have excellent agreement between our 
theoretical analysis and our computational experiments. 

To summarize the hypercube results, we have derived a family of algo- 
rithms for any specific problem instance. The family depends on a 
parameter k in the following way. Given a d dimensional hypercube, select 
a k dimensional subcube. Each processor sends its relation pairs to the 
subcube node closest to it. The nodes of the subcube collect the relation 
pairs and perform serial Union-Find algorithms to form a forest array. 
The forest arrays are merged and collected at one node finally. If the under- 



4 2 0  Cybenko ,  A l len ,  and P o l i t o  

lying problem involves a total of N relation pairs, with N/2 d a t  each node 
in a d dimensional hypercube, then the optimal value of k is predicted by 
the expression 

2k 2Nlog2 
3m (12) 

6.2. Shared Memory Experiments 

The shared memory algorithm running on the ENCORE parallel com- 
puter exhibited excellent speedups in some cases. The data was generated 
as in the hypercube experiments--namely uniformly randomly. Figures 10 
and 11 show the performance on four different problem sizes by graphing 
the actual raw times and derived speedups. We have named those four sizes 
A, B, C, D as follows: 

A m =  1000, N =  3200 (13) 

B m = 100, N =  3200 (14) 

C m = 10, N =  3200 (15) 

D m = 100, N =  640 (16) 

Figure 11 has an additional data line, L, to indicate linear speedup for 
reference purposes. The compute time measured was the time between the 
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completion of process forking and the time that the last process terminated. 
Hence the time does not include reading data from disk, the allocation of 
shared memory and other system functions. We should mention that 
process joining is a time Consuming activity on the ENCORE. 

The speedups indicate that the larger the number of objects is relative 
to the number of relation pairs, the worse the speedups are. The explana- 
tion appears to be the time spent in critical sections and updating the forest 
array. As the number of objects gets larger with a fixed number of relation 
pairs, the likelihood that a new relation pair actually results in an update 
of the array increases. This forces more time to be spent in root updating 
and path compression. As mentioned before, the modification of shared 
variables results in frequent cache updating and hence poorer program per- 
formance. Furthermore, the more objects there are in the problem, the 
larger the shared memory forest array must be so that the cache refreshing 
becomes costlier from this perspective as well. In particular, case A with 
1000 objects seemed to be limited to no more than a speedup of 5 even 
when using 14 processors. 

7. C O N C L U S I O N S  

Shared memory architectures appear to be well suited to transitive 
closure computations. Some problem configurations exhibited excellent 
speedups using an ENCORE multiprocessor. Other examples seemed to 
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limit the speedup to about 5 even when 14 processors were being used. In 
principle, the shared memory algorithm we describe is capable of extremely 
high performance. However, system dependent factors such as the rate and 
efficiency of cache refreshing appear to play a major role but cannot be 
modeled precisely. 

By contrast, our theoretical analysis and observed performance of 
hypercube algorithms agreed very well. The basic problem of transitive 
closure computation requires global information and so imposes a severe 
handicap on possible hypercube performance. Even so, theoretical analysis 
shows that some extremely large problems could be efficiently solved by 
hypercubes. However, we were not able to experiment with such problems 
because of memory and communication buffet limitations. 
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