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In this paper, we consider the optimal loop scheduling and minimum storage 
allocation problems based on the argument-fetching dataflow architecture 
model. Under the argument-fetching model, the result generated by a node is 
stored in a unique location which is addressable by its successors. The main 
contribution of this paper includes: for loops containing no loop-carried 
dependences, we prove that the problem of allocating minimum ~torage required 
to support rate-optimal loop scheduling can be solved in polynomial time. The 
polynomial time algorithm is based on the fact that the constraint matrix in the 
formulation is totally unimodular. Since the instruction processing unit of an 
argument-fetching dataflow architecture is very much like a conventional 
processor architecture without a program counter, the solution of the optimal 
loop storage allocation problem for the former will also be useful for the latter. 

KEY WORDS: Dataflow architecture; loop scheduling; storage allocation; 
polynomial algorithm. 

1. INTRODUCTION 

In  scientific computa t ions ,  loops are the most  time consuming  part  of the 

programs. How to schedule the operat ions in a loop so that the execution 
can achieve m a x i m u m  computa t ion  rate while only allocating m i n i m u m  
a m o u n t  of high-speed storage spaces (e.g. registers) enough to support  such 
opt imal  rate is among  the most  challenging problems faced by compiler  

writers. 
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The method developed in this paper is quite different from many con- 
ventional register allocation methods proposed and implemented in com- 
pilers. The goal of the conventional register allocation is to minimize the 
total number of registers used for a sequential execution of the program. (1) 
Many of these register allocation algorithms are based on the coloring of 
interference graphs representing overlapping relations of the live ranges of 
program variables in a sequential execution model. (2' 3~ Under the sequen- 
tial execution model, the scheduling of the operations is uniquely deter- 
mined by the sequential order, so is its interference graph. Our goal is to 
study the storage allocation problem under a parallel dataflow execution 
model and to achieve the minimum storage allocation while not reducing 
the maximal achievable speedup. The optimal scheduling of operations and 
the relation between live ranges of program variables that they access are 
closely related, and need to be characterized together in a unified model. 

In our paper, (4) we have studied the minimum storage allocation 
problem for loops under an idealized dataflow machine model, and derived 
the result that the problem can be solved in polynomial time. The architec- 
ture we considered in that paper was the FIFO argument-flow dataflow 
model, which is a generalization of the static dataflow model. (5-7) The 
FIFO dataflow model described in Ref. 4, like many other dataflow 
models, is based on the argument-flow dataflow principle (a term first 
coined in Ref. 8) where storage spaces (FIFO queues) are associated with 
arcs and tokens will "flow" along the arcs when they are produced at the 
tails of the arcs and are consumed at the heads of the arcs. The argument- 
flow model, although used to describe the data-driven principle due to its 
simplicity,(5.9) has its weakness in terms of storage efficiency, caused by the 
model of allocating a FIFO queue for each arc. (8) 

To overcome the space inefficiency of the argument-flow dataflow 
models, the argument-fetching dataflow model was proposed, (8' lo) which 
will be introduced in Section 2. The argument-fetching dataflow model 
achieves space efficiency by letting all the output arcs of a node share the 
same FIFO queue. Therefore, result tokens will no longer be flowing along 
the arcs. Instead the successor nodes will fetch the values from the FIFO 
queues of their predecessors. In an argument-fetching dataflow architecture, 
the FIFO queue is realized by the high-speed data memory in the pro- 
cessor. This is very much like the conventional von Neumann computation 
model where an instruction is fetching its operands from registers or 
memory. Alike its conventional architecture counterpart, the allocation of 
such high-speed memory in an argument-fetching dataflow architecture is 
crucial in the compiler design. 

We believe that this is the first paper to deal with compile-time storage 
allocation for argument-fetching architectures. The paper gives a unified 
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mathematical formulation and polynomial time algorithm. Although, 
there is earlier work on compile-time storage allocation for dataflow 
machines,(4, 11 15) all of them are focused on argument-flow models. 

The significance of this work goes beyond dataflow architectures. 
In fact, dataflow graphs are directly useful as an intermediate form for 
compile-time optimization such as software pipelining on conventional 
architectures. For instance, in Ref. 16, our software pipelining technique is 
based on dataflow graphs with static dataflow semantics. Although the 
architecture in the present paper is different from the one used in Ref. 16, 
the underline techniques for scheduling and allocation are similar. The 
argument-fetching dataflow graph model used in this paper is particularly 
interesting since it is based on an operational semantics that maintains the 
advantage of the dataflow model without using a token-pushing style 
execution, and supports a general updatable storage model. One important 
observation is that, since the instruction processing unit of an argument- 
fetching dataflow architecture is very much like a conventional processor 
architecture without a program counter, the solution of the optimal loop 
storage allocation problem for the former should also be useful for the 
latter. The idea is fully developed in our paper, (17) which can handle loops 
with loop-carried dependences on conventional architectures. 

In this paper, we will solve the problem of minimizing the amount of 
storage spaces among all optimal schedules. The main contribution of this 
paper is: for loops containing no loop-carried dependences, the problem of 
minimizing storage spaces required to support rate-optimal loop scheduling 
can be solved in polynomial time. We show that the problem can be 
directly formulated into an integer programming problem. We then show 
that the integer programming problem can be solved in polynomial time. 
Since the architecture model in this paper is different from the one in 
Ref. 4, the problem and its formulation here are also different from those 
in Ref. 4. For loops with loop-carried dependences, the same optimization 
problem has been proven to be NP-complete. (18) 

The paper is organized as follows: In Section 2, we formally state our 
minimum storage allocation problem for the argument-fetching architec- 
ture. In Section 3, we formulate the problem into an integer linear 
programming problem. In Section 4, we show that the integer program- 
ming problem is solvable in polynomial time. We actually prove that the 
constraint matrix is totally unimodular and therefore the integer program- 
ming problem can be reduced to the corresponding linear programming 
problem. Section 5 gives a more efficient algorithm for the solution. It 
reduces the original problem into a minimum cost network flow problem 
which has a O(n 3 log n) algorithm, where n is the number of nodes in the 
graph representing the loop body. Section 6 shows an example. In Section 
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7, we include some discussions of the issues involved in generating codes 
for conventional architectures in this paper. In Section 8, we relate our 
work with others and point out the differences in our objectives. We give 
our conclusion in the last section. 

2. A R C H I T E C T U R E  M O D E L  A N D  PROBLEM S T A T E M E N T  

In this section, we outline the architecture model and formulate the 
problem to be studied in the rest of this paper. 

2.1. Arch i tecture  Model  

Our architecture model is an extension of the FIFO dataflow model 
(as presented in Ref. 4), to adapt the argument-fetching principle. 

2. 1.1. Argument-Fetching Dataflow Principle: A Brief Review 

The argument-fetching dataflow principle was first proposed in Ref. 8. 
The advantages of the argument-fetching principle, as pointed out in the 
introduction section, is to obtain space efficiency through sharing FIFO 
queues among all the output arcs of a node. As in conventional dataflow 
architectures (those based on the argument-flow dataflow principle such as 
proposed in Refs. 5, 9, and 19), a program in an argument-fetching 
machine is expressed as a directed graph and the execution is based on the 
data.driven principle: a node becomes enabled and can be fired only when 
its operand values are produced. However, in an argument-fetching 
dataflow architecture, the data (arguments) are not organized as tokens 
traversing along the arcs in the program graph. Instead, a node is 
associated with some storage location which is used to store the result 
value generated by the corresponding operation, in a way very similar to 
an instruction execution in a conventional yon Neumann processor 
architecture. In other words, under the argument-fetching principle, a result 
value never needs to be duplicated and sent to destination nodes via its 
output "arcs," thus eliminating the overhead of excessive token traffic 
in argument-flow dataflow architectures. As an example of dataflow 
architectures based on the argument-fetching principle, the readers are 
referred to the McGill Dataflow Architecture Model/1~ 20, 21) 

2. 1.2. FIFO Argument-Fetching Dataflow Mode/ 

In this paper, we extend the FIFO dataflow model presented in Ref. 4 
to use the argument-fetching principle. The major features of the FIFO 
argument-fetching model are: 
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�9 A FIFO queue is associated with each node in the dataflow graph. 
Such a F IFO queue is used to store the result values produced by 
the corresponding node. There is no pre-assumed upper bound on 
the size of the F IFO queue. The successors of a node will "fetch" 
its operands (arguments) from its result F IFO queue. Therefore, 
the model is based on the argument-fetching principle. 

�9 There may be more than one activation of a node in simultaneous 
execution, governed by the firing rule to be described later. The 
FIFO queue provides both the storage for their results and the 
mechanism to keep them in the order to be consumed by the 
successors. Therefore, it has extended the original argument- 
fetching static dataflow model as described in Ref. 8. 

The firing rule of the F IFO argument-fetching model is presented here. 

�9 A node is enabled if the FIFO queues associated with its input 
predecessor nodes are not empty, and its own result F IFO queue 
has at least one empty slot (i.e. not full). 

�9 An enabled node can be fired and the firing of the node involves 
the following steps: 

1. fetch a value from the head of the FIFO queue associated with 
each of its input predecessor nodes, 

2. perform the operation using the operands just fetched, 

3. save the result of the operation into its own FIFO queue (at 
the tail). 

The FIFO queue associated with a node i has a single writer (node i 
itself), but may have multiple readers (the successor nodes). The FIFO 
queue is shared by its readers in such a way that a reader n o d e j  can access 
the F IFO queue independently as if a FIFO queue is logically dedicated to 
the communication between node i and j. The implementation of the 
F IFO queue mechanism to efficiently support multiple readers, although 
interesting, is beyond the scope of this paper. Finally, the FIFO dataflow 
model inherits nice properties of the ordinary dataflow models (such as 
well_behavednesstS. 9~), as discussed in Ref. 22. 

2.2. Problem Sta tement  

The program model considered in this paper is an innermost loop, 
which does not contain loop-carried dependences. Therefore, the dataflow 
graph representing the loop body is a directed acyclic graph (DAG) 
G = (N, E) which represents the data dependence graph for one iteration of 
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the loop body. N is the set of nodes and E is the set of arcs. Figure 1 shows 
an example loop and its dataflow graph for one iteration. There are seven 
nodes in the graph numbered from 1 to 7. Node 1 is the starting node and 
node 7 is the terminating node. The number beside an arc is the delay of 
that arc. Notice that the longest path from node 1 to node 7 is the path 
((1, 3), (3, 4), (4, 5), (5, 6), (6, 7)}, and its length is 14. 

The fine-grain parallelism in a loop (such as the previous example) 
can be easily exploited by dataflow software pipelining. The technique of 
dataflow software pipelining involves the arrangement of machine code 
such that successive computations can follow each other through one copy 
of the code. If we supply a sequence of values to the inputs (e.g. X[i] 's  and 
Y[i]'s) in the dataflow graph, these values can flow through the program 
in a pipelined fashion. 

For the loop L in Fig. 1, if not enough memory is allocated to the 
nodes, then it cannot support the maximum computation rate allowed by 
the idealized argument-fetching dataflow architecture, which is obviously 1, 

d 1 =2  

f o r i  = 1 to N d o  

Sl: a[i] = x[i]  + y[i]; 

s2: b[i] = a[i] / 3; 

s3: c[i] = a[i]  * z[i];  

S4: el i ]  = c[i]  - w[i] ;  

s5: f[i] = c[i]  + e[i];  

s6: g[i]  = f[i] * e[i];  

s7: h[i]  = b[i] * g[i] ;  

e n d  f o r  

d4= 

=3 

d7=3 

d3=4 

d5=2 

(a) (b) 
Fig. 1. An example loop L. 
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i.e. one iteration initiation per time step. For example, node 1 could be 
fired at time step 0, and produce its result at the end of time step 1 
(because d l =  2). Then node 2 could be fired at time step 2 and produce its 
result at the end of time step 10 (d2 = 9). For  the second iteration, we can 
start executing node 1 just one time step after node 1 in iteration 1 is 
initiated. The same is true for node 2. That is to say, node 1 should be fired 
the second time at time step 1, producing a result at the end of time step 
2. Similarly, node 2 should be fired the second time at time step 3 and out- 
put its result at the end of time step 11. At this time, node 2 has produced 
two results (which should be stored in the registers). But node 7, which 
uses the results, can not be fired before time step 14 because of the longer 
data dependency paths along the other nodes from node 1 to node 7. 
Therefore, if the number of storage spaces allocated to node 2 is not 
enough, we have to choose not to fire node 2 consecutively. This will make 
the computation rate slower. Therefore, our problem statement can be 
presented as follows: Given a loop as previously described, how do we 
allocate the minimum amount of high-speed storage spaces to the nodes 
such that the graph will be executed at the maximum computation rate ? 

3. F O R M U L A T I O N  

In this section we formulate the minimum storage problem into an 
integer programming problem. We then show that the problem can be 
solved in polynomial time in the next section. 

Let T~ denote the time when the first instance of node i is scheduled 
(i.e., execution in the first iteration). Once we have determined the T;s for 
all the nodes in the graph, we can schedule the nodes for their second 
instances in the second iteration (which is represented by the same graph) 
at time Ti + 1, and their third instances in the third iteration at time T~ + 2, 
etc. In general, the k th  instance of node i in the k th  iteration will be 
scheduled at time Ti + k - 1. 

Therefore the Ti's determine a schedule for all the instances of the 
instruction in the dataflow graph, which initiates one iteration per clock 
cycle. Our goal is to find such feasible Tg's such that the schedule it 
determines uses the minimum amount of storage spaces. 

Next we investigate the lower bound on the size of the FIFO queue to 
be allocated for a node i. 

Suppose that node j is a successor of node i and e--  (i, j )  is an arc 
from i to j. Let T~, Tj denote the scheduled time for the first instances of 
nodes i and j, respectively. Then they must satisfy the following timing 
constraint: 

Tj  - T~ >>. d~ (1) 
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where d i is the number of clock cycles to execute node i. Now the node i 
will be fired (scheduled) for the second time, third time, fourth time, etc. at 
time Ti + 1, Tg + 2, Ti + 3 etc. The results of the consecutive firings of node 
i have to be stored in the FIFO queue allocated to node i. When node i 
is fired at time Ti, it will produce a result at time T~ + d~. That value will 
be consumed by node j at time Tj. Therefore the time difference between 
producing the value and its consumption is: 

Tj- r , -  

So, the number of results produced by the consecutive firings of node i 
before they are consumed by node j is: 

Tj-- T i - d ~ +  1 

which in turn means that we should allocate at least that amount of 
memory spaces for the FIFO queue of node i. 

When considering all the successors of node i, we must make sure that 
the amount we allocate to its F IFO queue be not smaller than the amount 
we calculated earlier for each individual output arc. Let Bi be the size of 
the FIFO queue for node i, then we must ensure that: 

B~>~Tj-T,-d,+I, Vje3+(i )  (2) 

where 3 + (i) is the set of nodes j in the graph that are connected from the 
node i by arcs (i, j ) e  E, and E is the set of arcs in the dependence graph. 
Similarly, 6-(0 can be defined to be the set of nodes j in the graph that 
are connected to the node i by arcs (j, i )e  E. 

We assume that there exists a unique starting node s and a unique 
terminating node t and all the other nodes are on some path(s) from the 
starting node s to the terminating node t in the graph. The starting node 
s will be executed before any other node in any iteration. If the original 
graph has multiple starting nodes, we can add a new starting node s and 
add arcs from s to each of the original starting nodes. We assume that the 
execution time (or delay) of the new starting node equals zero. A similar 
procedure can be applied to the terminating nodes if the original graph has 
multiple terminating nodes. Therefore, the unique terminating node is the 
last one to be executed in any iteration and its execution time can be 
assumed to be zero (since it has no effect on the scheduling of the other 
nodes in the graph). 

Now let us use L to denote the length of the longest dependence path 
from s to t. Then the optimal schedule for the loop should finish any itera- 
tion in L time cycles. Therefore the minimum storage allocation problem 
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for an optimal schedule of the loop without loop-carried dependences can 
be formulated into the following integer programming problem, which 
combines the timing constraints in Eq. (2) and the size constraints in Eq. (1). 

Problem (I): 

subject to 

min y' Bi 
i ~ N  

B~+ L-- Tj>~ I--d~, V(i,j)eE 

Tj- T~>~d~, V(i,j)~E 

Tt-- Ts=L 

Ti, Bi integers, Vi ~ N 

The solution of this programming problem will give a valid optimal 
schedule determined by the Ti's and a supporting storage allocation for the 
nodes determined by the B}s. We will show in the next section that this 
formulation can be solved in polynomial time. 

4. P O L Y N O M I A L  T I M E  S O L U T I O N  

We will show next that Problem (I) can be treated like a linear 
programming problem instead of an integer programming problem. From 
the known polynomial time algorithms, i.e., ellipsoid method (23) and 
interior point method, (24) the linear programming problem can be solved 
in polynomial time. Thus the original integer programming Problem (I) 
can be solved in polynomial time. 

Actually, we will show that the constraint matrix of Problem (I) is 
totally unimodular. The total unimodularity property of the constraint 
matrix will guarantee that the linear relaxation problem has integer 
optimal solution. 

First, we give some definitions. 

Def in i t ion  4.1. The O-incidence matrix A + of (directed) graph G 
is a matrix with the rows indexed by arcs, the columns indexed by nodes, 
and the elements defined by: 

_t_ aev - ~  q- 1, Vv e N, Ve e E and v is the tail of arc e 

Similarly, we can define the/-incidence matrix. 
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Def in i t ion  4.2. The/- incidence matrix A -  of graph G is a matrix 
with rows indexed by arcs, the columns indexed by nodes, and the elements 
defined by: 

aev = - -  1, Vv ~ N, Ve ~ E and v is the head of arc e 

With these definitions, we can see that each row of A + (or A ) has 
exactly one + 1 ( - 1 )  at the column indexed by the tail (head) of the arc. 
And for each column of A + (or A - ) ,  the number of + l ' s  ( - l ' s )  is the 
out-degree (in-degree) of the node indexing that column. 

Def in i t ion  4.3. The incidence matrix of graph G is: 

A = A  + - A -  

So, each row of the incidence matrix has one + 1 and one - 1  in the 
columns indexed by the tail node and head node of that arc, respectively. 

Next, we cite the definition of totally unimodular matrix and a 
necessary and sufficient condition to test whether a matrix has such a 
property. 

D e f i n i t i o n  4.4. A matrix is called totally unimodular (TUM) if 
the determinant of every square submatrix of the matrix is either 0 or + 1 
or - 1. 

Since each element of the matrix is considered as a one-by-one square 
submatrix, we can see that each element of a totally unimodular matrix 
must be either 0 or + 1 or - 1 .  

Testing whether a given matrix has the T U M  property is not easy in 
general, although complicated procedures have been developed to do that 
in polynomial time. (25) There are some known necessary and sufficient 
conditions in the literature for testing the T U M  property. Here, we only list 
one which will be used later in our proof. 

Def in i t ion  4.5. A submatrix of a {0, +__ 1 } matrix is called Eulerian 
if the sum of the elements in each row and in each column of the submatrix 
is even. 

T h e o r e m  4.1 (Camion(26)). A {0, +1}  matrix is totally uni- 
modular  if and only if the sum of elements in each Eulerian submatrix can 
be divided by 4. 

Now, we are ready to prove our key lemma. 
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Lemma 4.1. The constraint matrix in Problem (I) is totally 
unimodular. 

Proof. The constraint matrix in Problem (I) has very strong relations 
with the incidence matrix of the graph. Actually, the constraint matrix is 
the following matrix: 

- A  

R 

where O are submatrices of proper sizes of all 0 (zero) elements, and R is 
a row vector indexed by the nodes in which all the elements are 0 except 
at two positions: at position indexed by s, the element equals - 1 ,  and at 
position indexed by t, the element equals +1. A + is the O-incidence 
matrix, and A the incidence matrix. 

Let us index the constraint matrix in the following way: the first n 
! t / columns are indexed by Vl, v2,..., vn, and the remaining n columns are 

indexed by vl, v2 ..... vn, where n is the number of nodes in the graph; the 
' ' ' and the next m rows are indexed first m rows are indexed by el,  e2,..., era, 

by el ,  e 2 . . . . .  em, where m is the number arcs in the graph. The last row is 
indexed by e,t. Here we assume that v~ and v i represent the same node i in 
the graph. Similar assumptions for arcs are also true. 

Therefore the v"s index the columns of the submatrix (~+) in the con - 

straint matrix. Similarly, the n's index the columns of the submatrix (-~A), 
N 

e's index the rows of the submatrix (A + A), and e's index the rows of the 
submatrix (O - A). 

Let H be an arbitrary Eulerian submatrix of the constraint matrix. In 
general, we can assume that some rows of H are indexed by some e"s and 
some others are indexed by some e's and H may or may not have a row 
indexed by est. Similarly, we can assume that some columns of H are 
indexed by some v"s and others are indexed by some v's. 

Consider a column p '  of H indexed by an v~. Note that p '  can only 
contain zeros and + 1. Since H is Eulerian, the number of + l 's in p '  must 
be even. 

If column p indexed by vi (which represents the same node as v'i does) 
is also in H, then at the rows where p '  has + l's, p must also has + l's, 
because the + l 's actually indicate the tails of the same arcs in the graph. 
Therefore, the number of + l 's in p '  and the corresponding + l 's in p can 
be divided by 4. 
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Now, consider the case where the column indexed by vi is not in H. 
Since H is Eulerian, the sum of elements in each row of H should be even. 
Let us assume that there is a + 1 in column p' at row q' indexed by e}. 
Note that row q' contains only one + 1 because the column indexed by vi 
is not in H in this case. But H is Eulerian, and hence the sum of elements 
in row q' must be even. This means that there must be a - 1  in row q'. So 
row q' contains one + 1 and one - 1 .  The sum of elements for row q' is 
zero which can be divided by 4. 

Next, let w be a row of H in which there is no + 1 on columns indexed 
by the v"s. Then, w can contain at most one + 1 and at most one - 1 .  
Since H is Eulerian, w either contains only zeros or contains exactly one 
+ 1 and one - 1. In all cases, the sum of elements in row w is zero, which 
can be divided by 4. 

Since we have counted all the nonzero elements in H, we conclude 
that the sum of elements in H can be divided by 4. Hence, by 
Camion's Theorem 4.1, the constraint matrix of Problem (I) is totally 
unimodular. [] 

By a result in integer programming (see Ref. 25), if a problem has a 
totally unimodular constraint matrix, then the linear relaxation of the 
original problem will always has an optimal solution in integer values if the 
right-hand sides of the constraints are also integral. For  Problem (I), its 
linear relaxation is the following linear programming problem which is just 
the formulation of Problem (I) without the integer requirements: 

Problem (II): 

subject to 

min ~ Bi 
i ~ N  

B,+T~-Tj>~I-d,, V(i,j)6E 

Tj-T~>/d,, V(i,j)EE 

T,- T~=L 

Lemma 4.1 actually implies the following theorem by the fact that a 
totally unimodular constraint matrix guarantees integer solution: 

Theorem 4.2. The integer linear programming Problem (I) is 
equivalent to Problem (II) which can be solved in polynomial time. 

Proof. The number of constraints in Problem (II) is 2m + 1 where m 
is the number of arcs in the graph, and the number of variables in Problem 
(II) is 2n where n is the number of nodes in the graph. 



Optimal Loop Storage Allocation 433 

Therefore, the linear relaxation Problem (II) can be solved in polyno- 
mial time by the ellipsoid method or the interior point method. Now, since 
the constraint matrix of the linear programming problem is totally 
unimodular, the optimal solution will always be integral. Therefore, 
the optimal solution is also a solution to the integer programming 
Problem (I). [] 

5. A M O R E  EFFICIENT S O L U T I O N  

In the previous section, we showed that the minimum storage alloca- 
tion problem for a loop can be solved in polynomial time. But, the argu- 
ment there is based on the fact that the general linear programming 
problem can be solved in polynomial time by either the Khachian's 
ellipsoid method (23) or the Karmarkar's interior point method. (24) 
However, both of these two methods are not quite efficient for our practical 
application in an optimizing compiler. 

In this section, we show a more efficient algorithm to solve Problem 
(I). The algorithm is a number of transformations of the problem to the 
minimum cost flow problem. Since the minimum cost flow problem can be 
solved more efficiently by the so called combinatorial algorithms, this will 
imply that our original Problem (I) can also be solved more efficiently. 

Let us first write down the linear dual of Problem (II): 

max ~ ((1-di)) .q)+ ~ di~ij+Lot~t 
(i,j)GE (i , j)~E 

subject to 

~. 2i j=l ,  VieN 
j~6+(i) 

j~5+(S) jEfi+(s) 

E 2o- E 2ji- E hi~+ Y'. rcji=O, Vi~N-{s,t} 
j ~ + ( i )  j ~6  (i) je6+(i) j~6- ( i )  

- E  Z 
jE6- ( t )  j ~5 - ( t )  

2~>~0, ~o.>>.0, V(i,j)~E 

If we reorganize the variables in the objective function, then the 
objective function can be written as: 
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( i , j ) c E  

(2~-  dg2 U + djco) + Lo~st 
( i , j )~E  

= Z '~-- Z (di~-d,~o.)+L~st 
( i , j )~E  ( i , j )~E  

i ~ N  j~6+(i)  ( i , j )~E  

= ~ 1 -  ~, (d~)o o-d,=U)+La~, 
i e N  ( i , j )~E  

= n -  ~ di(2o.-Tr~i)+L~s, 
( i , j )~E  

The first term n in the last equation is a constant, so can be ignored in the 
objective function. The variables in the constraints can also be rearranged. 
After these rearrangements and the change of sign of the objective function, 
the dual problem can be written in the following form which will be called 
Problem (III): 

Problem (III): 

subject to 

min ~ di(2ij - -  7Zij) "+" LO~st 
( i , j ) cE  

2ij= 1, VieN 
j e6+( i )  

Y ,  ( ,~ ~j - ~ ~j ) - ~ s, = 0 
j~O+(s) 

Z (z~-,~o.) - Z (~J,-'~J,) = o, vi~v-{s,,} 
j~6+(i)  j E 6 - ( i )  

- Z ( , ~ j , - ~ j , ) + ~ , , = o  
jE0 (t) 

Z~>/0, ~u~>0, V(i,j)~E 

Next, we want to show that the dual Problem (III) is equivalent to a 
minimum cost network flow problem. Now, we do a variable substitution 
for Problem (III): 

fo.=2~-rcij, V(i,j)~A (3) 
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With this variable substitution, Problem (III) becomes the following: 

Problem (IV): 

min ~ difo + L~,  
(i,j) E E 

subject to 

y' f u =  ~ zc~+l, W e N  
j~6+(i) j~6+(i) 

E fsJ--~Xst = 0  
j~O+(s) 

E f/J-- E fJ i=O' V i ~ V - - { s , t }  
j~6+(i) j~6-(i) 

- Z 

j~6-(t) 

fij unrestricted, ~o ~> O, V(i, j) e E 

The first set of constraints in Problem (IV) can be further simplified by 
the following argument. Since nij's are nonnegative variables and they do 
not appear in either the objective function or the other constraints in 
Problem (IV), we can see that the first set of constraints is equivalent to the 
following: 

~,, fij>. 1, W E N  (4) 
j66+(i) 

Lamma 5.1, Constraints 

fu= ~' ~0.+l, W e N  
je6+(i) je6+(i) 

fij unrestricted, n0 >I O, V(i, j) e E 

(5) 

and constraints: 

fu>~ l, V iEN 
je6+(i) 

fij unrestricted, V(i, j) e E 

(6) 

are equivalent. 

828/21/6-4 
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ProoL Since ztu>~0, Eq. (5) implies Eq. (6). Now we only need to 
show how to obtain a set of values for the n j s  given a solution offij  of 
Eq. (6). 

For each node i, choose a unique Ji ~ 6 + (i). Then define: 

and define 

n/j, = Z f/J-- 1, V(i, Ji) e E 
jea+(i) 

n~=O, gJe6+( i )  - {Ji} 

Such defined n0's are nonnegative and they satisfy Eq. (5). [] 

Hence, Problem (IV) is equivalent to the following problem, in which 
the first set of constraints has been replaced by Eq. (4): 

Problem (V): 

min ~ difij + Lest 
(i , j)~E 

subject to 

fu~> 1, V i e N  
j~6+(i) 

E f s J -  ~s, = 0  
je6+(s) 

E f / J -  Y, f j i=0 ,  V i e V - { s , t }  
je6+(i) je f i - ( i )  

- E 
j e ~  (t) 

f,7 unrestricted, V(i, j) �9 E 

The first set of constraints in Problem (V) gives a lower limit on the 
sum of output flow for each node, which does not appear in an ordinary 
minimum cost flow problem formulation. We will show how we can split 
the nodes in the graph to make the current formulation fit into the 
ordinary minimum cost flow problem. Actually, we can replace each node 
i in the original graph by two nodes i' and i". The original input arcs to 
node i are now directed to node i'. The original output arcs from node i 
are now going out from node i". We also add a new arc from node i' to 
node i". Now consider the ordinary minimum cost flow problem on this 
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split graph. Let N' be the set of i' nodes and N" be the set of i" nodes. We 
use E' to denote the set of arcs in the split graph. 

It is easy to see that the following minimum cost flow Problem (VI) 
is equivalent to Problem (V). 

Problem (VI): 

subject to 

min - Z d'.vf',,,~ + Last 
(u,v)~E" 

f'~,,v=~s, 
ve~+(s ") 

~, f'.~-- Z f ' ~=O,  Y u ~ U ' w U "  
ve~+(u) v~-(u) 

E f;t'=O~st 
vE6-(t') 

f',~>~l, V(u,v)eE'  

where we define the cost coefficients in the objective function by 

=~d~, if u = i " 6 N " a n d v = j ' ~ N '  
d',~ ~0, if u = i ' ~ N ' a n d v = i " ~ N "  

Lernma 5.2. Given an optimal solution of Problem (VI) 
{f'~.}/u,~)~e' and c% the {f,j}(,7)~e defined by the following formula 
together with ~s~ is an optimal solution of Problem (V): 

f,j = f'uv, if u = i" e N" and v = j '  ~ N' and i ~ j 

Similarly, given an optimal solution of Problem (V) {f,j}(i,j)~e and ~s,, the 
following defined {f'.v}(.,v)~E' together with ~ ,  is an optimal solution of 
Problem (VI): 

f ~  ~j~a+(i)  f,~, 
if u=i"  eN"  and v = j '  ~N'  and ( i , j )~E  
if u = i '  ~N'  and v=i"  6N" 

The proof of the lemma is straightforward and left to the reader. 
It is well known that the minimum cost flow problem can always 

obtain an optimal solution in integer values if all the capacity constraints 
on the arcs are integral. (25) The capacity constraints on the arcs in 
Problems (V) and (VI) are integral, therefore they have optimal solutions 
in integer values. Actually, the efficient out-of-kilter algorithm (see Ref. 26) 
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and its variants will give such an optimal integer solution when it is applied 
to Problem (VI). 

Now we summarize our procedure to get the integer optimal solution 
of Problem (I). 

S t e p  1. Solve Problem (VI). This is an ordinary minimum cost 
network flow problem which can be solved in O(n 3 log n) time by the out- 
of-kilter algorithm, (27) where n is the number of nodes in the graph. The 
solution obtained is integral, which is guaranteed by the totally unimodular 
property of the constraint matrix and the out-of-kilter algorithm. 

S t e p  2. Transform the solution obtained in Step 1 into an optimal 
solution of Problem (V) by the formula in Lemma 5.2. The transformation 
preserves the integrality of the variables. 

S t e p  3. Transform the solution obtained in Step 2 into an optimal 
solution of Problem (IV) by defining a set of rc~j's satisfying Eq. (4) by the 
method in proof of Lemma 5.1. This will also preserve the integrality of the 
variables. 

S t e p  4. Then, using the reverse variable substitution of Eq. (3): 

)~ij=f~j--Tzo., V( i , j )eE 

we obtain the solution of Problem (III) which is the dual of Problem (II). 
Read off the primal optimal solution of Problem (II) from the solution of 
Problem (III). This will also guarantee to get an integer optimal solution 
of Problem (II). The B variables are the required values for the minimum 
storage allocation scheme of Problem (I). 

T h e o r e m  5.1. The minimum storage allocation Problem (I) or (II) 
can be solved in O(n 3 log n) time, where n is the number of nodes in the 
graph representing the loop. 

6. E X A M P L E  C O N T I N U E D  

In this section, we solve the integer linear programming problem for 
the simple example loop L we have seen in Fig. 1 and illustrate how we can 
make best use of these FIFO queues. 

The integer programming Problem (I) of the graph in Fig. 1 is: 

min B1 + B2 + B3 + B4 + B5 + B6 
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subject to 

BI + T 1 -  T2>~ l -  2 =  - 1  

Bl  + T 1 -  T3 >~ l - 2 = - 1  

Bz + Tz - T7 >/1--  9 = - 8  

B3 + T3 - T4 >~ l - 4 = - -3  

B3 + T3 -- Ts >~ l - 4 = - 3  

B 4 +  T 4 - T s > ~ l - 3 =  - 2  

B 4 +  T 4 - T 6 > ~ l - 3 =  - 2  

Bs + T s - -  T6 >~ l -- 2 = - 1  

B 6 +  T 6 - T 7 > / l - 3  = - 2  

T 2 - T1~>2 

T 3 -  Tl  >~ 2 

T 4 -  T3>~4 

T s -  T3 >/4 

T~-  T~>~ 3 

T y -  T~ >~ 9 

T 6 -  T4~>3 

r 6 - -  r s  >~ 2 

T~-  T~ >~ 3 

T 7 -- T 1 = 14 

439 

B 1,..., B6, T 1,..., T 7 integers 

An optimal solution of this problem is listed here: 

T I = 0 ,  T2= T3 =2 ,  T4=6 ,  T5=9 ,  T6= 11, 7"7=14 

B1 = 1, B 2 = 4, B 3 = 4, B 4 = 3, B 5 = 1, B 6 = l 

The storage allocation of F I F O  queues for the instructions in the loop 
L is represented in Fig. 2. We did not calculate the amount  of storage for 
node 7 since that amount  depends on the subsequent instructions outside 
the loop which will use the results of node 7. 
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Now, let us see how these FIFO queues are used in the execution pro- 
cess. In Table I, the cycle time coordinate is on the vertical axis, and the 
iteration coordinate is on the horizontal axis. The first iteration of the loop 
is executed according to the schedule produced by the linear programming 
solution. So, we can see that sl is executed at time 0, s2, s3 are executed 
at time 2, etc. We can also see in Table I that iterations are scheduled 
exactly one cycle after iteration one is initiated. 

d2=9 

B2=4 

d l=2  

BI=I 

d3=4 

B3=4 

d4=3 

B4=3 

d5=l 

B5=l  

-d6=3 

B6=l  

Fig. 2. Optimal memory allocation for the loop L. 
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Table I. Execution of the loop L 
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iter 1 iter 2 iter 3 iter 4 iter 5 . . .  

0 S 1 

1 

2 SI~ S 2 

3 
4 
5 
6 s 4 
7 
8 

9 s5 
10 
11 s6 
12 
13 
14 s7 
15 
16 
17 
18 

S 1 

$1~ $2 

S 4 

$5 

S 6 

$7 

S1 

$1, S 2 

$4 

$5 

$6 

$7 

$1 

SI~ $2 

$4 

$5 

$6 

$7 

S 1 

SI~ S 2 

S 4 

S 5 

S 6 

S 7 

For iteration 1, Sl is executed at time 0, and its execution time will last 
2 cycles, therefore at the end of cycle 1, sl will output its result into the 
FIFO queue element allocated to it so that at the beginning of cycle 2, s2, 
s3 can read the data in that slot. Then,  s2 is executed at cycle 2, and it will 
produce its result at the end of time 10 since the execution time of s2 is 9. 
The result value is stored in the first empty slot of its FIFO queue of size 
4. s7 will use this result to do its own computation, but s7 is scheduled to 
be executed at time 14. So, there is a 4 cycle-delay between the availability 
of the data and the time it is actually used. Since the second iteration is 
started one cycle after iteration 1, s2 in iteration 2 will output its result at 
time 11. Now this result of s2 in iteration 2 must use a new slot in its FIFO 
queue because the old result of s2 in iteration 1 has not yet been used. 
Actually for iteration 3, s2 will output its result at time 12, and this result 
also needs an empty slot. In iteration 4, s2 will output its result at time 13 
and another new empty slot is needed. Up to now, we see that the FIFO 
queue for s2 should be at least of size four. However, in iteration 5, s2 will 
output its result at the end of time step 14, and this result does not need 
a new slot since at the beginning of time step 14, s7 is executed using the 
result produced by Sz in iteration 1, which frees a slot in the FIFO queue 
of s2 so that the result of the fifth execution of s2 can be put into that freed 
slot. That is why we need to allocate a FIFO queue of size exactly four to 



442 Ning and Gao 

s2. Similarly, we can see that s3 needs a FIFO queue of size four and so 
o n .  

From our analysis of node s2, we see that a FIFO queue of size four 
is allocated to it and all locations in the F IFO queues are all busy all the 
time. This is because the results are produced one per cycle. Therefore, dif- 
ferent FIFO queues can not share their element(s). However, if the results 
can not be produced at one per cycle rate, which is the case if the loop 
contains loop-carried dependences, then sharing the elements in the FIFO 
queue is possible. When sharing of memory spaces is allowed, the problem 
of minimum allocation becomes substantially harder. It is our future 
research direction to study the loops that contain loop-carried dependences 
and how the sharing would save more spaces. 

7. DISCUSSIONS 

7.1. Implementation Issues 

The argument-fetching architecture model that we used in this paper, 
as in many classical dataflow architecture models, does not make specific 
assumptions on register storage. In fact, our basic assumption is that the 
execution units are equipped with some operand memory. Under our 
scheme, some of the operand memory space is used as FIFI  buffers. The 
goal of this paper is to propose a method to determine the minimum FIFO 
storage needed for maintaining a maximum speedup schedule under our 
model, and to determine an assignment of the buffers to the nodes in the 
program. There is an implementation issue on how to build a FIFO queue 
so that the successors can access it at the right addresses. A solution of this 
problem can be found in Refs. 17 and 18. 

If the number of buffers obtained from the solution of our method is 
bigger than the number of buffers available on the machine, then two 
alternatives can be adapted: 

1. Slow down the initiation rate of successive iterations. In this 
paper, we have taken the initiation period of iterations to be one 
per cycle in order to maximize the speedup. However, if the 
available buffers can not support this maximum speedup, we can 
try longer initiation periods so that the storage requirement of the 
program will eventually fit in the given memory space. 

2. Or, we can introduce spill code in a way similar to that is used in 
traditional register allocation. In this situation, we should compute 
the live ranges of the buffers, then spill codes can be introduced 
accordingly. 
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7.2. Applications Beyond Dataflow Machines 

Note that an argument-fetching dataflow machine permits an 
updatable memory model in the architecture similar to conventional 
architecture models. The idea of applying the method developed in this 
paper to conventional von Neumann architectures is fully presented in 
Ref. 17, which can also handle loops with loop-carried dependences. In the 
following we give a brief insight. 

In Ref. 17, we propose a framework in which register allocation for 
software pipelining is solved in two steps. During the first step, as in the 
present paper, it determines a time-optimal schedule for a software 
pipelined loop by allocating certain FIFO buffers to the program. An 
important notion here is that symbolic registers are organized as FIFO 
buffers, one FIFO queue for each variable defined in the loop. Intuitively, 
such a buffer queue is used to "extend" the lifetimes of the corresponding 
loop variable generated in successive iterations, permitting multiple itera- 
tions to be overlapped in concurrent executions. We show that the mini- 
mum buffer allocation and the time-optimal scheduling problem can be 
formulated together as an integer programming problemand a polynomial 
time solution is developed along a line similar to this paper. The second 
step is to map the symbolic registers of the FIFO buffers into physical 
registers. Since a schedule is already derived in the first step, a coloring 
algorithm can be applied to minimize the number of physical registers 
required to implement the buffers. Code generation schemes with or 
without special hardware support are also discussed. This scheme has been 
implemented and encouraging experiment results can be found in Ref. 18. 

8. RELATED AND FUTURE WORK 

8.1. Optimal Storage Allocation for Dataf low Machines 

The minimum storage allocation for static dataflow computers based 
on an argument-flow dataflow model has been treated in Refs. 11-13. The 
work is mainly focused on acyclic dataflow graphs under the term balancing. 
To our knowledge, the balancing problem is first formulated as a linear 
programming problem and solved using network flow methods in Ref. 11. 
In Refs. 14 and 15, the concept of limited balancing is introduced, where the 
focus is to reduce the storage allocation if the rate of operation is bounded 
by some constraints external to the dataflow graphs. In Ref. 16, static 
dataflow graphs with cycles have been studied, and a polynomial algorithm 
is proposed to derive a schedule to achieve the optimal computation 
ra te~etermined by the critical cycles in the graph. In Ref. 4, the minimum 
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storage requirement for dataflow graphs with cycles has been investigated, 
and the target machine model is a FIFO dataflow model where an arc can 
hold multiple tokens. It has been shown that the problem of minimum 
token storage allocation for a loop to execute at optimal rate can be 
formulated into a linear programming problem and a polynomial time 
solution has been proposed. The target architecture model, however, is still 
based on the argument-flow dataflow model. 

Loop unraveling under a pure dynamic dataflow model can initiate as 
many iteration as possible, limited only by data dependences. (9) A main 
challenge is to minimize the storage used by dynamically "unraveled" con- 
current iterations. By far, the most successful scheme to control the storage 
requirement is the loop bounding scheme by Culler. (28~ One limitation of 
this scheme is that a fixed number of storage frames (one per iteration) are 
allocated to a loop, and this amount of storage may not be optimal. 
Recently, a method of compile time loop scheduling under dynamic loop 
unraveling has been presented in Ref. 29. 

8.2. Loop Storage Allocation for Conventional Architectures 

Dataflow software pipelining is also related to conventional software 
pipelining which performs loop scheduling by computing a static parallel 
schedule to overlap instructions of a loop body from different iterations. An 
advantage of software pipelining is that it provides a direct way of exploit- 
ing fine-grain parallelism across all iterations of the loop. This is achieved 
without the explicit use of loop unrolling, and results in highly compact 
object codes. Software pipelining has been proposed for synchronous 
parallel machines as well as pipelined machines/3~ 

However, in real life compilers, register allocation is often treated as a 
separate phase from the code scheduling--such as software pipelining. Two 
approaches have been suggested to treat the register allocation problems in 
conjunction with code scheduling for pipelined machine architectures. 
In the first approach, it is assumed that a large number of registers is 
available, hence the code scheduling can be handled independently of the 
register constraints. After the scheduling is done, the global register alloca- 
tion can be performed, assuming that there will be enough registers. (36) In 
the second approach, register allocation is done before the scheduling 
phase. Such register allocation is usually done using classical algorithms 
such as graph coloring techniques, (2' 3) which has the goal to minimize the 
storage usage in a sequential program, and does not take advantage of the 
iterative nature of loops. Unfortunately, as pointed out in Ref. 37, the two 
phases have conficting goals. (36) There has been no clear criteria on how 
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the two parts can be integrated under a unified compiling framework to 
achieve the desired goals of both time and space efficiency. (38) 

In this paper, we study the problem of rate optimal execution and 
minimum storage allocation within the same framework. Since the instruc- 
tion processing unit of an argument-fetching dataflow architecture is 
very much like a conventional processor architecture without a program 
counter, the solution of the optimal loop storage allocation problem for 
the former will also be useful for the latter as shown in Section 7. Bradlee 
et aL, (39) and Goodman et aL, (4~ has studied some heuristic approaches to 
combine register allocation and instruction scheduling for sequential von 
Neumann architecture. (17' ~8,41,42) has studied the combined approach on 
superscalar architectures. 

8.3. Ret iming Synchronous Circuits 

Ret iming is a circuit transformation in which registers are added at 
some points and removed from others in such a way that the functional 
behavior of the circuit as a whole is preserved. A polynomial time retiming 
algorithm has been proposed to solve the problem of pipelining com- 
binatorial circuitry with smallest possible clock period and minimum 
register cost. (43' 44) 

Although there are some similarities in the problem formulation, our 
computation model is very different from what is used in retiming; ours 
is asynchronous in nature, while the retiming model is synchronous. 
Therefore, the objectives and formulations are different. 

9. C O N C L U S I O N S  

In this paper, we have proposed a polynomial time solution to the 
optima ! loop storage allocation problem for rate optimal execution under 
an argument-fetching dataflow architecture model. The problem is for- 
mulated into an integer programming problem. Then we proved that the 
constraint matrix has the totally unimodular property which implies that 
an integer programming problem can be reduced to a linear programming 
problem. A more efficient algorithm is given to transform our problem to 
a minimum cost flow prgblem, which gives an O(n 3 log n) algorithm. This 
work can be viewed as an extension of our work on balancing static 
dataflow graphs for dataflow software pipelining. In our recent work, we 
extend our consideration to loops with loop-carried dependences, in which 
the corresponding dataflow graphs will contain cycles. Preliminary results 
will be published in Ref. 17. 
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Due to the similarity of the instruction processing, our results 
should be useful to the design of register allocators in a compiler for a 
yon Neumann architecture. For details, see Refs. 17 and 18. 
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