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The research focus in parallel logic programming is shifting rapidly from 
theoretical considerations and simulation on uniprocessors to implementation 
on true multiprocessors. This report presents performance figures from such a 
system, Boplog, for OR-parallel Horn clause logic programs on the BBN 
Butterfly Parallel Processor. Boplog is designed expressly for a large scale 
shared memory multiprocessor with an Omega interconnect. The target 
machine and underlying execution model are described briefly. The primary 
focus of the paper is on detailed statistics taken from the execution of 
benchmark programs to assess the performance of the model and clarify the 
impact of design and architecture decisions. They show that while speedup of 
this implementation on highly OR-parallel problems is very good, overall 
performance is poor. Despite its speed drawback, many aspcts of the implemen- 
tation and its performance can prove useful in designing future systems for 
similar machines. A binding model that prohibits constant time access to 
bindings, and the inability of the machine to support an ambitious use of 
machine memory appear to be the most damaging factors. 
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1. I N T R O D U C T I O N  

This article reports experience implementating pure OR-parallel Horn 
clause logic programming on the BBN Butterfly T M  Parallel Processor. The 
Butterfly is a large-scale shared-memory homogeneous multiprocessor that 
can comprise several hundred processing elements, and provides com- 
munication facilities that scale with the number of processors. It can 
contain a large amount of physical memory, shared but distributed 
throughout the system. It is a general-purpose machine, intended to 
perform well on a wide variety of computational problems with varying 
degrees of interaction between the processors. The Butterfly's architecture 
demands that any substantial application be tailored to it. Simply 
"paralMizing" an application designed for a different type of machine may 
result in a poor match with the underlying architecture. 

Accurate performance predictions for applications on the Butterfly are 
difficult if not impossible because of the many interacting parameters. An 
accurate assessment of performance can only be obtained through direct 
measurement of an actual implementation. The implementation described 
here is not designed to wring the last bit of speed from the machine (in 
fact, it is rather slow), but to determine which aspects of this specific 
architecture and the programming model are compatible and what can be 
done about incompatibilities. Detailed statistics on critical performance 
parameters have been taken by direct measurement of the implementation 
on the Butterfly. 

The Butterfly is the subject of Section 2. Section 3 presents the design 
for Boplog, the OR-parallel logic programming system. Section 4 is devoted 
to assessing Boplog's performance and presents statistics that both judge 
the effectiveness of the design and clarify the importance of certain difficult 
problems. Section 5 concludes and summarizes the report. 

2. THE BBN BUTTERFLY PARALLEL PROCESSOR 

This section describes the Butterfly used for the implementation on 
which this report is based. It has been superseded in large measure by the 
Butterfly 1000 product family, headed by the GP1000 announced in 
October 1987. Some of the architectural details described here do not apply 
to the GP1000. Later sections examine, qualitatively, the impact of the 
architecture changes of the new machine. 

2.1. Hardware  

The hardware for both the mchine described here and the GP1000 is 
composed of two subsystems. The processor nodes are the processing 
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elements that form the computational engine of the machine, and the 
Butterfly switch forms the communication system that conects them. 

A Butterfly comprises one to 256 processor nodes, and can grow in 
single-node increments. A typical Butterfly node consists of an MC68020 
microprocessor, one megabyte of memory, and a processor node controller 
(PNC) that incorporates the switch interface. Nodes may also be con- 
figured with four megabytes, yielding a total potential physical memory of 
one gigabyte. Figure 1 shows the components of a Buterfly node. 

The Butterfly used in this report has 18 nodes, of which a maximum of 
16 are generally used. Each node uses an MC68020 microprocessor with an 
MC68881 floating point coprocessor, and some nodes have four megabytes 
of'memory. The 68020 has the approximate power (at 16 MHz.) of a 
DEC VAX T M  11/780: about one MIPS when coupled with memory of an 
appropriate speed. The 68020 has an on-chip instruction cache of 256 
bytes, and instructions are pipelined. 

Figure 1 illustrates the central position occupied by the PNC. All 
accesses to memory, including memory local to the processor accessing it, 
are routed through the PNC on each node. The PNC performs all memory 
operations, using the switch if the reference is to remote memory. In 
addition to providing basic memory functions, the PNC microcode also 
implements a variety of atomic functions. These functions enhance the 
utility of the Butterfly for parallel operations such as queuing, semaphores 
and locks, and basic message-passing services. 

Butterfly nodes are connected through the Butterfly switch, which is a 
nonblocking Omega network. The number of switching elements used 
grows as N log N where N is the number of nodes, while the bandwidth of 
the network grows approximately linearly with N. The switch uses bit 
routing, i.e., the destination address uniquely determines the path through 
the switch from the source to the destination. Data transfers are bit-serial. 
The raw speed of the network is 32 megabits per second per path. Our 
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Fig. 1. A Butterfly Processor Node. 
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benchmarks indicate that 28 megabits per second is realizable under ideal 
conditions, with the remaining switch capacity dissipated through 
operations at the source and destination nodes. 

Benchmarks indicate that a local 16-bit fetch to a 68020 register takes 
about 1.35 microseconds and a remote fetch takes 6.3 microseconds. 
[These figures are the result of timing 4000 consecutive in-line 16-bit fetch 
instructions to a machine register. As with all subsequent benchmark 
figures presented here, these instructions were executed with interrupts 
disabled, and (local) instruction-fetch time is included in the timing 
results.] The ratio of times for remote and local accesses is not very large: 
another way of viewing this situation is that local accesses are rather slow, 
but remote accesses are not very much slower. All 16-bit operations are 
performed synchronously. 

2.2. Software 

An executable piece of code on the Butterfly is called a process. Each 
process is composed of a substantial amount of code, and the cost for 
process creation is very high compared with most other fundamental 
Butterfly operations. In general, a Butterfly process is a complete program, 
capable of being executed on just a single processor node. Processes cannot 
be migrated from one node to another once they begin running. 

Processes are run under the supervision of the Chrysalis T M  operating 
system. A copy of the operating system kernel is resident on each node. 
Many processes may run on each node, with a multitasking scheduler to 
multiplex the execution of all processes on a node. It uses a prioritized 
timeslice algorithm to implement a round-robin schedule of context 
switches among the competing processes. 

2.3. The Butterfly Memory System 

An understanding of the Butterfly's memory management system is 
critical to the design of any application that hopes to make effective use of 
the machine resources. The first Butterfly machines used the MC68000 
processor, which supports only 24-bit addresses. This aspect of the original 
design persists in the Butterfly described here: only 24-bit addresses can be 
used, even though the 68020 supports full 32-bit addresses. To access the 
potential gigabyte of physical memory on a fully configured Butterfly, 
24-bit virtual addresses are mapped to 32-bit physical addresses. More 
detail on Butterfly memory management can be found in Refs. 1-4. 

Using physical addresses, any byte of memory on the machine can be 
identified. The physical address encodes the processor node number and 



Performance of an OR-Parallel Logic Programming System 63 

local offset of the indicated memory. The 8-bit node number and 22-bit 
offset combine to give a total address width of 30 bits, or a maximum of 
four megabytes on each of 256 nodes. Physical addresses cannot be used 
directly on the Butterfly because the PNC accepts only virtual addresses, 
which it maps into physical addresses. The 24-bit virtual address occupies a 
full 32-bit word: the most significant 8 bits are unused, and the least 
significant 16 bits specify an offset of the memory from a base address. The 
base address is indicated indirectly by the second 8 bits, the SAR number 
field. This field specifies a Segment Attribute Register (SAR) to use in 
performing the virtual-to-physical address mapping. A SAR is a writable 
mapping register in the PNC. 

The memory associated with a SAR can be accessed by calling an 
operating system procedure, Map Oh j, that obtains the SAR value for the 
memory segment, loads it into a free SAR in the PNC, and returns a 
virtual address corresponding to the first byte of the segment. The virtual 
address of any byte in the memory segment can be computed by additions 
to this base address. Any reference to such a virtual address is passed to the 
PNC by the 68020, where it is converted to its corresponding physical 
address and the memory access is performed. 

There are 512 SARs in each PNC, of which up to 256 (in powers of 
two) may be used by a process, using buddy system allocation. The total 
addressing capacity of a process is determined by the 256 SARs, each of 
which may indicate the start of a 64-kilobyte object. Thus, at any time a 
process may only address 

256 SARs x 64 kilobytes per SAR = 16 megabytes 

On a fully configured Butterfly with 4 megabytes on each of 256 nodes, this 
accounts for only 1/64 of the available memory. Furthermore, the limit of 
512 SARs per node makes it impossible to have several processes with large 
address spaces on each node. 

If more than 16 megabytes are to be addressed, the values stored in 
the SARs must be changed to remap the memory system. This can be 
accomplished using Map_Obj, described previously, and Unmap_Obj, 
which frees the SAR associated with it by the corresponding Map Obj call. 
As shown in Table I, these procedures are rather show. [Results in Table I 

Table I. Memory Mapping Using 
Map_Obj and Unmap_Obj 

Local Object 827/~sec. 
Remote Object 1028/~sec 
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are for 500 consecutive in-line Map_Obj and Unmap_Obj in alternation, 
using an explicit SAR number, with the Object ID and virtual address in 
machine registers, and with interrupts inhibited. The time for instruction 
fetches from local memory is included.] Using them to remap memory 
dynamically is clearly impractical. 

3. A DESIGN FOR OR-PARALLEL LOGIC P R O G R A M M I N G  
ON THE BUTTERFLY 

This section summarizes the design of an OR-parallel logic programm- 
ing implementation called Boplog (Butterfly OR-Parallel Logic). More 
detailed descriptions can be found in Refs. 5 and 6. Boplog is the first logic 
programming system designed for and implemented on a large-scale 
shared-memory multiprocessor. (The system described in Ref. 7 is designed 
for medium scale multiprocessors with several tens of processors, rather 
than the several hundred accommodated by the Butterfly.) Its design 
emphasizes shared data structures, effective use of large memories, locality, 
scalability, fast task migration and largely sequential execution. It is 
targeted for an unenhanced commercially available multiprocessor. Boplog 
is expressly designed to accommodate the Butterfly's drawbacks and 
capitalize on its strengths. It is targeted for Butterfly systems with many 
processor nodes, and is designed to allow access to a correspondingly large 
physical memory. The ability to use the potentially huge physical memory 
of the Butterfly is important for investigating the performance of the 
implementation on large problems on large machines. 

To run Boplog, programs written in Prolog are compiled into 
Extended Warren Abstract Machine (EWAM (6)) instructions. In general, 
the instructions have the same meaning as the corresponding WAM 
instructions. (8"9) The exceptions corcern the allocation and reclamation of 
shared data areas, dereferencing of variables, and support for low-level 
memory management. EWAM code supports only 'pure' OR-parallel 
clauses: there is no 'sequential OR' construct, no cut, assert, or retract, and 
a limited variety of evaluable predicates. The EWAM code is then compiled 
into C code, (1~ then into 68020 machine instructions. The resulting code is 
linked with the Boplog runtine system to form a complete compiled system. 

The EWAM instructions introduce parallelism at the choice point 
level: alternate choices for a clause may be tried on different processors. 
Each alternative clause of a choice point represents a task that may be 
done in parallel with other tasks. Parallelism is exploited by having idle 
processors migrate choices away from choice points on busy processors. 
Migration involves moving enough information from the busy processor 



Performance of an OR-Parallel Logic Programming System 65 

that the idle processor can explore the search tree implied by the migrated 
choice. 

Boplog's overall structure is multisequential: (1]) identical copies of the 
Boplog code reside on each processor. Execution of the code is essentially 
sequential except where parallelism is introduced at choice points. Boplog 
program execution is carried out by one or more Boplog processes, each of 
which is capable of completing the problem itself. Each Boplog process is a 
complete compiled program, which works in concert with other Boplog 
processes. All of the Boplog processes are identical; they differ only in 
where they begin executing. Each Boplog process executes the finite state 
machine indicated by the transition diagram of Fig. 2. All Boplog processes 
begin in the start2 state except for one, the originating process, which 
begins in the startl state. The originating process is the one designated to 
begin the execution. It executes EWAM instructions, possibly generating 
choice points that cause some of the other processes to enter the active: 
migrating state. In Fig. 2, a process in the active." migrating state moves 
work from an active process. In the active: executing state, it executes 
EWAM instructions; in the active: failing state it backtracks (perhaps 
repeatedly). When a process is in the idle: searching state, it looks for tasks 
to migrate. 

When the originating process detects that all choices emanating from 
the program's first choice point have been completed, it sets a termination 
flag that is read periodically by each Boplog process. In the idle: checking 
state, a process checks this flag to see if it may terminate. If the flag is set, 
the process halts. If the flag has not been set, the process attempts to 
recover its stack and heap space. In doing so, it can detect when all work 
emanating from each choice point has completed, and can inform other 
processes that work has completed on their choice points. 

more choices 

~as  k ~  ~ fail , I 

task found @ ~no m~re choices 

some process active 
Fig. 2. Boplog Process Finite State Machine. 

828/17/1-5 
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3.1. Principal Process Data Structures 

Logic programming systems based on the WAM are said to use a 
three-stack model(X2): the stack, the heap, and the trail (used to record 
retractable variable bindings). Boplog uses a stack and heap just as in the 
WAM, but does not use a trail stack in the WAM sense. The stack and 
heap are trees, with the trunk shared by all processes. As tasks are 
migrated, each process forms a new top to the shared heap and stack. 
Boplog uses two important additional data areas. The ancestor stack is the 
primary data structure used in determining the correct binding for a 
variable (see Section 3.2). A small information block contains all of the data 
for a process that are necessary for interprocess communication and 
synchronization. 

3.2. Boplog's Binding Environment 

The way multiple bindings for variables are stored and accessed is 
critical to the efficient execution of any OR-parallel implementation. Many 
different methods have been proposed, e.g., Refs. 11-19. Boplog uses a 
time-stamped linked-list method, (5'6) which uses shared rather than copied 
data structures. It appears to be competitive with other binding methods 
that stress shared data structures, but a careful comparative study of these 
approaches (like that described in Ref. 20) is needed to justify this claim. 
The Boplog binding method seems well suited to a Butterfly implemen- 
tation, since it exhibits a high degree of locality and scalability and makes 
effective use of the low relative overhead for remote accesses. Memory for 
bindings is allocated only on demand and has little waste or redundancy. 
Overhead for task migration is limited to copying the ancestor stack, which 
grows slowly compared with the auxiliary structures of other shared 
binding methods. 

In Boplog, all bindings for a variable are stored as nodes of a 
distributed linked list called a binding list," there is a separate binding list 
for each variable. Each new binding for the variable is paired with a 
timestamp, forming a value cell that is stored as a node on the binding 
list. A timestamp counter is maintained independently by each process, 
and is incremented each time a choice is taken from a choice point. 
The timestamp of a value cell is the value of the counter at the time the 
binding is made, and indicates when the binding was made relative to other 
bindings for the same variable. 

When a variable is accessed, it must be derefereneed to find its current 
value. In Boplog, dereferencing consists of two phases. In the first phase, 
the binding list and the ancestor stack are used to disambiguate the 
bindings to determine which, if any, represents the correct value in the 
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current context. The ancestor stack summarizes the ancestry of the thread 
of execution currently being pursued by a process. Each item on the 
ancestor stack contains a process number and a timestamp binding span 
that denotes when that process was investigating a choice that eventually 
led to the current execution thread. The span's lower bound is the 
timestamp at which either a choice was migrated to that ancesor process, 
or a choice was taken from an existing choice point of that ancestor. The 
upper bound is the timestamp at which the next choice point was created 
on the ancestor. These bounds indicate the span of timestamps during 
which the process could possibly have supplied a value used in the current 
thread. If a value cell, created by a specific process, has a timestamp that 
falls within the bounds of a span associated with the process, then the 
binding in the value cell was created by that ancestor while investigating 
the current execution thread. A variable is disambiguated by comparing the 
timestamp of each value cell on the binding list with the binding spans on 
the ancestor stack. If a cell is found whose timestamp and location 
indicates that its value was supplied by an ancestor, that cell is used as the 
variable's value in the current context. The value obtained by dis- 
ambiguation is than used in the second dereferencing phase to chain 
backward through variable bindings to find the ultimate value of the 
variable. 

3.3. Backt rack ing  and Task M i g r a t i o n  

Backtracking in the WAM involves freeing obsolete parts of the 
environment and stack and resetting various machine registers to restore 
the state of the computation to that of an earlier time. In Boplog, 
backtracking and task migration are closely linked, since both deal with 
the manipulation of choice points and their contents. The relevant infor- 
mation for backtracking and migration is stored in choice point data struc- 
tures on the stack. They are linked together so that backtracking may 
chain backwards as deeper backtracking occurs, and so that idle processes 
can determine the earliest unprocessed choice for migration. Each choice 
point contains a count of the number of choices, a count of the number of 
choices already begun, a count of the number of choices completed, a level 
number that indicates the depth of the search tree at that point, a pointer 
to a list of code entry points that represent the unification code, and a copy 
of the ancestor stack of the process at the time the choice point was 
created. When the number of choices remaining is zero, the choice point is 
exhausted and no further migrations can take place from it. 

Each Boplog process maintain three choice point references to control 
backtracking, task migration, and stack reclamation. 
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�9 lcp: The local choice point  reference identifies the choice point most 
recently created by this process. 

�9 rcp: The remote choice point reference identifies the earliest (least 
recently created) choice point of this process that still has choices 
remaining to be tried. 

�9 scp: The shared choice point reference identifies the most recent 
choice point of this process from which choices may have been 
migrated by other processes. 

lcp is the Boplog analog of the WAM B register. It moves later in the 
stack when new choice points are created, and falls back again on failure. 
rcp is used by idle processes when they attempt to migrate choices from a 
busy process: idle processes take choices from rcp and increment the num- 
ber of choices taken from the choice point. When the rcp is exhausted, rcp 

is moved forward to the next choice point of that process, scp indicates the 
lastest potentially shared stack area of this process. Any part of the stack 
or heap beyond the scp choice point's creation is guaranteed not to be 
shared by any other process, scp moves foward in the stack when rcp 
moves foward, and falls back when work on all choices in its choice point 
have completed. The part of a process's stack that lies beyond scp is treated 
exactly like the stack in the sequential WAM model, and is much more 
efficient; scp is also critical to the recovery of stack space. 

When lcp and rcp reference the same choice point, and that choice 
point is exhausted of all choices, the process becomes idle. Idle processes 
(processes that have never done work or have completed execution of their 
current branch) are responsible for obtaining more work from busy 
processes. An idle process attempts to migrate a choice from a choice point 
that is near the root of the entire search tree so that task granularity can 
be maximized. The assumption made here, of course, is that branches 
spawned near the root of the entire tree are the longest. Determining which 
choice to migrate involves both determining a process as the parent and 
determining which of the parent's choices to migrate. An idle process 
examines the rcp of all of the other processes to find that process with the 
smallest level number in its rcp choice point. If the rcp choice point of the 
indicated process is exhausted of all choices, its rcp and scp are reset to 
reference its next choice point, and the search for new work repeats. 

Because data structures are shared extensively, migration of choices 
from one Boplog process to another is straightforward and involves little 
transfer of data between nodes. To migrate a choice, an idle process 
increments a count of the number of choices taken from the choice point, 
copies the choice point into its own memory, and begins execution of the 
clause indicated by the choice point. The ancestor stack stored with the 
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choice point now becomes the ancestor stack of the descendant process. 
The speed with which work can be transferred is particularly important 
near the end of problem execution, when the length of sequential segments 
becomes small and processes compete more frequently for less work. (21) 

3.4. M e m o r y  M a n a g e m e n t  

Attributes of the Butterfly's memory-management system described in 
Section 2.3 conflict with the desire to use all of the Butterfly's potentially 
huge physical memory. Two problems are most daunting: the limited 
virtual address space and the high cost of system calls for dynamic memory 
map changes. As Table I showed, Chrysalis system calls to support 
dynamic memory map changes are unacceptably slow. With care, however, 
it is possible to make use of all of the Butterfly memory without undue 
concern for the number of SARs available or the time-consuming use of 
calls to Map_Obj and Unmap_Obj to change the memory map. Boplog uses 
a scheme called SAR-smashing, ~22) with which all of the available memory 
can be accessed by any process, as few as one SAR can be used to access all 
of the physical memory, and changing the memory map can be accom- 
plished some 50 times faster than by using Map_Obj and Unmap_Obj. 

Benchmarks indicate that the memory map can be changed in about 
18.9 microseconds using SAR-smashing. [The benchmarks involved 100 
executions of a loop with 5000 consecutive in-line SAR smashes, with all 
relevant data machine registers and with interrupts inhibited. This time 
includes the time for instruction fetches (instructions are not in the 68020 
cache) and for the calculation of the address of the location holding the 
SAR value.] It can be integrated easily with the standard Butterfly memory 
management system, so that access to often-used memory is as fast as the 
Butterfly will allow, while access to less-used memory encounters the SAR- 
smashing overhead. The price paid for these features is increased user 
responsibility for managing memory references, and a higher per-access 
cost for some accesses. These costs are assumed by the Boplog runtime 
system, not by the Prolog programmer. 

With dynamic memory mapping, vitual addresses no longer have a 
one-to-one correspondence with physical memory. Since virtual addresses 
cannot be used to refer to unique memory locations, Boplog uses references 
that are independent of both process and processor node. These 32-bit 
references are capable of locating any 32-bit item in a one-gigabyte physical 
memory. Table II summarizes some benchmark results of using references. 
The first time appearing in Table ]I indicates the time taken to construct a 
virtual address from a given reference; the second time gives the time taken 
to change the memory map based on information in the reference. 



70 Tinker 

Table II. Memory Operations Using References 

Creation of a virtual address 6.4/~sec. 
Memory map change 23.5 #sec. 

3.5. Locks and Cri t ical  Sect ions 

Because Boplog is designed to run as sequentially as possible, actual 
interprocess interaction occurs rather infrequently, although provision for 
such interaction is pervasive. Resource locking is frequent, but processes 
seldom wait for locks to clear. The points of process interaction occur 
during variable binding and dereferencing, searching for more work by idle 
processes, backtracking, and task migration. 

Although dereferencing of variables is one of the most common  of 
Boplog operations, there is little overhead from the enforcement of critical 
sections during dereferencing. Locking is required at three points. First, 
each value cell must be locked during disambiguation to ensure that its 
timestamp is not changed while determining if the binding was made dur- 
ing any ancestor time span. Second, if a new value cell needs to be created 
and linked into the binding list for the variable, some locking is needed to 
prevent conflict when the link fields of the value cells are updated. Thus, a 
value cell is also locked when the timestamp of a value cell is updated for a 
new binding. This locking operation is the complement of the locking of a 
value cell during disambiguation. Finally, if a value cell is local to this 
processor node, it may be unshared. To determine this case, the scp of the 
process is examined. To ensure that the scp is not updated by another 
process during this time, this process's information block must be locked. 

4. P E R F O R M A N C E  A N D  A S S E S S M E N T  

The intent of this section is to give detailed statistics for the perfor- 
mance of Boplog's binding method and migration strategy; show how some 
performance aspects change as the number of processes in increased, and 
provide data for comparison with those from other implementations as 
they become available. It does not show how the implementation performs 
on a wide variety of programs: the results are based on just a few programs 
and executions, which are of course not enough to give a complete picture 
of Boplog's performance. Where times are reported for activities of short 
duration, they are generally the averages of many (often several million) 
timings of separate instances. Hopefully, these results provide some insight 
into which aspects of the programming paradigm, execution model, 
architecture, and implementation deserve more attention in the future. 
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Statistics have been gathered for Boplog running several simple 
programs. The benchmark programs were selected because they are 
common in the literature and because, with one exception, they exhibit a 
high degree of OR-parallelism. The exception is a program that generates 
no such parallelism, and is used to evaluate sequential performance and the 
impact of idle processes on the performance of active ones. Statistics were 
collected on a per-process basis and then aggregated to smooth differences 
between individual process. These programs are trivial and too regular to 
validate the design decisions for Boplog, but they do offer some insight into 
the Boplog execution model, and the impact of various sequential and 
parallel overheads. Where times for various operations are given, the 
reported times are somewhat longer than the actual times, since there is 
some overhead for gathering the statistics. This overhead is generally about 
20 % of the total time reported. 

4.1.  B e n c h m a r k  P r o g r a m s  

The first benchmark is the standard 'naive list reversal' program, for 
which Boplog code is given in Fig. 3. This program is deterministic in the 
WAM model; because of clause indexing, no choice points are created. The 
naive reverse program is used to evaluate the sequential efficiency of 
Boplog and to assess the impact of idle processes on execution times. The 
second benchmark program finds all permutations of a list of elements, and 
is of interest here because some OR-parallel benchmark results have 
already been reported elsewhere. (2~ The program here differs from its usual 
form in that instead of reporting all of the permutations it filters out all but 
one. Code for the Boplog permutation program is given in Fig. 4. The third 
benchmark program is a naive 'generate-and-test' solution to the n-queens 

?- l i s t30 (L) ,  nreverse(L, X). 

nreverse([X I LO], L) :-  
nreverse(LO, L1), concatenate(L1, IX],  L). 

n reve r se ( [ ] ,  []) .  

concatenate([X I L1], L2, IX I L3]) :-  
concatenate(L1, L2, L3). 

conca tena te( [ ] ,  L, L). 

l i s t 3 0 ( [ 1 ,  2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 

21, 22, 23, 24, 25, 26, 27, 28, 29, 30]) .  

Fig. 3. Naive Reverse. 
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?- range(l, n, X), nreverse(X, Y), perm(X, Z), Z=Y. 

perm([], []). 
perm(X, [V I Z]) :- delete(V, X, Y), perm(Y, Z). 

range(First, Last, [First I L]) :- 
less(First, Last), plus(First, I, First1), 
range(Firstl, Last, L). 

range(Last, Last, [Last]). 

Fig. 4. List Permutation. 

problem from Sterling and Shapiro's book, (23) rewritten to avoid the use of 
not.  It is used to generate large search spaces, and is shown in Fig. 5. 

4.2. Sequent ia l  P e r f o r m a n c e  

The performance of Boplog running on one processor node (one 
Boplog process) gives a measure of its speed relative to other implemen- 
tations. Table III shows execution times for various instances of the 
benchmark programs. Table III also shows the execution times for the 
same programs run on a DEC MicroVAXrM-II workstation using 
CPrologl-4, a moderately optimized Prolog interpreter. (24) The MicroVAX 
has roughly the speed of a single 68020 running at 16 MHz. Although the 
equivalence of a Butterfly processor node and a MicroVAX is questionable, 
the dramatic difference in speeds clearly indicates that Boplog, running 
compiled EWAM code, is much slower than a reasonable sequential 
Prolog interpreter. 

?- queen(n, Qs). 

queen(N, Qs) :- range(l, N, Ns), perm(Ns, Qs), safe(Qs). 

noattack( . . . .  [ ] ) .  
noattack(X, N, [Y [ Ys]) :-  

plus(Y, N, X1), nequal(X1, X), 
minus(Y, N, X2), nequal(X2, X), 
plus(N, 1, NI), noattack(X, NI, Ys). 

safe([Q [ Qs]) :- safe(Qs),  notattack(Q, Qs). 
s a f e ( [ ] ) .  

notattack(X, Xs) :- noagtack(X, 1, Xs). 

Fig. 5. n-Queens. 



Performance of an OR-Parallel Logic Programming System 

Table II1. Single-Process Benchmark Execution Times 
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Benchmark Boplog CProlog 

naive reverse 1,299 msec 343 msec. 
4-element list permutation 1,453 msec. 197 msec. 
5-element list permutation 6,802 msec. 903 msec. 
6-element list permutation 39,912 msec. 5,280 msec. 
4-queens 2,879 msec. 593 msec. 
5-queens 16,720 msec. 3,547 msec. 
6-queens 109,239 msec. 23,043 msec. 

Because the sequential performance of a Boplog process is poor, the 
combined performance of many Boplog processes cooperating on a single 
problem cannot be expcted to be very good. Speed-up (the performance 
enhancement due to parallel execution) may be impressive, but this result 
is misleading because of the poor single-processor performance. The 
overhead of memory map changes, the inability to compare virtual 
addresses, fixed overheads for disambiguating bindings, and the slow 
memory of the Butterfly all constrain the maximum speed. 

With the single-processor speed of the implementation in mind, the 
statistics for sequential and parallel execution are still valid as a means of 
evaluating the environment model, task migration strategy, memory 
mapping overhead, scalability, and locality. The following sections present 
these statistics and comment on their interpretation. Except where 
otherwise noted, the statistics were gathered from the 8-queens program 
(n-queens with n = 8) running on 16 nodes. The size of the problem ensures 
that a large number of samples are combined in the statistics. For 
comparison with other times reported, the execution time of the 8-queens 
program on 16 nodes is about 494 seconds. 

4.3 .  M e m o r y  M a n a g e m e n t  

Memory management costs reflect overheads incurred in any Butterfly 
implementation that tries to use all available memory; these in turn impact 
the performance of model-specific aspects of the implementation. Boplog's 
concern for using all available memory results in considerable overhead for 
memory map changes, recomputation of virtual addresses, and the inability 
to compare data locations using virtual addresses. Time spent for these 
overheads may have a dramatic effect on the impact of communication pat- 
terns during an execution. SAR-smashing has by far the highest cost. Time 
spent in remapping the Butterfly's memory is time during which the process 
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Table IV. SAR-Smashing (8-Queens) 

SAR smashes (total) 
SAR smashes with a known SAR value 
SAR smashes from a reference 
Virtual address calculations 

38,216,764 
9,154,774 

29,062,990 
13,185,587 

doing the mapping cannot put any load on the interconnect. If this 
overhead is too high it will mask communication overhead. Table IV 
presents SAR-smashing statistics for the 8-queens program on 16nodes. 
Each SAR smash results in a memory map change. If the SAR value is 
known, the memory map change is faster than if it must be obtained from a 
reference; Boplog is careful to use known SAR values whenever possible. It 
also tries to avoid recomputing virtual addresses, which can be preserved 
across SAR smashes. 

Using SAR-smashing, Boplog asserts direct control over the memory 
mapping process, using kernel mode privileges to write directly into the 
hardware mapping registers on the PNC. By doing so, memory map 
changes are made in the minimum possible time. Each change involves 
only a 32-bit write to a fixed location in the PNC. This takes just a few 
microseconds, and the remaining time for each SAR-smashing operation is 
spent obtaining the necessary information for determining the correct SAR 
value. These operations involve shifting and logical operations on the 
reference. If this information could be found more easily, each SAR- 
smashing operation would be correspondingly faster. Several alternatives 
are discussed in Ref. 6. 

4.4. The E n v i r o n m e n t  M o d e l  

The environment model encompasses both variable dereferencing 
(including disambiguation) and task migration. Its performance appears to 
be the most critical element in determining overall performance. 

4.4.1. Dereferencing 

The performance of Boplog's environment method is determined 
primarily by the number of binding list links traversed to find a variable 
binding, the number of ancestor spans examined, and the relative numbers 
of remote and local value cells examined. Table V presents statistics for 
dereferencing in the 8-queens program running on 16 nodes. 

Table V indicates that some ten million dereferences were performed 
during the course of program execution. Of these, some six million were 
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Table V. Environment Performance (8-Queens) 

dereferences 10,320,354 
nontrivial dereferences 5,959,490 
maximum number of ancestors on stack 51 

per nontrivial 
operation total dereference 

time 3,335 sec. 559/~sec. 
nodes traversed 9,615,865 1.61 
links traversed 6,I 25,328 1.02 
total value cells examined 10,163,262 1.70 
local value cells examined 9,763,202 1.63 
remote value cells examined 400,060 .06 
dereference SAR-smashes 12,626,841 2.11 

from a known SAR value 1,638,793 .28 
from a reference 10,988,048 1.84 

virtual address calculations 10,849,688 1.82 
ancestors examined 14,313,507 2.40 
ancestor spans examined 8,503,793 1.42 

nontrivial, requiring variable disambiguation and dereferencing. On 
average, each nontrivial dereference required the examination of cells on 
fewer than two processor nodes, and each variable chained through just 
one value cell to find its ultimate value. (A link in the chain was counted 
when following a reference from one value cell to another reference. In 
most cases, the second reference was not to a variable but to a ground 
term.) 

On average, each dereference resulted in the examination of between 
one and two value cells. Of these cells, more than 96 % were located in 
memory on the processor node of the process performing the dereference. 
An average nontrivial dereference required that between two and three 
items on the ancestor stack be examined. This figure is low in light of the 
fact that there were often many items on the stack (a maximum of 51). 
Between one and two time spans were examined for each nontrivial 
dereference. 

These figures may be misleading because of the small size and 
regularity of the problem, but they are encouraging since they indicate that 
very little search is required to find the correct value cell. The time per 
dereference, however, is rather discouraging. The dereference time tends to 
dominate the execution, and accounts for nearly half of the total execution 
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time. A large number of dereferences occurred, and each nontrivial 
dereference took nearly 600 #secs. Clearly, this time is too long--one could 
hope that the average time would be at least an order of magnitude less. 

Where is the time spent? Table V seems to show that the model 
performs well, but the implementation fails to capitalize on its strengths. 
The implementation adds hidden costs to dereferencing, which are not 
reflected in the numbers from the table. An average of between two and 
three memory map changes are made per dereference, which could account 
for some 75-100psecs., according to benchmarks presented earlier. Also, 
each value cell examined is locked during dereferencing to ensure that the 
time stamp does not change during dereferencing. The impact of the 
locking is difficult to determine; Table VI summarizes some information, 
showing that little lock contention occurs, but that each lock attempt takes 
a relatively long time. 

All Boplog locks are spin-locks and are implemented by an atomic 
inclusive-OR operation. A locking attempt consists of OR'ing the current 
value of the lock with a fixed number and determining if the state of the 
lock changed. A locking failure occurs if the state did not change, 
indicating that the value had already been set by another process. Many 
locking attempts were made, but few failed. However, because the locking 
operation requires interaction with the PNC, it is rather slow. [The time 
reported as 'time per attempt' is the result of performing the atomic 
inclusive-OR operation on a memory location on a remote node. Interrupts 
were disabled, and 100 loops of 100 in-line operations were timed.] A more 
efficient hardware locking mechanism might reduce the time spent. 

4.4.2. Task Migration 

Table VII presents statistics for task migration. Overall, only 229 
migrations were performed, just a very small fraction of the total number of 
choices generated. Each migration took less than a millisecond, and each 
copied an average of about 240 bytes. The size of data copied includes the 
ancestor stack, which averaged about 17 ancestors per migration. These 

Table VI. Locking Statistics (8-Queens) 

total locking attempts 17,005,346 
failures 41,650 
value cell locks 12,746,084 
info block locks 3,189,989 
choice point locks 1,065,945 
time per attempt 20.1 psec. 
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Table VII. Migration Statistics (8-Queens) 

total choices generated 1,065,278 
migrations 229 
total time 209 msec. 
time per migration 913 #sec. 
ancestors per migration 17 
migration size 240 bytes 
migration attempts 3,099 
total time 5,238 msec. 
time per attempt 1,690/~sec. 

figures support a claim of fast task migration for Boplog, relative to other 
costs. 

A problem with the current task migration strategy is made apparent 
by noting that several thousand migration attempts were performed. A 
migration attempt involves an idle process checking to see if any choices 
can be migrated away from their parent, and requires time-consuming 
locking and SAR-smashing as each remote process's information block is 
examined for pending work. More than 90 % of these checks fail, but each 
attempt incurs a time penalty of more than one millisecond. This problem 
is discussed further in Section 4.6. 

The number of ancestors copied on migration was small, indicating 
that a series of 16-bit transfers might perform even better than the block 
transfers used in this implementation. A small number of ancestors in the 
choice point is also an indication that tasks are migrated from points early 
in the execution, resulting in more sequential execution in each process. 
For larger programs, it is likely that migrations near the end of task 
execution would involve many more ancestors. For  these tasks, block 
copies would be preferred. A run-time examination of the number of 
ancestors could determine which would be better for each migration. 

4.4.3. Task Selection Strategy 

The average time spent searching a particular branch of the search tree 
following task migration is long compared to other activities. Periods of 
sequential execution are therefore long, which promotes the multisequential 
execution model. The frequency of task migration increases dramatically 
near the end of program execution. Figure 6 shows the times at which task 
migrations occurred. The circles on the line indicate the average time 
(across all processes) at which the migration occurred that began the ith 
task for each process. The bars around each circle indicate the minimum 
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Fig. 6. Time of Migration (seconds) vs. Task Number (8-Queens). 

and maximum migration times across all processes. Figure 6 shows that 
nearly all migrations occurred very late in the execution--halfway through 
the total execution, most processes had started fewer than four tasks. Tasks 
that were begun early tended to last a long time relative to the total 
execution time. This observation is confirmed by Fig. 7, which shows the 
duration of the ith task executed by each process. Figure 7 shows that 
nearly all of the work in the program is done by the early tasks. It also 
shows that there is a dramatic difference in the time spent on any task. For 
most processes, tasks beyond their eighth task were very short. 

Long periods of sequential execution are encouraged by migrating the 
available choice that has the lowest level number, where the level number is 
incremented each time a process makes an EWAM procedure call. This 
simple heuristic appears to work well. As an additional benefit, this 
migration strategy results in migration of a choice from a choice point with 
fewer ancestors than choice points created later in the execution. Figure 8 
summarizes this effect, showing the number of ancestors in the choice point 
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Fig. 8. Number of Ancestors vs. Task Number (8-Queens). 

28 

for the ith migration performed by each process. The number of ancestors 
migrated with the early, long-lived tasks is less than half the number 
migrated by short later tasks. 

4.5. Locality 

With a multisequential implementation on a machine with a penalty 
for remote accesses, locality is of great concern. When disambiguating 
variables may involve traversing a distributed binding list, locality becomes 
even more important. The statistics for variable dereferencing in Table V 
show that remote value cells account for only a small fraction of the total 
number of value cells examined during dereferencing. Although the value 
cells themselves are almost entirely local, it is possible that many references 
to nonvariable values are nonlocal. Such references do not require the 
examination of value cells to determined their value. 

4.6. Processor Utilization 

Since there is one Boplog process per Butterfly processor node, 
processor utilization is equivalent to process 'busy time.' In an ideal 
parallel implementation, each process would spend all of its cycles perform- 
ing useful work: executing EWAM instructions, deteferencing variables, 
migrating choices, and so on. In practice this is never possible, since there 
are always sequential execution segments that force some processes to 
await the availability of work. For example, execution must begin with 
some single process, which runs sequentially until other processes can 
migrate work. Similarly, when program execution is nearly complete, no 
further work is generated, so some processes will be unable to perform 
useful functions. These 'ramp-up' and 'ramp-down' times are short for the 
OR-parallel programs for which Boplog has been used so far. 
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Table VIII. Idle Time Statistics (8-Queens) 

migration attempts 3,099 
termination attempts 2,662 
attempts to recover shared memory 3,099 

operation total time time per attempt % 

migration attempts 5,238 msec. 1,690 ~sec. 79.7 % 
termination attempts 144 msec. 54 #sec. 2.2 % 
attempts to recover shared memory 1,193 msec. 385 #see. 18.1% 

When a process is idle, it executes no EWAM instructions. It spends 
its cycles searching for more work, testing for termination, and attempting 
to recover shared data areas. Table VIII  shows the amount  of time spent 
performing each of these tasks and the percentage of time they take collec- 
tively. Even though migration attempts are costly, the total idle time 
accounts for only about 1% of the total exacution time. 

4.7.  S c a l i n g  C o n s i d e r a t i o n s  

How well the model scales as processor nodes are added can be 
assessed by running the same program on different numbers of nodes 
(different numbers of processes) and noting changes in performance 
statistics. So far, Boplog has only been run on as many as 16nodes. 
Whether the performance continues to change in the same way when there 
are many nodes is unknown. 

The following figures present changes in several performance statistics 
as the number of processes is increased. The data are for both the 7-queens 
and 8-queens programs. Memory limitations currently prevent 8-queens 
being executed on fewer than five processor nodes. The first set of figures 
deals with variable disambiguation and dereferencing. Figure 9 shows that 
the ratio of local to remote value cells examined during dereferencing 
remains roughly constant and at a very high level. Locality drops slowly as 
processes are added. Under the assumption that value cells for any given 
variable are distributed uniformly among all processes, this result is expec- 
ted, since the probability that a celt is on a specific processor node drops as 
nodes are added. Figure 10 shows that more ancestors are examined for 
each dereference as the number of processes is increased. This result is 
consistent with an increase in the number of ancestors copied with each 
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Fig. 12. Binding Spans Examined per Dereference vs. Processes (8-Queens). 

migration (noted later). Given the results of Figs. 9 and 10, a degradation 
in dereference performance might be expected as processes are added. 
Figure 11, however, shows that the average time for a variable dereference 
decays slowly after the number of processes increases to about five. A 
possible explanation is found in Fig. 12. It shows that although the number 
of ancestors examined increases, the number of ancestor binding spans 
actually checked against value cell time stamps falls. This decrease occurs 
because the ancestors are distributed among more processes, so that each 
process contributes fewer ancestors. Fewer ancestors per process should 
result in fewer binding spans being examined. 

The next set of figures shows how migration statistics change as more 
nodes are used. Figure 13 shows that the total number of migrations 
performed over all processes increases nearly linearly, indicating that the 
number of migrations per process remains roughly constant. The number 
of migration attempts shows a similar behavior (Fig. 14). 

The average time to migrate a task increases slowly as more processes 
are used (ignoring some large changes when few are used). The increase is 
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due to increased numbers of ancestors in the choice points migrated. The 
increase in ancestors occurs because more processes are participating. A 
branch of the search tree is more likely to be extended by many processes if 
there are more processes available. The increases in time and size are rather 
slow, as shown in Figs. 15 and 16. 

Dereferencing and task migration are central to Boplog's performance 
and are the only aspects of its execution that are intimately concerned with 
multiple processes. It is not surprising that good scalability of these 
activities promotes good overall scalability. Total execution times for the 
7-Queens and 8-Queens programs are shown in Fig. 17. Both programs 
show a smooth decrease in total execution time as processes are added. 
Figure 18 shows the ratio of multiprocess execution time to the single- 
process execution time. These speed-up figures show that the speed increase 
is generally close to or superior to the "ideal." This phenomenon is not rare 
in parallel applications and usually reflects poor single-process perfor- 
mance. If the addition of processes makes each process slightly more 
efficient than in the single-process case, performance will increase faster 
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than the number of processes. This can happen, for example, if there is 
some operation which needs to be performed less frequently when multiple 
processes are executing than when only one is executing. In the present 
instance, this operation might be context switching: context switches take a 
larger portion of processor time when a single process is executing. Note 
that in Fig. 18, the single-process execution time used for obtaining the 
speed-up for 8-Queens is assumed to be five times the five-process time. 

4.8. Switch Contention 

Many Butterfly systems are configured with multiple paths through 
the switch between each pair of nodes. A 16-node machine, for example, 
may be paired with enough switch hardware for 32 nodes, allowing two 
paths between each pair of nodes. In addition to increasing throughput 
during normal program execution, having alternate paths allows switch 
contention to be estimated qualitatively. If an execution slows dramatic 
improvement when alternate paths are enabled, that is evidence that there 
is much contention on the switch in the single-path execution. This 
qualitative result is useful when determining the effect of memory reference 
patterns on overall program efficiency. 

The results reported in this paper did not make use of alternate 
Butterfly switch paths. Enabling these paths causes performance to improve 
by avout 2 %, indicating either that there is little switch contention, or that 
memory references through the switch are very uniform. Any contention is 
probably the result of frequent access to the process information blocks. 
Value cell references could also cause contention, but this is unlikely 
because such references are scattered widely through memory. In either 
case, switch contention is not a problem with this implementation. It is 
likely that the lack of contention can be attributed to the slowness of the 
implementation: memory references across the switch are infrequent 
because so much local processing is performed. It may be the case that the 
amount of switch contention observed is an unavoidable cost of an 
implementation that relies so heavily on shared data structures. More 
study is needed to determine the source of contention, and whether some 
selective copying of data might reduce the total execution time. 

4.9. The Impact of Idle Boplog Processes 

The naive reverse program is used to evaluate the impact of idle 
processes on sequential execution. Since the naive reverse program 
generates no choice points in the WAM model, only the originating Boplog 
process does any useful work. The other processes spend all of their time 
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Fig. 19. Total Execution Time (seconds) vs. Processes (Naive Reverse). 

searching for work and checking for termination. Figure 19 shows total 
execution time for increasing numbers of processes. Note that as the num- 
ber of processes increases, so does the time taken to complete the program. 
For programs that do not generate enough choices to keep all of the 
processes busy, Boplog's method of finding work causes a degradation of 
performance. Speedup is negative, as shown in Fig. 20. Since the 
degradation is slow, however, the impact of idle processes on overall 
execution time is sinai1. 

4.10. Impact of Alternative Designs and Architectures 

Because the current Boplog implementation incorporates design 
decisions made prior to building the system, no direct comparisons with 
alternative designs have been made. It is important to note, at least 
qualitatively, how different design decisions might impact its performance. 
Furthermore, Boplog was explicitly intended for use on the Butterfly. 
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Details of the architecture have a significant effect on Boplog's perfor- 
mance, and it is reasonable to conjecture how Boplog's performance might 
differ if certain architectural features were changed. 

4. 10, 1. Better Implementation 

Preceding sections have noted that the performance suffers from 
inefficient implementation. Some of the poor performance can be attributed 
to overhead to support large memory requirements, but the primary fault is 
probably a result of poor performance of individual procedures executed 
often in the body of the program. The results reported in Ref. 7 show that 
an OR-parallel implementation can achieve per-process performance levels 
near those of sequential Prologs, when a good sequential implementation is 
used as its foundation. A direct comparison of that implementation with 
Boplog is misleading, however, since it was designed for a small- to 
medium-scale multiprocessor using a bus interconnect that imposes no 
penalty for nonlocal references. 

A better implementation would probably perform fewer deferences. 
The current implementation is conservative and probably dereferences 
variables unnecessarily on occasion. Since dereferences are expensive, 
decreasing their number should result in higher performance. It is also the 
case that the proportion of time spent dereferencing will increase. 
Dereferencing has been optimized more than other parts of the code, so 
making the remaining code faster will shorten the overall time while 
reducing dereference time only slightly. 

A better implementation is likely to increase switch contention. If the 
code for one Boplog process is more efficient, the time between remote 
accesses will decrease while the number of remote accesses remains fairly 
stable. More frequent remote accesses means more contention for memory 
and more load on the switch. 

As the implementation becomes more efficient, the statistics that 
measure its performance become more meaningful. While the proportion of 
time spent gathering statistics will rise somewhat, those statistics will 
measure the critical aspects of the model more accurately. In particular, the 
bandwidth requirements of the switch should become more important as 
the frequency of remote accesses increases, and the distribution of remote 
data to minimize hot-spots will be an important metric. 

4. 10,2. Different Binding Method 

On qualitative grounds, supported by the previous statistical results, I 
believe that the linked-list method can be made roughly equivalent in per- 
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formance to the other "shared" binding methods, e.g., Refs. 13, 14 and 19, 
with the probable exception of the versions-vector method (16) and the SRI 
method. (19) The two methods are similar, and will probably outperform all 
other methods on small numbers of processors. The versions-vector 
method does not appear to scale well and lacks locality; both require 
auxiliary binding structures that may not be effectively used. At this time, 
only simulation results support their effectiveness, as no results of parallel 
implementations have yet been reported. Their main atraction is that each 
process has at most a single binding for each variable, and the time to 
access any binding is constant. 

Implementing either of these methods in Boplog would involve 
creating some data structures statically, so that the benefits of the constant 
time variable access could be preserved. The overall effect would be a sub- 
stantial improvement in memory mapping costs and dereferencing. Since 
these costs are the most damaging to Boplog's performance, the change 
would be well worth any concomitant poorer memory usage and restrictive 
memory allocation. 

Other alternatives are also possible. If a trail is maintained and 
unwinding is acceptable, bindings could be stored in one large hash 
window on each node. The window would be copied when migrating a 
task. The original value cell for a variable would be located in some 
process's stack. If that value cell is unbound, it would indicate that the 
variable was unbound when the next choice point was created. When dis- 
ambiguating the variable, a process would then search in its local hash 
window. If a binding is found there, that binding is used; otherwise, the 
variable is unbound and its new binding is entered into the local hash win- 
dow. Although variable accesses would be reasonably fast and the method 
has good locality and scales well, it requires that the trail and unwinding 
be used, and that the hash windows be copied when migrating. 

SAR-smashing might provide yet another binding method. If each 
process created its own binding for a variable and stored it at the same 
virtual address locally, then a process would only have to examine that 
location to find the binding. Searching through a list of ancestor processes 
to determine if they bound the variable could be done quickly by using 
SAR-smashing to change the physical location indicated by the variable's 
unique virtual address. 

No concrete decisions about the relative merits of binding methods are 
possible without implementation. Each competing method should be used 
by the same runtime system and compared on the basis of the sort of 
statistics that have been gathered for Boplog. Only then can questions of 
efficiency, scalability, and locality be assessed adequately. Still, it seems 
reasonable to trade poorer memory usage for the obvious advantages of 
constant time variable accesses. 
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4. 10.3. Faster Memory 

Because all memory references generated by the 68020 are routed 
through the Butterfly's PNC, local memory references are rather slow. If 
local memory were faster, execution speed would probably be better by 
about the same degree, even if remote memory reference time remained 
unchanged. This conjecture is based on the ratio between local and remote 
value cells examined. (The new GP1000 Butterfly executes a local 16-bit 
fetch about four times faster than the Butterfly used here.) Since faster local 
memory would improve overall performance, the effect would be the same 
as that noted earlier for improved program efficiency--switch contention 
could be expected to be higher, and the statistics more valid. 

4. 10.4. Adequate Virtual Address Space 

The SAR-based address-mapping strategy of the Butterfly has proven 
to be a serious stumbling block for Boplog. In retrospct, the decision to use 
the memory effectively through dynamic memory map changes may have 
been too ambitious. Performance certainly would have been substantially 
better had a static memory mapping scheme been employed, as in the 
Uniform System package provided by BBN for the ButterflyJ 2) 

In a standard uniprocessor WAM implementation, the data areas are 
laid out carefully so that address comparisons can be used to identify the 
area in which an item resides, or to determine the relative ordering of two 
items in the same area. An example of the first use is the ability to use 
address comparisons to identify a value cell on the stack that must be 
copied to the heap before applying the last-call optimization (25) (a so-called 
"unsafe variable"). The second use occurs, for example, when two unbound 
variables are unified. In this circumstance, the later variable is always 
bound to the earlier one, where "later" means "having the higher virtual 
address." If binding is done in this direction, and if the heap is located in 
lower memory than the stack, then no dangling references result from 
deallocations of the stack, and no heap item ever references a stack item. 

Because SAR-smashing dynamically changes the relationships between 
virtual addresses and physical memory locations, address comparisons can- 
not be used in the usual WAM style. Instead, a combination of several 
SAR fields are used for the same purposes. This scheme requires substantial 
overhead for unpacking the reference or masking certain fields, and com- 
paring the field values. The overall impact is much higher than the simple 
unsigned address comparison used in statically mapped systems. 

This virtual address problem is reduced on the new GP1000 version of 
the Butterfly. The impact of this change on Boplog would be that overhead 
for memory map changes (SAR-smashing) would be eliminated, and 
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virtual addresses would not need to be constructed. Comparisons of virtual 
addresses would be valid, since each would have a one-to-one correspon- 
dence with a location in physical memory. These comparisons could be 
used to disambiguate bindings and dereference variables more quickly. 
Stack maintenance would also be easier than in the current implemen- 
tation, as address comparisons could be used for stack-overflow detection. 

5. C O N C L U S I O N  

Boplog represents a preliminary effort to identify and confront 
problems that will impact the implementation of declarative programming 
paradigms on future machines similar to the Butterfly. The results presen- 
ted in Section 4 suggest the following conclusions. 

In attempting to make all physical memory available to Boplog, a 
high performance cost is paid. Memory management presents a tantalizing 
dilemma: without runtime memory map changes, only a small fraction of a 
large Butterfly's memory can be used; a dynamic memory map is very 
expensive and restricts system performance. Until this problem is solved (as 
it appears to be using new hardware in the Butterfly GP1000 series), 
implementations should be constrained to operate within the bounds of a 
static memory map. Similarly, memory for important data areas (stack and 
heap) should be allocated statically during program initialization, and 
should perhaps share virtual address spaces. Doing so would allow address 
comparisons for dereferencing, much as in the WAM and SRI models. 

Reference locality can be encouraged with suitable choices of data 
structures. Because each Boplog process manages its own local stack and 
heap areas, references to remote memory is reduced. Multiple bindings for 
variables are also stored in the memory of the process which makes the 
binding, further enhancing locality. Such attributes may be immaterial on 
bus-connected architectures, but the time ratio of some four to one for 
remote and local memory operations on the Butterfly makes locality 
important. Local operations are not only substantially faster, but also place 
less burden on the switch interconnect. Faster local operations in the 
GP1000 raise the ratio of remote to local access time to about 15:1, 
magnifying the importance of locality. 

The impact of some kinds of Boplog operations were surprising. 
Dereferencing took much longer than expected, but task migration was 
faster and less common than anticipated. Each locking operation was 
costly, but lock conflicts were infrequentl Although the policy of migrating 
from "early" choice points was expected to lengthen tasks, the very small 
percentage of migrated choices was unexpected. Bottlenecks that might 
have occurred as a result of examining stacks for migration and 
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termination did not arise. These results lend support to the value of direct 
measurement over simulation. 

The Butterfly described in this article is difficult to use. Its operating 
system is primitive and attempts to provide capabilities that sequential 
systems do not need. Its user interface is frustratingly fragile, cumbersome, 
and inadequate. To use the Butterfly( in more than a very naive fashion 
requires intricate knowledge of the operating system and memory 
management system as well as the underlying architecture and specific 
hardware characteristics. Building simple programs can be challenging; 
building and debugging large programs is nightmarish. The introduction of 
more modern and complete Butterfly operating systems derived from 
CMU's Mach (26) will undoubtably make ~he Buterfly easier to use, but 
possibly less efficient. 

Finally, although the implementation of Boplog on the Butterfly was 
quite slow, it allowed sampling of important events during actual 
execution. The statistics gathered during Boplog runs identified problem 
areas that simulation alone might not have been able to detect. Direct 
measurement of performance by a real implementation clarifies the impact 
of low-level architectural, design, and implementation decisions on overall 
performance. 
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