
International Journal of Parallel Programming, Vol. 17, No. 5, 1988

Implementing a Scheme-Based
Parallel Processing System1
James S. Miller 2

Received August 1988," Revised March 1989

The Scheme language can be converted into a parallel processing language by
adding two new data types (plaeeholders and weak pairs), two processor
synchronization primitives, and a task distribution mechanism. The mechanisms
that support task creation, scheduling, and task synchronization are built using
these extensions and features already present in the sequential language.
Implementing the core of the parallel processing component in Scheme itself
provides testbed for a variety of experiments and extensions.

MultiScheme, the system resulting from these extensions, supports
Halstead's future construct as the simple model for parallelism. By revealing the
underlying placeholders on top of which this construct is built, Multischeme
supports a variety of additional parallel programming techniques. It supports
speculative computation through a simple procedural interface and the
automatic garbage collection of tasks. The qlet and qlambda constructs of the
QLisp language are also easily implemented in MultiScheme, as are the more
familiar fork and join constructs of imperative programming.

KEY WORDS: MultiScheme; parallel Lisp; implementation; future construct;
placeholders.

1. INTRODUCTION

MultiScheme (1) is a fully operational parallel-programming system based
on the Scheme dialect of Lisp. Like its Lisp ancestors, MultiScheme

t This research was supported in part by the Defense Advanced Research Projects Agency and
was monitored by the Office of Naval Research under contract numbers N00014-83-K-0125,
N00014-84-K0099, N00014-86-K-0180, and MDA903-84-C-0033. Additional funds and
resources were provided by BBN Advanced Computers Inc., and the Hewlett-Packard
Corporation. The work was performed as part of the author's dissertation research at the
Massachusetts Institute of Technology.

2 Brandeis University, Department of Computer Science, Waltham, Massachusetts 02254.

367

0885-7458/88/1000-0367506.00/0 �9 1988 Plenum Publishing Corporation
828/17/5-1

368 Miller

provides a conducive environment for prototyping and testing new
linguistic structures and programming methodologies. MultiScheme sup-
ports a diverse community of users who have a wide range of interests in
parallel programming. MultiScheme's flexible support for system-based
experiments in parallel processing has enabled it to serve as a development
vehicle for university and industrial research. At the same time, Multi-
Scheme is sufficiently robust, and supports a sufficiently wide range of
parallel-processing applications, that it has become the base for a com-
mercial product, the Butterfly Lisp System produced by BBN Advanced
Computers, Inc.

MultiScheme, in the tradition of the Scheme language, is designed as
a "minimalist" system. It provides a small but powerful set of constructs
from which a researcher can build layers of language suited directly to a
particular application. This paper describes the innermost core of the
MultiScheme system, the procedures (written in Scheme) that implement
the critical operations of the system. Collectively these procedures are
referred to as "the scheduler," although they provide a greater range of
services than this name implies.

1.1. Placeholders and the Future Construct

From a simple user's point of view, MultiScheme is just a Scheme
system with one important addition: the future construct derived from
Halstead's MultilispJ 2~ This gives the programmer a way to annotate
opportunities for parallelism. The special form future can be wrapped
around any expression in the language, and indicates that the enclosed
expression is permitted to run in parallel with the surrounding expression.
MultiScheme requires the use of a specific construct to express oppor-
tunities for parallelism because Scheme permits side-effects, and thus a cer-
tain amount of control is desirable. Furthermore, the minimalist approach
taken by the Scheme community argues in favor of a programmatic inter-
face to parallelism in order to form a convenient base for experimentation
in the design of automated tools for inserting parallelism. Initial explora-
tion into building such tools has been undertaken by Gray ~3) and Wang/4)

As a simple example, the doubly recursive calculation of [ibonacci can
be conveniently described in MultiScheme:

(define (fib n)
(i f (< n 2)

1
(+ (future (fib (- n I)))

(future (fib (- n 2)))))).

Implementing a Scheme-Based Parallel Processing System 369

In order to implement the future construct an important change must
be made to Scheme--the introduction of a new data type called the
plaeeholder. A placeholder is a data structure used to represent a value that
has not yet been computed. When the actual value of a placeholder is
required (in the predicate of an if expression, or as an argument to a strict
primitive operation, for example), the computation waits for the value to
be computed. Testing for the availability of a value is known as touching
the placeholder. This provides a form of synchronization very similar to
that found in dynamic data flow models of computation. In order to allow
users to add synchronization points not automatically supplied by the data
flow model, the primitive operation touch (a strict identity procedure) is
available.

Placeholders, without parallelism or the future construct, are a power-
ful addition to Scheme. They are the basis for adding objects that behave
like Prolog's logic variable, provide for controlled normal order evaluation,
and allow the implementation of McCarthy's arab (5) operator, and a fair-
merge operation. In addition, by separating the creation of tasks from the
creation of placeholders (a possibility novel to MultiScheme), it is possible
to implement the constructs of QLisp (6) as simple macros. All of this work
is described in Ref. 1.

Given an implementation of placeholders it is straightforward to
implement future:

1. Create a placeholder to represent the value of the embedded
expression.

2. Create a task to compute the value of the embedded expression
and store it in this placeholder. The act of storing a value into a
placeholder is called determining its value.

3. Return this placeholder as the value of the future expression.

In fact, future in MultiScheme is a macro that expands as follows:

(future exp) -~ (spawn-task (lambda () exp) parent-gets-priority)

The procedure spawn-task is discussed in Section 5.1; its job is to accom-
plish the three steps previously described. The procedure parent-gets-
priority, also discussed later, is the default scheduling policy to be used
when new tasks are created--the task that executed the future expression
retains control of the processor and the newly created task is scheduled for
execution at another time.

370 Miller

1.2. Speculative Computation and Garbage Collection

One area of particular interest in the development of MultiScheme has
been the support of speculative computation. That is, the ability to spin off
in parallel multiple problem solving approaches in the hope that (at least)
one of them will succeed. Most uses of parallelism strive to perform faster
than the comparable sequential algorithm. By contrast, speculative
parallelism attempts to perform a computation as fast as the fastest method
that can solve the problem--even where there are multiple techniques to
choose from and no fast way to choose among them. By extension,
speculative computation also allows the predicate of a conditional expres-
sion to be computed in parallel with both the consequent and the alter-
native expressions. Both Katz ~7) and Knight ~8~ have proposed architectures
to support speculative computation in a Lisp with side-effects. Katz has, in
fact, used MultiScheme as a base for construction of a simulator of his
ParaTran architecture. While his work does not use MultiScheme's
parallelism, it uses the underlying placeholder mechanism for recording
references to variables and data structures. Katz's work requires the ability
to modify the value of a placeholder even after it has been computed. For
this reason, MultiScheme marks every placeholder as either having no
value, having an immutable value (the usual case), or having a mutable
value.

Support for speculative computation is available both directly and
indirectly from MultiScheme. As described in Section 5.2, the scheduler for
MultiScheme provides a procedure, disjoin, that allows a task to wait for
any one of a number of values to be computed. Less directly, Multi-
Scheme's data structures are designed to support the garbage collection of
tasks that are computing a value that is no longer needed. The ability to
garbage collect processes (proposed by Baker and Hewitt (9)) supports
speculative computation by relieving the user of a pair of worries. The user
need worry neither about forgetting to destroy a task nor about the conse-
quences of prematurely destroying the task. Just as a user of Pascal must
worry about creating dangling pointers, a user of a parallel processing
system must worry about killing a process prematurely and creating
deadlock. MultiScheme's garbage collector automates the removal of
"useless" tasks, eliminating this worry.

The details of garbage collection are beyond the scope of this paper,
but parts of the process are directly relevant. The job of the garbage collec-
tor is quite simple: it starts with the root set of objects and computes the
transitive closure of this set under the data access operations. Any memory
not in this set is garbage and is released for reuse. This is a very conser-
vative approach to the definition of "garbage," and assures the programmer

Implementing a Scheme-Based Parallel Processing System 371

that no accessible object will be released inadvertently. Sometimes,
however, there is a need to construct data structures that don't force reten-
sion of their contents. In order to support placeholders, for example, each
placeholder records the tasks that have suspended execution because they
touched it before it had a value. When the placeholder's value is computed
these tasks will resume execution. The fact that a task is suspended,
however, is no reason to keep the task in existence indefinitely: it may have
been created to (speculatively) compute a value that is already known.
Thus, the data structure that records the suspended tasks must not cause
the garbage collector to keep the tasks.

MultiScheme supports these data structures by supplying a weak pair
data type (1~ containing two parts. Unlike an ordinary pair the car (left
half) of a weak pair reverts to a particular value after garbage collection if
the object formerly stored there is no longer needed by any other data
structures in the system. The implementation of weak pairs is quite simple,
since MultiScheme uses a copying garbage collector. The cdrs (right half)
of weak pairs are used during the transitive closure computation, but not
the cars. An imperfect copy of the weak pair is made and the original
storage is used to maintain a list of all weak pairs encountered during
garbage collection. A post-pass updates the cars of the weak pairs after the
transitive closure has been computed.

The garbage collector also provides one other very important service
for MultiScheme. Since it must traverse all of the data structures in the
system periodically, it can increase the efficiency of a program by replacing
all placeholders by their values once the values are known. This process,
called splicing, is actually performed in MultiScheme in two different ways:
through the garbage collector, and whenever a variable is referenced. That
is, every variable reference tests to see if the value of the variable is a
placeholder. If so, and if the placeholder has a value, then the reference
returns the value rather than the placeholder. The decision to place splicing
in variable reference is questionable since it slows down all variable referen-
ces. In MIT Scheme a test is needed at this point for other reasons, and the
same test suffices to detect placehotders. Thus, in MIT Scheme there is no
performance penalty for the test and it can improve performance when
placeholders are heavily used.

Splicing, whether by the garbage collector or by variable reference,
does introduce one problem. Since the scheduler is written in Scheme, any
placeholder it manipulates is subject to splicing. This would make the
coding of the scheduler quite difficult, so a special exception is made. Every
placeholder contains a lock, and splicing only occurs when the placeholder
has a value, the value is marked as immutable, and the placeholder isn't
locked.

372 Miller

1.3. Assumptions and Extensions

There is a fine line between distributed and parallel computing, and
MultiScheme deliberately explores only parallel computation. Thus Multi-
Scheme is concerned with computation using multiple processing elements
where performance issues related to the division of labor far outweigh those
related to communication cost. As a result of this decision we assume that
all of the processors use a single shared heap area, with roughly equal time
required by each processor to access all items on the heap. We continue to
adopt the Scheme philosophy that objects are, in general, heap allocated
and that procedure call is always by transfer of references to objects (i.e.
pointers) rather than by copying.

In addition to this assumption, MultiScheme requires four extensions
to the existing MIT Scheme language. Each of these is described in detail
later in this paper.

1.3. 1. Placeholders

The single most extensive change is the addition of placeholder
objects. Much of this paper is directly related to this extension, since the
placeholder is the central data structure maintained and modified by the
scheduler. In addition to the scheduler, however, there is some support
required from the underlying machine. This support comes in two forms:
detection of placeholders, and inter-processor locks.

The detection of placeholders is described in Section 6 along with the
implementation of await-placeholder. Most strict primitive operations
(whether compiled, interpreted, or in-line coded) must test for placeholders
and either extract the value from the data structure or call the scheduler's
await-placeholder procedure. Only primitive operations that deal with the
placeholder data structure itself are exempt from this requirement. The
same testing applies to the value of any expression appearing as an
operator of a combination (procedure call) or the value of a predicate in
a conditional expression.

The scheduler assumes the existence of four procedures to lock and
unlock placeholders and tasks. Measurements have shown that collisions
are extremely rare under normal conditions so we have implemented them
as spin locks, kock-placeholded either immediately returns # F (i.e. false,
if its argument is not a placeholder) or it waits until it is able to acquire
the lock that is part of the placeholder data structure (see Figure 1) and
returns a value of # T (i.e. true). Lock-task! is similar to Iock-
placeholded. In MultiScheme, Iock-placeholded is provided as a
primitive because of the complexity of writing the correc t code to deal with
a potential race between one processor setting the value of a placeholder
and another processor attempting to lock it.

Implementing a Scheme-Based Parallel Processing System 373

1.3.2. Task Distribution

The choice of a mechanism to distribute tasks to processors is fre-
quently highly dependent on the particular hardware and communications
technology. The scheduler abstracts away from this detail by assuming the
existence of three procedures: put-work to release a task for (possibly)
parallel execution, get-work to retrieve a task awaiting a free processor,
and drain-work-pool to return a list (made from weak pairs) of the tasks
currently awaiting free processors. This last operation is not guaranteed to
be atomic, but a particular task will either be returned by a call to get-
work or drain-work-pool, but not both.

1.3.3. Inter-processor Communication

Section 8 provides the motivation and description of MultiScheme's
three procedures for coordinating the work of the processors within the
system. MultiScheme users are encouraged to think in terms of logical pro-
cesses (tasks) and leave the control of the processors to the system. These
three procedures form the support required by the system: global-interrupt
provides a means for initiating an interrupt sequence on all other pro-
cessors; and the pair make-synchronizer and await-synchrony allow all
the processors to perform a barrier synchronization (i.e. all processors must
call await-synchrony with the same synchronizer object before any
processor is allowed to proceed from its call to await-synchrony).

In addition to these extensions, MIT Scheme (1~ itself contains a large
number of extensions to the Scheme language. (111 Most of these extensions
are not needed to implement the procedures described here. The code in
this paper depends only on weak pairs (described earlier) and the following
items:

(within-continuation continuation thunk)

This procedure restores the state of the machine from the continua-
tion and then executes the thunk. If the t hunk returns, its value is passed
to the continuation. This provides a mechanism for changing the control
state of the processor just prior to executing a piece of code--in implemen-
tation terms, it releases the current stack and restores the stack stored in
continuation before calling thunk.

th e- error- conti n u atio n

This is a continuation made when MIT Scheme is first started. It has
a minimal control state, and can be used in conjunction with within-
continuation to return to a control state that will retain a minimum of
information after garbage collection.

374 Miller

1.3.4, Primitive Continuation Handlers

MIT Scheme has a number of primitive continuations that ordinarily
cuase errors to occur. Users can supply procedures to be called in place of
the default handlers for these continuations. In the case of MultiScheme,
the primitive continuation used when a task completes its work is replaced
by one that determines the corresponding placeholder and terminates the
task.

2. O V E R V I E W OF THE SCHEDULER

The MultiScheme scheduler provides a convenient interface, in the
form of a package of procedures, between MultiScheme programs and the
underlying machine. Some of the procedures are invoked by programs
written in MultiScheme while others are invoked as part of the trap or
interrupt handling of the machine. The scheduler is itself written in
MultiScheme and is relatively small: 20 pages of code including utility
routines. This has proven to be an important factor in the development of
MultiScheme, providing a localized and flexible base for a number of
experiments with the nature of parallel computing.

This paper discusses each of the major operations supported by the
scheduler: task creation (Section 5), task suspension and task switch (Sec-
tion 6), storing a value into a placeholder (Section 7), and lransition from
parallel processing to single task execution (Section 8.2). The rough outline
of the scheduler--the services it supports and the interrelationship between
these services--has proven quite robust over time. Even as the system grew
to support more parallel programming styles, the core of the scheduler as
described here has remained almost constant. The scheduler was originally
intended to be, and remains, a highly flexible body of code. The scheduler
described here is the "standard" scheduler as it currently exists. As new
applications are developed, driving the system toward new modes of com-
putation, the data structures of the scheduler are modified to accommodate
the new requirements. Users are encouraged to examine and understand
the scheduler, and feel free to modify it for their own needs. Naturally, such
modifications must be undertaken with a good deal of care. But these
modifications have proven useful in the past and have in some cases been
formalized and added to the standard MultiScheme scheduler.

The presentation is roughly bottom up, describing the data structures
in Section 3, general utility routines in Section 4, and then the user-visible
routines. In order to avoid an overwhelming amount of detail the examples
are simplified versions of the actual procedures in the scheduler. They pre-
sent the important core of each procedure, and should be considered more
closely related to pseudo-code than to fully worked out implementations.

Implementing a Scheme-Based Parallel Processing System 375

In many cases the versions presented here will not work correctly in the
actual implementation of MultiScheme. This comes primarily from two
reasons: race conditions and name changes. The race conditions that exist
here are easily resolved using standard programming techniques. The detail
required to include the solutions merely obscures the core ideas of the
scheduler. Readers interested in the complete versions of these procedures
should contact the author for a current version of the scheduler code.

3. SCHEDULER D A T A STRUCTURES

Much of the scheduler procedures' work revolves around the correct
maintenance of the data structures that implement placeholders, tasks, and
a pool of tasks that are ready to run. For this description, all access to data
structures is assumed to be through mutators and selectors for each part of
the structure. Thus, corresponding to the goal slot of a task data structure
there are two procedures: task.goal returns the goal of a given task and
set-task.goall stores a new goal into the task data structure.

The design of these data structures is often motivated by a desire to
garbage collect tasks (9) that are no longer computing useful values. These
tasks arise largely from the use of speculative computation techniques. For
a description of these techniques and the difficulties involved in garbage
collecting tasks, see Refs. 1 and 12.

3.1. Placeholders

Placeholders are the primary vehicle connecting the scheduler, and
hence programs written in MultiScheme, with the underlying support for
parallel processing. Placeholders are created by a scheduler procedure, nor-
mally as part of the task creation process (see Section 5). Supplying a value
for a placeholder (called determining the placeholder) is also supported by
a scheduler procedure (determine!, see Section 7). Detection of place-
holders and automatically forcing them is built into the primitive opera-
tions and the underlying machine itself, as described in Section 6.

When programmers rely on the future model of computation, none of
these procedures are invoked directly by user code. Instead, they are called
by code from the expansion of the future macro. As new programming
styles have developed, however, each of these procedures has proven useful
for implementing the support required for the new style.

The placeholder data structure is shown in Fig. 1. Each of the fields is
described later.

376 Mil ler

Slot Name I Notes I

Placeholder

Determined? Yes, No, or Mutable
Lock For primitive lock operations
Value or Waiting Set See text
Motivated Task Task computing this value

Task

Goal
Lock
Code
Status
Original Code
Task-Private Data
Waiting For
Wake-up Value

Placeholder associated with this task
For primitive lock operations
Work to be performed when task is next run
See text for details
For debugging purposes
See text for details
Placeholder(s) for which this task is waiting
See text for details

See text for complete description

Fig. 1. Task and Placeholder Data Structures.

3. 1.1. Determined?

A tri-state flag that indicates whether the placeholder: (a) has no value
yet; (b) has an immutable value; or (c)has a mutable value. This flag is
used by the inderlying machine to test whether touching this placeholder
should trap into the scheduler as discussed in Section 6 or extract the
current value and continue.

3. 1.2. Lock

A standard mutual exclusion lock used to indicate that the placeholder
is currently being modified by MultiScheme code. This slot is used by the
procedures lock-place-holder! and unlock-placeholdeH described in the
introduction.

3.1.3. Value

Stores the value of the placeholder when it is known. This slot is
mutable, but the scheduler enforces a protocol that allows the slot to be
treated either as a write-once location or a multiple writeable location. The
future construct produces placeholders that receive a value exactly once.

3. 1.4. Waiting set

A set of tasks currently waiting for this placeholder's value to be deter-
mined. This set is built using weak pairs since membership in this set does
not constitute a reason for the task to continue computing.

Implementing a Scheme-Based Parallel Processing System 377

3. 1.5. Motivated task

The task that has the computation of a value for this placeholder as
its goal. (12) As with any item other than a weak pair, the garbage collector
does trace through this link. Thus it serves to retain the task that is com-
puting the value of this placeholder as long as the placeholder itself is
needed.

3.2. Tasks

The task data structure contains a variety of information, but is not
directly referenced by the underlying machine. Tasks represent work that
has been requested to be performed, and they are the objects that the
scheduler has the underlying machine store in its work distribution pool.

In order to support garbage collection of no longer useful tasks, the
root used by the garbage collection algorithm contains a particular set of
tasks whose continued existence is required by the user interface to Multi-
Scheme. (12) Other tasks are retained only if they can be reached either from
this initial set of tasks or from the global environment. One task can be
"reached from" another if the former task is waiting for the value of a
placeholder and the latter task is the one that is responsible for calculating
the placeholder's value. The waiting for and motivated task slots are
responsible . for recording this relationship between tasks.

The task data structure is shown in Fig. 1.
In addition to the slots shown in Fig. 1, it has long been expected that

some information might be stored here for use by user applied scheduling
policies. This information could indicate task priority or estimated time
required for the value to be computed. Our on-going research includes
implementing and studying these extensions.

3.2. 1. Goal

The placeholder that is the goal for this task. When a task is actively
computing, this placeholder is known as the current plaeeholder for the
processor doing the computation. When a task executes the termination
continuation (see Section5.3) it stores the computed value into this
placeholder.

3.2.2. Lock

A standard lock to serialize access to the task description. Used by the
procedures lock-task! and unlock-task! mentioned in the introduction.

378 Mil ler

3.2.3. Code

The code to run in order to reactivate this task. If the object stored
here is not applicable (i.e. neither a procedure nor a continuation) then
either the task is already active or for some reason it cannot be reactivated.
For example, the task may have finished computing but not yet been
garbage collected.

3.2.4. Status

The current state of the task. This can be the following:

created Task is newly created
delayed See delay-policy, Section 5.2
determined Task is finished
disjoin Waiting for the first of several placeholders
paused See Pause-everything, Fig. 11
runnahle Available for execution
running Actually in possession of a processor
waiting Waiting for a specific placeholder
within-task Running, but another task has requested this task to

execute a block of code. See within-task, Fig. 12.

3.2.5. Original code

For debugging purposes this contains the expression that- the task was
created to evaluate.

3.2.6. Task-private data

Used to implement fluid variables, a form of per-task data storage. (1' lO)
This slot holds an association list mapping variables to values. It is used
when a variable marked as fluid is referenced, using a runtime trap
mechanism.

3.2.Z Waiting for

If the task has status waiting or disjoin this specifies the placeholder(s)
for which it is waiting. This is an ordinary list, since the value of these
placeholders is necessary for this task to continue its own computation.
Hence this task represents a reason for the tasks that are computing the
values of these placeholders to continue their computation.

3.2.8. Wake-up value

When the task is awakened, the code is passed this value as its argu-
ment. It is primarily used in the implementation of disjoin, the mechanism
that supports speculative computation (see Sections 5.2 and 6).

Implementing a Scheme-Based Parallel Processing System 379

3.3. Runnable Task Pool

The subject of task distribution is one on which a great deal of work
has been done, both theoretical and practical. The choice of a mechanism,
while important, is often intimately tied to details of the hardware or com-
munications medium. Since the main thrust of the MultiScheme work is
not related to these issues, we chose to isolate the scheduler from these
issues by encapsulating the choice in the three primitive operations
described in the introduction. Because the shared heap contains all of the
task, placeholder, stack, and other structures needed for a computation,
there is no requirement that a task be run on the same processor that
released it with put-work. While providing this behavior may improve per-
formance on some architectures, it is up to the primitives to either support
this behavior or not.

The scheduler's use of these procedures is therefore simple. It announ-
ces that a task needs processing resources using put-work. When a
processor needs more work to do, the scheduler will retrieve a task using
get-work. When the system must retract work that has been declared to be
available (such as during garbage collection initiation, see Section 8.2), it
calls drain-work-pool . Synchronization and serialization are the respon-
silibity of the MultiScheme code, not the procedures themselves. Thus, it is
possible for one task to drain the work pool while other tasks are still
active and adding new entries to the pool. The results will be consistent
although it may not represent an instantaneous snapshot of the internal
data structures.

4. OVERALL CONCEPTS A N D UTILITY ROUTINES

The scheduler is organized around the data structures described in
Section 3 and two additional notions. The first, described in Section 4.1, is
atomicity and critical sections of code. These are supported through a
system of priority interrupts within a single processor and a set of data
object locks between processors. The second is the task state and task
switch operations, described in Section 4.2, supported through the use of
Scheme's continuations.

4.1. Atomicity

As with any operating system scheduler, most of the routines in the
scheduler must appear to occur without interruption. The fact that these
routines are written in Scheme, however, does not permit them to run com-
pletely uninterrupted: the garbage collector cannot be suppressed for long

380 Miller

intervals without serious consequences. As a result, most of the operations
are written to raise their own interrupt level to prohibit any kind of inter-
rupt except garbage collection, and the garbage collection code guarantees
that any task that is running at a raised interrupt level will continue to run
after the garbage collection. This notion is embedded in the macros atomic
and define-atomic that are used liberally throughout the scheduler
implementation. To make the code more easily understood, however, these
have been omitted from the simplified versions described here.

A second standard problem, exclusive access to certain data structures,
also exists in the scheduler. The scheduler is built using two utility routines
that are in turn based on the interlock routines described earlier. The
operation Iock-placeholder! is used to implement the more complicated of
the two utility routines:

(define (With-Placeholder-Locked Placeholder Procedure)
(atomic
(if (lock-placeholder! Placeholder)

.(let ((result (Procedure #T)))
(unlock-placeholder! Placeholder)
result)

(Procedure #F))))

As can be seen, with-placeholder- locked runs a procedure with a
given placeholder locked. The procedure receives an argument that
indicates whether the object is in fact a placeholder. This handles an impor-
tant race condition: another processor might have supplied a value for the
placeholder before we were able to lock it. The placeholder might then be
spliced out by variable reference or garbage collection before we can
acquire the lock. Once locked, however, a placeholder is no longer subject
to splicing. Since MultiScheme does not provide any standard way
of locking arbitrary objects, the object is only locked if it is indeed a
placeholder.

A similar utility routine, With-Task-Locked is also supplied. Unlike
With-Placeholder-Locked, the task is always locked when the procedure
runs since the race condition that exists for placeholders is not a problem
with tasks.

4.2. Task S w i t c h

When a processor changes tasks it is really performing three separate
operations. The first operation captures the current state of the task in a

Implementing a Scheme-Based Parallel Processing System 381

way that allows it to be restarted later. The second chooses a new task for
execution, and the third activates a chosen task. Task termination (as
described in Section 5.3) is nothing more than performing the last two steps
but not the first. Task creation (see Section 5.2) may include the first and
third steps with a standard choice for the second.

The first operation, capturing the current state of a task, is done using
Scheme's standard call-with-current-continuation procedure. Once a task
is suspended it will be resumed only once, and then that state will later be
suspended and so forth. Thus, unlike an ordinary continuation object, the
object that denotes a suspended task state need not be able to be invoked
multiple times. In implementation terms, this means that a certain amount
of copying of continuation stack entries can be avoid with task suspen-
sions. At one time a special variant of call-with-current-continuation that
took advantage of this optimization was implemented. Performance
measurements indicated that the overall effect was minimal, but these
measurements were taken based on the MultiScheme interpreter and may
not be indicative of the performance of a compiled system.

While acquiring a representation of the current state of the computa-
tion is simple, actually storing it in the task data structure is not as
straightforward. In Section 8.3 an important user operation, within-task,
will be introduced (the relevant code is shown in Fig. 12). Calling within-
task allows a user to modify the operation of a task that is already running.
It marks the task data structure to indicate the work that must be
performed, and it is the responsibility of the task when it next saves its
state away to arrange to perform that work when the task is subsequently
activated.

The routine store-my-state, shown in Fig. 2 is provided to support
this operation. It allows scheduler routines to specify the state to be used
when the task normally regains control (the argument state), and addi-
tional work to be performed on the task data structure while it is locked
(while-locked). It locks the current task data structure and then stores
either the specified state or a procedure that first executes the work
specified by a call to within-task as the work to be performed when the
task is next activated. Notice that store-my-state tests whether the task
needs to continue running; if not, the procedure while-locked is not
executed, nor is the state of the task actually saved.

One other common way of capturing the state of a task is provided by
the procedure release-task, shown in Fig. 3. In this case, the intention is to
release the current task for parallel execution and then execute some other
code while the processor is temporarily not performing any task. The
reason for providing it with the thunk to be executed may not be obvious,
but notice that the thunk is executed as part of the procedure called by

382 Mil ler

(define (store-my-state state while-looked)
(let ((my-task (current-task)))

(with-task-locked my-task
(lambda (am-I-runnable?) ; (1)

(if am-I-runnable?
(begin

(set-task.code! my-task
(if (eq? (task.status my-task) 'WITHIN-TASK)

(let ((within-task-code (task.code my-task)))
(lambda (wake-up) ; (2)

(within-task-code wake-up)
(s t a t e w a k e - u p)))

s t a t e)) ; (3)
(while-locked my-task))))))) ; (4)

Notes:

1. Find and lock the current task data structure.

2. If the task is expected to continue running but has been marked for special handling by w i t h i n - t a s k
(see Figure 12), then when the task next awakens it must first execute the code specified in the call
to w i t h i n - t a s k and then continue on to its ordinary computation.

3. Under ordinary circumstances, the state to be stored is just the state specified by the calker.

4. If the task will continue to run, call the user-specified procedure while the task data structure is
still locked.

Fig. 2. Saving s ta te for future execution: S t o r e - M y - S t a t e .

call-with-current-continuation. Thus it is executed by the calling pro-
cessor when release-task is called, but not when the task is resumed.
Resuming the task occurs by calling the continuation my-state, thus
effectively returning from this call to call-with-current-continuation. The
processor's current task is set to 'STATE-SAVED both as a debugging aid
and to reflect the fact that the processor is not currently executing a task.
This is important if the processor subsequently needs to save its state since
there is no task into which the state can be stored.

(define (release-task thunk)
(call-with-current-continuation
(lambda (my-state)

(store-my-state my-state
(lambda (my-task)

(set-current-task! 'STATE-SAVED)
(set-task.status! my-task 'KUNNABLE)
(put-work my-task)))

(thunk))))

Fig. 3. Rel inquish ing the processor: Release-Task.

Implementing a Scheme-Based Parallel Processing System 383

The second operation, choosing a task to perform, is most often
deferred to the underlying machine, using the primitive get-work to select
the task:

(define (next)
(Set-Current-Task! 'WAITING-FOR-WOKK)
(run (get-work))) ; ,gee run in Figure

The third operation, activating a chosen task, is the most complicated.
This job is handled by the procedure run, shown in Fig. 4. It consists
mostly of routine housekeeping activities. The task being activated is first
locked and tested to see if it is actually runnable. If so, the status is
changed to running and the code and wake-up value are extracted from the
task data structure. The task is then unlocked, and either the code is
activated with the appropriate wake-up value as its argument or if the task
turned out not to be runnable an alternative task is chosen using next.

4.3. Other Util ity Routines

There are a handful of other utility routines that are referenced later.

�9 A task data structure and its related placeholder can be created
using (Make-Task), which makes the pair simultaneously and

(define (run task)
(define what-to-actually-do

(With-Task-Locked task
(lambda (Still-Runnable?)

(if Still-Runnable? ; (I)
(let ((code-for-new-task (task.code task))

(wake-up-value (task.wake-up-value task)))
(set-task.status! task 'RUNNING)
(set-task.wake-up-value! task '())
(Set-Current-Task ! task)
(l ambda () ; (2)

(code-for-new-task wakeup-value)))
n e x t)))) ; (3)

w h a t - t o - a c t u a l l y - d o)) ; (4)

Notes :

1. Test the task to see if it is actually runnable.

2. If the task is runnable, this procedure will restart it.

3. If the task is not runnable, this procedure will select an alternate task and start it instead.

4. Actually call the procedure chosen in either step 2 or 3 above.

Fig. 4. Activating a chosen task: the run procedure.

828/17/5-2

384 Mil ler

(define (immutable? placeholder)
(eq? (placeholder.determined? placeholder) #T))

(define (undetermined? placeholder)
(eq? (placeholder.determinsd? placeholder) #F))

(define (determined? placeholder)
(not (undetermined? placeholder)))

(define (mutable? placeholder)
(and (determined? placeholder)

(not (immutable? placeholdsr))))

Fig. 5. Tri-state Flag Representation.

supplies a standard set of default values for all of the information
required.

�9 The three possible states of the determined.* slot of a placeholder
are: # T indicating that the placeholder has an immutable value;
F indicating that it has no value at all; and anything else
indicates that the value is mutable. This is captured in the four
procedures shown in Fig. 5. Notice that the placeholder must be
locked in order to safely perform these operations.

�9 A task that has been waiting is activated using the procedure
activate shown in Fig. 6. This procedure tests whether the task is
still runnable and is in fact waiting for the condition that has
occurred (as indicated by the test). It then updates the task data
structure and releases it for distribution using the underlying
machine operation put-work.

�9 The procedure Saving-State, shown in Fig. 7, allows a task to
save its state away and then execute a selected piece of code,
tbunk. The code is run in a continuation that is part of the root
of garbage collection and not as part of the task that called
saving-state. This permits the garbage collector to reclaim the
originating task if necessary. When the code finishes execution,

(define (activate task test wake-up-value)
(With-Task-Locked task (lambda (task-runnable?)

(if (and task-runnable? (test (task.status task)))
(begin

(set-task.waiting-for] task '())
(set-task.status! task 'RUNNABLE)
(set-task.wake-up-value! task wake-up-value)
(put-work task))))))

Fig. 6. Activating a waiting task.

Implementing a Scheme-Based Parallel Processing System 385

(define (saving-state thunk)
(release-task (lambda O

(w i t h i n - c o n t i n u a t i o n
the-error-continuation
(lambda () (thunk) (next))))))

; (1)
; (2)

Notes :

1. Release the current task for potential parallel execution.

2. Begin execution within t h e - e r r o r - c o n t i n u a t i o a which was created at system boot time, and does
not reference any other continuations,

Fig. 7. Code for S a v i n g - S t a t e .

another task is selected for execution rather than returning to the
original task. A good way of thinking about saving-state is that it
performs a task switch into a non-existent task and executes the
thunk in the new task.

�9 Two procedures, Current-Task and Set-Current-Task!, are
provided to keep track of the task that is currently executing on
this processor. These can either be implemented as primitive opera-
tions that access processor-private data or in Scheme using a
primitive procedure that identifies the processor on which the task
is currently running.

�9 Weak-list--, list converts a list composed of weak pairs into one
composed of ordinary pairs.

�9 Add-to-wai t ing-set! adds a task to the set of tasks waiting for
the value of a particular placeholder. We have chosen a trivial
implementation of sets since nothing depends on removal of
duplicates:

(define (add-to-waiting-set! placeholder task)
(set-placeholder.waiting-set! placeholder

(cons task (placeholder.waiting-set placeholder))))

5. TASK CREATION A N D T E R M I N A T I O N

Creating a task in MultiScheme really has four steps: create a con-
tinuation, create a task data structure, create a placeholder, and schedule
the running and newly created tasks for parallel execution. Each of these
can be performed independently and then combined to provide specialized
handling of unusual cases. Tasks are normally created, however, by using
the future macro.

386 Miller

This macro has one required argument, the expression to be executed
in parallel, and an optional policy used to schedule the parent and child
tasks. Thus

(+ (f u t u r e el p o l i c y) (f u t u r e e2)) "-*

(+ (spawn- t a sk (lambda () el) p o l i c y)
(spawn-task (lambda () e~) parent-gets-priority))

The remainder of this section consists of a description of the Spawn-
Task procedure (Section 5.1), alternatives to this standard method of task
creation (Section 5.2), and finally the handling of task termination (Sec-
tion 5.3).

5.1. Ordinary Task Creat ion

As described earlier, most of the work of creating a task is ordinarily
carried out by Spawn-Task. This is merely a standard way of using the
four steps previously mentioned.

(define (spawn-task code policy)
(let ((the-new-task (make-task)))

(let ((result (task.goal the-new-task)))
(set-task.code! the-new-task

(lambda (wake-up-argument)
(new-task-continuation code)))

(policy the-new-task)
result)))

Part of the task data structure is the code it is to execute, and spawn-
task uses a specially constructed new-task-continuation for this purpose
(see the discussion below). The continuation expects to receive a procedure
as argument (code in this case); it calls the argument and then calls a
primitive continuation indicating the end of task with the result. The
handling of this task termination continuation is described in Section 5.3.

Spawn-Task calls the user-supplied policy routine to schedule the
current task and the newly created task. The default routine, parent-gets-
priority (shown in Section 5.2), releases the new task for potentially parallel
execution. The value returned by spawn-task to the task that called it is
the newly created placeholder.

The decision to use a continuation rather than a procedure for the
initial code of a task is not completely arbitrary. If a procedure is used the

Implement ing a Scheme-Based Parallel Processing System 387

task switch code in run (see Fig. 4) that activates the newly created task
would be nothing more than a procedure call. But procedure call includes
passing an implicit continuation for use when a value is returned, and this
continuation will in some way reference the task that made the procedure
call. This prevents the garbage collector from reclaiming that task as long
as the newly created task is in existence.

In implementation terms, which may be easier to understand, a con-
tinuation is just a saved procedure call stack. If the initial code for a task
were simply a procedure then the stack used for the new task when it first
runs would be the same as the stack of the task that was relinquishing the
processor. This works perfectly well but leads to a form of cactus stack
implementation that has the garbage collection problem previously men-
tioned.

By explicitly building a continuation, however, task switch becomes
the same as invoking a continuation that does no t implicitly reference the
old task. The continuation created when the task is created is an initial
stack frame and task switch (Le. invoking a continuation instead of an
ordinary procedure) causes the stack to be switched as well.

5.2. A l te rnat ive Ways to Create a Task

The task creation code is modularized into the four steps described
earlier. Actually, utilizing these individual components is unusual since the
flexibility available using the policy argument to Spawn-Task is sufficient
for most problems. To make this power easily available, two alternative
policies are included in the scheduler package along with the default policy.

The standard policy, parent-gets-priority is very efficient:

(define (parent-gets-priority new-task)
(put-work new-task)
'CHILD-QUEUED-FOR-EXECUTION)

This policy gives processing priority to the parent task: the task that
calls Spawn-Task continues to run, while the task which is created is
scheduled for parallel execution. Since the task and its associated
placeholder have been made and initialized by Spawn-Task, all that must
be done is to make the new task available for computation. This is done
using the underlying task distribution mechanism, implemented by put-
work. In this, as in the other policies, the value returned by the policy is
ignored by Spawn-Task but is useful in debugging the scheduler itself.

Halstead argues, in his overview of Multilisp, ~2) that this standard

388 Mil ler

policy can lead to undesired performance characteristics as a SYstem
reaches saturation. He suggests a strategy in which the parent task is
deferred while the child task immediately begins execution. This is
implemented using the child-gets-priority policy:

(define (child-gets-priority new-task)
(release-task (lambda () (run new-task))))

The third policy, delay-policy, marks the spawned task as delayed and
does no t release it for parallel execution:

(define (delay-policy new-task)
(set-task.status! new-task 'DELAYED)
'OK-I-DELAYED-IT)

Instead, the first task that touches the goal placeholder associated with the
newly created task will release that task for execution (see Section 6).

In addition to these three policies, there is one other case that occurs
sufficiently often to be provided standardized support. This is the ability to
wait for the first of a number of placeholders to return a value. This ability,
implemented by the procedures disjoin and await-first of the scheduler, is
the key to implementing McCarthy's amb (5) and fair-merge procedures.
The actual code for these procedures is complicated because it must deal
with the possibility that one of the placeholders has already received a
value before the operation has been completed, and because more than one
of the placeholders may eventually receive a value. Figure 8 shows a much
simpler version that does not deal with these problems; the footnotes to the
figure explain the most impotant omissions. Notice that disjoin itself
returns a placeholder rather than actually waiting for the value to be
known.

This simplified version works by creating a task and its corresponding
placeholder using Make-Task. The purpose of this new task is to
propagate the value of the appropriate placeholder (the first one that
receives a value) out to its own goal. The code to be performed when this
new task is awakened is supplied as an explicit procedure. This is very
similar to the processing of the normal case, except that the task has a list
of placeholders for which it is waiting and it is added to the set of tasks
waiting for each of these placeholders. The decision to represent the code
as a procedure rather than a continuation here is somewhat arbitrary. It is
easier to write as shown and the procedure will relinquish the processor
almost instantly so that the garbage collection problem mentioned earlier
is not an issue.

Implementing a Scheme-Based Parallel Processing System 389

(define (disjoin . Placeholders) ; (i)
(let ((My-Task (Make-Task)))

(let ((My-Placeholder (task.goal My-Task)))
(set-task.status! My-Task 'DISJOIN)
(set-task.waiting-for! My-Task Placeholders)
(set-task.code! My-Task

(lambda (awakened-value) ; (2)
(determine! My-Placeholder awakened-value)
(n e x t)))

(f o r - e a c h ; (3)

(l a m b d a (P l a c e h o l d e r)
(a d d - t o - w a i t i n g - s e t ! P l a c e h o l d e r My-Task))

P l a c e h o l d e r s)
M y - P l a c e h o l d e r))) ; (4)

Notes :

1. As explained in the text, this code does not deal with a number of important possibilities.

2. Code to be run when this newly created task is activated (i.e, when one of the placeholder receivcs
a value). This is one of two major race conditions that the complete version handles. If more t, han
one task completes, l t y -P l aeeho lde r may already have a value when this code is run.

3. Add this task to the waiting-set of each of the placeholders. This is the second of the major race
conditions. In the process of adding the task it may be discovered that one of the placeholders
already has a value which must then be returned instantly.

4. The value returned by d i s j o i n is the plaeeholder that will ultimately receive the value of the first
computed placeholder.

Fig. 8. Simplif ied C o d e for d is jo in .

When any of the placeholders for which this task is waiting receives a
value (see Section 7), that placeholder is stored in this task's wake-up value
slot and the task is made available for execution. When the task is
activated, using the run procedure described in Section 4.2, the procedure
stored in the code slot will be passed this wake-up value. The procedure
will propagate it to the placeholder created by the call to disjoin, and then
call next (see Section 4.2) to release the processor and find another task.

The use of a task to propagate the value of the appropriate disjunct
may seem unusual, but it improves the modularity of the scheduler code.
This work could have been made part of the determine[code, but this
organization allows determine! to simply awaken tasks in a standard
manner. Determine[is never required to do any specialized processing on
behalf of the tasks it awakens.

5.3. Task T e r m i n a t i o n

As mentioned in Section 5.1, there is a primitive continuation that
denotes the termination of a task. As with any continuation, it receives a

390 Miller

value; this continuation treats the value as the value for the goal
placeholder of the task. To make modifications to the system simpler, the
handling of this and many other primitive continuations is reflected back
into the scheduler as a call to a procedure. The standard procedure is quite
simple since it runs as part of the task that is terminating:

(define (end-of-computation-handler value)
(determine! (task.goal (current-task)) value)
(next))

This merely stores the final value into the goal and then locates and
activates the next available task. Notice that by simply calling next without
saving its own state, this task relinquishes the processor and will not be
reactivated.

6. S U S P E N D I N G A T A S K

There are three ways in which a task can relinquish the processor. It
can explicitly relinquish the processor using resc hed u le, a procedure supplied
by the scheduler for this purpose. An interrupt can occur and cause the
processor to be relinquished (e.g., the initiation of a garbage collection or
a clock interrupt). Finally, and most commonly, the task can attempt to
touch a placeholder that does not yet have a value.

With the utility procedures described earlier it should be easy to see
how the first operation is performed:

(define (reschedule)
(release-task next))

Garbage collection initiation will be described in Section 8.1. Timer inter-
rupts are handled by calling reschedule as part of the interrupt handler.

The remainder of this section is devoted to the third problem, touch-
ing a placeholder. When placeholders were introduced it was stated that
they "can be used to denote an object whose value is not yet known," and
that the scheduler is responsible for handling an attempt to touch a
placeholder which does not yet have a value. This mechanism has two
parts, one implemented in the machine underlying the MultiScheme
system, and the other as part of the scheduler.

The underlying machine is responsible for both detecting and handling
the simple cases related to placeholder objects. There are three different
ways in which a placeholder can be initially noticed:

1. The code that implements certain primitive operations (e.g. touch,
eq?, and memq) explicitly touches objects that they m~nipulate. If

Implement ing a Scheme-Based Parallel Processing System 391

.

the object is not a placeholder, or the placeholder has a value, the
code will retrieve the correct value and the operation proceeds
unimpeded. The operations are all carefully written, however, so
that if a placeholder is encountered that does n o t have a value the
operation can be stopped and restarted at a later time. The opera-
tion gracefully backs out and returns the state of the system
to what it was before the operation began. It then performs a
call to the scheduler's await-placeholder operation (see Fig. 9).
The result is as though the user had written a call to touch of
the appropriate placeholder immediately prior to the call to the
operation.

Many primitive operations normally type-check their arguments
for validity before doing any processing. For those operations that
do not permit an operand to be a placeholder (e.g., arithmetic
operations restricted to numeric data types), the normal error
handling mechanism of MIT Scheme would cause the primitive to
gracefully back out just as in the previous case and then invoke an
error handling procedure. In MultiScheme, the code for these
error handlers tests for placeholders and restarts the primitive
automatically (i.e. without any form of trap into Scheme code) if
the erroneous argument is a placeholder that has a value. If the

(define (await-placeholder placeholder)
(call-with-current-continuation
(lambda (me) ; (i)
(With-Placeholdsr-Locked placeholder

(lambda (waiting-for-a-placeholder?)
(cond ((not waiting-for-a-placeholder?)

(me 'RESUME-COMPUTATION)) ; (2)
((determined? placeholder)
(unlock-placsholder! placeholder)
(me 'RESUME-COMPUTATION))) ; (3)

(a c t i v a t e ; (4)
(p l a c e h o l d e r . m o t i v a t e d - t a s k p laceho lder)
(lambda (s t a t u s)

(or (eq? s t a t u s 'DELAYED) (eq? s t a t u s 'PAUSED)))
'NO-RELEVANT-WAKE-UP-VALUE)

(s t o r e - m y - s t a t e me (lambda (My-Task) ; (5)
(s e t - t a s k . s t a t u s ! My-Task 'WAITING)
(set-task,waiting-for! My-Task placeholder)
(add-to-waiting-set! placeholder My-Task)))))

(n e x t)))) ; (6)

See the text of Section 6 for footnotes.

Fig. 9. Code for Await-Placeholder.

392 Mil ler

argument is a placeholder that does not yet have a value then
instead of invoking one of the Scheme error handling procedures
it invokes the scheduler's await-placeholder procedure.

3. Compiled code contains calls to the primitive operation touch
whenever it must ensure that an object (argument to an in-line
coded primitive, predicate of a conditional, or function to be
applied) is not a placeholder and cannot, at compile time, deduce
this. Touch, which is one of the operations described in case 1,
merely tests its operand to see if it is a placeholder. If it is not, the
operand is returned. If it is a placeholder with a value, that value
is returned. The net result is that an attempt to use a placeholder
whose value is already known will proceed unimpeded, but one
whose value is still undetermined will cause a call to the await-
placeholder procedure. The exact placement of these calls to
touch is a topic for further investigation. Placing them earlier in
the code can frequently make the code more efficient but it reduces
the potential for parallelism.

In each case, the underlying machine handles placeholders that have
already received a value but calls the await-placeholder procedure to
handle placeholders that do not have a value. The job of await-
placeholder, then, is to save the state of the current task if it needs to
continue running and add this task to the waiting-set of the placeholder. It
then releases the processor by calling next.

The code for await-placeholder is shown in Fig. 9. The following
description of its operation is keyed to the numbers in the figure.

1. Create a continuation, me, that holds the state of the current task.
Attempt to lock the placeholder for which the task is waiting.

2. If the placeholder couldn't be locked, just resume the current task.
This can occur if the placeholder has received an immutable value
prior to reaching this point in the code. The placeholder would be
subject to the splicing operation during variable reference or
garbage collection. After the lock is acquired this splicing will no
longer occur.

3. If the placeholder has a value, unlock the placeholder and resume
the current task. This can occur if the placeholder has received a
mutable value before reaching this point in the code. In this case,
the placeholder is not subject to splicing so it will have been
locked, but there is no need to await the arrival of a value.

4. Activate the task that is calculating the value for the placeholder
if it is inactive. This arises either because the placeholder was

Implementing a Scheme-Based Parallel Processing System 393

.

.

created by the delay-policy and hence the task has status delayed,
or because the task has been suspended by pause-everything (see
Section 8.2) and has status paused.

At this point, the task will definitely be releasing control of the
processor. The state of the task, me from step 1, is saved away in
the current task data structure. Mark the task as waiting and add
it to the waiting-set of this placeholder.

Unlock the placeholder (by exiting the with-placeholder-locked
procedure). Find another task and start executing it. Notice that
this call to next is no t executed when control returns to the
original task using the me continuation created in step 1 since it is
part of the body of (lambda (me)...) (count the parentheses...).

7. S T O R I N G T H E V A L U E OF A P L A C E H O L D E R

Storing a value into a placeholder is a straightforward operation,
although the details are somewhat complicated. The essential work is to
store the value into the placeholder data structure and activate any tasks
that may have been waiting for this value to appear. The detailed code is
shown in Fig. 10. The following notes describe the fine details of its opera-
tion. They are geared to the numbers appearing in Fig. 10. Most of the
complexity comes from the need to keep the placeholder locked for as short
a time period as possible, and the possibility of a race if two tasks attempt
to supply values to the placeholder nearly simultaneously.

1. The auxiliary procedure update-placeholder! makes the changes
necessary to the placeholder data structure to reflect the fact that
it now has a value.

2. What- to-do will contain one of three procedures to be performed
after the placeholder is unlocked in step 7. The three procedures
are (a) a n error procedure from step 3; (b)awaken the waiting
tasks from step 3; and (c) do nothing from step 6.

3. With the placeholder locked, test whether it already has an
immutable value. If so, return a procedure that will cause an error
in step 7.

4. If the placeholder did not previously have a value, remember the
tasks that are waiting for the value of this placeholder and then
update the placeholder.

5. Since the placeholder didn't have a value before, in step 7 we must
activate each task that is waiting for this placeholder. The acti-

394 Mil ler

(define (determine! placeholder value allow-mutations?)
(define (update-placeholder!) ; (i)

(set-task.status! (placeholder.motivated-task placeholder)
'DETERMINED)

(set-placeholder.value! placeholder value)
(set-placeholder.determinsd?! placeholder

(if allow-mutations? 'MUTABLE #T)))
(define what-to-do ; (2)

(With-Placeholder-Locked placeholder
(lambda (still-a-placeholder?)

(eond ((or (not still-a-placeholder?)
(immutable? placsholder))

(l ambda () ; (3)
(error "Immutable Placeholder" placeholder)))

((undetermined? placeholder)
(let ((waiters

(placeholder.waiting-set placeholder)))
(update-placsholder!) ; (4)
(lambda () ; (5)

(for-each
(lambda (task)

(activate task
(lambda (status)

(or (eq? status 'WAITING)
(eq? s t a t u s 'DISJOIN)))

placeholder))
waiters))))

(else (update-plaeeholdsr!) ; (6)
(l ambda () ' O K))))))

(what-to-do) ; (7)
value) ; (8)

See the t e x t of Sec t ion 7 for footnotes .

Fig. 10. Code for de t e rmine !

vation test permits only tasks that are waiting for a placeholder
(i.e., those with status waiting or disjoin) to be awakened.

6. If the placeholder previously has a mutable value, then it can't
have a set of tasks waiting for its value to appear. Thus, in step 7
we don't need to take any special action.

7. Now that the placeholder is unlocked, perform whatever work is
necessary.

8. The value returned by determine! is (arbitrarily) the value that
has been given to the placeholder.

Implementing a Scheme-Based Parallel Processing System 395

8. PROCESSOR C O O R D I N A T I O N

MultiScheme provides two methods, global interrupts and syn-
chronizers, for coordinating the activities of processors. Unlike
placeholders, which coordinate the activity of tasks--logical processes
generated by running progams--these two operations deal with the physi-
cal processing units of the hardware. As such, they are more often used by
the MultiScheme system itself than by application programs. The two
operations, while not necessarily novel, have the virtues of simplicitly and
compatibility. They were motivated by the difficulty of initiating a garbage
collection, but they serve as a base for higher-level constructs (see the
examples of Section 8.2 and 8.3).

8.1. Star t ing Garbage Col lect ion

One of the early problems encountered in moving from a sequential
simulation of MultiScheme to a truly parallel implementation was modify-
ing the mechanism used to initiate a garbage collection. MultiScheme, like
sequential MIT Scheme, uses a stop-and-copy garbage collector, although
MultiScheme's garbage collector uses a parallel algorithm. The subsequent
discussion, with only slight modification, applies equally well to initiating
the space flip in a real-time copying garbage collection algorithm.

In MIT Scheme, garbage collection is initiated in three phases, using
a system modeled after a hardware priority interrupt mechanism:

Interrupt Request

During some operation the processor notices that it is low on memory
and sets a bit requesting a garbage collection interrupt.

Interrupt Detect

The interpreter and compiled code periodically poll the interrupt bits.
A pending interrupt is serviced if no higher level interrupt is pending
or in progress.

Interrupt Service

Before executing the next instruction the machine calls the interrupt
handler for the current interrupt level, a procedure supplied by the
Scheme runtime system. The level of the interrupt determines which
handler to call, and there is a level devoted to garbage collection
interrupts.

In moving to a parallel-processor hardware base there was no need to
modify the basic interrupt mechanism but some of the details were
modified. Because all of the processors share a common address space for

396 Mil ler

the heap it is essential that they cease computing before the garbage collec-
tor begins relocating objects. The system must, therefore, support some
mechanism for forcing all of the processors to synchronize. The ability to
initiate such global synchronization from software is essential to several
system services (see the examples of Sections 8.2 and 8.3).

Only three modifications to MIT Scheme are used in MultiScheme to
provide coordination among the processors. The interrupt levels intersperse
global interrupts that are pertinent to all processors with local interrupts
that are pertinent to the current processor only. The procedure global-
interrupt allows any processor to interrupt the others. And synchronization
objects permit all processors to proceed in unison (known as barrier syn-
chronization).

The new operation global-interrupt is the software interface that
initiates a global interrupt:

(global-interrupt priority-level interrupt-handler all-clear?)

The interrupt-handler is a procedure that is to be executed by all the
other processors. Because a global interrupt requires the cooperation of all
processors, initiating such an interrupt must be serialized. A processor
receives permission to initiate a global interrupt only when no interrupt
(local or global) of a higher priority is pending. At that time, it calls the
all-clear? procedure to determine whether or not the interrupt should
actually be initiated. This test is used, for example, to guarantee that a
garbage collection global interrupt is issued exactly once even though the
need for it may be detected independently by multiple processors. The
value returned by a call to global-interrupt is the value returned by all-
clear? so the processor issuing the interrupt can determine whether or not
the interrupt was actually generated.

Global-interrupt returns control to the caller only after the interrupt
is initiated or the all-clear? procedure indicates that no interrupt should
take place. It guarantees that all of the processors will stop their ordinary
work as soon as they poll their own interrupt bits, an event that the inter-
preter and compiler force to occur fairly often. This alone, however, is not
sufficient to solve the problem of starting a garbage collection. Before any
processor can begin the actual garbage collection operation, all processors
must be entering the garbage collection operation. The global interrupt
mechanism provides a way of initiating an action, but does not provide
synchronization.

Instead, MultiScheme provides a pair of procedures for this purpose:
make-synchronizer and await-synchrony. These jointly provide a
mechanism for creating a cooperative barrier synchronization. To syn-
chronize all of the processors, one processor makes a synchronizer object

Implementing a Scheme-Based Parallel Processing System 397

and then forces all of the other processors to call await-synchrony with
the synchronizer as argument. When all processors are waiting for syn-
chrony on the same synchronizer object they all return from the call to
await-synchrony. Typically, one processor makes one or more syn-
chronizers and then uses global-interrupt to force the other processors to
begin waiting on them.

While separating these two operations can cause deadlocks if they are
used improperly, the operations do serve two distinct purposes. The exam-
ples of the next two sections show how the separate operations can be used
to provide higher-level operations that are not as easily provided if the low-
level operations are bundled together.

8.2. Pause-Everything

Clamen ~t3) describes an early investigation into debugging tools for
dealing with the parallelism of MultiScheme programs. He identified a
variety of situations requiring a program to temporarily stop all other
work on the system, perform some action, and then allow the work to
proceed. In order to provide this ability, he implemented the original
pause-everything procedure. A new implementation extending Clamen's
original version is depicted in Fig. 11, simplified for purposes of explana-

(define (pause-everything)
(let ((drain-synch (make-synchronizer))

(proceed-synch (make-synchronizer)))

(define (int errupz-handler)
(saving-state ; (i)
(lambda ()

(await-synchrony drain-synch)
(await-synchrony proceed-synch))))

(global-int errupt high-priority
interrupt-handler (lambda () #T))

(await - synchrony drain-synch)
(let ((pool (drain-work-pool))) ; (2)

(await -synchrony proceed-synch)
(make-returned-object pool)))) ; (3)

Notes:

I. Saving-State stores away the state of the task currently executing on this processor and places
it in the work pool. It then calls the procedure which is its only argument. Saving-State never
returns to its caller: it looks for work from the pool when the argument procedure is finished. See
the discussion in Section 4.3 and the code in Figure 7.

2. Drain-work-pool empties the pool of tasks awaiting processors and returns a weak list of the tasks
removed. See the description of drain-work-pool in Section 3.3.

3. Make-z-eturned-object creates the message-accepting object that is the result of a call to
pause-everything. See the discussion of make-returned-object in Appendix A and the code
in Figure 13.

Fig. 11. Simplified Code for Pause-Everyth ing .

398 Mil ler

tion. It provides a message-passing interface to an object representing the
tasks that were available for execution at the time of the call to pause-
everything. This interface is described in Appendix A. A procedure with
structure very similar to pause-everything but without this elaborate inter-
face is also used to initiate garbage collection.

Pause-everything uses both the global interrupt mechanism and the
synchronizers. A global interrupt is necessary to force the other processors
to save their state and become idle. The synchronizers are used to divide
the work into two phases.

The first phase is initiated by the call to global-interrupt and ends
when all processors have arrived at the first synchronization point. The
interrupt guarantees that all processors except the one that called pause-
everything will begin executing the code in interrupt-handler. Thus the
other processors save away the state of the task they are executing and
place it in the pool of work to be performed. They then wait for all
processors to execute (await-synchrony drain-synch). When all the
processors arrive at this point, the tasks available for execution (including
the ones that were formerly executing) have been saved in the work pool.

The processors proceed past the synchronization point, beginning the
second phase. All but the initiating processor will arrive immediately at the
second rendezvous point, the call to (await-synchrony proceed-sync).
The initiating task, however, first saves away the contents of the work pool
in the variable pool and empties the pool. All the processors again rendez-
vous, ending the second phase.

The initiating task makes the message accepting object based on the
value of pool by calling the procedure make-returned-object shown in
Fig. 13. This becomes the value of the original call to pause-everything.
The other processors, however, have now finished the procedure that is the
argument to saving-state. But saving-state does not return to the
procedure that called it. Instead it tries to get work from the (now empty)

(define (within-task task thunk)

(with-task-locked task
(lambda (task-still-runnable?)

(if (eq? (task.status task) 'RUNNING)
(begin

(set-task.status! task 'WITHIN-TASK)
(set-task.code! task thunk)
(global-interrupt high-priority
(lambda () (if (eq? (current-task) task) (reschedule)))
(lambda () #T)))

...))))

Fig. 12. Simplified Code forWithin-Task.

Implementing a Scheme-Based Parallel Processing System 399

(define (make-returned-object the-queue)
(lambda (message)

(cond ((eq? message 'ANY-TASKS?) ; (i)
(and (not (eq? the-queue #T))

(not (eq? the-queue ' ()))))
((eq? message 'RESTART-TASKS) ; (2)
(if (eq? the-queue #T)

(error "Attempt to re-use a pause object!")
(begin

(for-each ; (3)
(lambda (task)

(activate task
(lambda (status) (eq? status 'PAUSED))
'NO-RELEVANT-WAKE-UP-VALUE)

the-queue))
(set! the-queue #T))))

((eq? message 'THE-TASKS) '; (4)
(if (eq? the-queue #T) '() the-queue))

(else (error "Pause: unknown message" message)))))

Notes :

t. Code to handle the Any-Tasks? message.

2. Code to handle the Restart-Tasks message.

3. If this is the first time the restart-tasks message is received, any tasks that are still paused are
activated. Notice that the code for a w a i t - p l a e e h o l d e r shown in Figure 9 will have activated any
of these tasks that were touched after the call to pause-every th ing . Hence, the test here.

4. Code to handle the The-Tasks message.

Fig. 13. Make-Returned-Object , support for pause-everything.

work pool. So at this point, the initiating task is still running on the
initiating processor. All the other processors have relinquished the task
they were executing and are waiting for more work. The system has
"paused."

An interesting detail has been deliberately omitted in this description.
What should happen if, while other work is suspended, the running task
touches the placeholder associated with one of the suspended tasks? While
there is no obviously correct answer, the actual MultiScheme system marks
these suspended tasks paused. Touching a placeholder that is marked
paused is handled by the scheduler in exactly the same way the scheduler
handles touching a placeholder marked delayed: the associated task will be
reactivated (see the code for await-placeholder in Fig. 9). One of the
advantages of writing the scheduler in MultiScheme is that such decisions
can be easily changed. For example, it is quite easy to add a "scheduler
hook" to allow users to specify their own way of handling this situation.

828/17/5-3

400 Miller

8.3. W i t h i n - T a s k

The final example of processor coordination is a critical part of the
user interface, allowing the user to interact with previously started tasks.
The primary use of this facility occurs in the top level interaction between
a user and the MultiScheme system. In MIT Scheme, a user can at any
time interrupt execution of a program and create an interaction environ-
ment within the state of the program at the time the interrupt was serviced
by issuing a "breakpoint interrupt." A user can also interrupt the program
and force it to return back to an earlier interaction environment, effectively
aborting the current computation.

The direct extension of this into MultiScheme would allow a user to
interrupt the system and interact with any one of the tasks in the system
at the time of the interrupt. Because a task has state information visible to
the programmer it is important that the correct task actually interact with
the user. As a result, there must be some way to force a selected task to call
the procedure that implements the interaction environment or invoke a
continuation that aborts the current computation.

Within-task is designed to facilitate this and other similar operations.
Some of Clamen's debugging tools, for example, rely on within-task in
order to report the progress of a program back to the user. A simplified
version of this procedure is shown in Fig. 12. It expects two arguments,
a task and a thunk, and forces the task to execute the thunk before
continuing with whatever processing it is currently doing. The operation of
this procedure is intertwined with the scheduler (recall the code for store-
my-state in Fig. 2) but the overview demonstrates a different use of the
global interrupt mechanism.

Within-task works by testing whether the task is currently executing
on one of the processors. If so, it marks the task indicating that it must be
forced to execute the specified code and then initiates an interrupt on all
processors, forcing the one running the chosen task to reschedule the task
for later execution. Recall that the procedure reschedule uses store-my-
state to store the state of the task in such a way that the specified code is
executed before the task resumes its current computation.

Unlike the earlier uses of global interrupts, this one does not need any
synchronization of the processors. The purpose of the interrupt is merely to
get the attention of a particular processor without knowing in advance
which one. All of the processors are briefly interrupted from their duties to
process the interrupt, but they can resume immediately and independently.

Implementing a Scheme-Based Parallel Processing System 401

9. C O N C L U S I O N

The scheduler is the "heart" of the MultiScheme system, and is
designed as a flexible and extensible mechanism for supporting a variety of
experiments. The primary data structures of the scheduler are the
placeholder and the task. Using these data structures, a variety of ways of
creating, suspending, and managing tasks have been implemented and
used. The ease of experimentation has facilitated the construction of a
number of different approaches to parallelism, including speculative com-
putation and data flow simulation.

Most of the material presented is "nuts and bolts engineering" but
serves to demonstrate the ease with which parallel processing support can
be described within an existing language framework. The small number
of changes required to the sequential Scheme language is particularly
pleasing.

A P P E N D I X : S INGLE T A S K I N T E R L U D E S

The scheduler supports the ability to switch from a parallel processing
mode where many tasks are simultaneously active to one in which only a
single task is active. This operation, embodied in the procedure pause-
everything, has already been discussed in Section 8.2 and the code is
shown in Fig. 11. This section presents the underlying support routine that
was omitted in that earlier version.

As mentioned in the earlier discussion of pause-everything its job is
to suspend all other tasks on the system. It returns as its value an object
that encapsulates these other tasks through a "message passing" interface.
The returned object is implemented as a procedure of one argument, the
message. It accepts three messages.

Any-Tasks?

Returns a boolean answer of # T is there were other tasks running at
the time of the call to pause-everything and they have not yet been
restarted.

The-Tasks

Returns a list of the tasks that were suspended by the call to pause-
everything provided they have not yet been restarted.

402 Mil ler

Restart-Tasks

Activates the tasks that were suspended by the call to pause-
everything by releasing them to the underlying task distribution
mechanism. It can be called only once.

The procedure Make-Returned-Object, shown in Fig. 13, creates the
message accepting object that will be returned by pause-everything.

REFERENCES

1. James Miller, MultiScheme: A Parallel Processing System Based on M I T Scheme. PhD
thesis, Massachusetts Institute of Technology (August 1987}. Available as MIT
LCS/TR/402.

2. R. Halstead, Multilisp: A language for concurrent symbolic computation. In ACM Trans.
on Prog. Languages and Systems, p. 501-538 (October 1985).

3. Sharon L. Gray, Using Futures to Exploit Parallelism in Lisp, Master's thesis,
Massachusetts Institute of Technology (1986).

4. A. Wang, Exploiting Parallelism in Lisp Programs with Side Effects, Bachelor's thesis,
Massachusetts Institute of Technology (May 1986).

5. John McCarthy, A basis for a mathematical theory of computation. In P. Braffort and
D. Hirschberg, (ed.), Computer Programming and Formal Systems, North-Holand (1963).

6. R. P. Gabriel and J. McCarthy, Queue-based multi-processing lisp. In ACM Symp. on
Lisp and Functional Programming, p. 25-44, Austin, Texas (August 1984).

7. M. Katz, ParaTran: A Transparent, Transaction Based Runtime Mechanism for Parallel
Execution of Scheme, Master's thesis, Massachusetts Institute of Technology (May 1986).

8. Tom Knight, An architecture for mostly functional languages. In Symposium on LISP and
Functional Programming, ACM, p. 105-112 (1986).

9. H. Baker and C. Hewitt, The Incremental Garbage Collection of Processes, AI Memo 454,
Massuchetts Institute of Technology, Artificial Intelligence Laboratory (December 1977).

10. M I T Scheme Reference, Scheme Release 7, Massachusetts Institute of Technology,
Cambridge, Massachusetts (1988).

11. Jonathan Rees and William Clinger (eds.). Revised 3 report on the algorithmic language
scheme. ACM Sigplan Notices, 21(12) 37-79. Also available as MIT AI Memo 848a
(December 1989).

12. James Miller, Garbage collection in multischeme. (in preparation)
13_ Stewart Michael Clamen, Debugging in a Parallel Lisp Environment, Bachelor's thesis,

Massachusetts Institute of Technology (1986).

