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The Scheme language can be converted into a parallel processing language by 
adding two new data types (plaeeholders and weak pairs), two processor 
synchronization primitives, and a task distribution mechanism. The mechanisms 
that support task creation, scheduling, and task synchronization are built using 
these extensions and features already present in the sequential language. 
Implementing the core of the parallel processing component in Scheme itself 
provides testbed for a variety of experiments and extensions. 

MultiScheme, the system resulting from these extensions, supports 
Halstead's future construct as the simple model for parallelism. By revealing the 
underlying placeholders on top of which this construct is built, Multischeme 
supports a variety of additional parallel programming techniques. It supports 
speculative computation through a simple procedural interface and the 
automatic garbage collection of tasks. The qlet and qlambda constructs of the 
QLisp language are also easily implemented in MultiScheme, as are the more 
familiar fork and join constructs of imperative programming. 

KEY WORDS:  MultiScheme; parallel Lisp; implementation; future construct; 
placeholders. 

1. INTRODUCTION 

MultiScheme (1) is a fully operational parallel-programming system based 
on the Scheme dialect of Lisp. Like its Lisp ancestors, MultiScheme 
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provides a conducive environment for prototyping and testing new 
linguistic structures and programming methodologies. MultiScheme sup- 
ports a diverse community of users who have a wide range of interests in 
parallel programming. MultiScheme's flexible support for system-based 
experiments in parallel processing has enabled it to serve as a development 
vehicle for university and industrial research. At the same time, Multi- 
Scheme is sufficiently robust, and supports a sufficiently wide range of 
parallel-processing applications, that it has become the base for a com- 
mercial product, the Butterfly Lisp System produced by BBN Advanced 
Computers, Inc. 

MultiScheme, in the tradition of the Scheme language, is designed as 
a "minimalist" system. It provides a small but powerful set of constructs 
from which a researcher can build layers of language suited directly to a 
particular application. This paper describes the innermost core of the 
MultiScheme system, the procedures (written in Scheme) that implement 
the critical operations of the system. Collectively these procedures are 
referred to as "the scheduler," although they provide a greater range of 
services than this name implies. 

1.1. Placeholders and the Future Construct  

From a simple user's point of view, MultiScheme is just a Scheme 
system with one important addition: the future construct derived from 
Halstead's MultilispJ 2~ This gives the programmer a way to annotate 
opportunities for parallelism. The special form future can be wrapped 
around any expression in the language, and indicates that the enclosed 
expression is permitted to run in parallel with the surrounding expression. 
MultiScheme requires the use of a specific construct to express oppor- 
tunities for parallelism because Scheme permits side-effects, and thus a cer- 
tain amount of control is desirable. Furthermore, the minimalist approach 
taken by the Scheme community argues in favor of a programmatic inter- 
face to parallelism in order to form a convenient base for experimentation 
in the design of automated tools for inserting parallelism. Initial explora- 
tion into building such tools has been undertaken by Gray ~3) and Wang/4) 

As a simple example, the doubly recursive calculation of [ibonacci can 
be conveniently described in MultiScheme: 

(define (fib n) 
( i f  (< n 2) 

1 
(+ (future (fib (- n I))) 

(future (fib (- n 2)))))). 
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In order to implement the future construct an important change must 
be made to Scheme--the introduction of a new data type called the 
plaeeholder. A placeholder is a data structure used to represent a value that 
has not yet been computed. When the actual value of a placeholder is 
required (in the predicate of an if expression, or as an argument to a strict 
primitive operation, for example), the computation waits for the value to 
be computed. Testing for the availability of a value is known as touching 
the placeholder. This provides a form of synchronization very similar to 
that found in dynamic data flow models of computation. In order to allow 
users to add synchronization points not automatically supplied by the data 
flow model, the primitive operation touch (a strict identity procedure) is 
available. 

Placeholders, without parallelism or the future construct, are a power- 
ful addition to Scheme. They are the basis for adding objects that behave 
like Prolog's logic variable, provide for controlled normal order evaluation, 
and allow the implementation of McCarthy's arab (5) operator, and a fair- 
merge operation. In addition, by separating the creation of tasks from the 
creation of placeholders (a possibility novel to MultiScheme), it is possible 
to implement the constructs of QLisp (6) as simple macros. All of this work 
is described in Ref. 1. 

Given an implementation of placeholders it is straightforward to 
implement future: 

1. Create a placeholder to represent the value of the embedded 
expression. 

2. Create a task to compute the value of the embedded expression 
and store it in this placeholder. The act of storing a value into a 
placeholder is called determining its value. 

3. Return this placeholder as the value of the future expression. 

In fact, future in MultiScheme is a macro that expands as follows: 

(future exp) -~ (spawn-task (lambda () exp) parent-gets-priority) 

The procedure spawn-task is discussed in Section 5.1; its job is to accom- 
plish the three steps previously described. The procedure parent-gets- 
priority, also discussed later, is the default scheduling policy to be used 
when new tasks are created--the task that executed the future expression 
retains control of the processor and the newly created task is scheduled for 
execution at another time. 
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1.2. Speculative Computation and Garbage Collection 

One area of particular interest in the development of MultiScheme has 
been the support of speculative computation. That is, the ability to spin off 
in parallel multiple problem solving approaches in the hope that (at least) 
one of them will succeed. Most uses of parallelism strive to perform faster 
than the comparable sequential algorithm. By contrast, speculative 
parallelism attempts to perform a computation as fast as the fastest method 
that can solve the problem--even where there are multiple techniques to 
choose from and no fast way to choose among them. By extension, 
speculative computation also allows the predicate of a conditional expres- 
sion to be computed in parallel with both the consequent and the alter- 
native expressions. Both Katz ~7) and Knight ~8~ have proposed architectures 
to support speculative computation in a Lisp with side-effects. Katz has, in 
fact, used MultiScheme as a base for construction of a simulator of his 
ParaTran architecture. While his work does not use MultiScheme's 
parallelism, it uses the underlying placeholder mechanism for recording 
references to variables and data structures. Katz's work requires the ability 
to modify the value of a placeholder even after it has been computed. For 
this reason, MultiScheme marks every placeholder as either having no 
value, having an immutable value (the usual case), or having a mutable 
value. 

Support for speculative computation is available both directly and 
indirectly from MultiScheme. As described in Section 5.2, the scheduler for 
MultiScheme provides a procedure, disjoin, that allows a task to wait for 
any one of a number of values to be computed. Less directly, Multi- 
Scheme's data structures are designed to support the garbage collection of 
tasks that are computing a value that is no longer needed. The ability to 
garbage collect processes (proposed by Baker and Hewitt (9)) supports 
speculative computation by relieving the user of a pair of worries. The user 
need worry neither about forgetting to destroy a task nor about the conse- 
quences of prematurely destroying the task. Just as a user of Pascal must 
worry about creating dangling pointers, a user of a parallel processing 
system must worry about killing a process prematurely and creating 
deadlock. MultiScheme's garbage collector automates the removal of 
"useless" tasks, eliminating this worry. 

The details of garbage collection are beyond the scope of this paper, 
but parts of the process are directly relevant. The job of the garbage collec- 
tor is quite simple: it starts with the root set of objects and computes the 
transitive closure of this set under the data access operations. Any memory 
not in this set is garbage and is released for reuse. This is a very conser- 
vative approach to the definition of "garbage," and assures the programmer 
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that no accessible object will be released inadvertently. Sometimes, 
however, there is a need to construct data structures that don't force reten- 
sion of their contents. In order to support placeholders, for example, each 
placeholder records the tasks that have suspended execution because they 
touched it before it had a value. When the placeholder's value is computed 
these tasks will resume execution. The fact that a task is suspended, 
however, is no reason to keep the task in existence indefinitely: it may have 
been created to (speculatively) compute a value that is already known. 
Thus, the data structure that records the suspended tasks must not cause 
the garbage collector to keep the tasks. 

MultiScheme supports these data structures by supplying a weak pair 
data type (1~ containing two parts. Unlike an ordinary pair the car (left 
half) of a weak pair reverts to a particular value after garbage collection if 
the object formerly stored there is no longer needed by any other data 
structures in the system. The implementation of weak pairs is quite simple, 
since MultiScheme uses a copying garbage collector. The cdrs (right half) 
of weak pairs are used during the transitive closure computation,  but not 
the cars. An imperfect copy of the weak pair is made and the original 
storage is used to maintain a list of all weak pairs encountered during 
garbage collection. A post-pass updates the cars of the weak pairs after the 
transitive closure has been computed. 

The garbage collector also provides one other very important service 
for MultiScheme. Since it must traverse all of the data structures in the 
system periodically, it can increase the efficiency of a program by replacing 
all placeholders by their values once the values are known. This process, 
called splicing, is actually performed in MultiScheme in two different ways: 
through the garbage collector, and whenever a variable is referenced. That 
is, every variable reference tests to see if the value of the variable is a 
placeholder. If so, and if the placeholder has a value, then the reference 
returns the value rather than the placeholder. The decision to place splicing 
in variable reference is questionable since it slows down all variable referen- 
ces. In MIT Scheme a test is needed at this point for other reasons, and the 
same test suffices to detect placehotders. Thus, in MIT Scheme there is no 
performance penalty for the test and it can improve performance when 
placeholders are heavily used. 

Splicing, whether by the garbage collector or by variable reference, 
does introduce one problem. Since the scheduler is written in Scheme, any 
placeholder it manipulates is subject to splicing. This would make the 
coding of the scheduler quite difficult, so a special exception is made. Every 
placeholder contains a lock, and splicing only occurs when the placeholder 
has a value, the value is marked as immutable, and the placeholder isn't 
locked. 
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1.3. Assumptions and Extensions 

There is a fine line between distributed and parallel computing, and 
MultiScheme deliberately explores only parallel computation. Thus Multi- 
Scheme is concerned with computation using multiple processing elements 
where performance issues related to the division of labor far outweigh those 
related to communication cost. As a result of this decision we assume that 
all of the processors use a single shared heap area, with roughly equal time 
required by each processor to access all items on the heap. We continue to 
adopt the Scheme philosophy that objects are, in general, heap allocated 
and that procedure call is always by transfer of references to objects (i.e. 
pointers) rather than by copying. 

In addition to this assumption, MultiScheme requires four extensions 
to the existing MIT Scheme language. Each of these is described in detail 
later in this paper. 

1.3. 1. Placeholders 

The single most extensive change is the addition of placeholder 
objects. Much of this paper is directly related to this extension, since the 
placeholder is the central data structure maintained and modified by the 
scheduler. In addition to the scheduler, however, there is some support 
required from the underlying machine. This support comes in two forms: 
detection of placeholders, and inter-processor locks. 

The detection of placeholders is described in Section 6 along with the 
implementation of await-placeholder. Most strict primitive operations 
(whether compiled, interpreted, or in-line coded) must test for placeholders 
and either extract the value from the data structure or call the scheduler's 
await-placeholder procedure. Only primitive operations that deal with the 
placeholder data structure itself are exempt from this requirement. The 
same testing applies to the value of any expression appearing as an 
operator of a combination (procedure call) or the value of a predicate in 
a conditional expression. 

The scheduler assumes the existence of four procedures to lock and 
unlock placeholders and tasks. Measurements have shown that collisions 
are extremely rare under normal conditions so we have implemented them 
as spin locks, kock-placeholded either immediately returns # F  (i.e. false, 
if its argument is not a placeholder) or it waits until it is able to acquire 
the lock that is part of the placeholder data structure (see Figure 1) and 
returns a value of # T  (i.e. true). Lock-task! is similar to Iock- 
placeholded. In MultiScheme, Iock-placeholded is provided as a 
primitive because of the complexity of writing the correc t  code to deal with 
a potential race between one processor setting the value of a placeholder 
and another processor attempting to lock it. 
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1.3.2. Task Distribution 

The choice of a mechanism to distribute tasks to processors is fre- 
quently highly dependent on the particular hardware and communications 
technology. The scheduler abstracts away from this detail by assuming the 
existence of three procedures: put-work to release a task for (possibly) 
parallel execution, get-work to retrieve a task awaiting a free processor, 
and drain-work-pool to return a list (made from weak pairs) of the tasks 
currently awaiting free processors. This last operation is not guaranteed to 
be atomic, but a particular task will either be returned by a call to get- 
work or drain-work-pool, but not both. 

1.3.3. Inter-processor Communication 

Section 8 provides the motivation and description of MultiScheme's 
three procedures for coordinating the work of the processors within the 
system. MultiScheme users are encouraged to think in terms of logical pro- 
cesses (tasks) and leave the control of the processors to the system. These 
three procedures form the support required by the system: global-interrupt 
provides a means for initiating an interrupt sequence on all other pro- 
cessors; and the pair make-synchronizer and await-synchrony allow all 
the processors to perform a barrier synchronization (i.e. all processors must 
call await-synchrony with the same synchronizer object before any 
processor is allowed to proceed from its call to await-synchrony). 

In addition to these extensions, MIT Scheme (1~ itself contains a large 
number of extensions to the Scheme language. (111 Most of these extensions 
are not needed to implement the procedures described here. The code in 
this paper depends only on weak pairs (described earlier) and the following 
items: 

(within-continuation continuation thunk) 

This procedure restores the state of the machine from the continua- 
tion and then executes the thunk. If the t hunk returns, its value is passed 
to the continuation. This provides a mechanism for changing the control 
state of the processor just prior to executing a piece of code--in implemen- 
tation terms, it releases the current stack and restores the stack stored in 
continuation before calling thunk. 

th e- error- conti n u atio n 

This is a continuation made when MIT Scheme is first started. It has 
a minimal control state, and can be used in conjunction with within- 
continuation to return to a control state that will retain a minimum of 
information after garbage collection. 



374 Miller 

1.3.4, Primitive Continuation Handlers 

MIT Scheme has a number of primitive continuations that ordinarily 
cuase errors to occur. Users can supply procedures to be called in place of 
the default handlers for these continuations. In the case of MultiScheme, 
the primitive continuation used when a task completes its work is replaced 
by one that determines the corresponding placeholder and terminates the 
task. 

2. O V E R V I E W  OF THE SCHEDULER 

The MultiScheme scheduler provides a convenient interface, in the 
form of a package of procedures, between MultiScheme programs and the 
underlying machine. Some of the procedures are invoked by programs 
written in MultiScheme while others are invoked as part of the trap or 
interrupt handling of the machine. The scheduler is itself written in 
MultiScheme and is relatively small: 20 pages of code including utility 
routines. This has proven to be an important factor in the development of 
MultiScheme, providing a localized and flexible base for a number of 
experiments with the nature of parallel computing. 

This paper discusses each of the major operations supported by the 
scheduler: task creation (Section 5), task suspension and task switch (Sec- 
tion 6), storing a value into a placeholder (Section 7), and lransition from 
parallel processing to single task execution (Section 8.2). The rough outline 
of the scheduler--the services it supports and the interrelationship between 
these services--has proven quite robust over time. Even as the system grew 
to support more parallel programming styles, the core of the scheduler as 
described here has remained almost constant. The scheduler was originally 
intended to be, and remains, a highly flexible body of code. The scheduler 
described here is the "standard" scheduler as it currently exists. As new 
applications are developed, driving the system toward new modes of com- 
putation, the data structures of the scheduler are modified to accommodate 
the new requirements. Users are encouraged to examine and understand 
the scheduler, and feel free to modify it for their own needs. Naturally, such 
modifications must be undertaken with a good deal of care. But these 
modifications have proven useful in the past and have in some cases been 
formalized and added to the standard MultiScheme scheduler. 

The presentation is roughly bottom up, describing the data structures 
in Section 3, general utility routines in Section 4, and then the user-visible 
routines. In order to avoid an overwhelming amount of detail the examples 
are simplified versions of the actual procedures in the scheduler. They pre- 
sent the important core of each procedure, and should be considered more 
closely related to pseudo-code than to fully worked out implementations. 
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In many cases the versions presented here will not work correctly in the 
actual implementation of MultiScheme. This comes primarily from two 
reasons: race conditions and name changes. The race conditions that exist 
here are easily resolved using standard programming techniques. The detail 
required to include the solutions merely obscures the core ideas of the 
scheduler. Readers interested in the complete versions of these procedures 
should contact the author for a current version of the scheduler code. 

3. SCHEDULER D A T A  STRUCTURES 

Much of the scheduler procedures' work revolves around the correct 
maintenance of the data structures that implement placeholders, tasks, and 
a pool of tasks that are ready to run. For this description, all access to data 
structures is assumed to be through mutators and selectors for each part of 
the structure. Thus, corresponding to the goal slot of a task data structure 
there are two procedures: task.goal returns the goal of a given task and 
set-task.goall stores a new goal into the task data structure. 

The design of these data structures is often motivated by a desire to 
garbage collect tasks (9) that are no longer computing useful values. These 
tasks arise largely from the use of speculative computation techniques. For 
a description of these techniques and the difficulties involved in garbage 
collecting tasks, see Refs. 1 and 12. 

3.1. Placeholders 

Placeholders are the primary vehicle connecting the scheduler, and 
hence programs written in MultiScheme, with the underlying support for 
parallel processing. Placeholders are created by a scheduler procedure, nor- 
mally as part of the task creation process (see Section 5). Supplying a value 
for a placeholder (called determining the placeholder) is also supported by 
a scheduler procedure (determine!, see Section 7). Detection of place- 
holders and automatically forcing them is built into the primitive opera- 
tions and the underlying machine itself, as described in Section 6. 

When programmers rely on the future model of computation, none of 
these procedures are invoked directly by user code. Instead, they are called 
by code from the expansion of the future macro. As new programming 
styles have developed, however, each of these procedures has proven useful 
for implementing the support required for the new style. 

The placeholder data structure is shown in Fig. 1. Each of the fields is 
described later. 
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Slot Name I Notes I 

Placeholder 

Determined? Yes, No, or Mutable 
Lock For primitive lock operations 
Value or Waiting Set See text 
Motivated Task Task computing this value 

Task 

Goal 
Lock 
Code 
Status 
Original Code 
Task-Private Data 
Waiting For 
Wake-up Value 

Placeholder associated with this task 
For primitive lock operations 
Work to be performed when task is next run 
See text for details 
For debugging purposes 
See text for details 
Placeholder(s) for which this task is waiting 
See text for details 

See text for complete description 

Fig. 1. Task and Placeholder Data Structures. 

3. 1.1. Determined? 

A tri-state flag that indicates whether the placeholder: (a) has no value 
yet; (b) has an immutable value; or (c)has a mutable value. This flag is 
used by the inderlying machine to test whether touching this placeholder 
should trap into the scheduler as discussed in Section 6 or extract the 
current value and continue. 

3. 1.2. Lock 

A standard mutual exclusion lock used to indicate that the placeholder 
is currently being modified by MultiScheme code. This slot is used by the 
procedures lock-place-holder! and unlock-placeholdeH described in the 
introduction. 

3.1.3. Value 

Stores the value of the placeholder when it is known. This slot is 
mutable, but the scheduler enforces a protocol that allows the slot to be 
treated either as a write-once location or a multiple writeable location. The 
future construct produces placeholders that receive a value exactly once. 

3. 1.4. Waiting set 

A set of tasks currently waiting for this placeholder's value to be deter- 
mined. This set is built using weak pairs since membership in this set does 
not constitute a reason for the task to continue computing. 
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3. 1.5. Motivated task 

The task that has the computation of a value for this placeholder as 
its goal. (12) As with any item other than a weak pair, the garbage collector 
does trace through this link. Thus it serves to retain the task that is com- 
puting the value of this placeholder as long as the placeholder itself is 
needed. 

3.2. Tasks 

The task data structure contains a variety of information, but is not 
directly referenced by the underlying machine. Tasks represent work that 
has been requested to be performed, and they are the objects that the 
scheduler has the underlying machine store in its work distribution pool. 

In order to support garbage collection of no longer useful tasks, the 
root used by the garbage collection algorithm contains a particular set of 
tasks whose continued existence is required by the user interface to Multi- 
Scheme. (12) Other tasks are retained only if they can be reached either from 
this initial set of tasks or from the global environment. One task can be 
"reached from" another if the former task is waiting for the value of a 
placeholder and the latter task is the one that is responsible for calculating 
the placeholder's value. The waiting for and motivated task slots are 
responsible . for recording this relationship between tasks. 

The task data structure is shown in Fig. 1. 
In addition to the slots shown in Fig. 1, it has long been expected that 

some information might be stored here for use by user applied scheduling 
policies. This information could indicate task priority or estimated time 
required for the value to be computed. Our on-going research includes 
implementing and studying these extensions. 

3.2. 1. Goal 

The placeholder that is the goal for this task. When a task is actively 
computing, this placeholder is known as the current plaeeholder for the 
processor doing the computation. When a task executes the termination 
continuation (see Section5.3) it stores the computed value into this 
placeholder. 

3.2.2. Lock 

A standard lock to serialize access to the task description. Used by the 
procedures lock-task! and unlock-task! mentioned in the introduction. 
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3.2.3. Code 

The code to run in order to reactivate this task. If the object stored 
here is not applicable (i.e. neither a procedure nor a continuation) then 
either the task is already active or for some reason it cannot be reactivated. 
For example, the task may have finished computing but not yet been 
garbage collected. 

3.2.4. Status 

The current state of the task. This can be the following: 

created Task is newly created 
delayed See delay-policy, Section 5.2 
determined Task is finished 
disjoin Waiting for the first of several placeholders 
paused See Pause-everything, Fig. 11 
runnahle Available for execution 
running Actually in possession of a processor 
waiting Waiting for a specific placeholder 
within-task Running, but another task has requested this task to 

execute a block of code. See within-task, Fig. 12. 

3.2.5. Original code 

For debugging purposes this contains the expression that- the task was 
created to evaluate. 

3.2.6. Task-private data 

Used to implement fluid variables, a form of per-task data storage. (1' lO) 
This slot holds an association list mapping variables to values. It is used 
when a variable marked as fluid is referenced, using a runtime trap 
mechanism. 

3.2.Z Waiting for 

If the task has status waiting or disjoin this specifies the placeholder(s) 
for which it is waiting. This is an ordinary list, since the value of these 
placeholders is necessary for this task to continue its own computation. 
Hence this task represents a reason for the tasks that are computing the 
values of these placeholders to continue their computation. 

3.2.8. Wake-up value 

When the task is awakened, the code is passed this value as its argu- 
ment. It is primarily used in the implementation of disjoin, the mechanism 
that supports speculative computation (see Sections 5.2 and 6). 
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3.3. Runnable Task Pool 

The subject of task distribution is one on which a great deal of work 
has been done, both theoretical and practical. The choice of a mechanism, 
while important, is often intimately tied to details of the hardware or com- 
munications medium. Since the main thrust of the MultiScheme work is 
not related to these issues, we chose to isolate the scheduler from these 
issues by encapsulating the choice in the three primitive operations 
described in the introduction. Because the shared heap contains all of the 
task, placeholder, stack, and other structures needed for a computation, 
there is no requirement that a task be run on the same processor that 
released it with put-work. While providing this behavior may improve per- 
formance on some architectures, it is up to the primitives to either support 
this behavior or not. 

The scheduler's use of these procedures is therefore simple. It announ- 
ces that a task needs processing resources using put-work. When a 
processor needs more work to do, the scheduler will retrieve a task using 
get-work.  When the system must retract work that has been declared to be 
available (such as during garbage collection initiation, see Section 8.2), it 
calls drain-work-pool .  Synchronization and serialization are the respon- 
silibity of the MultiScheme code, not the procedures themselves. Thus, it is 
possible for one task to drain the work pool while other tasks are still 
active and adding new entries to the pool. The results will be consistent 
although it may not represent an instantaneous snapshot of the internal 
data structures. 

4. OVERALL CONCEPTS A N D  UTILITY ROUTINES 

The scheduler is organized around the data structures described in 
Section 3 and two additional notions. The first, described in Section 4.1, is 
atomicity and critical sections of code. These are supported through a 
system of priority interrupts within a single processor and a set of data 
object locks between processors. The second is the task state and task 
switch operations, described in Section 4.2, supported through the use of 
Scheme's continuations. 

4.1. Atomicity 

As with any operating system scheduler, most of the routines in the 
scheduler must appear to occur without interruption. The fact that these 
routines are written in Scheme, however, does not permit them to run com- 
pletely uninterrupted: the garbage collector cannot be suppressed for long 
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intervals without serious consequences. As a result, most of the operations 
are written to raise their own interrupt level to prohibit any kind of inter- 
rupt except garbage collection, and the garbage collection code guarantees 
that any task that is running at a raised interrupt level will continue to run 
after the garbage collection. This notion is embedded in the macros atomic 
and define-atomic that are used liberally throughout the scheduler 
implementation. To make the code more easily understood, however, these 
have been omitted from the simplified versions described here. 

A second standard problem, exclusive access to certain data structures, 
also exists in the scheduler. The scheduler is built using two utility routines 
that are in turn based on the interlock routines described earlier. The 
operation Iock-placeholder! is used to implement the more complicated of 
the two utility routines: 

(define (With-Placeholder-Locked Placeholder Procedure) 
(atomic 
(if (lock-placeholder! Placeholder) 

.(let ((result (Procedure #T))) 
(unlock-placeholder! Placeholder) 
result) 

(Procedure #F)))) 

As can be seen, with-placeholder- locked runs a procedure with a 
given placeholder locked. The procedure receives an argument that 
indicates whether the object is in fact a placeholder. This handles an impor- 
tant race condition: another processor might have supplied a value for the 
placeholder before we were able to lock it. The placeholder might then be 
spliced out by variable reference or garbage collection before we can 
acquire the lock. Once locked, however, a placeholder is no longer subject 
to splicing. Since MultiScheme does not provide any standard way 
of locking arbitrary objects, the object is only locked if it is indeed a 
placeholder. 

A similar utility routine, With-Task-Locked is also supplied. Unlike 
With-Placeholder-Locked,  the task is always locked when the procedure 
runs since the race condition that exists for placeholders is not a problem 
with tasks. 

4.2. Task S w i t c h  

When a processor changes tasks it is really performing three separate 
operations. The first operation captures the current state of the task in a 
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way that allows it to be restarted later. The second chooses a new task for 
execution, and the third activates a chosen task. Task termination (as 
described in Section 5.3) is nothing more than performing the last two steps 
but not the first. Task creation (see Section 5.2) may include the first and 
third steps with a standard choice for the second. 

The first operation, capturing the current state of a task, is done using 
Scheme's standard call-with-current-continuation procedure. Once a task 
is suspended it will be resumed only once, and then that state will later be 
suspended and so forth. Thus, unlike an ordinary continuation object, the 
object that denotes a suspended task state need not be able to be invoked 
multiple times. In implementation terms, this means that a certain amount 
of copying of continuation stack entries can be avoid with task suspen- 
sions. At one time a special variant of call-with-current-continuation that 
took advantage of this optimization was implemented. Performance 
measurements indicated that the overall effect was minimal, but these 
measurements were taken based on the MultiScheme interpreter and may 
not be indicative of the performance of a compiled system. 

While acquiring a representation of the current state of the computa- 
tion is simple, actually storing it in the task data structure is not as 
straightforward. In Section 8.3 an important user operation, within-task, 
will be introduced (the relevant code is shown in Fig. 12). Calling within- 
task allows a user to modify the operation of a task that is already running. 
It marks the task data structure to indicate the work that must be 
performed, and it is the responsibility of the task when it next saves its 
state away to arrange to perform that work when the task is subsequently 
activated. 

The routine store-my-state, shown in Fig. 2 is provided to support 
this operation. It allows scheduler routines to specify the state to be used 
when the task normally regains control (the argument state), and addi- 
tional work to be performed on the task data structure while it is locked 
(while-locked). It locks the current task data structure and then stores 
either the specified state or a procedure that first executes the work 
specified by a call to within-task as the work to be performed when the 
task is next activated. Notice that store-my-state tests whether the task 
needs to continue running; if not, the procedure while-locked is not 
executed, nor is the state of the task actually saved. 

One other common way of capturing the state of a task is provided by 
the procedure release-task, shown in Fig. 3. In this case, the intention is to 
release the current task for  parallel execution and then execute some other 
code while the processor is temporarily not performing any task. The 
reason for providing it with the thunk to be executed may not be obvious, 
but notice that the thunk is executed as part of the procedure called by 



382 Mil ler 

(define (store-my-state state while-looked) 
(let ((my-task (current-task))) 

(with-task-locked my-task 
(lambda (am-I-runnable?) ; (1) 

(if am-I-runnable? 
(begin 

(set-task.code! my-task 
(if (eq? (task.status my-task) 'WITHIN-TASK) 

(let ((within-task-code (task.code my-task))) 
(lambda (wake-up) ; (2) 

(within-task-code wake-up) 
( s t a t e  w a k e - u p ) ) )  

s t a t e ) )  ; (3) 
(while-locked my-task))))))) ; (4) 

Notes:  

1. Find and lock the current task data structure. 

2. If the task is expected to continue running but has been marked for special handling by w i t h i n - t a s k  
(see Figure 12), then when the task next awakens it must first execute the code specified in the call 
to w i t h i n - t a s k  and then continue on to its ordinary computation. 

3. Under ordinary circumstances, the state to be stored is just the state specified by the calker. 

4. If the task will continue to run, call the user-specified procedure while the task data structure is 
still locked. 

Fig. 2. Saving s ta te  for future execution:  S t o r e - M y - S t a t e .  

call-with-current-continuation. Thus it is executed by the calling pro- 
cessor when release-task is called, but not  when the task is resumed. 
Resuming the task occurs by calling the continuation my-state, thus 
effectively returning from this call to call-with-current-continuation. The 
processor's current task is set to 'STATE-SAVED both as a debugging aid 
and to reflect the fact that the processor is not currently executing a task. 
This is important if the processor subsequently needs to save its state since 
there is no task into which the state can be stored. 

(define (release-task thunk) 
(call-with-current-continuation 
(lambda (my-state) 

(store-my-state my-state 
(lambda (my-task) 

(set-current-task! 'STATE-SAVED) 
(set-task.status! my-task 'KUNNABLE) 
(put-work my-task))) 

(thunk)))) 

Fig. 3. Rel inquish ing  the processor:  Release-Task. 
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The second operation, choosing a task to perform, is most often 
deferred to the underlying machine, using the primitive get-work to select 
the task: 

(define (next) 
(Set-Current-Task! 'WAITING-FOR-WOKK) 
(run (get-work)))  ; ,gee run in Figure 

The third operation, activating a chosen task, is the most complicated. 
This job is handled by the procedure run, shown in Fig. 4. It consists 
mostly of routine housekeeping activities. The task being activated is first 
locked and tested to see if it is actually runnable. If so, the status is 
changed to running and the code and wake-up value are extracted from the 
task data structure. The task is then unlocked, and either the code is 
activated with the appropriate wake-up value as its argument or if the task 
turned out not to be runnable an alternative task is chosen using next. 

4.3. Other Util ity Routines 

There are a handful of other utility routines that are referenced later. 

�9 A task data structure and its related placeholder can be created 
using (Make-Task), which makes the pair simultaneously and 

(define (run task) 
(define what-to-actually-do 

(With-Task-Locked task 
(lambda (Still-Runnable?) 

(if Still-Runnable? ; (I) 
(let ((code-for-new-task (task.code task)) 

(wake-up-value (task.wake-up-value task))) 
(set-task.status! task 'RUNNING) 
(set-task.wake-up-value! task '()) 
(Set-Current-Task ! task) 
( l ambda  ( )  ; (2)  

(code-for-new-task wakeup-value) )) 
n e x t ) ) ) )  ; (3)  

w h a t - t o - a c t u a l l y - d o )  ) ; (4)  

Notes :  

1. Test the task to see if it is actually runnable. 

2. If the task is runnable, this procedure will restart it. 

3. If the task is not runnable, this procedure will select an alternate task and start it instead. 

4. Actually call the procedure chosen in either step 2 or 3 above. 

Fig. 4. Activating a chosen task: the run procedure. 

828/17/5-2 



384 Mil ler  

(define (immutable? placeholder) 
(eq? (placeholder.determined? placeholder) #T)) 

(define (undetermined? placeholder) 
(eq? (placeholder.determinsd? placeholder) #F)) 

(define (determined? placeholder) 
(not (undetermined? placeholder))) 

(define (mutable? placeholder) 
(and (determined? placeholder) 

(not (immutable? placeholdsr)))) 

Fig. 5. Tri-state Flag Representation. 

supplies a standard set of default values for all of the information 
required. 

�9 The three possible states of the determined.* slot of a placeholder 
are: # T  indicating that the placeholder has an immutable value; 
# F  indicating that it has no value at all; and anything else 
indicates that the value is mutable. This is captured in the four 
procedures shown in Fig. 5. Notice that the placeholder must be 
locked in order to safely perform these operations. 

�9 A task that has been waiting is activated using the procedure 
activate shown in Fig. 6. This procedure tests whether the task is 
still runnable and is in fact waiting for the condition that has 
occurred (as indicated by the test). It then updates the task data 
structure and releases it for distribution using the underlying 
machine operation put-work. 

�9 The procedure Saving-State, shown in Fig. 7, allows a task to 
save its state away and then execute a selected piece of code, 
tbunk. The code is run in a continuation that is part of the root 
of garbage collection and not as part of the task that called 
saving-state. This permits the garbage collector to reclaim the 
originating task if necessary. When the code finishes execution, 

(define (activate task test wake-up-value) 
(With-Task-Locked task (lambda (task-runnable?) 

(if (and task-runnable? (test (task.status task))) 
(begin 

(set-task.waiting-for] task '()) 
(set-task.status! task 'RUNNABLE) 
(set-task.wake-up-value! task wake-up-value) 
(put-work task)))))) 

Fig. 6. Activating a waiting task. 
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(define (saving-state thunk) 
(release-task (lambda O 

( w i t h i n - c o n t i n u a t i o n  
the-error-continuation 
(lambda () (thunk) (next)))))) 

; (1) 
; (2) 

Notes :  

1. Release the current task for potential parallel execution. 

2. Begin execution within t h e - e r r o r - c o n t i n u a t i o a  which was created at system boot time, and does 
not reference any other continuations, 

Fig. 7. Code  for S a v i n g - S t a t e .  

another task is selected for execution rather than returning to the 
original task. A good way of thinking about saving-state is that it 
performs a task switch into a non-existent task and executes the 
thunk in the new task. 

�9 Two procedures, Current-Task and Set-Current-Task!,  are 
provided to keep track of the task that is currently executing on 
this processor. These can either be implemented as primitive opera- 
tions that access processor-private data or in Scheme using a 
primitive procedure that identifies the processor on which the task 
is currently running. 

�9 Weak-list--,  list converts a list composed of weak pairs into one 
composed of ordinary pairs. 

�9 Add-to-wai t ing-set!  adds a task to the set of tasks waiting for 
the value of a particular placeholder. We have chosen a trivial 
implementation of sets since nothing depends on removal of 
duplicates: 

(define (add-to-waiting-set! placeholder task) 
(set-placeholder.waiting-set! placeholder 

(cons task (placeholder.waiting-set placeholder)))) 

5. TASK CREATION A N D  T E R M I N A T I O N  

Creating a task in MultiScheme really has four steps: create a con- 
tinuation, create a task data structure, create a placeholder, and schedule 
the running and newly created tasks for parallel execution. Each of these 
can be performed independently and then combined to provide specialized 
handling of unusual cases. Tasks are normally created, however, by using 
the future macro. 
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This macro has one required argument, the expression to be executed 
in parallel, and an optional policy used to schedule the parent and child 
tasks. Thus 

(+ ( f u t u r e  el p o l i c y )  ( f u t u r e  e2)) "-* 

(+ ( spawn- t a sk  (lambda () el)  p o l i c y )  
(spawn-task (lambda () e~) parent-gets-priority)) 

The remainder of this section consists of a description of the Spawn- 
Task procedure (Section 5.1), alternatives to this standard method of task 
creation (Section 5.2), and finally the handling of task termination (Sec- 
tion 5.3). 

5.1. Ordinary Task Creat ion 

As described earlier, most of the work of creating a task is ordinarily 
carried out by Spawn-Task. This is merely a standard way of using the 
four steps previously mentioned. 

(define (spawn-task code policy) 
(let ((the-new-task (make-task))) 

(let ((result (task.goal the-new-task))) 
(set-task.code! the-new-task 

(lambda (wake-up-argument) 
(new-task-continuation code))) 

(policy the-new-task) 
result))) 

Part of the task data structure is the code it is to execute, and spawn- 
task uses a specially constructed new-task-continuation for this purpose 
(see the discussion below). The continuation expects to receive a procedure 
as argument (code in this case); it calls the argument and then calls a 
primitive continuation indicating the end of task with the result. The 
handling of this task termination continuation is described in Section 5.3. 

Spawn-Task calls the user-supplied policy routine to schedule the 
current task and the newly created task. The default routine, parent-gets- 
priority (shown in Section 5.2), releases the new task for potentially parallel 
execution. The value returned by spawn-task to the task that called it is 
the newly created placeholder. 

The decision to use a continuation rather than a procedure for the 
initial code of a task is not completely arbitrary. If a procedure is used the 
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task switch code in run (see Fig. 4) that activates the newly created task 
would be nothing more than a procedure call. But procedure call includes 
passing an implicit continuation for use when a value is returned, and this 
continuation will in some way reference the task that made the procedure 
call. This prevents the garbage collector from reclaiming that task as long 
as the newly created task is in existence. 

In implementation terms, which may be easier to understand, a con- 
tinuation is just a saved procedure call stack. If the initial code for a task 
were simply a procedure then the stack used for the new task when it first 
runs would be the same as the stack of the task that was relinquishing the 
processor. This works perfectly well but leads to a form of cactus stack 
implementation that has the garbage collection problem previously men- 
tioned. 

By explicitly building a continuation, however, task switch becomes 
the same as invoking a continuation that does no t  implicitly reference the 
old task. The continuation created when the task is created is an initial 
stack frame and task switch (Le. invoking a continuation instead of an 
ordinary procedure) causes the stack to be switched as well. 

5.2. A l te rnat ive  Ways  to Create a Task 

The task creation code is modularized into the four steps described 
earlier. Actually, utilizing these individual components is unusual since the 
flexibility available using the policy argument to Spawn-Task is sufficient 
for most problems. To make this power easily available, two alternative 
policies are included in the scheduler package along with the default policy. 

The standard policy, parent-gets-priority is very efficient: 

(define (parent-gets-priority new-task) 
(put-work new-task) 
'CHILD-QUEUED-FOR-EXECUTION) 

This policy gives processing priority to the parent task: the task that 
calls Spawn-Task continues to run, while the task which is created is 
scheduled for parallel execution. Since the task and its associated 
placeholder have been made and initialized by Spawn-Task, all that must 
be done is to make the new task available for computation. This is done 
using the underlying task distribution mechanism, implemented by put- 
work. In this, as in the other policies, the value returned by the policy is 
ignored by Spawn-Task but is useful in debugging the scheduler itself. 

Halstead argues, in his overview of Multilisp, ~2) that this standard 
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policy can lead to undesired performance characteristics as a SYstem 
reaches saturation. He suggests a strategy in which the parent task is 
deferred while the child task immediately begins execution. This is 
implemented using the child-gets-priority policy: 

(define (child-gets-priority new-task) 
(release-task (lambda () (run new-task)))) 

The third policy, delay-policy, marks the spawned task as delayed and 
does no t  release it for parallel execution: 

(define (delay-policy new-task) 
(set-task.status! new-task 'DELAYED) 
'OK-I-DELAYED-IT) 

Instead, the first task that touches the goal placeholder associated with the 
newly created task will release that task for execution (see Section 6). 

In addition to these three policies, there is one other case that occurs 
sufficiently often to be provided standardized support. This is the ability to 
wait for the first of a number of placeholders to return a value. This ability, 
implemented by the procedures disjoin and await-first of the scheduler, is 
the key to implementing McCarthy's amb (5) and fair-merge procedures. 
The actual code for these procedures is complicated because it must deal 
with the possibility that one of the placeholders has already received a 
value before the operation has been completed, and because more than one 
of the placeholders may eventually receive a value. Figure 8 shows a much 
simpler version that does not deal with these problems; the footnotes to the 
figure explain the most impotant omissions. Notice that disjoin itself 
returns a placeholder rather than actually waiting for the value to be 
known. 

This simplified version works by creating a task and its corresponding 
placeholder using Make-Task. The purpose of this new task is to 
propagate the value of the appropriate placeholder (the first one that 
receives a value) out to its own goal. The code to be performed when this 
new task is awakened is supplied as an explicit procedure. This is very 
similar to the processing of the normal case, except that the task has a list 
of placeholders for which it is waiting and it is added to the set of tasks 
waiting for each of these placeholders. The decision to represent the code 
as a procedure rather than a continuation here is somewhat arbitrary. It is 
easier to write as shown and the procedure will relinquish the processor 
almost instantly so that the garbage collection problem mentioned earlier 
is not an issue. 
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(define (disjoin . Placeholders) ; (i) 
(let ((My-Task (Make-Task))) 

(let ((My-Placeholder (task.goal My-Task))) 
(set-task.status! My-Task 'DISJOIN) 
(set-task.waiting-for! My-Task Placeholders) 
(set-task.code! My-Task 

(lambda (awakened-value) ; (2) 
(determine! My-Placeholder awakened-value) 
( n e x t ) ) )  

( f o r - e a c h  ; (3)  

( l a m b d a  ( P l a c e h o l d e r )  
( a d d - t o - w a i t i n g - s e t !  P l a c e h o l d e r  My-Task ) )  

P l a c e h o l d e r s )  
M y - P l a c e h o l d e r ) ) )  ; (4)  

Notes :  

1. As explained in the text, this code does not deal with a number of important  possibilities. 

2. Code to be run when this newly created task is activated (i.e, when one of the placeholder receivcs 
a value). This is one of two major  race conditions that  the complete version handles. If more t, han 
one task completes, l t y -P l aeeho lde r  may already have a value when this code is run. 

3. Add this task to the waiting-set of each of the placeholders. This is the second of the major race 
conditions. In the process of adding the task it may be discovered that  one of the placeholders 
already has a value which must then be returned instantly. 

4. The value returned by d i s j o i n  is the plaeeholder that  will ultimately receive the value of the first 
computed placeholder. 

Fig.  8. Simplif ied C o d e  for  d is jo in .  

When any of the placeholders for which this task is waiting receives a 
value (see Section 7), that placeholder is stored in this task's wake-up value 
slot and the task is made available for execution. When the task is 
activated, using the run procedure described in Section 4.2, the procedure 
stored in the code slot will be passed this wake-up value. The procedure 
will propagate it to the placeholder created by the call to disjoin, and then 
call next (see Section 4.2) to release the processor and find another task. 

The use of a task to propagate the value of the appropriate disjunct 
may seem unusual, but it improves the modularity of the scheduler code. 
This work could have been made part of the determine[ code, but this 
organization allows determine! to simply awaken tasks in a standard 
manner. Determine[ is never required to do any specialized processing on 
behalf of the tasks it awakens. 

5.3. Task T e r m i n a t i o n  

As mentioned in Section 5.1, there is a primitive continuation that 
denotes the termination of a task. As with any continuation, it receives a 
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value; this continuation treats the value as the value for the goal 
placeholder of the task. To make modifications to the system simpler, the 
handling of this and many other primitive continuations is reflected back 
into the scheduler as a call to a procedure. The standard procedure is quite 
simple since it runs as part of the task that is terminating: 

(define (end-of-computation-handler value) 
(determine! (task.goal (current-task)) value) 
(next)) 

This merely stores the final value into the goal and then locates and 
activates the next available task. Notice that by simply calling next without 
saving its own state, this task relinquishes the processor and will not be 
reactivated. 

6. S U S P E N D I N G  A T A S K  

There are three ways in which a task can relinquish the processor. It 
can explicitly relinquish the processor using resc hed u le, a procedure supplied 
by the scheduler for this purpose. An interrupt can occur and cause the 
processor to be relinquished (e.g., the initiation of a garbage collection or 
a clock interrupt). Finally, and most commonly, the task can attempt to 
touch a placeholder that does not yet have a value. 

With the utility procedures described earlier it should be easy to see 
how the first operation is performed: 

(define (reschedule) 
(release-task next) ) 

Garbage collection initiation will be described in Section 8.1. Timer inter- 
rupts are handled by calling reschedule as part of the interrupt handler. 

The remainder of this section is devoted to the third problem, touch- 
ing a placeholder. When placeholders were introduced it was stated that 
they "can be used to denote an object whose value is not yet known," and 
that the scheduler is responsible for handling an attempt to touch a 
placeholder which does not yet have a value. This mechanism has two 
parts, one implemented in the machine underlying the MultiScheme 
system, and the other as part of the scheduler. 

The underlying machine is responsible for both detecting and handling 
the simple cases related to placeholder objects. There are three different 
ways in which a placeholder can be initially noticed: 

1. The code that implements certain primitive operations (e.g. touch, 
eq?, and memq) explicitly touches objects that they m~nipulate. If 
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the object is not a placeholder, or the placeholder has a value, the 
code will retrieve the correct value and the operation proceeds 
unimpeded. The operations are all carefully written, however, so 
that if a placeholder is encountered that does n o t  have a value the 
operation can be stopped and restarted at a later time. The opera- 
tion gracefully backs out and returns the state of the system 
to what it was before the operation began. It then performs a 
call to the scheduler's await-placeholder operation (see Fig. 9). 
The result is as though the user had written a call to touch of 
the appropriate placeholder immediately prior to the call to the 
operation. 

Many primitive operations normally type-check their arguments 
for validity before doing any processing. For those operations that 
do not permit an operand to be a placeholder (e.g., arithmetic 
operations restricted to numeric data types), the normal error 
handling mechanism of MIT Scheme would cause the primitive to 
gracefully back out just as in the previous case and then invoke an 
error handling procedure. In MultiScheme, the code for these 
error handlers tests for placeholders and restarts the primitive 
automatically (i.e. without any form of trap into Scheme code) if 
the erroneous argument is a placeholder that has a value. If the 

(define (await-placeholder placeholder) 
(call-with-current-continuation 
(lambda (me) ; (i) 
(With-Placeholdsr-Locked placeholder 

(lambda (waiting-for-a-placeholder?) 
(cond ((not waiting-for-a-placeholder?) 

(me 'RESUME-COMPUTATION)) ; (2) 
((determined? placeholder) 
(unlock-placsholder! placeholder) 
(me 'RESUME-COMPUTATION))) ; (3) 

( a c t i v a t e  ; (4) 
( p l a c e h o l d e r . m o t i v a t e d - t a s k  p laceho lder )  
(lambda ( s t a t u s )  

(or  (eq? s t a t u s  'DELAYED) (eq? s t a t u s  'PAUSED))) 
'NO-RELEVANT-WAKE-UP-VALUE) 

( s t o r e - m y - s t a t e  me (lambda (My-Task) ; (5) 
( s e t - t a s k . s t a t u s !  My-Task 'WAITING) 
(set-task,waiting-for! My-Task placeholder) 
(add-to-waiting-set! placeholder My-Task))))) 

( n e x t ) ) ) )  ; (6) 

See the text of Section 6 for footnotes. 

Fig. 9. Code for Await-Placeholder. 
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argument is a placeholder that does not yet have a value then 
instead of invoking one of the Scheme error handling procedures 
it invokes the scheduler's await-placeholder procedure. 

3. Compiled code contains calls to the primitive operation touch 
whenever it must ensure that an object (argument to an in-line 
coded primitive, predicate of a conditional, or function to be 
applied) is not a placeholder and cannot, at compile time, deduce 
this. Touch, which is one of the operations described in case 1, 
merely tests its operand to see if it is a placeholder. If it is not, the 
operand is returned. If it is a placeholder with a value, that value 
is returned. The net result is that an attempt to use a placeholder 
whose value is already known will proceed unimpeded, but one 
whose value is still undetermined will cause a call to the await- 
placeholder procedure. The exact placement of these calls to 
touch is a topic for further investigation. Placing them earlier in 
the code can frequently make the code more efficient but it reduces 
the potential for parallelism. 

In each case, the underlying machine handles placeholders that have 
already received a value but calls the await-placeholder procedure to 
handle placeholders that do not have a value. The job of await- 
placeholder, then, is to save the state of the current task if it needs to 
continue running and add this task to the waiting-set of the placeholder. It 
then releases the processor by calling next. 

The code for await-placeholder is shown in Fig. 9. The following 
description of its operation is keyed to the numbers in the figure. 

1. Create a continuation, me, that holds the state of the current task. 
Attempt to lock the placeholder for which the task is waiting. 

2. If the placeholder couldn't be locked, just resume the current task. 
This can occur if the placeholder has received an immutable value 
prior to reaching this point in the code. The placeholder would be 
subject to the splicing operation during variable reference or 
garbage collection. After the lock is acquired this splicing will no 
longer occur. 

3. If the placeholder has a value, unlock the placeholder and resume 
the current task. This can occur if the placeholder has received a 
mutable value before reaching this point in the code. In this case, 
the placeholder is not subject to splicing so it will have been 
locked, but there is no need to await the arrival of a value. 

4. Activate the task that is calculating the value for the placeholder 
if it is inactive. This arises either because the placeholder was 
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created by the delay-policy and hence the task has status delayed, 
or because the task has been suspended by pause-everything (see 
Section 8.2) and has status paused. 

At this point, the task will definitely be releasing control of the 
processor. The state of the task, me from step 1, is saved away in 
the current task data structure. Mark the task as waiting and add 
it to the waiting-set of this placeholder. 

Unlock the placeholder (by exiting the with-placeholder-locked 
procedure). Find another task and start executing it. Notice that 
this call to next is no t  executed when control returns to the 
original task using the me continuation created in step 1 since it is 
part of the body of (lambda (me)...) (count the parentheses...). 

7. S T O R I N G  T H E  V A L U E  OF A P L A C E H O L D E R  

Storing a value into a placeholder is a straightforward operation, 
although the details are somewhat complicated. The essential work is to 
store the value into the placeholder data structure and activate any tasks 
that may have been waiting for this value to appear. The detailed code is 
shown in Fig. 10. The following notes describe the fine details of its opera- 
tion. They are geared to the numbers appearing in Fig. 10. Most of the 
complexity comes from the need to keep the placeholder locked for as short 
a time period as possible, and the possibility of a race if two tasks attempt 
to supply values to the placeholder nearly simultaneously. 

1. The auxiliary procedure update-placeholder! makes the changes 
necessary to the placeholder data structure to reflect the fact that 
it now has a value. 

2. What- to-do will contain one of three procedures to be performed 
after the placeholder is unlocked in step 7. The three procedures 
are ( a ) a n  error procedure from step 3; (b)awaken the waiting 
tasks from step 3; and (c) do nothing from step 6. 

3. With the placeholder locked, test whether it already has an 
immutable value. If so, return a procedure that will cause an error 
in step 7. 

4. If the placeholder did not previously have a value, remember the 
tasks that are waiting for the value of this placeholder and then 
update the placeholder. 

5. Since the placeholder didn't have a value before, in step 7 we must 
activate each task that is waiting for this placeholder. The acti- 



394 Mil ler 

(define (determine! placeholder value allow-mutations?) 
(define (update-placeholder!) ; (i) 

(set-task.status! (placeholder.motivated-task placeholder) 
'DETERMINED) 

(set-placeholder.value! placeholder value) 
(set-placeholder.determinsd?! placeholder 

(if allow-mutations? 'MUTABLE #T))) 
(define what-to-do ; (2) 

(With-Placeholder-Locked placeholder 
(lambda (still-a-placeholder?) 

(eond ((or (not still-a-placeholder?) 
(immutable? placsholder)) 

( l ambda  ()  ; (3) 
(error "Immutable Placeholder" placeholder))) 

((undetermined? placeholder) 
(let ((waiters 

(placeholder.waiting-set placeholder))) 
(update-placsholder!) ; (4) 
(lambda () ; (5) 

(for-each 
(lambda (task) 

(activate task 
(lambda (status) 

(or (eq? status 'WAITING) 
(eq? s t a t u s  'DISJOIN))) 

placeholder)) 
waiters)))) 

(else (update-plaeeholdsr!) ; (6) 
( l ambda  ()  ' O K ) ) ) ) ) )  

(what-to-do) ; (7) 
value) ; (8) 

See the  t e x t  of  Sec t ion  7 for footnotes .  

Fig. 10. Code  for de t e rmine !  

vation test permits only tasks that are waiting for a placeholder 
(i.e., those with status waiting or disjoin) to be awakened. 

6. If the placeholder previously has a mutable value, then it can't 
have a set of tasks waiting for its value to appear. Thus, in step 7 
we don't need to take any special action. 

7. Now that the placeholder is unlocked, perform whatever work is 
necessary. 

8. The value returned by determine! is (arbitrarily) the value that 
has been given to the placeholder. 



Implementing a Scheme-Based Parallel Processing System 395 

8. PROCESSOR C O O R D I N A T I O N  

MultiScheme provides two methods, global interrupts and syn- 
chronizers, for coordinating the activities of processors. Unlike 
placeholders, which coordinate the activity of tasks--logical processes 
generated by running progams--these two operations deal with the physi- 
cal processing units of the hardware. As such, they are more often used by 
the MultiScheme system itself than by application programs. The two 
operations, while not necessarily novel, have the virtues of simplicitly and 
compatibility. They were motivated by the difficulty of initiating a garbage 
collection, but they serve as a base for higher-level constructs (see the 
examples of Section 8.2 and 8.3). 

8.1. Star t ing Garbage Col lect ion 

One of the early problems encountered in moving from a sequential 
simulation of MultiScheme to a truly parallel implementation was modify- 
ing the mechanism used to initiate a garbage collection. MultiScheme, like 
sequential MIT Scheme, uses a stop-and-copy garbage collector, although 
MultiScheme's garbage collector uses a parallel algorithm. The subsequent 
discussion, with only slight modification, applies equally well to initiating 
the space flip in a real-time copying garbage collection algorithm. 

In MIT Scheme, garbage collection is initiated in three phases, using 
a system modeled after a hardware priority interrupt mechanism: 

Interrupt Request 

During some operation the processor notices that it is low on memory 
and sets a bit requesting a garbage collection interrupt. 

Interrupt Detect 

The interpreter and compiled code periodically poll the interrupt bits. 
A pending interrupt is serviced if no higher level interrupt is pending 
or in progress. 

Interrupt Service 

Before executing the next instruction the machine calls the interrupt 
handler for the current interrupt level, a procedure supplied by the 
Scheme runtime system. The level of the interrupt determines which 
handler to call, and there is a level devoted to garbage collection 
interrupts. 

In moving to a parallel-processor hardware base there was no need to 
modify the basic interrupt mechanism but some of the details were 
modified. Because all of the processors share a common address space for 
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the heap it is essential that they cease computing before the garbage collec- 
tor begins relocating objects. The system must, therefore, support some 
mechanism for forcing all of the processors to synchronize. The ability to 
initiate such global synchronization from software is essential to several 
system services (see the examples of Sections 8.2 and 8.3). 

Only three modifications to MIT Scheme are used in MultiScheme to 
provide coordination among the processors. The interrupt levels intersperse 
global interrupts that are pertinent to all processors with local interrupts 
that are pertinent to the current processor only. The procedure global- 
interrupt allows any processor to interrupt the others. And synchronization 
objects permit all processors to proceed in unison (known as barrier syn- 
chronization). 

The new operation global-interrupt is the software interface that 
initiates a global interrupt: 

(global-interrupt priority-level interrupt-handler all-clear?) 

The interrupt-handler is a procedure that is to be executed by all the 
other processors. Because a global interrupt requires the cooperation of all 
processors, initiating such an interrupt must be serialized. A processor 
receives permission to initiate a global interrupt only when no interrupt 
(local or global) of a higher priority is pending. At that time, it calls the 
all-clear? procedure to determine whether or not the interrupt should 
actually be initiated. This test is used, for example, to guarantee that a 
garbage collection global interrupt is issued exactly once even though the 
need for it may be detected independently by multiple processors. The 
value returned by a call to global-interrupt is the value returned by all- 
clear? so the processor issuing the interrupt can determine whether or not 
the interrupt was actually generated. 

Global-interrupt returns control to the caller only after the interrupt 
is initiated or the all-clear? procedure indicates that no interrupt should 
take place. It guarantees that all of the processors will stop their ordinary 
work as soon as they poll their own interrupt bits, an event that the inter- 
preter and compiler force to occur fairly often. This alone, however, is not 
sufficient to solve the problem of starting a garbage collection. Before any 
processor can begin the actual garbage collection operation, all processors 
must be entering the garbage collection operation. The global interrupt 
mechanism provides a way of initiating an action, but does not provide 
synchronization. 

Instead, MultiScheme provides a pair of procedures for this purpose: 
make-synchronizer and await-synchrony. These jointly provide a 
mechanism for creating a cooperative barrier synchronization. To syn- 
chronize all of the processors, one processor makes a synchronizer object 
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and then forces all of the other processors to call await-synchrony with 
the synchronizer as argument. When all processors are waiting for syn- 
chrony on the same synchronizer object they all return from the call to 
await-synchrony. Typically, one processor makes one or more syn- 
chronizers and then uses global-interrupt to force the other processors to 
begin waiting on them. 

While separating these two operations can cause deadlocks if they are 
used improperly, the operations do serve two distinct purposes. The exam- 
ples of the next two sections show how the separate operations can be used 
to provide higher-level operations that are not as easily provided if the low- 
level operations are bundled together. 

8.2. Pause-Everything 

Clamen ~t3) describes an early investigation into debugging tools for 
dealing with the parallelism of MultiScheme programs. He identified a 
variety of situations requiring a program to temporarily stop all other 
work on the system, perform some action, and then allow the work to 
proceed. In order to provide this ability, he implemented the original 
pause-everything procedure. A new implementation extending Clamen's 
original version is depicted in Fig. 11, simplified for purposes of explana- 

(define (pause-everything) 
(let ((drain-synch (make-synchronizer)) 

(proceed-synch (make-synchronizer))) 

(define (int errupz-handler) 
(saving-state ; (i) 
(lambda () 

(await-synchrony drain-synch) 
(await-synchrony proceed-synch) ) ) ) 

(global-int errupt high-priority 
interrupt-handler (lambda () #T)) 

(await - synchrony drain-synch) 
(let ((pool (drain-work-pool))) ; (2) 

(await -synchrony proceed-synch) 
(make-returned-object pool)))) ; (3) 

Notes: 

I. Saving-State stores away the state of the task currently executing on this processor and places 
it in the work pool. It then calls the procedure which is its only argument. Saving-State never 
returns to its caller: it looks for work from the pool when the argument procedure is finished. See 
the discussion in Section 4.3 and the code in Figure 7. 

2. Drain-work-pool  empties the pool of tasks awaiting processors and returns a weak list of the tasks 
removed. See the description of drain-work-pool  in Section 3.3. 

3. Make-z-eturned-object creates the message-accepting object that is the result of a call to 
pause-everything.  See the discussion of make-returned-object  in Appendix A and the code 
in Figure 13. 

Fig.  11. Simplified Code  for Pause-Everyth ing .  
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tion. It provides a message-passing interface to an object representing the 
tasks that were available for execution at the time of the call to pause- 
everything. This interface is described in Appendix A. A procedure with 
structure very similar to pause-everything but without this elaborate inter- 
face is also used to initiate garbage collection. 

Pause-everything uses both the global interrupt mechanism and the 
synchronizers. A global interrupt is necessary to force the other processors 
to save their state and become idle. The synchronizers are used to divide 
the work into two phases. 

The first phase is initiated by the call to global-interrupt and ends 
when all processors have arrived at the first synchronization point. The 
interrupt guarantees that all processors except the one that called pause- 
everything will begin executing the code in interrupt-handler. Thus the 
other processors save away the state of the task they are executing and 
place it in the pool of work to be performed. They then wait for all 
processors to execute (await-synchrony drain-synch). When all the 
processors arrive at this point, the tasks available for execution (including 
the ones that were formerly executing) have been saved in the work pool. 

The processors proceed past the synchronization point, beginning the 
second phase. All but the initiating processor will arrive immediately at the 
second rendezvous point, the call to (await-synchrony proceed-sync). 
The initiating task, however, first saves away the contents of the work pool 
in the variable pool and empties the pool. All the processors again rendez- 
vous, ending the second phase. 

The initiating task makes the message accepting object based on the 
value of pool by calling the procedure make-returned-object shown in 
Fig. 13. This becomes the value of the original call to pause-everything. 
The other processors, however, have now finished the procedure that is the 
argument to saving-state. But saving-state does not return to the 
procedure that called it. Instead it tries to get work from the (now empty) 

(define (within-task task thunk) 

(with-task-locked task 
(lambda (task-still-runnable?) 

(if (eq? (task.status task) 'RUNNING) 
(begin 

(set-task.status! task 'WITHIN-TASK) 
(set-task.code! task thunk) 
(global-interrupt high-priority 
(lambda () (if (eq? (current-task) task) (reschedule))) 
(lambda () #T))) 

...)))) 

Fig. 12. Simplified Code forWithin-Task. 
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(define (make-returned-object the-queue) 
(lambda (message) 

(cond ((eq? message 'ANY-TASKS?) ; (i) 
(and (not (eq? the-queue #T)) 

(not (eq? the-queue ' ( ) ) ) ) )  
((eq? message 'RESTART-TASKS) ; (2) 
(if (eq? the-queue #T) 

(error "Attempt to re-use a pause object!") 
(begin 

(for-each ; (3) 
(lambda (task) 

(activate task 
(lambda (status) (eq? status 'PAUSED)) 
'NO-RELEVANT-WAKE-UP-VALUE) 

the-queue)) 
(set! the-queue #T)))) 

((eq? message 'THE-TASKS) '; (4) 
(if (eq? the-queue #T) '() the-queue)) 

(else (error "Pause: unknown message" message))))) 

Notes :  

t. Code to handle the Any-Tasks? message. 

2. Code to handle the Restart-Tasks message. 

3. If this is the first time the restart-tasks message is received, any tasks that are still paused are 
activated. Notice that the code for a w a i t - p l a e e h o l d e r  shown in Figure 9 will have activated any 
of these tasks that were touched after the call to pause-every th ing .  Hence, the test here. 

4. Code to handle the The-Tasks message. 

Fig. 13. Make-Returned-Object ,  support for pause-everything. 

work pool. So at this point, the initiating task is still running on the 
initiating processor. All the other processors have relinquished the task 
they were executing and are waiting for more work. The system has 
"paused." 

An interesting detail has been deliberately omitted in this description. 
What should happen if, while other work is suspended, the running task 
touches the placeholder associated with one of the suspended tasks? While 
there is no obviously correct answer, the actual MultiScheme system marks 
these suspended tasks paused. Touching a placeholder that is marked 
paused is handled by the scheduler in exactly the same way the scheduler 
handles touching a placeholder marked delayed: the associated task will be 
reactivated (see the code for await-placeholder in Fig. 9). One of the 
advantages of writing the scheduler in MultiScheme is that such decisions 
can be easily changed. For example, it is quite easy to add a "scheduler 
hook" to allow users to specify their own way of handling this situation. 

828/17/5-3 
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8.3. W i t h i n - T a s k  

The final example of processor coordination is a critical part of the 
user interface, allowing the user to interact with previously started tasks. 
The primary use of this facility occurs in the top level interaction between 
a user and the MultiScheme system. In MIT Scheme, a user can at any 
time interrupt execution of a program and create an interaction environ- 
ment within the state of the program at the time the interrupt was serviced 
by issuing a "breakpoint interrupt." A user can also interrupt the program 
and force it to return back to an earlier interaction environment, effectively 
aborting the current computation. 

The direct extension of this into MultiScheme would allow a user to 
interrupt the system and interact with any one of the tasks in the system 
at the time of the interrupt. Because a task has state information visible to 
the programmer it is important that the correct task actually interact with 
the user. As a result, there must be some way to force a selected task to call 
the procedure that implements the interaction environment or invoke a 
continuation that aborts the current computation. 

Within-task is designed to facilitate this and other similar operations. 
Some of Clamen's debugging tools, for example, rely on within-task in 
order to report the progress of a program back to the user. A simplified 
version of this procedure is shown in Fig. 12. It expects two arguments, 
a task and a thunk, and forces the task to execute the thunk before 
continuing with whatever processing it is currently doing. The operation of 
this procedure is intertwined with the scheduler (recall the code for store- 
my-state in Fig. 2) but the overview demonstrates a different use of the 
global interrupt mechanism. 

Within-task works by testing whether the task is currently executing 
on one of the processors. If so, it marks the task indicating that it must be 
forced to execute the specified code and then initiates an interrupt on all 
processors, forcing the one running the chosen task to reschedule the task 
for later execution. Recall that the procedure reschedule uses store-my- 
state to store the state of the task in such a way that the specified code is 
executed before the task resumes its current computation. 

Unlike the earlier uses of global interrupts, this one does not need any 
synchronization of the processors. The purpose of the interrupt is merely to 
get the attention of a particular processor without knowing in advance 
which one. All of the processors are briefly interrupted from their duties to 
process the interrupt, but they can resume immediately and independently. 
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9. C O N C L U S I O N  

The scheduler is the "heart" of the MultiScheme system, and is 
designed as a flexible and extensible mechanism for supporting a variety of 
experiments. The primary data structures of the scheduler are the 
placeholder and the task. Using these data structures, a variety of ways of 
creating, suspending, and managing tasks have been implemented and 
used. The ease of experimentation has facilitated the construction of a 
number of different approaches to parallelism, including speculative com- 
putation and data flow simulation. 

Most of the material presented is "nuts and bolts engineering" but 
serves to demonstrate the ease with which parallel processing support can 
be described within an existing language framework. The small number 
of changes required to the sequential Scheme language is particularly 
pleasing. 

A P P E N D I X :  S INGLE T A S K  I N T E R L U D E S  

The scheduler supports the ability to switch from a parallel processing 
mode where many tasks are simultaneously active to one in which only a 
single task is active. This operation, embodied in the procedure pause- 
everything, has already been discussed in Section 8.2 and the code is 
shown in Fig. 11. This section presents the underlying support routine that 
was omitted in that earlier version. 

As mentioned in the earlier discussion of pause-everything its job is 
to suspend all other tasks on the system. It returns as its value an object 
that encapsulates these other tasks through a "message passing" interface. 
The returned object is implemented as a procedure of one argument, the 
message. It accepts three messages. 

Any-Tasks? 

Returns a boolean answer of # T  is there were other tasks running at 
the time of the call to pause-everything and they have not yet been 
restarted. 

The-Tasks  

Returns a list of the tasks that were suspended by the call to pause- 
everything provided they have not yet been restarted. 
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Restart-Tasks 

Activates the tasks that were suspended by the call to pause- 
everything by releasing them to the underlying task distribution 
mechanism. It can be called only once. 

The procedure Make-Returned-Object, shown in Fig. 13, creates the 
message accepting object that will be returned by pause-everything. 
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