
International Journal of Parallel Programming, VoL 17, No. 1, 1988

Parallel Evaluation of the Transitive

Closure of a Database Relation 1

Patrick Valduriez and Setrag Khoshafian

Received February 1988; Revised July 1988

Parallelism is a promising approach to high performance data management. In
a highly parallel data server with declustered data placement, an important issue
is to exploit parallelism in processing complex queries such as recursive queries.
In this paper, we consider the transitive closure of a database relation as a
paradigm to study parallel recursive query processing. And we propose two new
parallel algorithms for evaluating the transitive closure of a relation in a parallel
data server. Performance comparisons based on an analytical model indicate the
superior response time of the parallel algorithms over their centralized version.
With one hundred nodes, performance gain is between one and two orders of
magnitude. One parallel algorithm provides superior response time while the
other exhibits better response time/total time trade-off.

KEY WORDS: Database relation; parallelism; transitive closure; algorithms;
performance.

1. I N T R O D U C T I O N

One promising approach to high performance data processing is to group
the database functions into a dedicated computer, called d a t a server. With
its single focus on database management, a data server can provide a better
price/performance ratio than a database system implemented on a general
purpose computer. The performance of database management is essentially
hurt by the I/O bottleneck (t) which stems from high disk access time com-
pared to low main memory access time. The data server approach makes
the use of architectural solutions to the I/O bottleneck possible. The main

I This work had been done within the Advanced Computer Architecture Program, Micro-
electronics and Computer Technology Corporation, Austin, Texas. The current affiliation of
Setrag Khoshafian is Ashton-Tate, Walnut Creek, California.

19

0885-7458/88/0200-0019506.00/0 �9 1988 Plenum Publishing Corporation

20 Valduriez and Khoshafian

solution is to increase the I/O bandwidth through parallelism. (2'3) Instead
of having the entire database residing on a few high capacity disk units,
many smaller disks should be employed so that disk accesses can be done
in parallel. Thus, disk access time can be divided by the number of disk
units.

ParalMizing the I/O bandwidth can be achieved using the recent
multiprocessor architectures based on the shared nothing paradigm. (4) In a
shared nothing architecture, each processor has exclusive (nonshared)
access to one or more memory modules and one or more disk units. Shared
nothing architectures are more scalable than shared memory architectures
since the number of nodes need not be limited. In particular, highly parallel
shared nothing architectures are now viable35'6)

Two important and related issues that face the design of a highly
parallel shared nothing data server are data placement and query
processing. A good solution to data placement is declustering ~7) which
consists of horizontally fragmenting the relations across many nodes to
favor the parallel execution of database operations. Query processing must
exploit the potential parallelism available with declustered data placement
in order to achieve good response time/throughput trade-off. Parallel
algorithms for optimizing relational algebra operations, particularly
join, (8-1~ and relational queries (m are now well understood. However,
little attention has been paid to parallel algorithms for recursive query
processing.~12)

In this paper, following recent proposals, (13qv) we consider the trans-
itive closure as a paradigm to study parallel recursive query processing. We
observe that virtually no attempt has been made to implement the trans-
itive closure of a database relation in a shared nothing parallel architecture.
The few parallel transitive closure algorithms proposed as a method of
finding the connected components of an undirected graph typically assume
a shared memory architecture model. ~ A notable exception is some
preliminary work 09) which attempted to implement our logarithmic
algorithm (13) in GAMMA. (6) In this paper, we present two new parallel
algorithms for evaluating the transitive closure of a declustered relation in
a shared nothing data server. One of them has been thoroughly described
and analyzed in another paper, (2~ and will be only briefly mentioned in
this paper for the sake of comparison. Performance comparisons based on
an analytical model indicate the much better response time of the parallel
algorithms over their centralized version. In particular, one parallel
algorithm provides superor response time while the other exhibits better
response time/total time trade-off.

The paper is organized as follows. Section 2 describes the assumptions
regarding the parallel operational model. Section 3 presents generic

Parallel Evaluation of the Transitive Closure of a Database Relat ion 21

algorithms for computing the transitive closure of a centralized relation.
They are used subsequently in a parallel version. A uniprocessor algorithm
and two parallel algorithms for computing the transitive closure of a
declustered relation are presented in Section 4 and analyzed in Section 5.
Section 6 provides the performance comparisons.

2. P A R A L L E L O P E R A T I O N A L M O D E L

Many parameters regarding the processing environment and the
database will affect the performance of various transitive closure
algorithms. In order to concentrate on the critical aspects of the algorithms
(parallelism) and on their comparison, we make a number of assumptions.
The implications of relaxing these assumptions will be studied in the future.
The assumptions concern the data server, the operand relation, the
algorithms and communication.

2.1. T h e Para l l e l D a t a S e r v e r

A generic shared nothing parallel architecture is illustrated in Figure 1.
Each node includes one or more processors, a local main memory (RAM)
and a disk unit on which resides a local database. Diskless nodes could
also be used to interface the data server with other machines or to process
intermediate relations in parallel. The term "shared nothing" refers to the
fact that there is no sharing of main memory by the nodes. The only shared
resource is the network, with which the nodes can exchange messages.
Underlying the data server is a distributed operating system which, among
other things, provides low-level support for task management and com-
munication. Examples of shared nothing architectures are the Teradata
DBC/1012 (5) and GAMMA. (6)

The database consists of relations which are &clustered across DBM
nodes. Declustering/7) is a placement strategy which horizontally partitions

i n t e r c o n n e c t n e t w o r k

I I [
node ' " processors - RAM ' " node

/

L dsk

node

Fig. 1. Shared nothing taaraltel data server.

22 Valduriez and Khoshafian

and distributes each relation across a number of nodes. This number of
nodes is a function of the size and access frequency of the relation. (21) The
number of repositories over which a relation is distributed is called the
degree of declustering. There are several ways to distribute tuples across
multiple nodes. The simplest approach is to place tuples in a round robin
fashion among multiple nodes. Although more complex approaches could
provide opportunities for improving the performance of database
operations such as transitive closure, we will assume round robin
placement for simplicity. The main feature of declustered data placement,
that we are interested in, is that accessing all tuples of a relation is
inherently parallel, i.e., all nodes storing a subset of the relation can be
accessed "simultaneously".(11)

2.2. Operand Relation

We denote by R the relation to which transitive closure is applied.
Relation R is horizontally partitioned (declustered) across d nodes in a
round robin fashion. For the sake of simplicity and generality, we assume
that each subset of relation R stored at one node has no particular access
method other than sequential scan. Note that the performance of transitive
closure would be improved by the addition of some particular data
structures such as join indices. ~22)

2.3. Parallel Join and Union Algorithms

Our implementation of transitive closure will require the use of join
and union operations. We will use hash-based algorithms for performing
both joins and unions efficientlyJ 23) Hash-based algorithms have been
primarily designed to speed up the join operation. (24) The basic idea is to
partition each of the relations being joined, say R and S, into mutually
exclusive sets R0, R1,..., Rn and So, $1,..., Sn such that

RNS= 0 Ri•Si
i = o

The partitioning is based on a hash function applied to the join
attribute. The individual joins Ri~ Si can be done simply with a nested
loop procedure where for each tuple in Ri, Si is probed. If there is a match,
then a result tuple is produced. This algorithm can be easily extended to
operate in a multiprocessor environment where each join R~M S~ is done
in parallel by a separate processor. ~1~

The union operation can also be implemented using hashing. We use
the following algorithm for performing the union of relations R and S. The

Parallel Evaluation of the Transitive Closure of a Database Relation 23

partitioning phase is the same as above when the hash function is applied
to the key attribute(s). The individual unions Riw Si are also done with a
nested loop where for each tuple r of Ri, S~ is probed. If r is not in Si, then
it is inserted in the relation Si which will therefore contain Ri w S~.

2.4. Communication

The parallel execution of database operations requires data to be
transferred between nodes. We assume two basic communication primitives
for transferring data: send and receive.

send (message, node(s))

transfers the message to the destination nodes. To avoid implementation
details, we assume that the kernel of the node is intelligent enough to
examine the message and give it to the receiving task. When the message
contains a relation, the destination nodes may be specified by a hash
function applied to some attributes. In this case, the tuples are first inserted
into different buckets based on the result of the hash function and each
bucket is sent to a different node.

R : = receive

gets the content of the message in R for the receiving task.

3. TRANSITIVE CLOSURE OF A CENTRALIZED DATABASE
RELATION

This section provides a number of common definitions, and recalls two
basic transitive closure algorithms.

3.1. Definitions

We assume that transitive closure operates on a binary relation R
having attributes A and B defined on the same domain 9 . Relation R can
be viewed as a set of edges in a directed graph, wherein a node is an
element of ~ and an edge from node a to node b indicates the tuple (a, b)
of R. For simplicity, we assume that R is acyclic. We call the depth of R,
noted p, the length as measured by the number of edges, of the longest
path in the graph, p is an important parameter affecting the cost of the
iransitive closure. The transitive closure of R is equivalent to the transitive
closure of the corresponding graph, i.e., the tuple (x, y) is in R + iff there is
a path of length > 0 from x to y. Let ~ denote the composition of two
binary relations (or binary composition) where all attributes belong to the
same domain:

R. S={(a,c)[3b (a,b)~R and (b,c)~S}

24 Valduriez and Khoshafian

and let R e be the ith power of relation R, i.e., R 1 = R and R e= R e- 1 ~ R.
Then, R + is:

R + = U Ri
i > 0

R ~ S can be implemented by a join with projection as:

R . S = M , 4 (R . 2 ~ S . 1)

Note that the binary composition is not commutative, i.e., R �9 S # S �9 R.

3.2. I t e r a t i v e T r a n s i t i v e C l o s u r e

Several uniprocessor algorithms which compute the transitive closure
of a database relation have been proposedJ 13-15) In Ref. 13, we presented
two basic transitive closure algorithms; an iterative algorithm whose com-
plexity is O(p) and a logarithmic algorithm whose complexity is O(log p).
The superiority of the logarithmic algorithm has been analyzed in Ref. 13
and then confirmed in Refs. 14 and 15. Both iterative and logarithmic
algorithms can operate on cyclic relations.

In this paper, we will investigate parallel versions of the iterative
algorithm for three reasons. First, it is the simplest algorithm. Second, we
are mostly interested in analyzing the performance gained with parallelism.
Third, we believe that the extension to the iterative algorithm for operating
in a parallel environment can be applied to the logarithmic algorithm and
other algorithms as well. The iterative algorithm, noted ITC, working on
an acyclic relation can be expressed using relational algebra extended with
assignment and iteration, as shown in Fig. 2. The correctness of this
algorithm is given in Ref. 14. As demonstrated in Ref. 13, this algorithm
easily applies to cyclic relations by adding a difference operation before the
union.

ITC (R: operand, T: result)
T:= R;
D:= R; (* D will contain new tuples *)
repeat

D:= D " R;
T : = T U D;

until D = (~;

Fig. 2. Iterative transitive closure (ITC).

Parallel Evaluation of the Transitive Closure of a Database Relation 25

ITC computes the transitive closure of relation R in T using a differen-
tial relation D. We illustrate algorithm ITC by applying it to the following
example relation R.

R A B

1 8
8 24

24 30
24 7
30 36

We indicate the version number of a differential relation by superscript.
Relation D 1 and T are initialized to R. At iteration i, the differential
relation D i+1 is produced and unioned with T. Iterations 1, 2 and 3
produce the differential relations D 2, D 3 and D 4 respectively.

D 2 A B D 3 A B D 4 A B

1 24 1 30
8 30 1 7
8 7 8 36

24 36

1 36

Iteration 4 produces no more tuples and the operation terminates with
the result

T = R u D Z u D 3 u D 4

3.3. T r a n s i t i v e C l o s u r e o f T r a n s i t i v e l y C l o s e d R e l a t i o n s

Transitive closure of transitively closed relations will be the basis for a
parallel algorithm. Assume that a relation R is partitioned into R1 and R2.
A simple way to compute R + in parallel is to first compute R~- and R]
and to complete the transitive closure of R + w R~-. The problem is to avoid
redundant work when performing the transitive closure of two transitively
closed relations. A naive way that consists of performing ITC
(R~-wRy, T) would also recalculate R~- and R~- which is useless. The
problem with this naive approach is that the differential relation D is
initialized with R;- t_) R + .

The following algorithm has been proposed in Ref. 20 to perform the
transitive closure of two transitively closed relations without redundant
work. The resulting algorithm, called TCCR, is shown in Fig. 3. The
algorithm and its correctness are described in Ref. 20.

26 Valduriez and Khoshafian

TCCR (R1 , R 2 : ope rand , T: resul t)

f l ip := t rue

D 1 := R 1 �9 R2 ;

D 2 := R2 �9 R1 ;

T := R 1 U R 2 U D 1 U D2 ;

repeat

i f fl ip t h e n D 1 := D 1 �9 R 1

if f l ip t h e n D 2 := D 2 ~ 2

T : = T U D 1 U D 2 ;

f l ip:= not fl ip ;

until D 1 = (~ and D 2 =

else D 1 := D 1 ~ R 2 ;

else D2 := D2 ~ R1 ;

Fig. 3. Transitive closure of two transitively closed relations (TCCR).

Let an alternating composition sequence of R~ and R2 be a sequence of
binary compositions of R 1 and R2 such that Ra �9 R 2 or R2 ~ R~ never
occurs in the sequence. The algorithm TCCR computes the transitive
closure of R~ ~ R2 by producing only alternating composition sequences.
Since alternating composition sequences never contain redundant com-
positions such as R~. R1 or Rz �9 R2, the algorithm TCCR does not
perform redundant work.

4. TRANSITIVE CLOSURE OF A DECLUSTERED DATABASE
RELATION

In this section we present three versions of the iterative algorithm to
deal with a declustered relation. The first algorithm, called transitive
closure with unique processor, applies the iterative algorithm at one node
where the operand relation has been centralized. The second algorithm,
called transitive closure with parallel operatons, iteratively applies the join
and union operations in parallel. The third algorithm, called transitive
closure with parallel programs, applies tbe transitive closure programs in
parallel and iteratively integrates the transitively closed intermediate
relations.

4.1. Uniprocessor Transitive Closure Algorithm

Given a relation R distributed across d nodes, the simplest way to per-
form its transitive closure is to resort to a centralized algorithm. Although
this method is not really parallel, it will be useful for comparison with

Para l le l Evaluation of the Transitive Closure of a Database Relation 27

TCUP (R:operand, T:result)
(1) at each node i do

send (R j , nodeP);
(2) st nodeP do

begin
R := receive;
ITC (R, T)
end

(* R 1 , R 2 R d are sent to nedeP *)

(* computes T as transit ive closure of R *)

Fig. 4. Transitive closure with unique processor (TCUP).

parallel transitive closure algorithms. The transitive closure algorithm with
unique processor (TCUP) is detailed in Fig. 4. It is assumed to be con-
trolled by some coordinating node. It consists of two phases. In the first
phase, each node 1, 2,..., d storing a subset Rg of R sends R~ to a pre-deter-
mined node P. The sends can be done in parallel, as indicated by the "at
each" statement. The second phase is done by a single node P which
receives all subsets of R and performs the transitive closure of R using the
iterative algorithm described in Section 3.2.

4.2. Transitive Closure with Parallel Operations

The transitive closure algorithm with parallel operations (TCPO) is
assumed to be controlled by some coordinator node chosen among the n
nodes allocated to the operation. The basic idea is to execute the iterative
algorithm where each join operation (necessary for the binary com-
position) is performed in parallel by a hash-based algorithm./1~ Parallel
join operations are achieved by partitioning the operands between n
disjoint sets based on a hash function on some attribute. Partitioning is
done with the following procedure:

partition (R, h(A));

at each node storing Ri of R do

send (Ri, node h(A));

where Ri is first hashed into, say, n buckets and each bucket is sent to a
different node. After the two operand relations have been partitioned, the
operation is achieved as n partial operations.

The algorithm TCPO (see Fig. 5) consists of two phases. First,
relation R is partitioned on one attribute, say B, between n nodes (we
assumed R is not partitioned on B). T is initialized to R and thus par-
titioned on B. Second, the transitive closure is applied to R as a loop of the
following operations. D is partitioned on the join attribute (A) between n
nodes and each Di is joined with Ri on the predicate Di-A = Ri.B. The
result of the join (after removal of useless attributes) gives Di which must

28 Valduriez and Khoshafian

TCPO (R:operand , T : resu l t

(1) part i t ion (R, h (B)) ;

at each node i 0=1 n) do
begin
T i := R i := rece ive ;

D i := R i ;
end

(2) repeat

(2.1) part i t ion (D, h (A)) ;

(2.2) at each node i (i=1

b e g i n

D i := rece ive ;

D i := R i �9 D i ;

T i := T 1 U Di ;
end

unt i l ANDIn 1.= (D i = ~)

(* generates and sends F~ , F~ Pn *)

(* init ial ize each node i *)

(* generates and sends D 1 ,D 2 D n *)

. . . . n) do (* compute local D and T *)

Fig. 5. Transitive closure with parallel operations (TCPO).

be unioned with T. However, since T is partitioned on B (because it has
been initialized with R), De should first be partitioned on B before being
unioned with T. However, partitioning may incur a substantial com-
munication cost. One alternative is to replace the global union by local
unions, in which case result tuples at different nodes may be duplicated.
The choice between local versus global union involves estimation of the
cost/benefit of duplicate elimination. Although it is an important issue, it is
not addressed here. For simplicity, the algorithm in Fig. 5 applies local
unions. The loop terminates when no new tuples are generated. The coor-
dinator receives the Boolean value (Di r r from all nodes and determines
the end of the loop when all Boolean values are true. The result of the
operation is distributed across n nodes.

To illustrate TCPO, we apply it to the example relation R introduced
in Section 2.2 assuming n = 2 and the hash function is h(A) = 1 if A < 20
and h(A) = 2 if A/> 20. We describe the algorithm by giving for each step
(2.1) and (2.2) of phase 2 and each versionthe value of the relation D (the
value of T can be easily deduced). Superscripts indicate version numbers
and subscripts indicate node numbers. For instance D 2 is relation D
produced at iteration 1 at node 2.

Phase 1 R1 A B

1 8
24 7

R2 A B

8 24
24 30
30 36

Parallel Evaluation of the Transitive Closure of a Database Relation 29

D] :=RI D~ :=R2

Step 2.1 D~ A B D~ A

1 8 24
8 24 24

30

Step 2.2 D~ A B D 2 A

1 24

Step 2.1 D13 A B D32

8 7
1 24
8 30

Step 2.2 D 3 A B

1 7
1 30

Step 2.1 D 4 A B

1 7
1 30
8 36

B iteration 1

30
7

36

B

8 30
8 7

24 36

A

Step 2.2 D 4 A B D 4 =

1 36

B iteration 2

24 36

D32 A B

8 36

D 4 = ~b iteration 3

4.3. T r a n s i t i v e C l o s u r e w i t h Para l le l P r o g r a m s

The transitive closure algorithm with parallel programs (TCPP) (2~
computes the operation as much as possible where the data is. The
algorithm proceeds in several passes. The algorithm ITC is used in the first
pass and the algorithm TCCR is used in subsequent passes. Recall that the
operand relation is distributed over d nodes. For simplicity, we assume that
d is a power of number 2. The first pass computes in parallel d partial
transitive closures, each using the algorithm ITC. The partial results
obtained at the end of the first pass are transitively closed relations. In

30 Va ldur iez and Khoshaf ian

order to complete the transitive closure using the algorithm TCCR, we
divide it into several passes using a two-way merge type operation. Similar
to the parallel binary sort-merge algorithm, (8) the d nodes are arranged as
a binary tree. The second pass of the algorithm TCPP proceeds as follows.
Every other node that participated in the first pass, say nodes 1, 3, 5
d - 1 , sends its result to its neighbor immediately to the right, i.e., nodes
2, 4, 6 d. Every receiving node (there are d/2 such nodes) applies the
algorithm TCCR on the relation received and the relation it produced, and
therefore generates another transitively closed relation. At pass i, d/2 t-1
nodes that produced a transitively closed relation at pass (i - 1) send their
result to their neighbors immediately to the right which apply the
algorithm TCCR to their input. The algorithm terminates when a single
node, that received the relation computed by its unique neighbor, performs
the last execution of TCCR. The number of passes where TCCR is applied
in parallel is [log2 d] where [a] denotes the smallest integer greater or
equal to a. Therefore the total number of passes, including the first pass in
which ITC is applied by d nodes, is [log2d]+ 1. The algorithm is
described in Fig. 6.

5. P E R F O R M A N C E A N A L Y S I S

In this section, we analyze the performance of the transitive closure
algorithms presented in Sections 4 and 5. We first define the performance
measure in terms of response time and total time, and the analysis
parameters that we assume. Then, we analyze the three transitive closure

TCPP (R:eperand, T: resul t)

(1) at each node i 0=1 d) de (* first pass *)
begin

ITC (R i , T i);

i f i rood 2=7~ 0 then send (T~ , node (f + l)) ;
end;

(2) f o r j := 1 to [log 2 d] do (* other passes *)

at each node i (i=2 j - l , 2 "2 j - l , 3 "2 j-1 d) do
begin
S i : : rece ive; (* receive from predecessor *)

TCCR (R i , S i, T i) ;

i f i meal 2 j -~= 0 then send (T~ , node (i+2 j-1)) ;

end;

Fig. 6. Transitive closure with parallel programs (TCPO).

Parallel Evaluation of the Transitive Closure of a Database Relation 31

algorithms with uniprocessor (TCUP), parallel operations (TCPO) and
parallel programs (TCPP).

5.1. Performance Measure
There are several ways of measuring the performance of an algorithm

in a parallel environment. In this paper, we will consider the total time and
the response time of each algorithm. The total time is the sum of all com-
ponent times (IO, CPU and communication time) and therefore gives a
fair estimation of the use of machine resources. The response time is the
time elapsed from the initiation to the completion of the algorithm. Parallel
algorithms are more able to minimize response time but generally at the
expense of total time. Therefore, both measures are complementary to
understand the performance trade-offs of parallel algorithms. Total time,
denoted by TT, and response time, denoted by RT, will be expressed in
terms of local processing time and communication time.

Local processing time is incurred by reading and comparing the
operand tuples and by producing new tuples using join and union. Both
join and union operations may be efficiently implemented through hashing
with a complexity almost linear in the size of the operandsJ 1~ To sim-
plify the analysis and especially to concentrate on the effects of parallelism,
we assume that the time to produce a new tuple is constant. This time
typically incorporates a fraction of disk access time and CPU time (to
hash, compare and move tuples). Therefore, details about join and union
algorithms need not be given. If a large number of new tuples is generated
by transitive closure, then this assumption is quite good. It will be the case
in our performance comparisons. In experimenting a more complex
analytical model in which IO and CPU times were detailed, we found
results very similar to these of Section 7.

5.2. Analysis Parameters

The following notation will be used to evaluate the algorithms:

IRI
P
ID~rl
d
n

newtup

K
msg
trf

number of tuples in relation R
depth of the graph corresponding to relation R
number of new tuples produced by transitive closure
degree of declustering of relation R
number of nodes allocated for TCPO
time to produce a new tuple
(includes fraction of IO time and CPU time)
number of tuples per packet
time to send a message (includes send and receive time)
time to transfer a packet

32 Valduriez and Khoshafian

The parameter newtup is measured in number of CPU instructions, trf is
the constant time required to transfer a data packet from one node to
another. Messages are typically of variable size, i.e., of multiple packets.
The communication time incurred in sending and routing an m packet
message from one node to another is (msg + m * trf). We assume that there
is always enough available buffer space for holding m packets. The com-
munication time necessary to move t tuples to a given node is therefore

t
TRF(t) = msg + -~ �9 trf

Traditional evaluation and comparison of parallel algorithms for
database operations assume uniform distribution of work among the par-
ticipating nodes. (8'9) The uniformity assumption is optimistic for evaluating
response time and favors the parallel algorithms against their centralized
version. However, the assumption of nonuniform distribution of work in
evaluating response times would make the analysis too complex and intrac-
table. Analyzing transitive closure in a centralized context is already com-
plex enough. (t31 Therefore, we will assume that work is equally distributed
among the nodes participating in the execution of the parallel transitive
closure.

5.3. Analysis of A lgor i thm T C U P

Algorithm TCUP has two phases. The first phase sends R, distributed
across d nodes, to a single node (one of the d nodes). The second phase
performs the transitive closure locally. The total time to produce new
tuples is the same for the three algorithms

IDTI * newtup

The communication time of TCUP is the time to send (d - 1) pieces of
relation R to one of the d nodes on which R resides. This time is simply

The total time of TCUP is therefore

T T (T C U P) = (d - 1) , T R F (~ -) + I D T [* newtup

The response time of TCUP is simply the sum of the time to transfer R
to the result node and the time to compute the transitive closure. Since

Parallel Evaluation of the Transitive Closure of a Database Relation 33

there is a single receiver node for all pieces of R that are sent, the transfer
of R is essentially sequential. Thus, we can approximate the response time
of TCUP as

RT (TCUP) = TT (TCUP)

5.4. A n a l y s i s o f A l g o r i t h m T C P O

Algorithm TCPO has two phases. The first phase partitions R, dis-
tributed across d nodes, onto n nodes. Each of the d nodes holds (IRl/d)
tuples of R. Since it must be bashed both on attribute A and attribute B, R
must be partitioned twice. The second phase performs the transitive closure
in parallel by iteratively performing a local composition and a local union,
and partitioning relation D (that contains the new tuples) onto n nodes.
We assume that each of the p passes of TCPO uniformly produces the
same number of tuples. Therefore, we have at each pass i

Parallel execution is obtained mainly by distributing operand tuples
across n nodes based on a hash function. Let relation R be partitioned
across n nodes and let M(R, n,m) denote the number of messages
necessary to send pieces of a sub-relation R k (with k = 1, n) to m nodes. We
make the pessimistic assumption that this number is the maximum number
of potential receiver nodes, i.e.,

M(R, n, m)= min (~ , m)

To fairly compare with the two other algorithms which produce the
result at a single node, we include the time to transfer the final result
distributed across n nodes to a single node. The total time of TCPO is
therefore

TT (TCPO) =
(, each of the d nodes sends twice all the data it holds to n nodes
except itself ,)

IRI)
2 , d , (M (R , d , n) - I) , TRF d*M(R,d,n)

828/17/1-3

34 Valduriez and Khoshafian

(* iterativeIy partition D during (p - 1)passes *)

+ Z (M (D ~ ' n ' n) - I) * T R F n*M-(-~,n,n
i=2 k=l

(, transfer final result to one node *)

+ IDTI * newtup (, local processing time *)

The response time of TCPO is

RT (TCPO) =
(, one node sends twice all the data it holds to M nodes ,)

IR[)
2 �9 (M(R, d, n) - 1) �9 TRF d* M(R, d, n)

(* iteratively partition D ,)

+ ~, (M(Di, n , n) - l) * TRF(IDil)
i=2 n * M(D i, n, n)

+ TRF([RI+IDTI (* transfer final result *)

IDTI
+ - �9 newtup

n
(* local processing time *)

5.5. Analysis of A lgor i thm TCPP

The analysis of TCPP (2~ provides the following formulas:

tog2 d /-]
mm (T C P P) = i=~1 ~i * T R F (~ -~-T2i--1 * lOLl)

+ IDTI * newtup

lOg2 (2i1)
RT(TCPP)= ~ TRF +---d--* IDLI

i=1
log 2 d 2 i - 1

+ ~ --d--- * IDLI * newtup
i=1

Parallel Evaluation of the Transitive Closure of a Database Relation 35

6. P E R F O R M A N C E C O M P A R I S O N S

This section presents performance comparisons of the proposed
transitive closure algorithms using the previous cost formulas. The most
sensitive parameters (d, IDTI and MIPS/node) have been varied. The other
analysis parameters are set as follows:

IRI
P
K
msg
try

newtup

number of tuples is 1,000,000
depth of R is 32
number of tuples per packet is 20
time to process a message is 5000 instructions
time to transfer a packet is 100 microseconds
(assuming a network speed of 10 MegaBytes per second)
time to produce a new tuple is 1000 instructions

Experiments with different parameters settings produced results similar
to those described below. In particular, varying p did not affect the results.
Note that, in all the graphs discussed below, the y-axis scale is logarithmic.
To compare fairly TCPO and TCPP, we also assume d = n.

Figures 7-10 illustrate the performance of the algorithms versus num-
ber of processing nodes. The performance of parallel algorithms is strongly
influenced by communication cost, which is a function of the number of
new tuples produced and the time to transfer a packet. In order to push the
limits of the parallel algorithms, parameters are set so as to produce a large

4000

1000

400

seconds

T C P O ~

TCPP

TCUP d

Fig. 7. Total time versus number of nodes
(IDTI = 2,000,000).

36 Valduriez and Khoshafian

i000

400

100

30

10

~econds
TCUP

d
4 128 1024

Fig. 8. Response time versus number of nodes
(IDWl = 2,000,000).

number of new tuples. Assuming that a node is realized with a 5 MIPS
microprocessor, the time to process a message is 1 millisecond.

Figures 7 and 8 describe the variation of total time and response time,
respectively, to produce 2,000,000 new tuples. In Fig. 7, T C U P obviously
provides the best total time. The total time of T C P P is slightly superior to
this of TCUP. The difference is essentially the additional cost of transfer-

1OK

IK

seconds

Tcp
TCUP

,d
~ ' 16 ' ' I ' 28 ' lb24

Fig. 9. Total time versus number of nodes
(IDTf = 5,000,000).

Parallel Evaluation of the Transitive Closure of a Database Relation 37

i000

i00

10

Fig. 10.

seconds TCUP

~ ' i 6 ' ' 1 2 8 ' , d , 1024

Response time versus number of nodes
(I DTI = 5,000,000).

ring transitively closed relations for TCPP. Since the number of messages is
not high in TCPP (inter-node communication is 1 - 1), the difference is
low. This results in excellent total time of TCPP compared to TCPO. The
total time of TCPO is always the worst and degrades dramatically as the
number of nodes is greater than 64. This behavior is due to the cost of
partitioning the new tuples, which increases significantly with the number
of nodes.

In Fig. 8, TCUP obviously provides the worst response time. The
response times of both TCPP and TCPO improve constantly as the num-
ber of nodes increases. Performance of TCPP is slightly better than this of
TCPO with a few nodes. Above four nodes, TCPO is the best and the per-
formance difference increases with the number of nodes. With 1024 nodes,
the improvement factor of TCPO is about two orders of magnitude over
TCUP and one order of magnitude over TCPP. This good performance of
TCPO is due to its constant degree of parallelism.

Figures 9 and 10 depict total time and response time, respectively,
when producing a larger relation having 5,000,000 new tuples. The perfor-
mance curves relative to one another are similar to those observed in
Figs. 7 and 8. However, total times and response times are higher because
of the larger result. In Fig. 10, the performance of the parallel algorithms
with respect to the centralized one is slightly better than in Fig. 8.

Figures 11-14 illustrate the performance of the algorithms for a fixed
number of nodes (d= 32). Two important performance parameters have
been varied: the number]DT[of new tuples generated by the transitive
closure (Figs. 11 and 12) and the processor speed per node (Figs. 13

38 Valduriez and Khoshafian

' 1000

I00

10
IOK

seconds T C / /

ID~CUPTI
1ObK iM l'OM

Fig. 11. Total time versus number of new
tuples (32 nodes).

and 14). The total time of TCPP is not shown in Figs. 11 and 13 since it is
always a little higher than that of TCUP.

In Fig. 11, the increase of the total time of both algorithms is almost
linearly proportional to the increase of the size of relation]DT]. Again,
TCPO incurs the worst total time. TCPO generates large messages when
the result is large and smaller messages when the result is small. However,

I000

100

10

-seconds /

PO

I 1OK lOOK IM
IDTI

IOM
Fig. 12. Response time versus number of

new tuples (32 nodes).

Parallel Evaluation of the Transitive Closure of a Database Relation 39

,seconds

2000

1000

T C U P ~

200 MIPS/node

' ' ' ~ io
Fig. 13. Total time versus processor speed (32

nodes).

the number of messages remains high even for a small result and the fixed
cost per message is the dominant factor. Therefore, the performance
difference between TCPP and TCPO is higher when [DTI is small. As the
result becomes larger than 1M tuples, the performance difference remains
approximately constant.

In Fig. 12, the increase of the response time of all algorithms is almost

1000 I-seco~

1~176

- ' - . . . ~ p o

MIPS/node
1 5 I0

Fig. 14. Response time versus processor speed
(32 nodes).

40 Valduriez and Khoshafian

linearly proportional to the increase of the size of relation [DT]. Again,
TCPO incurs the best response time.

In Figs. 13 and 14, the total time and response time of all algorithms
linearly decreases as the processor speed of each node increases. Going
from one MIPS to 10 MIPS processors yields exactly one order of
magnitude improvement for all algorithms. The reason is that, in our
model, all of processing time (parameter newtup) and the most important
part of communication time (parameter msg) are given in number of CPU
instructions.

In conclusion, parallel algorithms for the transitive closure can
provide significant performance improvement over the centralized
algorithm. The improvement factor is best (between one and two orders of
magnitude) with a high number of nodes and a large amount of work. The
centralized algorithm always involves the best total time. TCPO always
incurs the worst total time which becomes prohibitive above 64 nodes.
However, TCPO is almost always better than TCPP. Finally, TCPP
provides a better compromise between response time and total time than
TCPO.

7. C O N C L U S I O N

We have proposed and analyzed two parallel algorithms to compute
the transitive closure of a database relation in a shared nothing parallel
data server. These algorithms are parallel versions of the iterative transitive
closure algorithm. Compared to the centralized algorithm, the parallel
algorithms may significantly improve response time when the number of
nodes is high (about 100) and the transitive closure produces a large num-
ber of new tuples. The response time of the algorithm TCPO (with parallel
operations) is generally superior to the algorithm TCPP (with parallel
programs). The best response time improvement over the centralized
algorithm is one order of magnitude for TCPP and two orders of
magnitude for TCPO. However, TCPP provides a better compromise
between response time and total time than TCPO.

In this paper, we were mostly interested in studying the value of
parallelism for recursive query processing with respect to a centralized
algorithm. Therefore, we chose a simple transitive closure algorithm, the
iterative algorithm, that is easily amenable to parallel execution. However,
there are better centralized algorithms to compute the transitive
closure. (13'17) The parallel algorithms introduced in this paper were based
on two principles: (1) executing the individual operations of the transitive
closure in parallel (TCPO) or (2) executing the transitive closure program
in parallel (TCPP). We believe the same principles could be applied to

Parallel Evaluation of the Transitive Closure of a Database Relation 41

paral le l ize more efficient t ransi t ive closure a lgor i thms, which looks a
p romis ing research area.

The per formance results were ob ta ined using a s imple analyt ica l mode l
which ignored m a n y prac t ica l cons idera t ions like ne twork conten t ion and
nonun i fo rm d i s t r ibu t ion of work a m o n g the nodes. I t is our object ive to do
real exper iments when the p r o t o t y p e of a shared no th ing para l le l da t a
server being deve loped at M C C (3) is completed .

A C K N O W L E D G M E N T S

The au thors thank H a r a n Borat for his careful review and helpful
comments . Thanks also to M a r c Smith for useful discussions on com-
mun ica t ion costs. The a n o n y m o u s referees also p rov ided va luable
suggestions.

R E F E R E N C E S

1. H. Boral and D. J. DeWitt, Database Machines: an Idea Whose Time has Passed?
a Critique of the Future of Database Machines, Int. Workshop on Database Machines,
Munich, (September 1983).

2. H. C. Du, Distributing a Database for Parallel Processing is NP-hard, ACM SIGMOD
Record, Vol. 14, No. 1, (March 1984).

3. H. Boral, Parallelism and Data Management, Int. Conf. on Databases, Jerusalem, (June
1988).

4. M. Stonebraker, The Case for Shared Nothing, Database Engineering, Vol. 9, No. 1
(March 1986).

5. P. M. Neches, The Anatomy of a Database Computer System, COMPCON Int. Conf.,
San Francisco, (February 1985).

6. D. J. DeWitt et al. GAMMA - a High Performance Dataflow Database Machine, Int.
Conf. on VLDB, Kyoto, (August 1986).

7. M. Livny, S. Khoshafian, and H. Boral, Multi-Disk Management Algorithms, ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, Banff, Alberta,
(May 1987).

8. D. Bitton, H. Boral, D. J. DeWitt, and W. K. Wilkinson, Parallel Algorithms for the
Execution of Relational Database Operations, A C M TODS, Vol. 8, No. 3, (September
1983).

9. P. Valduriez and G. Gardarin, Join and Semijoin Algorithms for a Multiprocessor
Database Machine, A C M TODS, Vol. 9, No. 1, (March 1984).

10. D. J. DeWitt and Gerber, Multiprocessor Hash-based Join Algorithms, Int. Conf. on
VLDB, Stockholm, (August 1985).

11. S. Khoshafian and P. Valduriez, Parallel Execution Strategies for Declustered Databases,
5th Int. Workshop on Database Machines, Karuizawa, Japan, (October 1987).

12. F. Bancilhon and R. Ramakrishan, An Amateur's Introduction to Recursive Query
Processing Strategies, ACM-SIGMOD Int. Conf., Washington, D.C., (May 1986).

13. P. Valduriez and H. Boral, Evaluation of Recursive Queries Using Join Indices, 1st Int.
Conf. on Expert Database Systems, Charleston, South Carolina, ('April 1986).

42 Valduriez and Khoshafian

14. Y. E. Ioannidis, On the Computation of the Transitive Closure of Relational Operators,
Int. Conf. on VLDB, Kyoto, (August 1986).

15. H. Lu, K. Mikkilineni, and J. P. Richardson, Design and Analysis of Algorithms to
Compute the Transitive Closure of a Database Relation, IEEE Int. Conf. on Data
Engineering, Los Angeles, (February 1987).

16. H. V. Jagadish, R. Agrawal, and L. Ness, A Study of Transitive Closure as a Recursion
Mechanism, A C M - S I G M O D Int. Conf., San Francisco, (May 1987).

17. R. Agrawal and H. V. Jagadish, Direct Algorithms for Computing the Transitive Closure
of Database Relations, Int. Conf. on VLDB, Brighton, England, (September 1987).

18. M. J. Quinn and N. Deo, Parallel Graph Algorithms, Computing Surveys, Vol. 16, No. 3,
(September 1984).

19. D. A. Schneider and M. J. Skarpelos, Design and Implementation of a Distributed
Transitive Closure Algorithm, Unpublished Manuscript, U. of Wisconsin, Madison, (May
1986).

20. P. Valduriez, S. Khoshafian, Transitive Closure of Transitively Closed Relations, 2nd Int.
Conf. on Expert Database Systems, Tysons Corner, Virginia, (April 1988).

21. G. Copeland, W. Alexander, E. Boughter, and T. Keller, Data Placement in Bubba, A C M
SIGMOD Int. Conf., Chicago, Illinois, (May 1988).

22. P. Valduriez, Join Indices, A C M TODS, Vol. 12, No. 2, (June 1987).
23. K. Bratbergsengen, Hashing Methods and Relational Algebra Operations, Int. Conf. on

VLDB, Singapore, (August 1984).
24. M. Kitsuregawa et al., Application of Hash to Data Base Machine and Its Architecture,

New Generation Computing, Vol. 1, (1983).

