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Introduction 

The outflow of the liquid from the thin films 
plays an essential role for the behaviour of foams 
and emulsions and on that account it has been a 
subject of numerous investigations. The refer- 
ences (1) and (2) (and the sources cited there) 
form a far incomplete list of the investigations 
dedicated to greater or lesser degree to this prob- 
lem. The rate of film thinning is usually calculat- 
ed according to Reynolds' eq. [19], an essential 
condition for the applicability of the latter being 
zero radial velocity of flow on the film surface. 
For foam and emulsion films stabilized with 
soluble surfactants this condition may not be 
realized for the stretch of the adsorption mono- 
layer (leading to reduction of the flow rate on the 
surface) is partially compensated by volume and 
surface diffusion. This effect is discussed in detail 
in (3) and its importance for the hydrodynamics 
of free films is pointed out in (2). On the basis of 
this conception a quantitative theory of the 
thinning of free films was worked up in (4), where 
the effect of the surface diffusion was disregarded 
and the perturbation of the adsorption mono- 
layer due to the outflow was assumed to be small. 
The theory was developed for the case of low sur- 
factant concentration, i.e. for surface concen- 
tration proportional to the volume concentra- 
tion (Henrys' adsorption isotherm). 

In the theory presented here these approxi- 
mations are avoided and as a result some new 
interesting corollaries are obtained. It turns out 
that at small film thicknesses and strong surfac- 
tants surface diffusion can be more important 
than the bulk diffusion. This leads to qualitative 
changes in the film behaviour. Besides, the results 
demonstrate that though it is possible for the 
velocity of thinning to be practically constant in 
certain concentration interval, still, its value 
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would be higher than that corresponding to 
Reynolds' eq. [19]. This means that strictly re- 

garded Reynolds' equation is inapplicable for 
the cases when the film is stabilized with a soluble 
surfactant. 

2. General formulation of the problem 

The exact solution of the problem turned out 
to be possible as a result of a certain simplifica- 
tion of the method of calculation. This requires 
to carry out in brief again all the derivations. The 
details about the physical meaning of the em- 
ployed equations and approximations are given 
in (4). 

We shall calculate the velocity of thinning 
V =-dh /d t  of liquid plane-parallel film 1) with 
thickness h (t denotes time) and radius R (fig. 1). 

- Z  

Fig. 1. Definition of the coordinate system. (Not to scale) 

For the system considered here the general 
Navier-Stokes' equations describing the liquid 
motion (5, § 5) can be substantially simplified. 
Since the natural time scale in the case is h/V 
[see e.g. (5, § 9)], it is easy to show that the time 

1) In fact the film surface is never completely plane but 
is thicker in the middle (this is the so-called dimpling). At 
certain conditions this phenomenon can be disregarded. 
This problem is considered in details in (6). 
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dependent term is of the order of magnitude of 
V2/h. Henceforth, for small values of Reynolds' 
number2), it can be neglected together with the 
inertial terms which are of the same order. This 
means that the process behaves as a steady one 
i.e. that its parameters depend on time only 
through h. 

The outflow is assumed to have a radial sym- 
metry. Since the film is thin (h < R), we shall 
always neglect the terms of the order of h/R. 
Thus Navier-Stokes' equations are eventually 
reduced to the well known equations of the 
lubrication theory [see e.g. (5, § 27)]: 

~p 82Vr 

Or - Oz 2 [ l a ]  

0p 
m az 0 [ lb ]  

OVz 1 8 (rv,) + = 0 [ l c ]  
r Or ~ z  

v~ and vz being respectively the radial and normal 
components of the velocity, p = pressure, and 
# = dynamic viscosity• 

The distribution of surfactant in the system is 
described by the equation of convective diffu- 
sion (for a system with a cylindrical symmetry): 

Oc ac Oc (1  O Oc 02c "] 
0~ + V" ~r + VZ ~z = D r ~r r ~r + Oz2] 

where D is coefficient of bulk diffusion and c is 
bulk surfactant concentration. 

In the manner already used for simplifying 
Navier-Stokes' equation (see above) it can be 
shown that both the time dependent term and 
the convective term are of the order of cV/h, and 
for small values of Peclet's number (Pc = Vh/D) 
they can be neglected. Thus for the case of cylindri- 
cal symmetry a simpler equation is obtained: 

1 O ( O c )  82C 
r 8r r~2r + ~ z  2 = 0 '  [2] 

The solution of the system [1]-[2] must 
satisfy the condition for surfactant conserva- 
tion 3) (3): 

2) For a thin aniline film [see (4)] Reynolds' number is 
of the order of 1 0  - 9  . 

3) Because of the symmetry of the system we shall carry 
out all the calculations only for the upper surface z = hi2. 

8-[ +--r (rvrF) - Ds r 8r r-~r 

Oc h 
= - D o z ,  when z 2 

where F is surfactant surface concentration and 
D~ is coefficient of surface diffusion. Since we 
have a steady process we can write: 

OF OF Oc Oh OF Oc 
- -  - -  - - V - - - -  

Ot Oc Oh Ot Oc Oh" 

Comparing this expression for OF/Ot to the 
term D Oc/Oz we can see that OF/Or can be neg- 
lected if V(OF/Oe)/D < 1. The latter ratio has the 
structure of Peclet's number but the length scale 
OF/Oc in the case depends on the surfactant 
adsorbability. Thus the condition for surfactant 
conservation takes the form: 

(r l ~(rv~r)- O~r ~ -~r 

8c h 
= - D ~ z ,  when z = ~ - .  [3] 

Further on we have used the following limiting 
conditions: 

V h 
V z -  2 '  when z ~-  [4] 

Ovr Oe 
a) ~-z = 0 ;  b) 8 z = 0 ;  when z = 0  [5] 

\ O z / = O r ;  when z = ~ -  [6] 

a) p = 0 ;  b) C=Co;  when r = R  [7] 

where a = a (r) is the local value of the surface 
tension, and Co is the equilibrium bulk concen- 
tration of surfactant. The condition [7] allows 
for the fact that the liquid in the meniscus is 
immobile. Since the solution must not have any 
singularity in all cases when expressions of the 
kind const/r appear we shall put const = 0. 

Taking into consideration [lb] and [5a], 
after integrating [ l a ]  on z we obtain: 

Z 2 0p 
v, = 2--~ 0~ + B(r) [8] 

where B(r) is an integration constant. Substitut- 
ing [8] in [1 c] and then integrating consecutively 
on z (eq. [4] is used at this step) and on r we ob- 
tain: 

4-* 
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h 3 ~p 
Vr - 12# c3r + 2Bh. [9] 

Separating in [2] the variables r and z by putting 
c (z, r) = ~o (z) 0 (r), we have: 

r dr r = - X 2 0  

and 

dZq~ 
- Z 2 [ 1 0 3  dz 2 q~ 

where )~ is a constant. The function q~ (z) can be 
expanded in series on the even powers of z. Since 
for the thin film z < h/2 ~ R, we shall confine 
ourselves to the quadratic term which suffices 
for accounting the bulk diffusion flux in [3]. 
Taking also into consideration [7b]  we can 
write down: 

( C = C o +  1 + . [11] 

In the cases where c is not differentiated on z, 
we shall neglect the term X 2 z2/2. The concrete 
form of the function 0 is immaterial for the further 
solution. 

From [10] and [11] we have: 

-~Z z=h/2 2 r dr r . [12] 

From this and from [3] after integration on r, 
we obtain: 

( h2@ ) (D OF+Dh~ dO 
F 8 - - ~ r + B  - \  ~c ~ - / ~ r = 0  [13] 

where vr at z = h/2 is expressed through [8]. 
Deriving [13] we have employed the assump- 
tion for local equilibrium with respect to the 
distribution of the surfactant between the bubble 
and the surface, ile. we have assumed that F(r) 
= r [c(r)]. This allows us to write: 

OF _ OF (~c) _ OF dO [14] 

surface tension, by analogy to [14] we For the 
have: 

~a &r 

Or c3c ~=h/2 dc dr" 

From [6] and [8] with the aid of the latter equa- 
tion we can express dO~dr: 

h ap 3¢ de  
- [ 1 5 ]  

2 0r 0c dr" 

From [9], [13] and [14] we obtain: 

#V r 
@ -  6 ha [16] 0r l + a  

where 

( 2Ds 0F)  3D# [17] 
a = -  1 + Dh ~c F(O~/Oc)" 

The force which the liquid asserts upon the 
film surface is 

R 

f F = 2 ~ p r d r = - n  r 2 ~p o ~r dr 
0 

R 
6npV ~ r 3 

= ~ - - J  1 ÷ a dr. [183 

0 

(In the second step we have used term-by-term 
integration and the condition [Ta].) This force 
balances the external force, causing the outflow. 
The velocity of thinning Vo of a film with rigid 
surfaces (i.e. with radial velocity on the film 
surface equals zero), thinning under the action 
of the same force, can be calculated from Reynolds' 
equation (2): 

3npR4 Vo 
F = 2h 3 [19] 

Putting [18] equal to [19] we obtain finally: 
R 

V o -  4 ~+-~dr [20] 
0 

The equation thus obtained is in principle a 
general solution of the problem, for the function 
0 canbe found from [10] [0is represented through 
Bessels'functions (4)] and with the aid of the ad- 
sorption isotherm and [17], the velocity V can 
be calculated from [20]. However, the result is 
so intractable, that we prefer to consider two 
particular cases, which actually cover the whole 
concentration range. 

The surface concentration F and the bulk 
concentration c can be represented as sums of 
the corresponding equilibrium values F o and 
Co, and the perturbations F1 and ca, caused by 
the flow (F = F0 + F1 and c = Co + q) .  If Co is 
high, the perturbations F t and cl cannot be 
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great (F1 ~ Fo and cl ~ Co) because any de- 
viation from the equilibrium distribution leads 
to diffusion flux which tends to annul the per- 
turbation i.e. the diffusion flux acts as a "dam- 
per". At low concentrations, however, the rate 
of diffusion decreases substantially and the per- 
turbations can become comparable to the 
equilibrium values Fo and Co. Therefore it is 
convenient to consider separately the regions 
of high concentrations (strong "damping") and 
of low concentrations (weak "damping"). 

3. High concentrations 

In this case we can use the following expan- 
sions in series: 

OFo OF OFo [21] 
r = ro + ~ C l ;  Oc - Oc~ 

Oao . Oa _ Oao [22] 
a = ~O + Oc---oCl, Oc Oct" 

The quantity e in [17] is then a constant and 
from [20] we obtain: 

2Ds 8Fo~ 3D# V 1 - 1 + - -  [23] 
Voo = Dh ~Co,] Fo(Oao/OCo)" 

In many cases (7) adsorption of surfactants obeys 
Langmuirs isotherm: 

Fo = F~o C o  1-24] 
a+Co 

respectively Szyszkowski's equation: 

[25] 

where F~ is the maximum surface concentration, 
a is the adsorption constant, a0 ° is the surface 
tension of the pure solvent, k is Boltzmanns 
constant and T is Kelvins temperature. 

Eqs. [23]-[25] yield: 

F 2DsFooa -] 3D#(a + Co) 2 - - - V - l +  1 +  
V o [_ Dh(a + Co)2_] r~kTco 

[26] 

The latter expression has the advantage to allow 
the theoretical analysis of the phenomenon. If the 
adsorption obeys other adsorption isotherms, 
they (or even experimental data for the depend- 
ence ao = a0 (%) in the .general eq. [23]) can be 
also used. 

4. Low concentrations 

In this case the expansions in series [21] and 
[22] cannot be used, but since now Co ~ a the 
eqs. [24] and [25] could be written in a simpler 
form. Applied for the local quantities F and c, 
they read: 

too 
F = - - c = b c  [27] 

a 

a a ° F~okT 
= c = a ° k T b c  [28] 

a 

so that [17] yields: 

2D~b'~ 3D# [29] 
c~= 1+ Oh J k T b Z c  " 

Integrating [15] we obtain (from [7b] and [10] 
follows •(R) = 0): 

ph = - 2 k T b  0 [30] 

from which c = Co + O can be calculated (cf. [10]). 
The case of weak damping corresponds to 

c--.0 i.e. to e ~ 1. Using this approximation 
from [16], [29] and [30] we obtain: 

2Ado 1 - e x p  - q  1 -  [31] 
P = ---h-- 

where 

bR2V ( 2D~b) -1 
q = ~ 1 +- -D-hi  [323 

and 

Ado = k Tbco = a ° - do. [33] 

Eqs. [18] and [31] give finally: 

Ph _ 1 - 1 ( 1  - e-q). [34] 
2Ado q 

Here we have introduced the notation: P = F/rcR2. 

5. Discussion 

Let us begin with the case of strong damping 
and assume that the film is thick enough so that 
the term allowing for surface diffusion is van- 
ishing. Thus with low concentrations 4) (Co ~ a) 
eq. [26] takes the form: 

V 3D#a z 3D#a 2 
- - =  1 + - -  ~ - - .  [35] 
Vo Fo~ k T e o F~o k Too 

4) Further on it is shown that even in the region in 
which Henry's isotherm is valid damping can be strong. 
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The expression thus obtained coincides with 
eq. [26] from (4). 

With high concentration (co >> a) we obtain: 

3D# c V 1 + [36] 
goo = °"  

Thus the function V/Vo vs. Co has a minimum at 
co = a whose value is V/Vo = 1 + 12D#a/F~kT. 
Therefore when the film is stabilized with soluble 
surfactant, V is always greater than Vo, i.e. the 
radial velocity is never zero on the surface and 
Reynolds' equation is not applicable. The abscissa 
of the minimum of the function V/Vo coincides 
with the abscissa of the maximum of the damp- 
ing coefficient of the capillary waves calculated 
according to Szyszkowski's equation (8). Only 
when the surfactant is strongly adsorbable 
(a ~ 0) so that it is in practice insoluble Reynolds' 
equation remains valid. The increase of the veloc- 
ity V for Co > a, obviously is due to the fact that 
in this region F~-F~ and further increase of Co 
does not lead to any significant change of the sur- 
face concentration, and only increases diffusion 
flux. 

/0 

8, 

~.0. 

6"* x/#~,990L. ~'/'B "~ 

Fig. 2. Dependence of V/Vo vs. Co for aniline films stabi- 
lized with lauric alcohol in the absence of surface diffusion 
(/9 s = 0 or/and h ~ oo). Curve 1 is calculated according to 
eq. [26] with a = 2 . 2 6 . 1 0 - S m o l . c m  -a and F~ 
= 6.42.10-11 mol. cm -2. Curve 2 is calculated accord- 
ing to eq. [23] by means of graphical differentiation of 
the experimental curve Aao vs. Co from (4). Values of the 
other parameters: D = 1.3-10 - 5 cm 2 sec - 1; # = 4.4.10- 2 
g cm- 1 see- 1 ; T = 292 °K 

In fig. 2 curve 1 shows the dependence V/Vo 
vs. Co calculated according to eq. [26] (without 
the term allowing for surface diffusion) for aniline 
films stabilized with lauric alcohol (D = 1 .3 .10-  5 
cm 2 sec-1;  # = 4 . 4 . 1 0  .2 g cm -1 sec-~; 
T =  292 °K; a = 2 .26.10 .5 mol cm-3 ;  F~ 
= 6.42.10 - 11 tool cm - 2) s). Curve 2 in the same 

5) ThevaluesofaandFoo quotedherearedifferent from 
those quoted in (4). They have been recalculated on the 
basis of the same experimental curve [see fig. 3 in (4)] in 
order to fit better Szyszkowskis equation with the experi- 
mental results. 

figure differs from curve 1 only by that, that it is 
built according to eq. [23] where the values of 
(t?~o/OCo) are calculated by graphical differen- 
tiation of the experimental curve (co) [fig. 3 in 
(4)] and Fo is determined from Gibbs' isotherm: 

As it is seen from the figure, curve 2 yields not 
a distinct minimum but sooner a rather large 
plateau. With high concentration the velocity V 
does not increase but decrease. This shape of 
the curve is resulted by the inapplicability of 
Szyszkowskis equation. Although in a quite wide 
concentration range the velocity V remains prac- 
tically constant, Reynolds' equation is not valid 
because there V --- 2 Vo. 

Taking into account surface diffusion leads to 
some interesting consequences. As it is seen 
from the obtained results (see for instance eq. [23]) 
surface diffusion will play more important  role 
in thinner films and with stronger detergent 
(greater t?Fo/~Co) 6). Unfortunately, reliable data 
about D~ are not available so that the region where 
this effect would be significant cannot be indi- 
cated. A rough estimation shows that with ani- 
line films stabilized with lauric alcohol at h ~< 600 A 
surface diffusion becomes predominant  over bulk 
diffusion. As it must be expected surface diffusion 
increases the velocity V for it hinders formation 
of a surface tension gradient during the film thin- 
ning. 

In macroscopic phases (e. g. for case of capil- 
lary waves on the surface of a semi-infinite phase), 
surface diffusion can be neglected [see for in- 
stance (3)]. In thin liquid films however this effect 
is important  for when the film thickness decreases 
the concentration gradient Oc/Oz at z = h/2 
also decreases (see eq. [12]). This results in a de- 
crease of the bulk diffusion flux while the surface 
diffusion flux remains practically unaltered. 

Unfortunately it is not easy to proof  this 
effect experimentally for at small thicknesses 
disjoining pressure, which also depends on h 
and is not usually known with sufficient accuracy, 
appears. Certain possibilities for experimental 
verification still exist. At h ~ 0 eq. [26], for ex- 
ample takes the form for all concentrations: 

V 6D~#a 
Vo - r ~ k  r h c o  " [37] 

6) It must be born in mind, however, that when OFo/ 
0Co increases Oao/OCo also increases which leads to smaller 
deviation from Reynolds' law. 
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This function differs substant ial ly f rom the 
equat ion which follows f rom [26] at great  h not  
only by the presence of h in the expression, but  
also by the dependence of V / V  o vs. Co - it mono-  
tonely decreases when increasing Co and does 
not  pass th rough  a min imum.  This effect can be 
used as a criterion for the prevail ing influence of 
the surface diffusion. At higher thicknesses when 
the te rm 2 D f ~ a / D h ( a  + Co) 2 in [26] is of  the 
order  of  unity such a cri terion can be the abscissa 
of the m i n i m u m  of the curve V/Vo which in this 

1 
case has the value a(1 + 2 D f ~ / D h  a) 2 

Let  us consider finally the region of a low damp-  
ing. The general eq. [34] possesses two interest- 
ing limiting cases. Fo r  high value of q it takes the 
form:  

Ph  1 
- 1 [383 

2 A %  q 

and for q ~ ~ (i. e. for V ~ oo): 

e h  = 2Atr o . [39] 

Since at V ~ ~ a film does not  form at  all, eq. [39] 
must  be considered as a condi t ion for the dynamic  
stability of  the film (i. e. as a condi t ion for its exist- 
ence). Analogical  result to an accuracy of a factor 
two has been obta ined in (4) on the basis of  semi- 
quant i ta t ive  considerat ions,  where it has been 
shown that  at V ~  oo a free of  surfactant  spot  
forms in the film c e n t r e -  as a result the film must  
rupture.  

In the other  limiting case (small V) e -q in [34] 
can be expanded in series to give: 

P h/A ao = q. [40] 

Expressing here P th rough  Reynolds" eq. [19] 
and using [27], [32], and [33] we obta ined  again 
eq. [35] which has been derived for the case of  
low concentra t ions  (Henry's adsorp t ion  iso- 
therm) with s t rong damping.  This means  that  
even in the region of validity of  Henry's i so therm 
it is possible to have s t rong damping.  It  also shows 
that  the expressions obta ined  for weak and 
s t rong damping  over lap i.e. that  t h e y  describe 
the whole concent ra t ion  range. 
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Summary 

A theory of the effect of the surfactant on the rate of 
thinning of foam films is presented. The formulae obtained 
for the separately treated cases of low and high concentra- 
tions cover the whole concentration range. The effect of 
both bulk and surface diffusion is taken into consideration 
and it is demonstrated that the relative importance of the 
latter increases with the decrease of the film thickness. 
Therole of the surfacediffusion for the stabilityoffoam films 
is discussed. It is shown that films stabilized with soluble 
surfactants never strictly obey Reynolds'exl. [19] so that 
the actual velocity of thinning can he substantially higher 
than that calculated by the quoted equation. 
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