
International Journal of Parallel Programming, Vol. 17, No. 1, 1988

Performance
Logic

Peter A.

of an OR-Parallel
Programming System

T i n k e r 2

Received December 1987; revised August 1988

The research focus in parallel logic programming is shifting rapidly from
theoretical considerations and simulation on uniprocessors to implementation
on true multiprocessors. This report presents performance figures from such a
system, Boplog, for OR-parallel Horn clause logic programs on the BBN
Butterfly Parallel Processor. Boplog is designed expressly for a large scale
shared memory multiprocessor with an Omega interconnect. The target
machine and underlying execution model are described briefly. The primary
focus of the paper is on detailed statistics taken from the execution of
benchmark programs to assess the performance of the model and clarify the
impact of design and architecture decisions. They show that while speedup of
this implementation on highly OR-parallel problems is very good, overall
performance is poor. Despite its speed drawback, many aspcts of the implemen-
tation and its performance can prove useful in designing future systems for
similar machines. A binding model that prohibits constant time access to
bindings, and the inability of the machine to support an ambitious use of
machine memory appear to be the most damaging factors.

KEY WORDS: Logic Programming; Parallel programming; Butterfly.

1 This work was carried out at the University of Utah, Salt Lake City, Utah. It was supported
by a University of Utah Graduate Research Fellowship, the National Science Foundation
under Grant DCR-856000, and by an unrestricted gift from L.M. Ericsson Telefon AB,
Stockholm, Sweden. Production of the document was supported by the Rockwell Inter-
national Science Center.

2 Current address: Rockwell International Science Center, 1049 Camino Dos Rios, P.O. Box
1085, Thousand Oaks, California, 91360 U.S.A.

59

0885-7458/88/0200-0059$06.00/0 �9 1988 Plenum Publishing Corporation

60 Tinker

1. I N T R O D U C T I O N

This article reports experience implementating pure OR-parallel Horn
clause logic programming on the BBN Butterfly T M Parallel Processor. The
Butterfly is a large-scale shared-memory homogeneous multiprocessor that
can comprise several hundred processing elements, and provides com-
munication facilities that scale with the number of processors. It can
contain a large amount of physical memory, shared but distributed
throughout the system. It is a general-purpose machine, intended to
perform well on a wide variety of computational problems with varying
degrees of interaction between the processors. The Butterfly's architecture
demands that any substantial application be tailored to it. Simply
"paralMizing" an application designed for a different type of machine may
result in a poor match with the underlying architecture.

Accurate performance predictions for applications on the Butterfly are
difficult if not impossible because of the many interacting parameters. An
accurate assessment of performance can only be obtained through direct
measurement of an actual implementation. The implementation described
here is not designed to wring the last bit of speed from the machine (in
fact, it is rather slow), but to determine which aspects of this specific
architecture and the programming model are compatible and what can be
done about incompatibilities. Detailed statistics on critical performance
parameters have been taken by direct measurement of the implementation
on the Butterfly.

The Butterfly is the subject of Section 2. Section 3 presents the design
for Boplog, the OR-parallel logic programming system. Section 4 is devoted
to assessing Boplog's performance and presents statistics that both judge
the effectiveness of the design and clarify the importance of certain difficult
problems. Section 5 concludes and summarizes the report.

2. THE BBN BUTTERFLY PARALLEL PROCESSOR

This section describes the Butterfly used for the implementation on
which this report is based. It has been superseded in large measure by the
Butterfly 1000 product family, headed by the GP1000 announced in
October 1987. Some of the architectural details described here do not apply
to the GP1000. Later sections examine, qualitatively, the impact of the
architecture changes of the new machine.

2.1. Hardware

The hardware for both the mchine described here and the GP1000 is
composed of two subsystems. The processor nodes are the processing

Performance o f an OR-Para l le l Logic Programming System 61

elements that form the computational engine of the machine, and the
Butterfly switch forms the communication system that conects them.

A Butterfly comprises one to 256 processor nodes, and can grow in
single-node increments. A typical Butterfly node consists of an MC68020
microprocessor, one megabyte of memory, and a processor node controller
(PNC) that incorporates the switch interface. Nodes may also be con-
figured with four megabytes, yielding a total potential physical memory of
one gigabyte. Figure 1 shows the components of a Buterfly node.

The Butterfly used in this report has 18 nodes, of which a maximum of
16 are generally used. Each node uses an MC68020 microprocessor with an
MC68881 floating point coprocessor, and some nodes have four megabytes
of'memory. The 68020 has the approximate power (at 16 MHz.) of a
DEC VAX T M 11/780: about one MIPS when coupled with memory of an
appropriate speed. The 68020 has an on-chip instruction cache of 256
bytes, and instructions are pipelined.

Figure 1 illustrates the central position occupied by the PNC. All
accesses to memory, including memory local to the processor accessing it,
are routed through the PNC on each node. The PNC performs all memory
operations, using the switch if the reference is to remote memory. In
addition to providing basic memory functions, the PNC microcode also
implements a variety of atomic functions. These functions enhance the
utility of the Butterfly for parallel operations such as queuing, semaphores
and locks, and basic message-passing services.

Butterfly nodes are connected through the Butterfly switch, which is a
nonblocking Omega network. The number of switching elements used
grows as N log N where N is the number of nodes, while the bandwidth of
the network grows approximately linearly with N. The switch uses bit
routing, i.e., the destination address uniquely determines the path through
the switch from the source to the destination. Data transfers are bit-serial.
The raw speed of the network is 32 megabits per second per path. Our

t remote memories t
Butterfly switch

I

I
I 68020 I

local
memory

Fig. 1. A Butterfly Processor Node.

62 Tinker

benchmarks indicate that 28 megabits per second is realizable under ideal
conditions, with the remaining switch capacity dissipated through
operations at the source and destination nodes.

Benchmarks indicate that a local 16-bit fetch to a 68020 register takes
about 1.35 microseconds and a remote fetch takes 6.3 microseconds.
[These figures are the result of timing 4000 consecutive in-line 16-bit fetch
instructions to a machine register. As with all subsequent benchmark
figures presented here, these instructions were executed with interrupts
disabled, and (local) instruction-fetch time is included in the timing
results.] The ratio of times for remote and local accesses is not very large:
another way of viewing this situation is that local accesses are rather slow,
but remote accesses are not very much slower. All 16-bit operations are
performed synchronously.

2.2. Software

An executable piece of code on the Butterfly is called a process. Each
process is composed of a substantial amount of code, and the cost for
process creation is very high compared with most other fundamental
Butterfly operations. In general, a Butterfly process is a complete program,
capable of being executed on just a single processor node. Processes cannot
be migrated from one node to another once they begin running.

Processes are run under the supervision of the Chrysalis T M operating
system. A copy of the operating system kernel is resident on each node.
Many processes may run on each node, with a multitasking scheduler to
multiplex the execution of all processes on a node. It uses a prioritized
timeslice algorithm to implement a round-robin schedule of context
switches among the competing processes.

2.3. The Butterfly Memory System

An understanding of the Butterfly's memory management system is
critical to the design of any application that hopes to make effective use of
the machine resources. The first Butterfly machines used the MC68000
processor, which supports only 24-bit addresses. This aspect of the original
design persists in the Butterfly described here: only 24-bit addresses can be
used, even though the 68020 supports full 32-bit addresses. To access the
potential gigabyte of physical memory on a fully configured Butterfly,
24-bit virtual addresses are mapped to 32-bit physical addresses. More
detail on Butterfly memory management can be found in Refs. 1-4.

Using physical addresses, any byte of memory on the machine can be
identified. The physical address encodes the processor node number and

Performance of an OR-Parallel Logic Programming System 63

local offset of the indicated memory. The 8-bit node number and 22-bit
offset combine to give a total address width of 30 bits, or a maximum of
four megabytes on each of 256 nodes. Physical addresses cannot be used
directly on the Butterfly because the PNC accepts only virtual addresses,
which it maps into physical addresses. The 24-bit virtual address occupies a
full 32-bit word: the most significant 8 bits are unused, and the least
significant 16 bits specify an offset of the memory from a base address. The
base address is indicated indirectly by the second 8 bits, the SAR number
field. This field specifies a Segment Attribute Register (SAR) to use in
performing the virtual-to-physical address mapping. A SAR is a writable
mapping register in the PNC.

The memory associated with a SAR can be accessed by calling an
operating system procedure, Map Oh j, that obtains the SAR value for the
memory segment, loads it into a free SAR in the PNC, and returns a
virtual address corresponding to the first byte of the segment. The virtual
address of any byte in the memory segment can be computed by additions
to this base address. Any reference to such a virtual address is passed to the
PNC by the 68020, where it is converted to its corresponding physical
address and the memory access is performed.

There are 512 SARs in each PNC, of which up to 256 (in powers of
two) may be used by a process, using buddy system allocation. The total
addressing capacity of a process is determined by the 256 SARs, each of
which may indicate the start of a 64-kilobyte object. Thus, at any time a
process may only address

256 SARs x 64 kilobytes per SAR = 16 megabytes

On a fully configured Butterfly with 4 megabytes on each of 256 nodes, this
accounts for only 1/64 of the available memory. Furthermore, the limit of
512 SARs per node makes it impossible to have several processes with large
address spaces on each node.

If more than 16 megabytes are to be addressed, the values stored in
the SARs must be changed to remap the memory system. This can be
accomplished using Map_Obj, described previously, and Unmap_Obj,
which frees the SAR associated with it by the corresponding Map Obj call.
As shown in Table I, these procedures are rather show. [Results in Table I

Table I. Memory Mapping Using
Map_Obj and Unmap_Obj

Local Object 827/~sec.
Remote Object 1028/~sec

64 Tinker

are for 500 consecutive in-line Map_Obj and Unmap_Obj in alternation,
using an explicit SAR number, with the Object ID and virtual address in
machine registers, and with interrupts inhibited. The time for instruction
fetches from local memory is included.] Using them to remap memory
dynamically is clearly impractical.

3. A DESIGN FOR OR-PARALLEL LOGIC P R O G R A M M I N G
ON THE BUTTERFLY

This section summarizes the design of an OR-parallel logic programm-
ing implementation called Boplog (Butterfly OR-Parallel Logic). More
detailed descriptions can be found in Refs. 5 and 6. Boplog is the first logic
programming system designed for and implemented on a large-scale
shared-memory multiprocessor. (The system described in Ref. 7 is designed
for medium scale multiprocessors with several tens of processors, rather
than the several hundred accommodated by the Butterfly.) Its design
emphasizes shared data structures, effective use of large memories, locality,
scalability, fast task migration and largely sequential execution. It is
targeted for an unenhanced commercially available multiprocessor. Boplog
is expressly designed to accommodate the Butterfly's drawbacks and
capitalize on its strengths. It is targeted for Butterfly systems with many
processor nodes, and is designed to allow access to a correspondingly large
physical memory. The ability to use the potentially huge physical memory
of the Butterfly is important for investigating the performance of the
implementation on large problems on large machines.

To run Boplog, programs written in Prolog are compiled into
Extended Warren Abstract Machine (EWAM (6)) instructions. In general,
the instructions have the same meaning as the corresponding WAM
instructions. (8"9) The exceptions corcern the allocation and reclamation of
shared data areas, dereferencing of variables, and support for low-level
memory management. EWAM code supports only 'pure' OR-parallel
clauses: there is no 'sequential OR' construct, no cut, assert, or retract, and
a limited variety of evaluable predicates. The EWAM code is then compiled
into C code, (1~ then into 68020 machine instructions. The resulting code is
linked with the Boplog runtine system to form a complete compiled system.

The EWAM instructions introduce parallelism at the choice point
level: alternate choices for a clause may be tried on different processors.
Each alternative clause of a choice point represents a task that may be
done in parallel with other tasks. Parallelism is exploited by having idle
processors migrate choices away from choice points on busy processors.
Migration involves moving enough information from the busy processor

Performance of an OR-Parallel Logic Programming System 65

that the idle processor can explore the search tree implied by the migrated
choice.

Boplog's overall structure is multisequential: (1]) identical copies of the
Boplog code reside on each processor. Execution of the code is essentially
sequential except where parallelism is introduced at choice points. Boplog
program execution is carried out by one or more Boplog processes, each of
which is capable of completing the problem itself. Each Boplog process is a
complete compiled program, which works in concert with other Boplog
processes. All of the Boplog processes are identical; they differ only in
where they begin executing. Each Boplog process executes the finite state
machine indicated by the transition diagram of Fig. 2. All Boplog processes
begin in the start2 state except for one, the originating process, which
begins in the startl state. The originating process is the one designated to
begin the execution. It executes EWAM instructions, possibly generating
choice points that cause some of the other processes to enter the active:
migrating state. In Fig. 2, a process in the active." migrating state moves
work from an active process. In the active: executing state, it executes
EWAM instructions; in the active: failing state it backtracks (perhaps
repeatedly). When a process is in the idle: searching state, it looks for tasks
to migrate.

When the originating process detects that all choices emanating from
the program's first choice point have been completed, it sets a termination
flag that is read periodically by each Boplog process. In the idle: checking
state, a process checks this flag to see if it may terminate. If the flag is set,
the process halts. If the flag has not been set, the process attempts to
recover its stack and heap space. In doing so, it can detect when all work
emanating from each choice point has completed, and can inform other
processes that work has completed on their choice points.

more choices

~as k ~ ~ fail , I

task found @ ~no m~re choices

some process active
Fig. 2. Boplog Process Finite State Machine.

828/17/1-5

66 Tinker

3.1. Principal Process Data Structures

Logic programming systems based on the WAM are said to use a
three-stack model(X2): the stack, the heap, and the trail (used to record
retractable variable bindings). Boplog uses a stack and heap just as in the
WAM, but does not use a trail stack in the WAM sense. The stack and
heap are trees, with the trunk shared by all processes. As tasks are
migrated, each process forms a new top to the shared heap and stack.
Boplog uses two important additional data areas. The ancestor stack is the
primary data structure used in determining the correct binding for a
variable (see Section 3.2). A small information block contains all of the data
for a process that are necessary for interprocess communication and
synchronization.

3.2. Boplog's Binding Environment

The way multiple bindings for variables are stored and accessed is
critical to the efficient execution of any OR-parallel implementation. Many
different methods have been proposed, e.g., Refs. 11-19. Boplog uses a
time-stamped linked-list method, (5'6) which uses shared rather than copied
data structures. It appears to be competitive with other binding methods
that stress shared data structures, but a careful comparative study of these
approaches (like that described in Ref. 20) is needed to justify this claim.
The Boplog binding method seems well suited to a Butterfly implemen-
tation, since it exhibits a high degree of locality and scalability and makes
effective use of the low relative overhead for remote accesses. Memory for
bindings is allocated only on demand and has little waste or redundancy.
Overhead for task migration is limited to copying the ancestor stack, which
grows slowly compared with the auxiliary structures of other shared
binding methods.

In Boplog, all bindings for a variable are stored as nodes of a
distributed linked list called a binding list," there is a separate binding list
for each variable. Each new binding for the variable is paired with a
timestamp, forming a value cell that is stored as a node on the binding
list. A timestamp counter is maintained independently by each process,
and is incremented each time a choice is taken from a choice point.
The timestamp of a value cell is the value of the counter at the time the
binding is made, and indicates when the binding was made relative to other
bindings for the same variable.

When a variable is accessed, it must be derefereneed to find its current
value. In Boplog, dereferencing consists of two phases. In the first phase,
the binding list and the ancestor stack are used to disambiguate the
bindings to determine which, if any, represents the correct value in the

Performance of an OR-Parallel Logic Programming System 67

current context. The ancestor stack summarizes the ancestry of the thread
of execution currently being pursued by a process. Each item on the
ancestor stack contains a process number and a timestamp binding span
that denotes when that process was investigating a choice that eventually
led to the current execution thread. The span's lower bound is the
timestamp at which either a choice was migrated to that ancesor process,
or a choice was taken from an existing choice point of that ancestor. The
upper bound is the timestamp at which the next choice point was created
on the ancestor. These bounds indicate the span of timestamps during
which the process could possibly have supplied a value used in the current
thread. If a value cell, created by a specific process, has a timestamp that
falls within the bounds of a span associated with the process, then the
binding in the value cell was created by that ancestor while investigating
the current execution thread. A variable is disambiguated by comparing the
timestamp of each value cell on the binding list with the binding spans on
the ancestor stack. If a cell is found whose timestamp and location
indicates that its value was supplied by an ancestor, that cell is used as the
variable's value in the current context. The value obtained by dis-
ambiguation is than used in the second dereferencing phase to chain
backward through variable bindings to find the ultimate value of the
variable.

3.3. Backt rack ing and Task M i g r a t i o n

Backtracking in the WAM involves freeing obsolete parts of the
environment and stack and resetting various machine registers to restore
the state of the computation to that of an earlier time. In Boplog,
backtracking and task migration are closely linked, since both deal with
the manipulation of choice points and their contents. The relevant infor-
mation for backtracking and migration is stored in choice point data struc-
tures on the stack. They are linked together so that backtracking may
chain backwards as deeper backtracking occurs, and so that idle processes
can determine the earliest unprocessed choice for migration. Each choice
point contains a count of the number of choices, a count of the number of
choices already begun, a count of the number of choices completed, a level
number that indicates the depth of the search tree at that point, a pointer
to a list of code entry points that represent the unification code, and a copy
of the ancestor stack of the process at the time the choice point was
created. When the number of choices remaining is zero, the choice point is
exhausted and no further migrations can take place from it.

Each Boplog process maintain three choice point references to control
backtracking, task migration, and stack reclamation.

68 Tinker

�9 lcp: The local choice point reference identifies the choice point most
recently created by this process.

�9 rcp: The remote choice point reference identifies the earliest (least
recently created) choice point of this process that still has choices
remaining to be tried.

�9 scp: The shared choice point reference identifies the most recent
choice point of this process from which choices may have been
migrated by other processes.

lcp is the Boplog analog of the WAM B register. It moves later in the
stack when new choice points are created, and falls back again on failure.
rcp is used by idle processes when they attempt to migrate choices from a
busy process: idle processes take choices from rcp and increment the num-
ber of choices taken from the choice point. When the rcp is exhausted, rcp

is moved forward to the next choice point of that process, scp indicates the
lastest potentially shared stack area of this process. Any part of the stack
or heap beyond the scp choice point's creation is guaranteed not to be
shared by any other process, scp moves foward in the stack when rcp
moves foward, and falls back when work on all choices in its choice point
have completed. The part of a process's stack that lies beyond scp is treated
exactly like the stack in the sequential WAM model, and is much more
efficient; scp is also critical to the recovery of stack space.

When lcp and rcp reference the same choice point, and that choice
point is exhausted of all choices, the process becomes idle. Idle processes
(processes that have never done work or have completed execution of their
current branch) are responsible for obtaining more work from busy
processes. An idle process attempts to migrate a choice from a choice point
that is near the root of the entire search tree so that task granularity can
be maximized. The assumption made here, of course, is that branches
spawned near the root of the entire tree are the longest. Determining which
choice to migrate involves both determining a process as the parent and
determining which of the parent's choices to migrate. An idle process
examines the rcp of all of the other processes to find that process with the
smallest level number in its rcp choice point. If the rcp choice point of the
indicated process is exhausted of all choices, its rcp and scp are reset to
reference its next choice point, and the search for new work repeats.

Because data structures are shared extensively, migration of choices
from one Boplog process to another is straightforward and involves little
transfer of data between nodes. To migrate a choice, an idle process
increments a count of the number of choices taken from the choice point,
copies the choice point into its own memory, and begins execution of the
clause indicated by the choice point. The ancestor stack stored with the

Performance of an OR-Parallel Logic Programming System 69

choice point now becomes the ancestor stack of the descendant process.
The speed with which work can be transferred is particularly important
near the end of problem execution, when the length of sequential segments
becomes small and processes compete more frequently for less work. (21)

3.4. M e m o r y M a n a g e m e n t

Attributes of the Butterfly's memory-management system described in
Section 2.3 conflict with the desire to use all of the Butterfly's potentially
huge physical memory. Two problems are most daunting: the limited
virtual address space and the high cost of system calls for dynamic memory
map changes. As Table I showed, Chrysalis system calls to support
dynamic memory map changes are unacceptably slow. With care, however,
it is possible to make use of all of the Butterfly memory without undue
concern for the number of SARs available or the time-consuming use of
calls to Map_Obj and Unmap_Obj to change the memory map. Boplog uses
a scheme called SAR-smashing, ~22) with which all of the available memory
can be accessed by any process, as few as one SAR can be used to access all
of the physical memory, and changing the memory map can be accom-
plished some 50 times faster than by using Map_Obj and Unmap_Obj.

Benchmarks indicate that the memory map can be changed in about
18.9 microseconds using SAR-smashing. [The benchmarks involved 100
executions of a loop with 5000 consecutive in-line SAR smashes, with all
relevant data machine registers and with interrupts inhibited. This time
includes the time for instruction fetches (instructions are not in the 68020
cache) and for the calculation of the address of the location holding the
SAR value.] It can be integrated easily with the standard Butterfly memory
management system, so that access to often-used memory is as fast as the
Butterfly will allow, while access to less-used memory encounters the SAR-
smashing overhead. The price paid for these features is increased user
responsibility for managing memory references, and a higher per-access
cost for some accesses. These costs are assumed by the Boplog runtime
system, not by the Prolog programmer.

With dynamic memory mapping, vitual addresses no longer have a
one-to-one correspondence with physical memory. Since virtual addresses
cannot be used to refer to unique memory locations, Boplog uses references
that are independent of both process and processor node. These 32-bit
references are capable of locating any 32-bit item in a one-gigabyte physical
memory. Table II summarizes some benchmark results of using references.
The first time appearing in Table]I indicates the time taken to construct a
virtual address from a given reference; the second time gives the time taken
to change the memory map based on information in the reference.

70 Tinker

Table II. Memory Operations Using References

Creation of a virtual address 6.4/~sec.
Memory map change 23.5 #sec.

3.5. Locks and Cri t ical Sect ions

Because Boplog is designed to run as sequentially as possible, actual
interprocess interaction occurs rather infrequently, although provision for
such interaction is pervasive. Resource locking is frequent, but processes
seldom wait for locks to clear. The points of process interaction occur
during variable binding and dereferencing, searching for more work by idle
processes, backtracking, and task migration.

Although dereferencing of variables is one of the most common of
Boplog operations, there is little overhead from the enforcement of critical
sections during dereferencing. Locking is required at three points. First,
each value cell must be locked during disambiguation to ensure that its
timestamp is not changed while determining if the binding was made dur-
ing any ancestor time span. Second, if a new value cell needs to be created
and linked into the binding list for the variable, some locking is needed to
prevent conflict when the link fields of the value cells are updated. Thus, a
value cell is also locked when the timestamp of a value cell is updated for a
new binding. This locking operation is the complement of the locking of a
value cell during disambiguation. Finally, if a value cell is local to this
processor node, it may be unshared. To determine this case, the scp of the
process is examined. To ensure that the scp is not updated by another
process during this time, this process's information block must be locked.

4. P E R F O R M A N C E A N D A S S E S S M E N T

The intent of this section is to give detailed statistics for the perfor-
mance of Boplog's binding method and migration strategy; show how some
performance aspects change as the number of processes in increased, and
provide data for comparison with those from other implementations as
they become available. It does not show how the implementation performs
on a wide variety of programs: the results are based on just a few programs
and executions, which are of course not enough to give a complete picture
of Boplog's performance. Where times are reported for activities of short
duration, they are generally the averages of many (often several million)
timings of separate instances. Hopefully, these results provide some insight
into which aspects of the programming paradigm, execution model,
architecture, and implementation deserve more attention in the future.

Performance of an OR-Parallel Logic Programming System 71

Statistics have been gathered for Boplog running several simple
programs. The benchmark programs were selected because they are
common in the literature and because, with one exception, they exhibit a
high degree of OR-parallelism. The exception is a program that generates
no such parallelism, and is used to evaluate sequential performance and the
impact of idle processes on the performance of active ones. Statistics were
collected on a per-process basis and then aggregated to smooth differences
between individual process. These programs are trivial and too regular to
validate the design decisions for Boplog, but they do offer some insight into
the Boplog execution model, and the impact of various sequential and
parallel overheads. Where times for various operations are given, the
reported times are somewhat longer than the actual times, since there is
some overhead for gathering the statistics. This overhead is generally about
20 % of the total time reported.

4.1. B e n c h m a r k P r o g r a m s

The first benchmark is the standard 'naive list reversal' program, for
which Boplog code is given in Fig. 3. This program is deterministic in the
WAM model; because of clause indexing, no choice points are created. The
naive reverse program is used to evaluate the sequential efficiency of
Boplog and to assess the impact of idle processes on execution times. The
second benchmark program finds all permutations of a list of elements, and
is of interest here because some OR-parallel benchmark results have
already been reported elsewhere. (2~ The program here differs from its usual
form in that instead of reporting all of the permutations it filters out all but
one. Code for the Boplog permutation program is given in Fig. 4. The third
benchmark program is a naive 'generate-and-test' solution to the n-queens

?- l i s t30 (L) , nreverse(L, X).

nreverse([X I LO], L) :-
nreverse(LO, L1), concatenate(L1, IX], L).

n reve r se ([] , []) .

concatenate([X I L1], L2, IX I L3]) :-
concatenate(L1, L2, L3).

conca tena te([] , L, L).

l i s t 3 0 ([1 , 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30]) .

Fig. 3. Naive Reverse.

72 Tinker

?- range(l, n, X), nreverse(X, Y), perm(X, Z), Z=Y.

perm([], []).
perm(X, [V I Z]) :- delete(V, X, Y), perm(Y, Z).

range(First, Last, [First I L]) :-
less(First, Last), plus(First, I, First1),
range(Firstl, Last, L).

range(Last, Last, [Last]).

Fig. 4. List Permutation.

problem from Sterling and Shapiro's book, (23) rewritten to avoid the use of
not. It is used to generate large search spaces, and is shown in Fig. 5.

4.2. Sequent ia l P e r f o r m a n c e

The performance of Boplog running on one processor node (one
Boplog process) gives a measure of its speed relative to other implemen-
tations. Table III shows execution times for various instances of the
benchmark programs. Table III also shows the execution times for the
same programs run on a DEC MicroVAXrM-II workstation using
CPrologl-4, a moderately optimized Prolog interpreter. (24) The MicroVAX
has roughly the speed of a single 68020 running at 16 MHz. Although the
equivalence of a Butterfly processor node and a MicroVAX is questionable,
the dramatic difference in speeds clearly indicates that Boplog, running
compiled EWAM code, is much slower than a reasonable sequential
Prolog interpreter.

?- queen(n, Qs).

queen(N, Qs) :- range(l, N, Ns), perm(Ns, Qs), safe(Qs).

noattack(. . . . []) .
noattack(X, N, [Y [Ys]) :-

plus(Y, N, X1), nequal(X1, X),
minus(Y, N, X2), nequal(X2, X),
plus(N, 1, NI), noattack(X, NI, Ys).

safe([Q [Qs]) :- safe(Qs), notattack(Q, Qs).
s a f e ([]) .

notattack(X, Xs) :- noagtack(X, 1, Xs).

Fig. 5. n-Queens.

Performance of an OR-Parallel Logic Programming System

Table II1. Single-Process Benchmark Execution Times

73

Benchmark Boplog CProlog

naive reverse 1,299 msec 343 msec.
4-element list permutation 1,453 msec. 197 msec.
5-element list permutation 6,802 msec. 903 msec.
6-element list permutation 39,912 msec. 5,280 msec.
4-queens 2,879 msec. 593 msec.
5-queens 16,720 msec. 3,547 msec.
6-queens 109,239 msec. 23,043 msec.

Because the sequential performance of a Boplog process is poor, the
combined performance of many Boplog processes cooperating on a single
problem cannot be expcted to be very good. Speed-up (the performance
enhancement due to parallel execution) may be impressive, but this result
is misleading because of the poor single-processor performance. The
overhead of memory map changes, the inability to compare virtual
addresses, fixed overheads for disambiguating bindings, and the slow
memory of the Butterfly all constrain the maximum speed.

With the single-processor speed of the implementation in mind, the
statistics for sequential and parallel execution are still valid as a means of
evaluating the environment model, task migration strategy, memory
mapping overhead, scalability, and locality. The following sections present
these statistics and comment on their interpretation. Except where
otherwise noted, the statistics were gathered from the 8-queens program
(n-queens with n = 8) running on 16 nodes. The size of the problem ensures
that a large number of samples are combined in the statistics. For
comparison with other times reported, the execution time of the 8-queens
program on 16 nodes is about 494 seconds.

4.3 . M e m o r y M a n a g e m e n t

Memory management costs reflect overheads incurred in any Butterfly
implementation that tries to use all available memory; these in turn impact
the performance of model-specific aspects of the implementation. Boplog's
concern for using all available memory results in considerable overhead for
memory map changes, recomputation of virtual addresses, and the inability
to compare data locations using virtual addresses. Time spent for these
overheads may have a dramatic effect on the impact of communication pat-
terns during an execution. SAR-smashing has by far the highest cost. Time
spent in remapping the Butterfly's memory is time during which the process

74 Tinker

Table IV. SAR-Smashing (8-Queens)

SAR smashes (total)
SAR smashes with a known SAR value
SAR smashes from a reference
Virtual address calculations

38,216,764
9,154,774

29,062,990
13,185,587

doing the mapping cannot put any load on the interconnect. If this
overhead is too high it will mask communication overhead. Table IV
presents SAR-smashing statistics for the 8-queens program on 16nodes.
Each SAR smash results in a memory map change. If the SAR value is
known, the memory map change is faster than if it must be obtained from a
reference; Boplog is careful to use known SAR values whenever possible. It
also tries to avoid recomputing virtual addresses, which can be preserved
across SAR smashes.

Using SAR-smashing, Boplog asserts direct control over the memory
mapping process, using kernel mode privileges to write directly into the
hardware mapping registers on the PNC. By doing so, memory map
changes are made in the minimum possible time. Each change involves
only a 32-bit write to a fixed location in the PNC. This takes just a few
microseconds, and the remaining time for each SAR-smashing operation is
spent obtaining the necessary information for determining the correct SAR
value. These operations involve shifting and logical operations on the
reference. If this information could be found more easily, each SAR-
smashing operation would be correspondingly faster. Several alternatives
are discussed in Ref. 6.

4.4. The E n v i r o n m e n t M o d e l

The environment model encompasses both variable dereferencing
(including disambiguation) and task migration. Its performance appears to
be the most critical element in determining overall performance.

4.4.1. Dereferencing

The performance of Boplog's environment method is determined
primarily by the number of binding list links traversed to find a variable
binding, the number of ancestor spans examined, and the relative numbers
of remote and local value cells examined. Table V presents statistics for
dereferencing in the 8-queens program running on 16 nodes.

Table V indicates that some ten million dereferences were performed
during the course of program execution. Of these, some six million were

Performance of an OR-Parallel Logic Programming System 75

Table V. Environment Performance (8-Queens)

dereferences 10,320,354
nontrivial dereferences 5,959,490
maximum number of ancestors on stack 51

per nontrivial
operation total dereference

time 3,335 sec. 559/~sec.
nodes traversed 9,615,865 1.61
links traversed 6,I 25,328 1.02
total value cells examined 10,163,262 1.70
local value cells examined 9,763,202 1.63
remote value cells examined 400,060 .06
dereference SAR-smashes 12,626,841 2.11

from a known SAR value 1,638,793 .28
from a reference 10,988,048 1.84

virtual address calculations 10,849,688 1.82
ancestors examined 14,313,507 2.40
ancestor spans examined 8,503,793 1.42

nontrivial, requiring variable disambiguation and dereferencing. On
average, each nontrivial dereference required the examination of cells on
fewer than two processor nodes, and each variable chained through just
one value cell to find its ultimate value. (A link in the chain was counted
when following a reference from one value cell to another reference. In
most cases, the second reference was not to a variable but to a ground
term.)

On average, each dereference resulted in the examination of between
one and two value cells. Of these cells, more than 96 % were located in
memory on the processor node of the process performing the dereference.
An average nontrivial dereference required that between two and three
items on the ancestor stack be examined. This figure is low in light of the
fact that there were often many items on the stack (a maximum of 51).
Between one and two time spans were examined for each nontrivial
dereference.

These figures may be misleading because of the small size and
regularity of the problem, but they are encouraging since they indicate that
very little search is required to find the correct value cell. The time per
dereference, however, is rather discouraging. The dereference time tends to
dominate the execution, and accounts for nearly half of the total execution

76 Tinker

time. A large number of dereferences occurred, and each nontrivial
dereference took nearly 600 #secs. Clearly, this time is too long--one could
hope that the average time would be at least an order of magnitude less.

Where is the time spent? Table V seems to show that the model
performs well, but the implementation fails to capitalize on its strengths.
The implementation adds hidden costs to dereferencing, which are not
reflected in the numbers from the table. An average of between two and
three memory map changes are made per dereference, which could account
for some 75-100psecs., according to benchmarks presented earlier. Also,
each value cell examined is locked during dereferencing to ensure that the
time stamp does not change during dereferencing. The impact of the
locking is difficult to determine; Table VI summarizes some information,
showing that little lock contention occurs, but that each lock attempt takes
a relatively long time.

All Boplog locks are spin-locks and are implemented by an atomic
inclusive-OR operation. A locking attempt consists of OR'ing the current
value of the lock with a fixed number and determining if the state of the
lock changed. A locking failure occurs if the state did not change,
indicating that the value had already been set by another process. Many
locking attempts were made, but few failed. However, because the locking
operation requires interaction with the PNC, it is rather slow. [The time
reported as 'time per attempt' is the result of performing the atomic
inclusive-OR operation on a memory location on a remote node. Interrupts
were disabled, and 100 loops of 100 in-line operations were timed.] A more
efficient hardware locking mechanism might reduce the time spent.

4.4.2. Task Migration

Table VII presents statistics for task migration. Overall, only 229
migrations were performed, just a very small fraction of the total number of
choices generated. Each migration took less than a millisecond, and each
copied an average of about 240 bytes. The size of data copied includes the
ancestor stack, which averaged about 17 ancestors per migration. These

Table VI. Locking Statistics (8-Queens)

total locking attempts 17,005,346
failures 41,650
value cell locks 12,746,084
info block locks 3,189,989
choice point locks 1,065,945
time per attempt 20.1 psec.

Performance of an OR-Parallel Logic Programming System 77

Table VII. Migration Statistics (8-Queens)

total choices generated 1,065,278
migrations 229
total time 209 msec.
time per migration 913 #sec.
ancestors per migration 17
migration size 240 bytes
migration attempts 3,099
total time 5,238 msec.
time per attempt 1,690/~sec.

figures support a claim of fast task migration for Boplog, relative to other
costs.

A problem with the current task migration strategy is made apparent
by noting that several thousand migration attempts were performed. A
migration attempt involves an idle process checking to see if any choices
can be migrated away from their parent, and requires time-consuming
locking and SAR-smashing as each remote process's information block is
examined for pending work. More than 90 % of these checks fail, but each
attempt incurs a time penalty of more than one millisecond. This problem
is discussed further in Section 4.6.

The number of ancestors copied on migration was small, indicating
that a series of 16-bit transfers might perform even better than the block
transfers used in this implementation. A small number of ancestors in the
choice point is also an indication that tasks are migrated from points early
in the execution, resulting in more sequential execution in each process.
For larger programs, it is likely that migrations near the end of task
execution would involve many more ancestors. For these tasks, block
copies would be preferred. A run-time examination of the number of
ancestors could determine which would be better for each migration.

4.4.3. Task Selection Strategy

The average time spent searching a particular branch of the search tree
following task migration is long compared to other activities. Periods of
sequential execution are therefore long, which promotes the multisequential
execution model. The frequency of task migration increases dramatically
near the end of program execution. Figure 6 shows the times at which task
migrations occurred. The circles on the line indicate the average time
(across all processes) at which the migration occurred that began the ith
task for each process. The bars around each circle indicate the minimum

78 Tinker

500.0

400.0

300.0

200.0

I00.0

0.0
0 4 8 12 16 20 24 28

Fig. 6. Time of Migration (seconds) vs. Task Number (8-Queens).

and maximum migration times across all processes. Figure 6 shows that
nearly all migrations occurred very late in the execution--halfway through
the total execution, most processes had started fewer than four tasks. Tasks
that were begun early tended to last a long time relative to the total
execution time. This observation is confirmed by Fig. 7, which shows the
duration of the ith task executed by each process. Figure 7 shows that
nearly all of the work in the program is done by the early tasks. It also
shows that there is a dramatic difference in the time spent on any task. For
most processes, tasks beyond their eighth task were very short.

Long periods of sequential execution are encouraged by migrating the
available choice that has the lowest level number, where the level number is
incremented each time a process makes an EWAM procedure call. This
simple heuristic appears to work well. As an additional benefit, this
migration strategy results in migration of a choice from a choice point with
fewer ancestors than choice points created later in the execution. Figure 8
summarizes this effect, showing the number of ancestors in the choice point

250.0

200.0

150.0

I00.0

50.0

0.0
4 8

~ T

12 16 20 24

Fig. 7. Task Duration (seconds) vs. Task Number (8-Queens).

28

Performance of an OR-Para l le l Logic Programming System 79

30.0

25.0

20.0

15.0

i0.0

5.0

0.0

O O

I

4 8 12 16 20 24

Fig. 8. Number of Ancestors vs. Task Number (8-Queens).

28

for the ith migration performed by each process. The number of ancestors
migrated with the early, long-lived tasks is less than half the number
migrated by short later tasks.

4.5. Locality

With a multisequential implementation on a machine with a penalty
for remote accesses, locality is of great concern. When disambiguating
variables may involve traversing a distributed binding list, locality becomes
even more important. The statistics for variable dereferencing in Table V
show that remote value cells account for only a small fraction of the total
number of value cells examined during dereferencing. Although the value
cells themselves are almost entirely local, it is possible that many references
to nonvariable values are nonlocal. Such references do not require the
examination of value cells to determined their value.

4.6. Processor Utilization

Since there is one Boplog process per Butterfly processor node,
processor utilization is equivalent to process 'busy time.' In an ideal
parallel implementation, each process would spend all of its cycles perform-
ing useful work: executing EWAM instructions, deteferencing variables,
migrating choices, and so on. In practice this is never possible, since there
are always sequential execution segments that force some processes to
await the availability of work. For example, execution must begin with
some single process, which runs sequentially until other processes can
migrate work. Similarly, when program execution is nearly complete, no
further work is generated, so some processes will be unable to perform
useful functions. These 'ramp-up' and 'ramp-down' times are short for the
OR-parallel programs for which Boplog has been used so far.

80 Tinker

Table VIII. Idle Time Statistics (8-Queens)

migration attempts 3,099
termination attempts 2,662
attempts to recover shared memory 3,099

operation total time time per attempt %

migration attempts 5,238 msec. 1,690 ~sec. 79.7 %
termination attempts 144 msec. 54 #sec. 2.2 %
attempts to recover shared memory 1,193 msec. 385 #see. 18.1%

When a process is idle, it executes no EWAM instructions. It spends
its cycles searching for more work, testing for termination, and attempting
to recover shared data areas. Table VIII shows the amount of time spent
performing each of these tasks and the percentage of time they take collec-
tively. Even though migration attempts are costly, the total idle time
accounts for only about 1% of the total exacution time.

4.7. S c a l i n g C o n s i d e r a t i o n s

How well the model scales as processor nodes are added can be
assessed by running the same program on different numbers of nodes
(different numbers of processes) and noting changes in performance
statistics. So far, Boplog has only been run on as many as 16nodes.
Whether the performance continues to change in the same way when there
are many nodes is unknown.

The following figures present changes in several performance statistics
as the number of processes is increased. The data are for both the 7-queens
and 8-queens programs. Memory limitations currently prevent 8-queens
being executed on fewer than five processor nodes. The first set of figures
deals with variable disambiguation and dereferencing. Figure 9 shows that
the ratio of local to remote value cells examined during dereferencing
remains roughly constant and at a very high level. Locality drops slowly as
processes are added. Under the assumption that value cells for any given
variable are distributed uniformly among all processes, this result is expec-
ted, since the probability that a celt is on a specific processor node drops as
nodes are added. Figure 10 shows that more ancestors are examined for
each dereference as the number of processes is increased. This result is
consistent with an increase in the number of ancestors copied with each

Performance of an OR-Parallel Logic Programming System 81

I00.0

99.0

98.0

97.0

96.0

95.0
0.0

k o 7-Queens
[] 8-Queens

2.0 4.0 6.0 8.0 I0.0 12.0 14.0 16.0 18.0

Fig. 9. Percentage Local Value Cells per Dereference vs. Processes (8-Queens).

2.5

2.3

2.0

1.8

1.5

o 7-Queens
[] 8-Queens ~ D~

0 O ~

i r i i i i i i

0.0 2.0 4.0 6.0 8.0 I0.0 12.0 14.0 16.0

Fig. 10. Ancestors Examined per Dereference vs. Processes (8-Queens).

18.0

700.0

650.0

600.0

550.0

500.0

O 7-Queens
- Q u e e n s

i i r i i i i i

�9 0 2.0 4.0 6.0 8.0 I0.0 12.0 14.0 16.0

Fig. 11. Dereference Time (#seconds) vs. Processes (8-Queens).

18.0

828/17/1-6

82 Tinker

1.6

1.5

1.4

1.3

1.2

I.i

1.0

o 7-Queens
[] 8-Queens

I I I I T I I I

.0 2 . 0 4 . 0 6 . 0 8 . 0 1 0 . 0 1 2 . 0 1 4 . 0 1 6 . 0 18.0

Fig. 12. Binding Spans Examined per Dereference vs. Processes (8-Queens).

migration (noted later). Given the results of Figs. 9 and 10, a degradation
in dereference performance might be expected as processes are added.
Figure 11, however, shows that the average time for a variable dereference
decays slowly after the number of processes increases to about five. A
possible explanation is found in Fig. 12. It shows that although the number
of ancestors examined increases, the number of ancestor binding spans
actually checked against value cell time stamps falls. This decrease occurs
because the ancestors are distributed among more processes, so that each
process contributes fewer ancestors. Fewer ancestors per process should
result in fewer binding spans being examined.

The next set of figures shows how migration statistics change as more
nodes are used. Figure 13 shows that the total number of migrations
performed over all processes increases nearly linearly, indicating that the
number of migrations per process remains roughly constant. The number
of migration attempts shows a similar behavior (Fig. 14).

The average time to migrate a task increases slowly as more processes
are used (ignoring some large changes when few are used). The increase is

250.0

200.0

150.0

lO0.O

50.0

0.0

o 7-Queens
[] 8-Queens

I I I I I I

.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Fig. 13. Number of Migrations vs. Processes (8-Queens).

18.0

Performance of an OR-Parallel Logic Programming System

6000.0

83

5000.0

4000.0

3000.0

2000.0

i000.0

0.0
0.0

o 7-Queens
[] 8-Queens

2.0 4.0 6.0 8.0 i0.0 12.0 14.0 16.0

Fig. 14. Number of Migration Attempts vs. Processes (8-Queens).

18.0

due to increased numbers of ancestors in the choice points migrated. The
increase in ancestors occurs because more processes are participating. A
branch of the search tree is more likely to be extended by many processes if
there are more processes available. The increases in time and size are rather
slow, as shown in Figs. 15 and 16.

Dereferencing and task migration are central to Boplog's performance
and are the only aspects of its execution that are intimately concerned with
multiple processes. It is not surprising that good scalability of these
activities promotes good overall scalability. Total execution times for the
7-Queens and 8-Queens programs are shown in Fig. 17. Both programs
show a smooth decrease in total execution time as processes are added.
Figure 18 shows the ratio of multiprocess execution time to the single-
process execution time. These speed-up figures show that the speed increase
is generally close to or superior to the "ideal." This phenomenon is not rare
in parallel applications and usually reflects poor single-process perfor-
mance. If the addition of processes makes each process slightly more
efficient than in the single-process case, performance will increase faster

ii00.0

i000.0

900.0

800.0

o 7-Queens
o 8-Queens~

I I I I I r I r

.0 2.0 4.0 6.0 8.0 I0.0 12.0 14.0 16.0

Fig. 15. Migration Time (#seconds) vs. Processes (8-Queens).

18.0

84

250.0

Tinker

200.0

150.0

o 7-Queens
[] 8-Queens

i00.0 I r J L , T , L

0.0 2.0 4.0 6.0 8.0 i0.0 12.0 14.0 16.0

Fig. 16, Migration Data Size (bytes) vs. Processes (8-Queens).

18.0

1800.0+

1600.0

1400.0

1200.0

i000.0

800.0

600.0

400.0

200.0

0.0

-o 7-Queens
[] 8-Queens

t , , y -? o 9

.0 2.0 4.0 6.0 8.0 i0.0 12.0 14.0 16.0

Fig. 17. Total Execution Time (seconds) vs. Processes (8-Queens).

18.0

22.0
20.0

18.0

16.0

14.0

12.0
i0.0

8.0

6.0

4.0

2.0

0.0

o 7-Queens
x 8-Queens / v +

I i I I i I I i

.0 2.0 4.0 6.0 8.0 i0.0 12.0 14.0 16.0 18.0

Fig. 18. Speedup vs. Processes (8-Queens).

Performance of an OR-Parallel Logic Programming System 85

than the number of processes. This can happen, for example, if there is
some operation which needs to be performed less frequently when multiple
processes are executing than when only one is executing. In the present
instance, this operation might be context switching: context switches take a
larger portion of processor time when a single process is executing. Note
that in Fig. 18, the single-process execution time used for obtaining the
speed-up for 8-Queens is assumed to be five times the five-process time.

4.8. Switch Contention

Many Butterfly systems are configured with multiple paths through
the switch between each pair of nodes. A 16-node machine, for example,
may be paired with enough switch hardware for 32 nodes, allowing two
paths between each pair of nodes. In addition to increasing throughput
during normal program execution, having alternate paths allows switch
contention to be estimated qualitatively. If an execution slows dramatic
improvement when alternate paths are enabled, that is evidence that there
is much contention on the switch in the single-path execution. This
qualitative result is useful when determining the effect of memory reference
patterns on overall program efficiency.

The results reported in this paper did not make use of alternate
Butterfly switch paths. Enabling these paths causes performance to improve
by avout 2 %, indicating either that there is little switch contention, or that
memory references through the switch are very uniform. Any contention is
probably the result of frequent access to the process information blocks.
Value cell references could also cause contention, but this is unlikely
because such references are scattered widely through memory. In either
case, switch contention is not a problem with this implementation. It is
likely that the lack of contention can be attributed to the slowness of the
implementation: memory references across the switch are infrequent
because so much local processing is performed. It may be the case that the
amount of switch contention observed is an unavoidable cost of an
implementation that relies so heavily on shared data structures. More
study is needed to determine the source of contention, and whether some
selective copying of data might reduce the total execution time.

4.9. The Impact of Idle Boplog Processes

The naive reverse program is used to evaluate the impact of idle
processes on sequential execution. Since the naive reverse program
generates no choice points in the WAM model, only the originating Boplog
process does any useful work. The other processes spend all of their time

86 Tinker

1500.0

1400.0

1300.0

1200.0

Ii00.0

i000.0

S

I I I I i I I I

.0 2.0 4.0 6.0 8.0 i0.0 12.0 14.0 16.0 18.0

Fig. 19. Total Execution Time (seconds) vs. Processes (Naive Reverse).

searching for work and checking for termination. Figure 19 shows total
execution time for increasing numbers of processes. Note that as the num-
ber of processes increases, so does the time taken to complete the program.
For programs that do not generate enough choices to keep all of the
processes busy, Boplog's method of finding work causes a degradation of
performance. Speedup is negative, as shown in Fig. 20. Since the
degradation is slow, however, the impact of idle processes on overall
execution time is sinai1.

4.10. Impact of Alternative Designs and Architectures

Because the current Boplog implementation incorporates design
decisions made prior to building the system, no direct comparisons with
alternative designs have been made. It is important to note, at least
qualitatively, how different design decisions might impact its performance.
Furthermore, Boplog was explicitly intended for use on the Butterfly.

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0

I I T t I I I I

2.0 4.0 6.0 8.0 i0.0 12.0 14.0 16.0 18.0

Fig. 20. Speedup vs. Processes (Naive Reverse).

Performance of an OR-Parallel Logic Programming System 87

Details of the architecture have a significant effect on Boplog's perfor-
mance, and it is reasonable to conjecture how Boplog's performance might
differ if certain architectural features were changed.

4. 10, 1. Better Implementation

Preceding sections have noted that the performance suffers from
inefficient implementation. Some of the poor performance can be attributed
to overhead to support large memory requirements, but the primary fault is
probably a result of poor performance of individual procedures executed
often in the body of the program. The results reported in Ref. 7 show that
an OR-parallel implementation can achieve per-process performance levels
near those of sequential Prologs, when a good sequential implementation is
used as its foundation. A direct comparison of that implementation with
Boplog is misleading, however, since it was designed for a small- to
medium-scale multiprocessor using a bus interconnect that imposes no
penalty for nonlocal references.

A better implementation would probably perform fewer deferences.
The current implementation is conservative and probably dereferences
variables unnecessarily on occasion. Since dereferences are expensive,
decreasing their number should result in higher performance. It is also the
case that the proportion of time spent dereferencing will increase.
Dereferencing has been optimized more than other parts of the code, so
making the remaining code faster will shorten the overall time while
reducing dereference time only slightly.

A better implementation is likely to increase switch contention. If the
code for one Boplog process is more efficient, the time between remote
accesses will decrease while the number of remote accesses remains fairly
stable. More frequent remote accesses means more contention for memory
and more load on the switch.

As the implementation becomes more efficient, the statistics that
measure its performance become more meaningful. While the proportion of
time spent gathering statistics will rise somewhat, those statistics will
measure the critical aspects of the model more accurately. In particular, the
bandwidth requirements of the switch should become more important as
the frequency of remote accesses increases, and the distribution of remote
data to minimize hot-spots will be an important metric.

4. 10,2. Different Binding Method

On qualitative grounds, supported by the previous statistical results, I
believe that the linked-list method can be made roughly equivalent in per-

88 Tinker

formance to the other "shared" binding methods, e.g., Refs. 13, 14 and 19,
with the probable exception of the versions-vector method (16) and the SRI
method. (19) The two methods are similar, and will probably outperform all
other methods on small numbers of processors. The versions-vector
method does not appear to scale well and lacks locality; both require
auxiliary binding structures that may not be effectively used. At this time,
only simulation results support their effectiveness, as no results of parallel
implementations have yet been reported. Their main atraction is that each
process has at most a single binding for each variable, and the time to
access any binding is constant.

Implementing either of these methods in Boplog would involve
creating some data structures statically, so that the benefits of the constant
time variable access could be preserved. The overall effect would be a sub-
stantial improvement in memory mapping costs and dereferencing. Since
these costs are the most damaging to Boplog's performance, the change
would be well worth any concomitant poorer memory usage and restrictive
memory allocation.

Other alternatives are also possible. If a trail is maintained and
unwinding is acceptable, bindings could be stored in one large hash
window on each node. The window would be copied when migrating a
task. The original value cell for a variable would be located in some
process's stack. If that value cell is unbound, it would indicate that the
variable was unbound when the next choice point was created. When dis-
ambiguating the variable, a process would then search in its local hash
window. If a binding is found there, that binding is used; otherwise, the
variable is unbound and its new binding is entered into the local hash win-
dow. Although variable accesses would be reasonably fast and the method
has good locality and scales well, it requires that the trail and unwinding
be used, and that the hash windows be copied when migrating.

SAR-smashing might provide yet another binding method. If each
process created its own binding for a variable and stored it at the same
virtual address locally, then a process would only have to examine that
location to find the binding. Searching through a list of ancestor processes
to determine if they bound the variable could be done quickly by using
SAR-smashing to change the physical location indicated by the variable's
unique virtual address.

No concrete decisions about the relative merits of binding methods are
possible without implementation. Each competing method should be used
by the same runtime system and compared on the basis of the sort of
statistics that have been gathered for Boplog. Only then can questions of
efficiency, scalability, and locality be assessed adequately. Still, it seems
reasonable to trade poorer memory usage for the obvious advantages of
constant time variable accesses.

Performance of an OR-Parallel Logic Programming System 89

4. 10.3. Faster Memory

Because all memory references generated by the 68020 are routed
through the Butterfly's PNC, local memory references are rather slow. If
local memory were faster, execution speed would probably be better by
about the same degree, even if remote memory reference time remained
unchanged. This conjecture is based on the ratio between local and remote
value cells examined. (The new GP1000 Butterfly executes a local 16-bit
fetch about four times faster than the Butterfly used here.) Since faster local
memory would improve overall performance, the effect would be the same
as that noted earlier for improved program efficiency--switch contention
could be expected to be higher, and the statistics more valid.

4. 10.4. Adequate Virtual Address Space

The SAR-based address-mapping strategy of the Butterfly has proven
to be a serious stumbling block for Boplog. In retrospct, the decision to use
the memory effectively through dynamic memory map changes may have
been too ambitious. Performance certainly would have been substantially
better had a static memory mapping scheme been employed, as in the
Uniform System package provided by BBN for the ButterflyJ 2)

In a standard uniprocessor WAM implementation, the data areas are
laid out carefully so that address comparisons can be used to identify the
area in which an item resides, or to determine the relative ordering of two
items in the same area. An example of the first use is the ability to use
address comparisons to identify a value cell on the stack that must be
copied to the heap before applying the last-call optimization (25) (a so-called
"unsafe variable"). The second use occurs, for example, when two unbound
variables are unified. In this circumstance, the later variable is always
bound to the earlier one, where "later" means "having the higher virtual
address." If binding is done in this direction, and if the heap is located in
lower memory than the stack, then no dangling references result from
deallocations of the stack, and no heap item ever references a stack item.

Because SAR-smashing dynamically changes the relationships between
virtual addresses and physical memory locations, address comparisons can-
not be used in the usual WAM style. Instead, a combination of several
SAR fields are used for the same purposes. This scheme requires substantial
overhead for unpacking the reference or masking certain fields, and com-
paring the field values. The overall impact is much higher than the simple
unsigned address comparison used in statically mapped systems.

This virtual address problem is reduced on the new GP1000 version of
the Butterfly. The impact of this change on Boplog would be that overhead
for memory map changes (SAR-smashing) would be eliminated, and

90 Tinker

virtual addresses would not need to be constructed. Comparisons of virtual
addresses would be valid, since each would have a one-to-one correspon-
dence with a location in physical memory. These comparisons could be
used to disambiguate bindings and dereference variables more quickly.
Stack maintenance would also be easier than in the current implemen-
tation, as address comparisons could be used for stack-overflow detection.

5. C O N C L U S I O N

Boplog represents a preliminary effort to identify and confront
problems that will impact the implementation of declarative programming
paradigms on future machines similar to the Butterfly. The results presen-
ted in Section 4 suggest the following conclusions.

In attempting to make all physical memory available to Boplog, a
high performance cost is paid. Memory management presents a tantalizing
dilemma: without runtime memory map changes, only a small fraction of a
large Butterfly's memory can be used; a dynamic memory map is very
expensive and restricts system performance. Until this problem is solved (as
it appears to be using new hardware in the Butterfly GP1000 series),
implementations should be constrained to operate within the bounds of a
static memory map. Similarly, memory for important data areas (stack and
heap) should be allocated statically during program initialization, and
should perhaps share virtual address spaces. Doing so would allow address
comparisons for dereferencing, much as in the WAM and SRI models.

Reference locality can be encouraged with suitable choices of data
structures. Because each Boplog process manages its own local stack and
heap areas, references to remote memory is reduced. Multiple bindings for
variables are also stored in the memory of the process which makes the
binding, further enhancing locality. Such attributes may be immaterial on
bus-connected architectures, but the time ratio of some four to one for
remote and local memory operations on the Butterfly makes locality
important. Local operations are not only substantially faster, but also place
less burden on the switch interconnect. Faster local operations in the
GP1000 raise the ratio of remote to local access time to about 15:1,
magnifying the importance of locality.

The impact of some kinds of Boplog operations were surprising.
Dereferencing took much longer than expected, but task migration was
faster and less common than anticipated. Each locking operation was
costly, but lock conflicts were infrequentl Although the policy of migrating
from "early" choice points was expected to lengthen tasks, the very small
percentage of migrated choices was unexpected. Bottlenecks that might
have occurred as a result of examining stacks for migration and

Performance of an OR-Parallel Logic Programming System 91

termination did not arise. These results lend support to the value of direct
measurement over simulation.

The Butterfly described in this article is difficult to use. Its operating
system is primitive and attempts to provide capabilities that sequential
systems do not need. Its user interface is frustratingly fragile, cumbersome,
and inadequate. To use the Butterfly(in more than a very naive fashion
requires intricate knowledge of the operating system and memory
management system as well as the underlying architecture and specific
hardware characteristics. Building simple programs can be challenging;
building and debugging large programs is nightmarish. The introduction of
more modern and complete Butterfly operating systems derived from
CMU's Mach (26) will undoubtably make ~he Buterfly easier to use, but
possibly less efficient.

Finally, although the implementation of Boplog on the Butterfly was
quite slow, it allowed sampling of important events during actual
execution. The statistics gathered during Boplog runs identified problem
areas that simulation alone might not have been able to detect. Direct
measurement of performance by a real implementation clarifies the impact
of low-level architectural, design, and implementation decisions on overall
performance.

REFERENCES

1. BBN Advanced Computers, Inc., Tutorial for Programming in the C Language (1986).
2. BBN Advanced Computers Inc., The Uniform System Approach to Programming the

Butterfly Parallel Processor (1986).
3. BBN Laboratories, Inc., Chrysalis Programmer's Manual, 2.3.1 Edition (1986).
4. Bruce Moxon, The Butterfly RAMFile System, BBN (1986).
5. Peter Tinker, Managing Large Address Spaces Effectively on the Butterfly, Technical

Report UUCS-87-012, Computer Science Department, University of Utah (April 1987).
6. Peter A. Tinker, The Design and Implementation of an OR-Parallel Logic Programming

System, PhD thesis, University of Utah, Salt Lake City, Utah (August 1987).
7. Terry Disz, Ewing Lusk, and Ross Overbeek, Experiments with OR-parallel Logic

Programming, In Proceedings of the Fourth International Conference on Logic Program-
ming, pp. 576-600, MIT Press, Melbourne, Australia (May 1987).

8. R. P. Gabriel and J. McCarthy, Queue-based Multiprocessing Lisp, In ACM Symposium
on Lisp and Functional Programming, ACM, pp. 25~13, Austin, Texas (August 1984).

9. David H. D. Warren, An Abstract Prolog Instruction Set, Technical Note 309, SRI Inter-
national, Menlo Park, California (October 1983).

10. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language. Prentice-Hall
Software Series, Prentice-Hall (1978).

11. A. M. Ali Khayri, OR-Parallel Execution of Prolog on a Multi-sequential Machine, Inter-
national Journal of Parallel Programming, 15(3):189-214 (June 1987).

12. John S. Conery, Closed Environments." Partitioned Memory Representation for Parallel
Logic Programs, Technical Report CIS-TR-86-02, Department of Computer and Infor-
mation Science, University of Oregon (February 1986).

92 Tinker

13. Peter Bogwardt, Parallel Prolog Using Stack Segments on Shared-memory Multi-
processors, In Proceedings of the Symposium on Logic Programming, IEEE, pp. 2-11
(November 1984).

14. Andrzej Ciepielewski and Seif Haridi, A Formal Model for OR-parallel Execution of
Logic Programs, In Proceedings oflFIP-83 (1983).

15. J. S. Conery, The AND/OR Process Model for Parallel Interpretation of Logic Programs,
PhD thesis, University of California, Irvine (1983).

16. Bogumil Hausmann, Andrzej Ciepielewski, and Seif Haridi, OR-parallel Prolog Made
Efficient on Shared Memory Multiprocessors, Technical Report, Swedish Institute of
Computer Science (1987).

17. Kouichi Kumon, Kideo Masuzawa, Akihiro Itashiki, Ken Satoh, and Yukio Soma,
Kabuwake: A New Parallel Inference Method and Its Evaluation, In Proceedings of the
CompCon, IEEE, pp. 168-172 (1986).

18. Gary Lindstrom and Prakash Panangaden, Stream-based Execution of Logic Programs,
In Proc. 1984 IntT. Symp. on Logic Programming, pp. 168-176 (February 1984).

19. David H. D. Warren, The SRI Model for Or-parallel Execution of Prolog--Abstract
Design and Implementation Issues, In Proceedings of the Symposium on Logic Program-
ming, pp. 92-102, Seattle, Washington (1987).

20. Jim Crammon, A Comparative Study of Unification Algorithms for OR-parallel
Execution of Logic Languages, In Proceedings of the International Conference on Parallel
Processing, IEEE/ACM, pp. 131-138 (August 1985).

21. Yukio Sohma, Ken Satoh, Kouichi Kumon, Kideo Masuzawa, and Akihiro Itashiki, A
New Parallel Inference Mechanism Based on Sequential Processing, In (ed.), J. V. Woods,
Proceedings of the IFIP TC 10 Working Conference on Fifth Generation Computer
Architectures, pp. 3-14, Elsevier Science Publishers, Manchester, United Kingdom (July
1985).

22. Peter Tinker and Gary Lindstrom, A Performance-oriented Design for OR-parallel Logic
Programming, In Proceedings of the Fourth International Conference on Logic Program-
ming, Melbourne, Australia (May 1987).

23. Leon Sterling and Ehud Shapiro, The Art of Prolog, The MIT Press (1986).
24. Fernando Pereira, David Warren, David Bowen, Lawrence Byrd, and Luis Pereira,

C-Prolog User's Manual (January 1986).
25. David H. D. Waren, Optimizing Tail Recursion in Prolog, In Logic Programming and its

Applications, Chapter 4, pp. 77-90, Ablex, Norwood, New Jersey (1986).
26. Richard Rashid, Threads of a New System, Unix Review, 4(8):37-49 (August 1986).

