
International Journal of Parallel Programming, Vol. 17, No. 5, 1988

Practical Parallel Union-Find
Algorithms for Transitive Closure
and Clustering

G. Cybenko, 1 T. G. Allen, 2 and J. E. Po l i t o 3

Received December 1988; Revised April 1989

Practical parallel algorithms, based on classical sequential Union-Find algo-
rithms for computing transitive closures of binary relations, are described and
implemented for both shared memory and distributed memory paraliel com-
puters. By practical algorithms, we mean algorithms that are efficient for
parallel systems with bounded numbers of processors as opposed to algorithms
where the number of processors grows with the problem size. Transitive closures
are useful for decomposing many applications problems into independent
subproblems. The implementations were on an ENCORE Multimax shared
memory machine and an NCUBE hypercube. Our implementations indicate
that transitive closure computations are intrinsically difficult for distributed
memory parallel machines because of the need for global information. By
contrast, our results for shared memory machines exhibited excellent speedups.

KEY WORDS: Parallel algorithms; clustering; transitive closure.

1. INTRODUCTION

This paper studies parallel algorithms for computing the transitive closure
of a reflexive binary relation which we believe is a fundamental problem in

1Center for Supercomputing Research and Development, University of Illinois, Urbana,
Illinois 61801. Supported in part by NSF Grant DCR-8619103, ONR contract
N000-86-G-0202 and DOE Grant DE-FG02-85ER25001.

2 ALPHATECH, INC, 111 Middlesex Turnpike, Burlington, Massachusetts 01803. Supported
in part by RADC contract F30602-85-C-0303.

3 ALPHATECH, INC, 111 Middlesex Turnpike, Burlington, Massachusetts 01803. Current
address: Department of Computer Science, Duke University, Durham, North Carolina
27706. Supported in part by RADC contract F30602-85-C-0303.

403

0885-7458/88/1000-0403506.00/0 �9 1988 Plenum Publishing Corporation

404 Cybenko, Allen, and Polito

many large scale applications. The algorithms we develop are based on
parallelizations of Union-Find algorithms which are simple to implement
and extremely efficient in the sequential case. The problem we study is
simple to state and its utility in many applications should be immediately
evident. Suppose that an application problem, called the global problem,
involves some number of objects that may or may not be related to one
another. Whenever two objects are related they determine an element of a
binary relation and they belong to the same subproblem of the gobal
problem. The computation of the transitive closure identifies the maximal
number of independent subproblems as determined by the global problem
data. We will use the term clustering to refer to the general problem
of computing the transitive closure of a binary relation. The resulting
equivalence classes are called clusters.

Clustering is an important general technique for problem decomposi-
tion. The basic goal of clustering is to decompose a computational problem
into subproblems (clusters) that can be independently solved. The benefits
of this are apparent for both sequential and parallel implementations of
many problems. The overall computational complexity of an algorithm is
typically reduced by such a decomposition while the independence of
subproblems has the extra benefit that different clusters can be handled by
different processors in a parallel implementation. A particular feature
of the clustering problem is that clusters are typically only determined
during runtime, so that clustering represents a form of dynamic problem
decomposition.

This paper studies practical parallel algorithms for computing clusters
on parallel computers. In our opinion, this work represents a significant
departure from the numerous other works on parallel algorithms for com-
puting connected components of graphs or transitive closures of binary
relations. Our approach involves the parallelization of the most efficient
sequential algorithm, namely a well-known version of the Union-Find algo-
rithm whereas all other research on this problem typically deals with algo-
rithms that require at least O(n2/log 2 n) processors to solve a problem of
size n. Such approaches are not practical for systems with a bounded
number of processors because simulation attempts do not lead to efficient
parallel algorithms. We describe parallel algorithms for both shared
memory and distributed memory machines. Computational experiments
have been performed on machines of these two distinct types--a shared
memory architecture (the ENCORE MultiMax computer) and a dis-
tributed memory, message passing machine (NCUBE hypercubes).

Our experience suggests that distributed memory parallel architectures
are not well suited for general clustering computations because of intrinsic
reasons. This is due to the fact that the problem involves global informa-

Union-Find Algorithms for Transitive Closure and Clustering 405

tion that appears to be difficult to compress or encode and so severe com-
munications penalties are encountered our hypercube algorithms actually
experienced slowdowns instead of speedups as the number of processors
increased while keeping the problem size and algorithmic strategy fixed.
Moreover, our clustering algorithms have linear complexity as functions of
problem size so that area/perimeter effects ~1) never play a role. It turns out
that scaling to increasingly larger problems has an effect if the scaling is
with respect to the ratio between the number of relation pairs and total
number of objects. In that case, very high speedups can be observed. The
hypercube performance should not be interpreted as a negative result about
distributed memory machines in general since clustering is a preprocessing
step to some subsequent algorithm (which presumably will benefit
significantly from the decomposition of the large problem into smaller
independent subproblems).

By contrast, our parallel algorithm for a shared memory system did
exhibit some excellent speedups over a range" of machine sizes. The shared
memory version of our algorithm used a single global shared data structure
for accumulating information about clusters. Moreover, we used busy-wait
locks to implement exclusive write access during critical sections of the
algorithms. The role of using busy-wait locks and cache refreshing appears
to be a second order influence on algorithm performance.

Section 2 of this paper formulates the basic problem precisely and
surveys a few applications where this problem arises. Section 3 is devoted
to a review of the well-known Union-Find algorithm for the sequential
computation of the transitive closure of a reflexive binary relation. The
Union-Find algorithm turns out to be a basic building block of all our
parallel algorithms so the review is justified as background. Section 4
describes a hypercube algorithm while Section 5 is devoted to a shared
memory parallel algorithm based closely on the sequential Union-Find
algorithm. Section 6 is a discussion of our experimental results.

2. P R O B L E M F O R M U L A T I O N A N D A P P L I C A T I O N S

Suppose that in a particular problem instance, a total of m objects are
present and these objects are indexed by integers j for 1 ~< j ~< m. The under-
lying problem determines a reflexive binary relation on the set of
objects--two objects are related if and only if they are related via the
underlying problem. We will simply write (i, j) to indicate that object i is
related to object j. We call an element, (i, j) of the relation, R, a relation
pair of R instead of an element of R in order to avoid confusion with array
elements which we will introduce shortly. The transitive closure of this
relation is an equivalence relation and the resulting equivalence classes are

406 Cybenko, Allen, and Polito

precisely what we call clusters. For the purpose of completeness, recall that
the transitive closure of the relation R = {(i, j)} is the smallest relation
satisfying the recursive definition:

T= { (i, j)] there exists a k for which (i, k)e R and (k, j) e T} (1)

and

R _~ T (2)

A simple graph theoretic analogy of transitive closure is obtained by
thinking of the objects and relations of the original relation, R, as forming
the vertices and edges of a undirected graph respectively. The resulting
equivalence classes in the transitive closure are precisely the connected
components of that graph.

At this point it is appropriate to give some examples of applications
where this problem arises.

�9 Linear system o f equations (2) Associate the nonzero entries of the
coefficient matrix with edges in a graph in which the nodes are
labeled by rows and columns. The connected components of this
graph then determine permutations of the rows and columns so
that the permuted matrix is block diagonal. The associated linear
system decouples into independent systems with one subsystem for
each component.

�9 Data association problems The authors of this paper were
originally motivated to study the clustering problem because of
their work on tracking and data fusion problems/3-5) The way in
which clustering arises naturally in a data association problem can
be easily illustrated. Suppose that some number of objects are
being observed by a collection of sensors. Each sensor reports
spatial and possibly other types of measurements about objects but
with errors. Loosely speaking, the data association problem is to
decide which measurements from each sensor correspond to which
measurements from other sensors. A standard approach to such
problems is to first make gross pairwise correlations of the form:
measurements i and j are possibly measurements for the same
object--these correlations are the relation pairs of a reflexive
binary relation. The equivalence classes of the transitive closure of
this relation identify independent subproblems.

�9 Pattern recognition ~6) The use of clustering in pattern analysis
and recognition problems is well documented in the literature. A
common situation for example is to group patterns according to

Union-Find Algorithms for Transitive Closure and Clustering 407

their proximity in some pattern feature space. Two patterns belong
to the same cluster if their features are within a threshold distance
according to some metric. The resulting equivalence classes or
clusters are taken to be the number of distinct, identifiable patterns
in the recognition problem.

A few words about the abstract PRAM-model (see Refs.7 and 8) of
parallel complexity of this problem are appropriate. Suppose that we have
a PRAM with concurrent reads and exclusive writes (the CREW model).
Then there is a simple O(logZm) algorithm for computing transitive
closures of binary reflexive relations so that the problem belongs to the
class NC (see Ref. 9). Here m is the number of objects given in the problem.
We assume that the initial data of the problem consists of distinct pairs,
(i, j). We form the node-adjacency matrix, M, of a graph determined by
this relation in O(1) PRAM steps. Next we compute the mth Boolean
power of this matrix, M " . The matrix M m has a 1 in position (i, j) if and
only if i and j are in the same connected component of the graph since
the shortest path from i to j must be less than m in length. By using the
iteration

m o = m (3)

M j = z M j_ 1 for j = 1 l-log2 m7 (4)

and noting that a PRAM can compute the product of two m by m matrices
in O([-log2 m-I) steps, we have a PRAM algorithm that uses O(log 2 m)
steps and no more than m 3 processors.

A more complete discussion of PRAM-model and other algorithms for
computing transitive closures and other path algebra problems can be
found in Refs. 10-13. Additionally, recent work on parallel algorithms for
transitive closure of database relations can be found in Refs. 14 and 15. By
contrast, our interest is in deriving parallel algorithm for realistic parallel
machines where the number of processors is fixed and independent of the
problem size. The PRAM algorithms for these problems typically require
unrealistically many processors in order to achieve their stated perfor-
mance and they are not efficient in the sense that using fewer processors to
simulate the algorithm does not result in efficient algorithms.

3. T H E BASIC U N I O N = F I N D A L G O R I T H M

The Union-Find aigorithm takes a number of set relations of the form

i and j belong to the same set

and maintains a data structure that stores the resulting set memberships.

408 Cybenko, Allen, and Polito

The way in which we use the Union-Find algorithm in our algorithms is
quite straightforward--a relation pair of the form (l, j) ~ R means that i
and j belong to the same set (equivalence class) in the transitive closure.
The Union-Find algorithm builds these sets by processing a list of such
relation pairs. We review the basic ideas in this section and refer the reader
to standard references for a more thorough treatment of this method (for
examples see Refs. 16-18).

A set is represented by a tree data structure. The particular way that
a tree represents a set is that all vertices in the tree belong to the same set.
The root of the tree stores a nonpositive number that is 1 minus the
number of vertices in the tree. The collection of all trees (a forest) is stored
in an array as follows.

�9 Objects are labeled and henceforth identified with integers, i,
l <~ i<~m.

�9 Each nonroot vertex in a tree is represented by the corresponding
array element and points to its parent by storing the array index
for its parent vertex.

�9 A tree's root vertex, as outlined above, stores the tree size in the
form 1 - (size of the tree). The size of the tree is the number of
vertices in the tree.

�9 The array is initialized to have all entries 0 which corresponds to
every vertex being the root of a singleton tree.

The basic idea is to use the root of a tree as a unique representative
element of the set. Thus two objects belong to the same set if the trees that
they belong to have the same root. This can be checked by following
pointers to the roots of the trees and comparing for equality. If we find
that two elements are not in the same set and we want them to be in the
same set we union the two sets. In the forest data structure used, this is
done by having one root point to the other. This merging of trees requires
performing the appropriate update on the representation of the tree
size. The demoted root now points to the surviving root and the number
stored in the surviving root is the sum of the two previous root numbers
minus 1.

Depicted in Figure 1 is a forest. Figure 2 illustrates the array represen-
tation of this forest. Note that nonpositive values indicate a root node and
the nonpositive value is 1 minus the size of the tree.

We introduce two functions that will help subsequent discussions.
The specific forest being manipulated by the Union-Find algorithm is a
parameter of the function. Thus,

root(F, i)

Union-Find Algorithms for Transitive Closure and Clustering 409

@ ()

Fig. 1. A forest of trees.

is a function whose value is the root of the tree to which i belongs in the
forest F. The function root requires pointer chasing only. Furthermore,

update(F, i, j)

is the procedure that updates the forest, F, using the information that (i, j)
is a relation pair. Note that

update(F, i, j) = update(F, root(F, i), root(F, j))

and that update is implemented by calling root twice to find which vertices
require updating.

The key performance factor in the Union-Find algorithm is the
average number of times a pointer has to be advanced to find the root of
the tree to which it belongs. In order to keep this number small, it is
important to try to keep the trees as shallow and as broad as possible. This
can be accomplished by using two standard techniques: path compression
and weighted unions. (~6-1s)

Path compression involves the following construct: after starting with
a vertex and following pointers to the root of its tree, retrace the path
taken from the vertex to the root and arrange for all vertices on that path
to point directly to the root. Clearly, path compression brings all vertices
on the path to a depth of one from the root. At the same time it decreases
the depth of subtrees hanging off vertices on that path. Another common
form of keeping trees shallow is path halving whereby nodes along a
searched path are made to point to their grandparants: that is, their
parent's parent. The performance of halving based Union-Find algorithms

1 2 3 4 5 6 7 8 9 10 11

Fig. 2. Array representation of the forest in Fig. 1,

410 Cybenko, Allen, and Polito

is identical to those using path compression(16) and our choice to use path
compression was strictly arbitrary.

The other important scheme used in the basic implementation of
Union-Find algorithms is weighted union when merging trees. The
weighted union rule is simply a protocol for determining which of two
roots remains a root and which is demoted when merging two trees. As
noted above, two trees are joined by having one root point to the other
root. The weighted union protocol specifies that the root of the smaller tree
(as indicated by the size of the tree that is stored in the root entry) should
point to the root of the larger tree. That is, the root of the smaller tree is
demoted to non-root status. The role that this plays in keeping trees
shallow is quite clear. Since the smaller tree gets demoted, fewer nodes are
at a deeper level in the merged tree. The depth of the nodes in the larger
tree is not affected and so the average depth of a node in the merged tree
is minimized.

The use of path compression and weighted unions greatly improves
the performance of Union-Find algorithms. A complete analysis of the
algorithm and its variants can be found in Ref. 16. In that paper, it was
shown that for serial algorithms the Union-Find algorithm with path com-
pression and weighted unions is optimal in a reasonably exhaustive class of
algorithms for set union type problems. (16~ The basic result is that building
a set structure of the type described here when k relations of the form
"i and j belong to the same set" are processed, the algorithm requires no
more than

~(k) k

steps. A step is either a pointer update or a pointer reference. The increas-
ing function e(k) is related to second order logarithms (and the inverse of
the Ackermann function) and is bounded by 4 for k less than 2 65536. Hence,
for practical purposes, we can treat this factor as a constant smaller than
4 and one can regard this algorithm to have linear worst case behavior.

Our parallel algorithms use the basic Union-Find algorithm with path
compression and weighted unions in the same way always--our parallel
algorithms use an array to represent a forest and new relation pairs are
added to this data structure using the Union-Find algorithm. In the case
of hypercube algorithms, different processors may build different array
representations based on the relation pairs available to them. Those arrays
must then be merged and the Union-Find algorithm is used for that as
well. In the shared memory algorithm, all processors simultaneously update
a single array using the Union-Find algorithm but some updates require
exclusive access.

Union-Find Algorithms for Transitive Closure and Clustering 411

4. H Y P E R C U B E A L G O R I T H M

We assume that each processor stores locally some number of relation
pairs. We represent the information available to each processor as a list of
such relation pairs.

There is always a simple possible solution to clustering on a hyper-
cube: collect all the relation pairs at a single processing node and solve the
problem serially on that node. Alternatively, we can perform a sequence of
merging steps whereby the forest information is successively merged
between pairs of adjacent processors until all information is collected in a
single forest. It turns out that there is a whole family of algorithms with
these two algorithms as extreme cases.

In our hypercube algorithm, information about the relation is
constantly updating forest data structures. The information that updates
the forest is in one of two forms:

1. A relation pair, (i, j), updates a forest;

2. One forest, F2, updates another forest, F1.

A relation pair, (i, j), updates the forest using update(F, i, j). To update one
forest, F1, by another, F2, we must scan one forest array element by
element, constructing a relation pair of the form

(j, root(F2, j)) (5)

for each object j. This collection of relation pairs is iteratively incorporated
into the other forest using the simple relation pair scheme in item 1.
Namely using

update(F1, j, root(F2, j))

To be more specific, suppose that we have a d dimensional hypercube,
Hj. According to the usual convention, we use the binary integers between
0 and 2 d ~ as labels for the nodes. Nodes whose labels differ by exactly one
bit are neighbors in the hypercube.

Select some integer k so that 0 ~< k ~< d. Consider the k dimensional
subcube, denoted by Hk, that consists of nodes from H a whose d - k least
significant bits are cleared. Thus, for example, H0 is the zero dimensional
hypercube consisting of the node 0, H~ is the subcube consisting of 00 . . . 0
and 10.. . 0 while H a is the whole hypercube itself. The class of algorithms
we describe here depend on the choice of the dimension of subcubes in a
critical way--the best performance is obtained by selecting a subcube
dimension whose size is derived from the problem size itself.

Forest merging in our hypercube algorithm proceeds according to the
well-known embedded binary tree scheme. The idea is that at step j, all

412 Cybenko, Allen, and Polito

~ 1 1 1 / ~ ~111 110~ ~111
010 0 1 0 ~ 010~ 011

~100 L~IOI ~ / 100 ~r162 '00 1/10'
000 001 000 001 000 001

j=l j=2 j=3

Fig. 3. 3-dimensional gather and merge operation.

processors send their forest arrays to their neighbors whose binary labels
differ in precisely the j th bit with the convention that information is sent
from the node with its j th bit set to the neighboring node with its j th bit
cleared. We need k such steps, one for each dimension in a k-dimensional
binary hypercube. It can be easily checked that after all k steps, all local
information has been collected at node 0. Figure 3 illustrates the three steps
required to gather and merge the forest arrays for k = 3.

We now describe an algorithm for each k, 0 ~< k ~< d.

Hypercube Clustering Algorithm(k)

1. Hypercube node, labeled bib2.., ba, communicates its list of rela-
tion pairs directly to the node in Hk with label blb2.., bkO0... O.

2. Each node in Hk collects the relation pairs sent to it and builds a
forest based on them using the simple function, update.

3. Through a sequence of dimension exchanges within Hk as
described earlier, the forests are merged using the forest merging
scheme.

The particular dimension k that is optimal in this algorithm depends
significantly on the problem instance. Recall that m is the total number of
objects. In addition, assume that each processor has n distinct relation
pairs. Roughly speaking, the algorithm consists of two communication/
computation phases.

In the first phase, relation pairs are sent to the closest node in H k.
This requires collecting (2 a - k - 1) n relation pairs by each node in Hk
which is equivalent to communicating (2 d k_ 1)2n integers (two integers
per relation pair). Next each node in H~ must use the Union-Find algo-
rithm to incorporate 2 a kn relation pairs into the forest. This requires no
more than 2 a-k+2n pointer updates by the Union-Find algorithm. Next,
these forests on the nodes of H k must be merged in a total of k steps. At

Union-Find Algorithms for Transitive Closure and Clustering 413

each step, m relation pairs of the form (i, R(i)) where R(i) is the root of i
and 1 ~< i ~< m must be incorporated into a forest. This requires a total
communication of k m integer words. The actual merging takes no more
than 4krn pointer updates.

Summarizing the total communication requirements, we see that

(2 a - k - 1) 2n + k m (6)

integers must be serially communicated. This expression does not take into
account the startup overhead. The distance that a message must travel is
not relevant in the first phase of the algorithm because processors in Hk
collect messages from neighbors at all distances between 1 and k. Hence,
the nodes in Hk are continuously engaged in the serial reading of
(2 a - ~ - 1)2n integers. The merging of forest arrays within Hk requires k
communications between nearest neighbors.

Similarly, a rough total of

2 a k + 2 n + 6 k m (7)

pointer updating operations are required. The first term in Eq. (7) comes
from each node of Hk using the Union-Find algorithm on the 2 d kn rela-
tion pairs that it has collected. The second term comes from merging forest
arrays. About 2m steps are required for finding the root of each element in
the forest array. Next, about 4m steps are required to update the other
forest array with the resulting relation pair. This must be repeated a total
of k times, giving 6km steps.

Comparing these two expressions, we see that the computation and
communication times are almost proportional. We will minimize the
expression in Eq. (7) because the speed of the processors compared
with the speed of communication suggest that pointer updating will be
more time consuming. The minimums of the expression in Eq. (7) is
approximately achieved for

3m
2 d-k - - - (8)

2n log 2

This is approximate because d - k must be a nonnegative integer. Now
d - k is the dimension of the subcubes that are complimentary to H k and
2 a - ~ - 1 is the number of nodes that send their relation pairs to a single
node within H k. The more objects there are relative to the number of
relation pairs, the more overhead there is in the third phase of the
algorithm Since it involves both computation and communication costs
that are proportional to the number of objects.

414 Cybenko, Allen, and Polito

Asymptotically, the more relation pairs there are relative to the
number of objects, the better the distributed memory performance of the
previous algorithm will be. To see this, note that there are a total of 2dn
relation pairs in the whole problem. A serial algorithm would require about
2d+2n steps while if 2m ~< 3n log 2 we would get k = d for the optimal algo-
rithm so that the parallel algorithm would involve about 4n + 6dm steps.
For n ~> m, the speedup of the parallel algorithm approaches 2 d which is
impressive for large d. Note that in the number of distinct relation pairs is
bounded by m2/2 so there is an upper bound to the meaningful size of n
in relation to m.

5. S H A R E D M E M O R Y A L G O R I T H M

The shared memory parallel algorithm we describe is also based on
the Union-Find algorithm but now there is only a single shared array that
maintains all the forest information. A list of relation pairs is stored in
shared memory as well. A processor goes to the list and obtains the first
relation pair that has not already been merged into the forest array. The
processor searches the array to find the roots of the two objects in the rela-
tion. There are two parts of the Union-Find algorithm that require writing
to the array: path compression and root updating (tree merging). These
writing phases are the only parts of the shared memory algorithm that
require close inspection in order to verify that the consistency of the data
structure is maintained. We will treat those two cases separately.

First consider the case of root updating. We claim that root updating
forms a critical section of the parallel algorithm and requires exclusive
write privileges on the root vertices specifically and the forest array more
generally. To see this consider the example of the forest in Fig. 4. There are
three root nodes in this example--i, j, k that are roots of trees of sizes 6,
11 and 21 respectively. Suppose we have the two relation pairs (i, j) and
(i, k). If we do not require exclusive write access to the root vertices, then
it would be possible to interleave the two steps: 1. find the root vertices and
2. update the root vertices. Suppose that processor A finds the two root
vertices i and j and processor B finds the two root vertices i and k. Now

Fig. 4. A sample forest.

Union-Find Algorithms for Transitive Closure and Clustering 415

Fig. 5.

k

Incorrectly updated forest.

processor A has i point to j and updates the tree size stored at root j. Next
processor B makes i point to k and updates the tree size of k. This results
in two trees (see Fig. 5) whereas the correct forest would have only one tree
with all three vertices in it (see Fig. 6). Hence, root updating is a critical
section and requires exclusive access to root vertices for writing. This could
be accomplished by using fine-grained locks, one for each array element.
However, we implemented the exclusive access by using a single busy-wait
lock (called a spin-lock on the ENCORE) for write privileges on the whole
array. The ENCORE spin-lock is a find grained lock that is most useful in
situations where short waits are expected. Our decision to use a single
busy-wait lock for the whole array arose from the observation that the
total time consumed by waiting for locks to be released was a very small
part of the total execution time. Accordingly, the increased memory
requirements (namely doubly the storage of the forest array) did not
appear to be worth the marginal performance improvement obtained.

Fig. 6. A correctly updated forest.

828/17/5-4

416 Cybenko, Allen, and Polito

The locking protocol works as follows. A processor determines that
two root vertices should be updated: one must be made to point to the
other and the tree size must be updated. That processor goes into a busy-
wait state until the write lock is free. It sets the lock and checks again that
the two vertices are still roots since in the intervening time some other pro-
cessor may have updated those vertices and made them nonroots. If either
of the two vertices is no longer a root, pointers must be followed to find
the new roots. Once the two roots are found (they must indeed be the
required roots since the write lock is set and no other processors are
allowed to update the array), the updating occurs and then the lock is
released.

The other vertex updating step in the Union-Find algorithm is path
compression. We claim that path compression is a safe operation in the
sense that no exclusive write access is required for updating during path
compression. To see this, assume that we implement the algorithm with
root updating as above and path compression without any locking
mechanism. We claim that the data structure always enjoys the following
two invariants: vertices always point to other vertices in the same tree as
them, and vertices never becomes roots once they are nonroots. Using
these invariants, it is easy to see that updating vertices for path compres-
sion without any exclusive access is safe. Assume that vertex i is a descen-
dant of root j. Between the time that j was determined to be the root of t"s
tree, either j has remained the root or it has been demoted to nonroot
status. Regardless of the case, having i point directly to j is correct
although it may actually lengthen the path instead of shortening it. This
latter case can happen when j was made to point to some other root say
k and i was made to point directly to k. Now having i point to j lengthens
the path in this situation.

The Union-Find algorithm for shared memory outlined above is dif-
ficult to analyze because of the possibility of such (admittedly modest) path
lengthening possibilities. Moreover, it appears difficult to predict the time
wasted during busy-waiting on write locks for root updating. At present,
there are no noninvasive performance analysis tools for measuring the
degradation due to the use of fine grained locks in a shared memory
machine.

6. C O M P U T A T I O N A L E X P E R I M E N T S

We used comparable data in our experiments on the NCUBE hyper-
cube and ENCORE shared memory multiprocessor. The problems we
tested had N = 3200 and m = 10, 100, 1000. Note that for m = 10 the binary
relation would be extremely dense while for m = 1000 the relation would be

U n i o n - F i n d A l g o r i t h m s f o r T r a n s i t i v e Closure and Clus te r i ng 417

extremely sparse. The case m = 100 is intermediate. Both shared and dis-
tributed memory experiments showed worst performance for sparse
problems with best performance on dense problems.

6.1. Hypercube Experiments

Our hypercube, distributed memory experiments were performed on a
64 processor, NCUBE parallel processor. Each processing node in the
NCUBE is rated at being about 1/4 MIPS performance with 512 kilobytes
of local memory. Communications performance is about a millisecond to
send one kilobyte from a node to a neighboring node. Communication
times between neighboring processors are affine functions of the message
size with a fixed overhead for initiating a communication of any size. This
overhead is small enough compared to the actual cost of sending data in
our experiments that we did not model it in this paper.

Figures 7-9 illustrate the hypercube performance for 3200 relation
pairs and varying numbers of objects, m. The horizontal axes are the values
of k so that data can only be obtained for hypercubes whose dimensions
are greater than or equal to k. The vertical axes are compute time in
milliseconds. The legend at the bottom indicates which bar textures
correspond to different dimensioned hypercubes, d. The times do not
include the time required to download data to each processing node since
we expect that the basic clustering problem will in general result in data

800

M 700

600

5OO

e
400 c

0
300 n

d
s 200

100

k=0

Fig. 7.

900

l]
k=l k=2 k=3 k=4 k=5 k=6

I I I 0 17/] 1 1 m 2 I--] 3 r] 4 I~ 5 I]~ 6 J

I111,

Hypercube performance for m=10, 2an=3200 (hypercube dimensions
indicated by shading of bars.)

418 Cybenko, Al len, and Pol i to

Fig. 8.

]
k=O

1000

900

M 800

700

600

s 500
e

c 400
o
n 300 d
s 200

100

0

k=l k=2 k=3

l),)=H,
k=4 k=5 k=6

[mo i~ 1 I I 2 r-] 3]7 4 [II~ 5 ~] 6 I

Hypercube performance for m= 100, 2dn=3200 (hypercube dimensions
indicated by shading of bars.)

1800

1600

M 1400

1200

1000

800

600

400

200

0 ,

k=O

Fig. 9.

~m,, ~ i i I ',
k=l k=2 k=3 k=4 k=5 k=6
[mo), m2D3E34 5@81

Hypercube performance for m= 1000, 2dn=3200 (hypercube dimensions
indicated by shading of bars.)

Union-Find Algorithms for Transitive Closure and Clustering 419

already distributed to the nodes. The relational data used was generated
randomly--uniformly distributed integers between 1 and m were generated
and paired together to form the relation pairs.

One fact about the results that should be immediately visible is the
insensitivity of performance to the hypercube dimension itself and the sole
dependence on k, the dimension of the embedded hypercube that collects
relation pairs. This can be verified by going back to Eq. (7) and noting that
a total N = 2an relation pairs exist in a problem of fixed size. Using N
instead of n, we write the Eq. (7) as

2 - k + Z N + 6km (9)

which is independent of d altogether. Thus, for a fixed k, the dependence
on d is not very significant, although close inspection does show a modest
slow down as d grows in most cases.

To see how the theoretical results compare with our experiments,
rewrite (8) using N=2an as the total number of relation pairs in the
problem. We then get that

2k 2Nlog 2
3m (10)

which again is independent of d providing that k ~< d. In our experiments,
we used N = 2an = 3200 giving

1478.71
2k= (l l)

m

For m = 10, we get 2k= 148.1 suggesting that k should be taken as the
largest possible subcube. Looking at Fig. 7, we see that the optimal algo-
rithm does in fact correspond to the largest possible value of k within a
cube. For m = 100, we get 2 k = 14.8 so k = 3 or k = 4. Figure 8 supports this
with the minimum actually occurring at k = 4. Finally, with m = 1000 we
get 2~= 1.48 so k = 0 or k = 1. Indeed, Fig. 9 shows that the minimum
occurs at k = 1. Hence, we appear to have excellent agreement between our
theoretical analysis and our computational experiments.

To summarize the hypercube results, we have derived a family of algo-
rithms for any specific problem instance. The family depends on a
parameter k in the following way. Given a d dimensional hypercube, select
a k dimensional subcube. Each processor sends its relation pairs to the
subcube node closest to it. The nodes of the subcube collect the relation
pairs and perform serial Union-Find algorithms to form a forest array.
The forest arrays are merged and collected at one node finally. If the under-

4 2 0 Cybenko , A l len , and P o l i t o

lying problem involves a total of N relation pairs, with N/2 d a t each node
in a d dimensional hypercube, then the optimal value of k is predicted by
the expression

2k 2Nlog2
3m (12)

6.2. Shared Memory Experiments

The shared memory algorithm running on the ENCORE parallel com-
puter exhibited excellent speedups in some cases. The data was generated
as in the hypercube experiments--namely uniformly randomly. Figures 10
and 11 show the performance on four different problem sizes by graphing
the actual raw times and derived speedups. We have named those four sizes
A, B, C, D as follows:

A m = 1000, N = 3200 (13)

B m = 100, N = 3200 (14)

C m = 10, N = 3200 (15)

D m = 100, N = 640 (16)

Figure 11 has an additional data line, L, to indicate linear speedup for
reference purposes. The compute time measured was the time between the

M250
i
I 2OO
I
i

s 150
8

C

o 100
n

d
s 50

300 -r

. . .
�9 , * ~ = = . ~ _ _

I ~ i - - 7 - . . - - m ~ i ~ ~ z ,

~o,, o ~ m [] [] 0 , [] [] 13--0 O
I I] I I I i t ~

2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Processors

F. - A.O- B. . - c-n- D--I

Fig. 10. ENCORE raw timings.

Union-Find Algorithms for Transitive Closure and Clustering 421

14

12

I0

8

6

.o- L .o- A .II- B .D- C-.I.- D I

~ ~.~A/.._._..--O ~0~0

I I I I I I I I I I I I I

2 3 4 5 6 7 8 9 I0 II 12 13 14
Number of Processors

Fig. 11. ENCORE speedups.

completion of process forking and the time that the last process terminated.
Hence the time does not include reading data from disk, the allocation of
shared memory and other system functions. We should mention that
process joining is a time Consuming activity on the ENCORE.

The speedups indicate that the larger the number of objects is relative
to the number of relation pairs, the worse the speedups are. The explana-
tion appears to be the time spent in critical sections and updating the forest
array. As the number of objects gets larger with a fixed number of relation
pairs, the likelihood that a new relation pair actually results in an update
of the array increases. This forces more time to be spent in root updating
and path compression. As mentioned before, the modification of shared
variables results in frequent cache updating and hence poorer program per-
formance. Furthermore, the more objects there are in the problem, the
larger the shared memory forest array must be so that the cache refreshing
becomes costlier from this perspective as well. In particular, case A with
1000 objects seemed to be limited to no more than a speedup of 5 even
when using 14 processors.

7. C O N C L U S I O N S

Shared memory architectures appear to be well suited to transitive
closure computations. Some problem configurations exhibited excellent
speedups using an ENCORE multiprocessor. Other examples seemed to

422 Cybenko, Allen, and Polito

limit the speedup to about 5 even when 14 processors were being used. In
principle, the shared memory algorithm we describe is capable of extremely
high performance. However, system dependent factors such as the rate and
efficiency of cache refreshing appear to play a major role but cannot be
modeled precisely.

By contrast, our theoretical analysis and observed performance of
hypercube algorithms agreed very well. The basic problem of transitive
closure computation requires global information and so imposes a severe
handicap on possible hypercube performance. Even so, theoretical analysis
shows that some extremely large problems could be efficiently solved by
hypercubes. However, we were not able to experiment with such problems
because of memory and communication buffet limitations.

REFERENCES

1. J. L. Gustafson, G. R. Montry, and R. E. Benner, Development of parallel methods for
a 1024-processor hypercube. SIAM Journal on Scient. and Statist. Computing, Vol. 9, 1988.

2. J. A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, New Jersey (1981).

3. T. G. Allen, G. Cybenko, C. Angelli, and J. Polito, Hypercube implementation of tracking
algorithms. In Proceedings of JDL Workshop on Command and Control, p. 145-153,
Washington, DC (1987).

4. T. G. Allen, G. Cybenko, C. M. Angelli, and J. Polito, Parallel processing for multitarget
surveillance and tracking, Technical Report TR-360, ALPHATECH, Inc., Burlington,
Massachusetts (1988).

5. G. Cybenko and T. G. Allen, Parallel algorithms for clustering and classification. In
Proceedings of SPIE Conference on Advanced Architectures and Algorithms for Signal
Processing, p. 126-132, San Diego, California (1987).

6. P. Duda and R. Heart, Pattern Classification and Scene Analysis. J. Wiley and Sons,
New York (1973).

7. G. S. Almasi and A. Gottlieb, Highly Parallel Computing, Benjamin/Cummings, Redwood
City, California (1988).

8. M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw-Hill,
New York (1987).

9. A. Borodin, S. A. Cook, and N. Pippenger, Parallel computation for well-endowed rings
and space-bounded probabilistic machines. Inf and Control, p. 1-3:113-136 (1983).

10. F. Y. Chin, J. Lam, and I. Chen, Efficient parallel algorithms for some graph problems,
Communications ofACM, p. 649 655 (1982).

11. V. Pan and J. Reif, Fast and efficient solution of path algebra problems, Technical Report
TR.87.3, SUNY Albany, Department of Computer Science (1987).

12. J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, Rockvill,
Maryland (1984).

13. U. Vishkin, An optimal parallel connectivity algorithm, Discrete Applied Mathematics
9:197-207 (1984).

14. R. Agrawal and H. V. Jagadish, Multiprocessor transitive closure algorithms. In Proc. of
Int. Symp. on Databases in Parallel and Distributed Systems, IEEE Computer Society,
Austin, Texas (August 1988).

Union-Find Algorithms for Transitive Closure and Clustering 423

15. P. Valduriez and S. Khoshefian, Parallel evaluation of the transitive closure of a database
relation, Int. Journal of Parallel Programming, Vol. 17 (1988).

16. R. E. Tarjan and J. Van Leeuwen, Worst-case analysis of set union algorithms. Jour. of
Assoc. for Comput. Machin., p. 245-281 (1984).

17. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Massachusetts (1974).

18. R. Sedgewick, Algorithms, Addison-Wesley, Reading, Massachusetts (1983).

