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Parallelism is a promising approach to high performance data management. In 
a highly parallel data server with declustered data placement, an important issue 
is to exploit parallelism in processing complex queries such as recursive queries. 
In this paper, we consider the transitive closure of a database relation as a 
paradigm to study parallel recursive query processing. And we propose two new 
parallel algorithms for evaluating the transitive closure of a relation in a parallel 
data server. Performance comparisons based on an analytical model indicate the 
superior response time of the parallel algorithms over their centralized version. 
With one hundred nodes, performance gain is between one and two orders of 
magnitude. One parallel algorithm provides superior response time while the 
other exhibits better response time/total time trade-off. 

KEY WORDS: Database relation; parallelism; transitive closure; algorithms; 
performance. 

1. I N T R O D U C T I O N  

One promising approach to high performance data processing is to group 
the database functions into a dedicated computer, called d a t a  server.  With 
its single focus on database management, a data server can provide a better 
price/performance ratio than a database system implemented on a general 
purpose computer. The performance of database management is essentially 
hurt by the I/O bottleneck (t) which stems from high disk access time com- 
pared to low main memory access time. The data server approach makes 
the use of architectural solutions to the I/O bottleneck possible. The main 
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solution is to increase the I/O bandwidth through parallelism. (2'3) Instead 
of having the entire database residing on a few high capacity disk units, 
many smaller disks should be employed so that disk accesses can be done 
in parallel. Thus, disk access time can be divided by the number of disk 
units. 

ParalMizing the I/O bandwidth can be achieved using the recent 
multiprocessor architectures based on the shared nothing paradigm. (4) In a 
shared nothing architecture, each processor has exclusive (nonshared) 
access to one or more memory modules and one or more disk units. Shared 
nothing architectures are more scalable than shared memory architectures 
since the number of nodes need not be limited. In particular, highly parallel 
shared nothing architectures are now viable35'6) 

Two important and related issues that face the design of a highly 
parallel shared nothing data server are data placement and query 
processing. A good solution to data placement is declustering ~7) which 
consists of horizontally fragmenting the relations across many nodes to 
favor the parallel execution of database operations. Query processing must 
exploit the potential parallelism available with declustered data placement 
in order to achieve good response time/throughput trade-off. Parallel 
algorithms for optimizing relational algebra operations, particularly 
join, (8-1~ and relational queries (m are now well understood. However, 
little attention has been paid to parallel algorithms for recursive query 
processing.~12) 

In this paper, following recent proposals, (13qv) we consider the trans- 
itive closure as a paradigm to study parallel recursive query processing. We 
observe that virtually no attempt has been made to implement the trans- 
itive closure of a database relation in a shared nothing parallel architecture. 
The few parallel transitive closure algorithms proposed as a method of 
finding the connected components of an undirected graph typically assume 
a shared memory architecture model. ~ A notable exception is some 
preliminary work 09) which attempted to implement our logarithmic 
algorithm (13) in GAMMA. (6) In this paper, we present two new parallel 
algorithms for evaluating the transitive closure of a declustered relation in 
a shared nothing data server. One of them has been thoroughly described 
and analyzed in another paper, (2~ and will be only briefly mentioned in 
this paper for the sake of comparison. Performance comparisons based on 
an analytical model indicate the much better response time of the parallel 
algorithms over their centralized version. In particular, one parallel 
algorithm provides superor response time while the other exhibits better 
response time/total time trade-off. 

The paper is organized as follows. Section 2 describes the assumptions 
regarding the parallel operational model. Section 3 presents generic 
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algorithms for computing the transitive closure of a centralized relation. 
They are used subsequently in a parallel version. A uniprocessor algorithm 
and two parallel algorithms for computing the transitive closure of a 
declustered relation are presented in Section 4 and analyzed in Section 5. 
Section 6 provides the performance comparisons. 

2. P A R A L L E L  O P E R A T I O N A L  M O D E L  

Many parameters regarding the processing environment and the 
database will affect the performance of various transitive closure 
algorithms. In order to concentrate on the critical aspects of the algorithms 
(parallelism) and on their comparison, we make a number of assumptions. 
The implications of relaxing these assumptions will be studied in the future. 
The assumptions concern the data server, the operand relation, the 
algorithms and communication. 

2.1.  T h e  Para l l e l  D a t a  S e r v e r  

A generic shared nothing parallel architecture is illustrated in Figure 1. 
Each node includes one or more processors, a local main memory (RAM) 
and a disk unit on which resides a local database. Diskless nodes could 
also be used to interface the data server with other machines or to process 
intermediate relations in parallel. The term "shared nothing" refers to the 
fact that there is no sharing of main memory by the nodes. The only shared 
resource is the network, with which the nodes can exchange messages. 
Underlying the data server is a distributed operating system which, among 
other things, provides low-level support for task management and com- 
munication. Examples of shared nothing architectures are the Teradata 
DBC/1012 (5) and GAMMA. (6) 

The database consists of relations which are &clustered across DBM 
nodes. Declustering/7) is a placement strategy which horizontally partitions 

i n t e r c o n n e c t  n e t w o r k  
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Fig. 1. Shared nothing taaraltel data server. 
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and distributes each relation across a number of nodes. This number of 
nodes is a function of the size and access frequency of the relation. (21) The 
number of repositories over which a relation is distributed is called the 
degree of declustering. There are several ways to distribute tuples across 
multiple nodes. The simplest approach is to place tuples in a round robin 
fashion among multiple nodes. Although more complex approaches could 
provide opportunities for improving the performance of database 
operations such as transitive closure, we will assume round robin 
placement for simplicity. The main feature of declustered data placement, 
that we are interested in, is that accessing all tuples of a relation is 
inherently parallel, i.e., all nodes storing a subset of the relation can be 
accessed "simultaneously".(11) 

2.2. Operand Relation 

We denote by R the relation to which transitive closure is applied. 
Relation R is horizontally partitioned (declustered) across d nodes in a 
round robin fashion. For the sake of simplicity and generality, we assume 
that each subset of relation R stored at one node has no particular access 
method other than sequential scan. Note that the performance of transitive 
closure would be improved by the addition of some particular data 
structures such as join indices. ~22) 

2.3. Parallel Join and Union Algorithms 

Our implementation of transitive closure will require the use of join 
and union operations. We will use hash-based algorithms for performing 
both joins and unions efficientlyJ 23) Hash-based algorithms have been 
primarily designed to speed up the join operation. (24) The basic idea is to 
partition each of the relations being joined, say R and S, into mutually 
exclusive sets R0, R1,..., Rn and So, $1,..., Sn such that 

RNS= 0 Ri•Si 
i = o  

The partitioning is based on a hash function applied to the join 
attribute. The individual joins Ri~ Si can be done simply with a nested 
loop procedure where for each tuple in Ri, Si is probed. If there is a match, 
then a result tuple is produced. This algorithm can be easily extended to 
operate in a multiprocessor environment where each join R~M S~ is done 
in parallel by a separate processor. ~1~ 

The union operation can also be implemented using hashing. We use 
the following algorithm for performing the union of relations R and S. The 
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partitioning phase is the same as above when the hash function is applied 
to the key attribute(s). The individual unions Riw Si are also done with a 
nested loop where for each tuple r of Ri, S~ is probed. If r is not in Si, then 
it is inserted in the relation Si which will therefore contain Ri w S~. 

2.4. Communication 

The parallel execution of database operations requires data to be 
transferred between nodes. We assume two basic communication primitives 
for transferring data: send and receive. 

send (message, node(s)) 

transfers the message to the destination nodes. To avoid implementation 
details, we assume that the kernel of the node is intelligent enough to 
examine the message and give it to the receiving task. When the message 
contains a relation, the destination nodes may be specified by a hash 
function applied to some attributes. In this case, the tuples are first inserted 
into different buckets based on the result of the hash function and each 
bucket is sent to a different node. 

R : = receive 

gets the content of the message in R for the receiving task. 

3. TRANSITIVE CLOSURE OF A CENTRALIZED DATABASE 
RELATION 

This section provides a number of common definitions, and recalls two 
basic transitive closure algorithms. 

3.1. Definitions 

We assume that transitive closure operates on a binary relation R 
having attributes A and B defined on the same domain 9 .  Relation R can 
be viewed as a set of edges in a directed graph, wherein a node is an 
element of ~ and an edge from node a to node b indicates the tuple (a, b) 
of R. For  simplicity, we assume that R is acyclic. We call the depth of R, 
noted p, the length as measured by the number of edges, of the longest 
path in the graph, p is an important parameter affecting the cost of the 
iransitive closure. The transitive closure of R is equivalent to the transitive 
closure of the corresponding graph, i.e., the tuple (x, y) is in R + iff there is 
a path of length > 0  from x to y. Let ~ denote the composition of two 
binary relations (or binary composition) where all attributes belong to the 
same domain: 

R.  S={(a,c)[3b (a,b)~R and (b,c)~S} 
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and let R e be the ith power of relation R, i.e., R 1 = R and R e= R e- 1 ~ R. 
Then, R + is: 

R + =  U Ri 
i > 0  

R ~ S can be implemented by a join with projection as: 

R . S = M , 4 ( R . 2 ~ S . 1 )  

Note that the binary composition is not commutative, i.e., R �9 S # S �9 R. 

3.2.  I t e r a t i v e  T r a n s i t i v e  C l o s u r e  

Several uniprocessor algorithms which compute the transitive closure 
of a database relation have been proposedJ 13-15) In Ref. 13, we presented 
two basic transitive closure algorithms; an iterative algorithm whose com- 
plexity is O(p) and a logarithmic algorithm whose complexity is O(log p). 
The superiority of the logarithmic algorithm has been analyzed in Ref. 13 
and then confirmed in Refs. 14 and 15. Both iterative and logarithmic 
algorithms can operate on cyclic relations. 

In this paper, we will investigate parallel versions of the iterative 
algorithm for three reasons. First, it is the simplest algorithm. Second, we 
are mostly interested in analyzing the performance gained with parallelism. 
Third, we believe that the extension to the iterative algorithm for operating 
in a parallel environment can be applied to the logarithmic algorithm and 
other algorithms as well. The iterative algorithm, noted ITC, working on 
an acyclic relation can be expressed using relational algebra extended with 
assignment and iteration, as shown in Fig. 2. The correctness of this 
algorithm is given in Ref. 14. As demonstrated in Ref. 13, this algorithm 
easily applies to cyclic relations by adding a difference operation before the 
union. 

ITC (R: operand, T: result) 
T:= R; 
D:= R; (* D will contain new tuples *) 
repeat 

D:= D "  R;  
T : = T U  D; 

until D = (~; 

Fig. 2. Iterative transitive closure (ITC). 
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ITC computes the transitive closure of relation R in T using a differen- 
tial relation D. We illustrate algorithm ITC by applying it to the following 
example relation R. 

R A B 

1 8 
8 24 

24 30 
24 7 
30 36 

We indicate the version number of a differential relation by superscript. 
Relation D 1 and T are initialized to R. At iteration i, the differential 
relation D i+1 is produced and unioned with T. Iterations 1, 2 and 3 
produce the differential relations D 2, D 3 and D 4 respectively. 

D 2 A B D 3 A B D 4 A B 

1 24 1 30 
8 30 1 7 
8 7 8 36 

24 36 

1 36 

Iteration 4 produces no more tuples and the operation terminates with 
the result 

T = R u D Z u D 3 u D  4 

3.3.  T r a n s i t i v e  C l o s u r e  o f  T r a n s i t i v e l y  C l o s e d  R e l a t i o n s  

Transitive closure of transitively closed relations will be the basis for a 
parallel algorithm. Assume that a relation R is partitioned into R1 and R2. 
A simple way to compute R + in parallel is to first compute R~- and R ]  
and to complete the transitive closure of R + w R~-. The problem is to avoid 
redundant work when performing the transitive closure of two transitively 
closed relations. A naive way that consists of performing ITC 
(R~-wRy, T) would also recalculate R~- and R~- which is useless. The 
problem with this naive approach is that the differential relation D is 
initialized with R;- t_) R + . 

The following algorithm has been proposed in Ref. 20 to perform the 
transitive closure of two transitively closed relations without redundant 
work. The resulting algorithm, called TCCR, is shown in Fig. 3. The 
algorithm and its correctness are described in Ref. 20. 
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TCCR (R1 ,  R 2 :  ope rand ,  T: resul t )  

f l ip := t rue  

D 1 := R 1 �9 R2 ; 

D 2 := R2 �9 R1 ; 

T := R 1 U  R 2 U D 1 U D2 ; 

repeat 

i f  fl ip t h e n  D 1 := D 1 �9 R 1 

if f l ip t h e n  D 2 := D 2 ~  2 

T : = T  U D 1 U  D 2 ; 

f l ip:= not  fl ip ; 

until D 1 = (~ and D 2 = 

else D 1 := D 1 ~ R 2 ; 

else D2 := D2 ~ R1 ; 

Fig. 3. Transitive closure of two transitively closed relations (TCCR). 

Let an alternating composition sequence of R~ and R2 be a sequence of 
binary compositions of R 1 and R2 such that Ra �9 R 2 or R2 ~ R~ never 
occurs in the sequence. The algorithm TCCR computes the transitive 
closure of R~ ~ R2 by producing only alternating composition sequences. 
Since alternating composition sequences never contain redundant com- 
positions such as R~. R1 or Rz �9 R2, the algorithm TCCR does not 
perform redundant work. 

4. TRANSITIVE CLOSURE OF A DECLUSTERED DATABASE 
RELATION 

In this section we present three versions of the iterative algorithm to 
deal with a declustered relation. The first algorithm, called transitive 
closure with unique processor, applies the iterative algorithm at one node 
where the operand relation has been centralized. The second algorithm, 
called transitive closure with parallel operatons, iteratively applies the join 
and union operations in parallel. The third algorithm, called transitive 
closure with parallel programs, applies tbe transitive closure programs in 
parallel and iteratively integrates the transitively closed intermediate 
relations. 

4.1. Uniprocessor Transitive Closure Algorithm 

Given a relation R distributed across d nodes, the simplest way to per- 
form its transitive closure is to resort to a centralized algorithm. Although 
this method is not really parallel, it will be useful for comparison with 
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TCUP (R:operand, T:result) 
(1) at each node i do 

send (R j , nodeP);  
(2) st nodeP do 

begin 
R := receive;  
ITC (R, T) 
end 

(* R 1 , R 2 . . . . .  R d are sent  to nedeP *) 

(* computes  T as transit ive closure of  R *) 

Fig. 4. Transitive closure with unique processor (TCUP). 

parallel transitive closure algorithms. The transitive closure algorithm with 
unique processor (TCUP) is detailed in Fig. 4. It is assumed to be con- 
trolled by some coordinating node. It consists of two phases. In the first 
phase, each node 1, 2,..., d storing a subset Rg of R sends R~ to a pre-deter- 
mined node P. The sends can be done in parallel, as indicated by the "at 
each" statement. The second phase is done by a single node P which 
receives all subsets of R and performs the transitive closure of R using the 
iterative algorithm described in Section 3.2. 

4.2. Transitive Closure with Parallel Operations 

The transitive closure algorithm with parallel operations (TCPO) is 
assumed to be controlled by some coordinator node chosen among the n 
nodes allocated to the operation. The basic idea is to execute the iterative 
algorithm where each join operation (necessary for the binary com- 
position) is performed in parallel by a hash-based algorithm./1~ Parallel 
join operations are achieved by partitioning the operands between n 
disjoint sets based on a hash function on some attribute. Partitioning is 
done with the following procedure: 

partition (R, h(A)); 

at each node storing Ri of R do 

send (Ri, node h(A)); 

where Ri is first hashed into, say, n buckets and each bucket is sent to a 
different node. After the two operand relations have been partitioned, the 
operation is achieved as n partial operations. 

The algorithm TCPO (see Fig. 5) consists of two phases. First, 
relation R is partitioned on one attribute, say B, between n nodes (we 
assumed R is not partitioned on B). T is initialized to R and thus par- 
titioned on B. Second, the transitive closure is applied to R as a loop of the 
following operations. D is partitioned on the join attribute (A) between n 
nodes and each Di is joined with Ri on the predicate Di-A = Ri.B.  The 
result of the join (after removal of useless attributes) gives Di which must 



28 Valduriez and Khoshafian 

TCPO (R:operand ,  T : resu l t  

(1) part i t ion (R, h (B) ) ;  

at each  node  i 0=1 . . . . .  n) do  
begin 
T i := R i := rece ive ;  

D i := R i ; 
end 

(2) repeat 

(2.1)  part i t ion (D, h ( A ) ) ;  

(2.2)  at each  node  i (i=1 

b e g i n  

D i := rece ive ;  

D i := R i �9 D i ; 

T i := T 1 U Di  ; 
end 

unt i l  ANDIn 1.= ( D  i = ~ )  

(* generates and sends F~ , F~ . . . . .  Pn *) 

(* init ial ize each node i *) 

(* generates and sends D 1 ,D 2 . . . . .  D n *) 

. . . .  n) do  (* compute local D and T *) 

Fig. 5. Transitive closure with parallel operations (TCPO). 

be unioned with T. However, since T is partitioned on B (because it has 
been initialized with R), De should first be partitioned on B before being 
unioned with T. However, partitioning may incur a substantial com- 
munication cost. One alternative is to replace the global union by local 
unions, in which case result tuples at different nodes may be duplicated. 
The choice between local versus global union involves estimation of the 
cost/benefit of duplicate elimination. Although it is an important issue, it is 
not addressed here. For simplicity, the algorithm in Fig. 5 applies local 
unions. The loop terminates when no new tuples are generated. The coor- 
dinator receives the Boolean value (Di r  r from all nodes and determines 
the end of the loop when all Boolean values are true. The result of the 
operation is distributed across n nodes. 

To illustrate TCPO, we apply it to the example relation R introduced 
in Section 2.2 assuming n = 2 and the hash function is h(A) = 1 if A < 20 
and h(A) = 2 if A/> 20. We describe the algorithm by giving for each step 
(2.1) and (2.2) of phase 2 and each versionthe value of the relation D (the 
value of T can be easily deduced). Superscripts indicate version numbers 
and subscripts indicate node numbers. For instance D 2 is relation D 
produced at iteration 1 at node 2. 

Phase 1 R1 A B 

1 8 
24 7 

R2 A B 

8 24 
24 30 
30 36 
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D] :=RI  D~ :=R2 

Step 2.1 D~ A B D~ A 

1 8 24 
8 24 24 

30 

Step 2.2 D~ A B D 2 A 

1 24 

Step 2.1 D13 A B D32 

8 7 
1 24 
8 30 

Step 2.2 D 3 A B 

1 7 
1 30 

Step 2.1 D 4 A B 

1 7 
1 30 
8 36 

B iteration 1 

30 
7 

36 

B 

8 30 
8 7 

24 36 

A 

Step 2.2 D 4 A B D 4 = 

1 36 

B iteration 2 

24 36 

D32 A B 

8 36 

D 4 = ~b iteration 3 

4.3.  T r a n s i t i v e  C l o s u r e  w i t h  Para l le l  P r o g r a m s  

The transitive closure algorithm with parallel programs (TCPP)  (2~ 
computes the operation as much as possible where the data is. The 
algorithm proceeds in several passes. The algorithm ITC is used in the first 
pass and the algorithm TCCR is used in subsequent passes. Recall that the 
operand relation is distributed over d nodes. For  simplicity, we assume that 
d is a power of number 2. The first pass computes in parallel d partial 
transitive closures, each using the algorithm ITC. The partial results 
obtained at the end of the first pass are transitively closed relations. In 
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order to complete the transitive closure using the algorithm TCCR, we 
divide it into several passes using a two-way merge type operation. Similar 
to the parallel binary sort-merge algorithm, (8) the d nodes are arranged as 
a binary tree. The second pass of the algorithm TCPP proceeds as follows. 
Every other node that participated in the first pass, say nodes 1, 3, 5 ..... 
d - 1 ,  sends its result to its neighbor immediately to the right, i.e., nodes 
2, 4, 6 ..... d. Every receiving node (there are d/2 such nodes) applies the 
algorithm TCCR on the relation received and the relation it produced, and 
therefore generates another transitively closed relation. At pass i, d/2 t-1 
nodes that produced a transitively closed relation at pass ( i -  1) send their 
result to their neighbors immediately to the right which apply the 
algorithm TCCR to their input. The algorithm terminates when a single 
node, that received the relation computed by its unique neighbor, performs 
the last execution of TCCR. The number of passes where TCCR is applied 
in parallel is [log2 d] where [a] denotes the smallest integer greater or 
equal to a. Therefore the total number of passes, including the first pass in 
which ITC is applied by d nodes, is [ log2d]+  1. The algorithm is 
described in Fig. 6. 

5. P E R F O R M A N C E  A N A L Y S I S  

In this section, we analyze the performance of the transitive closure 
algorithms presented in Sections 4 and 5. We first define the performance 
measure in terms of response time and total time, and the analysis 
parameters that we assume. Then, we analyze the three transitive closure 

TCPP (R:eperand,  T: resul t )  

(1) at each  node i 0=1 . . . . .  d) de (* first pass *) 
begin 

ITC (R i , T i ); 

i f  i rood 2=7~ 0 then  send (T~ , node ( f + l ) ) ;  
end; 

(2) f o r  j := 1 to [log 2 d] do (* other passes *) 

at each node i (i=2 j - l ,  2 "2  j - l ,  3 "2  j-1 . . . . .  d) do 
begin 
S i : :  rece ive;  (* receive from predecessor *) 

TCCR (R i ,  S i, T i ) ;  

i f  i meal 2 j -~= 0 then  send (T~ , node (i+2 j-1 ) ) ;  

end; 

Fig. 6. Transitive closure with parallel programs (TCPO). 
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algorithms with uniprocessor (TCUP), parallel operations (TCPO) and 
parallel programs (TCPP). 

5.1. Performance Measure  
There are several ways of measuring the performance of an algorithm 

in a parallel environment. In this paper, we will consider the total time and 
the response time of each algorithm. The total time is the sum of all com- 
ponent times (IO, CPU and communication time) and therefore gives a 
fair estimation of the use of machine resources. The response time is the 
time elapsed from the initiation to the completion of the algorithm. Parallel 
algorithms are more able to minimize response time but generally at the 
expense of total time. Therefore, both measures are complementary to 
understand the performance trade-offs of parallel algorithms. Total time, 
denoted by TT, and response time, denoted by RT, will be expressed in 
terms of local processing time and communication time. 

Local processing time is incurred by reading and comparing the 
operand tuples and by producing new tuples using join and union. Both 
join and union operations may be efficiently implemented through hashing 
with a complexity almost linear in the size of the operandsJ 1~ To sim- 
plify the analysis and especially to concentrate on the effects of parallelism, 
we assume that the time to produce a new tuple is constant. This time 
typically incorporates a fraction of disk access time and CPU time (to 
hash, compare and move tuples). Therefore, details about join and union 
algorithms need not be given. If a large number of new tuples is generated 
by transitive closure, then this assumption is quite good. It will be the case 
in our performance comparisons. In experimenting a more complex 
analytical model in which IO and CPU times were detailed, we found 
results very similar to these of Section 7. 

5.2. Analysis Parameters 

The following notation will be used to evaluate the algorithms: 

IRI 
P 
ID~rl 
d 
n 

newtup 

K 
msg 
trf 

number of tuples in relation R 
depth of the graph corresponding to relation R 
number of new tuples produced by transitive closure 
degree of declustering of relation R 
number of nodes allocated for TCPO 
time to produce a new tuple 
(includes fraction of IO time and CPU time) 
number of tuples per packet 
time to send a message (includes send and receive time) 
time to transfer a packet 
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The parameter newtup is measured in number of CPU instructions, trf is 
the constant time required to transfer a data packet from one node to 
another. Messages are typically of variable size, i.e., of multiple packets. 
The communication time incurred in sending and routing an m packet 
message from one node to another is (msg + m * trf). We assume that there 
is always enough available buffer space for holding m packets. The com- 
munication time necessary to move t tuples to a given node is therefore 

t 
TRF(t) = msg + -~ �9 trf 

Traditional evaluation and comparison of parallel algorithms for 
database operations assume uniform distribution of work among the par- 
ticipating nodes. (8'9) The uniformity assumption is optimistic for evaluating 
response time and favors the parallel algorithms against their centralized 
version. However, the assumption of nonuniform distribution of work in 
evaluating response times would make the analysis too complex and intrac- 
table. Analyzing transitive closure in a centralized context is already com- 
plex enough. (t31 Therefore, we will assume that work is equally distributed 
among the nodes participating in the execution of the parallel transitive 
closure. 

5.3. Analysis of A lgor i thm T C U P  

Algorithm TCUP has two phases. The first phase sends R, distributed 
across d nodes, to a single node (one of the d nodes). The second phase 
performs the transitive closure locally. The total time to produce new 
tuples is the same for the three algorithms 

IDTI * newtup 

The communication time of TCUP is the time to send ( d -  1) pieces of 
relation R to one of the d nodes on which R resides. This time is simply 

The total time of TCUP is therefore 

T T ( T C U P ) = ( d - 1 ) , T R F ( ~ - ) + I D T [  * newtup 

The response time of TCUP is simply the sum of the time to transfer R 
to the result node and the time to compute the transitive closure. Since 
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there is a single receiver node for all pieces of R that are sent, the transfer 
of R is essentially sequential. Thus, we can approximate the response time 
of TCUP as 

RT (TCUP) = TT (TCUP) 

5.4.  A n a l y s i s  o f  A l g o r i t h m  T C P O  

Algorithm TCPO has two phases. The first phase partitions R, dis- 
tributed across d nodes, onto n nodes. Each of the d nodes holds (IRl/d) 
tuples of R. Since it must be bashed both on attribute A and attribute B, R 
must be partitioned twice. The second phase performs the transitive closure 
in parallel by iteratively performing a local composition and a local union, 
and partitioning relation D (that contains the new tuples) onto n nodes. 
We assume that each of the p passes of TCPO uniformly produces the 
same number of tuples. Therefore, we have at each pass i 

Parallel execution is obtained mainly by distributing operand tuples 
across n nodes based on a hash function. Let relation R be partitioned 
across n nodes and let M(R, n,m) denote the number of messages 
necessary to send pieces of a sub-relation R k (with k = 1, n) to m nodes. We 
make the pessimistic assumption that this number is the maximum number 
of potential receiver nodes, i.e., 

M(R, n, m)= min ( ~ ,  m) 

To fairly compare with the two other algorithms which produce the 
result at a single node, we include the time to transfer the final result 
distributed across n nodes to a single node. The total time of TCPO is 
therefore 

TT (TCPO) = 
(, each of the d nodes sends twice all the data it holds to n nodes 
except itself ,) 

IRI ) 
2 , d , ( M ( R , d , n ) - I ) ,  TRF d*M(R,d,n) 

828/17/1-3 
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(* iterativeIy partition D during (p - 1)passes *) 

+ Z ( M ( D ~ ' n ' n ) - I ) * T R F  n*M-(-~,n,n 
i=2 k=l  

(, transfer final result to one node *) 

+ IDTI * newtup (, local processing time *) 

The response time of TCPO is 

RT (TCPO) = 
(, one node sends twice all the data it holds to M nodes ,)  

IR[ ) 
2 �9 (M(R, d, n ) -  1) �9 TRF d* M(R, d, n) 

(* iteratively partition D ,) 

+ ~, (M(Di, n , n ) - l ) *  TRF(  IDil ) 
i=2 n * M(D i, n, n) 

+ TRF(  [RI+IDTI (* transfer final result * ) 

IDTI 
+ -  �9 newtup 

n 
(* local processing time *) 

5.5. Analysis of  A lgor i thm TCPP 

The analysis of TCPP (2~ provides the following formulas: 

tog2 d /-] 
mm ( T C P P )  = i=~1 ~i * T R F ( ~  -~-T2i--1 * lOLl) 

+ IDTI * newtup 

lOg2  ( 2i1) 
RT(TCPP)=  ~ TRF +---d--* IDLI 

i=1 
log 2 d 2 i -  1 

+ ~ --d--- * IDLI * newtup 
i=1 
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6. P E R F O R M A N C E  C O M P A R I S O N S  

This section presents performance comparisons of the proposed 
transitive closure algorithms using the previous cost formulas. The most 
sensitive parameters (d, IDTI and MIPS/node) have been varied. The other 
analysis parameters are set as follows: 

IRI 
P 
K 
msg 
try 

newtup 

number of tuples is 1,000,000 
depth of R is 32 
number of tuples per packet is 20 
time to process a message is 5000 instructions 
time to transfer a packet is 100 microseconds 
(assuming a network speed of 10 MegaBytes per second) 
time to produce a new tuple is 1000 instructions 

Experiments with different parameters settings produced results similar 
to those described below. In particular, varying p did not affect the results. 
Note that, in all the graphs discussed below, the y-axis scale is logarithmic. 
To compare fairly TCPO and TCPP, we also assume d =  n. 

Figures 7-10 illustrate the performance of the algorithms versus num- 
ber of processing nodes. The performance of parallel algorithms is strongly 
influenced by communication cost, which is a function of the number of 
new tuples produced and the time to transfer a packet. In order to push the 
limits of the parallel algorithms, parameters are set so as to produce a large 

4000 

1000 

400 

seconds 

T C P O ~  

TCPP 

TCUP d 

Fig. 7. Total time versus number of nodes 
(IDTI = 2,000,000). 
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30 

10 

~econds 
TCUP 

d 
4 128 1024 

Fig. 8. Response time versus number of nodes 
(IDWl = 2,000,000). 

number of new tuples. Assuming that a node is realized with a 5 MIPS 
microprocessor, the time to process a message is 1 millisecond. 

Figures 7 and 8 describe the variation of total time and response time, 
respectively, to produce 2,000,000 new tuples. In Fig. 7, T C U P  obviously 
provides the best total time. The total time of T C P P  is slightly superior to 
this of TCUP.  The difference is essentially the additional cost of transfer- 

1OK 

IK 

seconds 

Tcp  
TCUP 

,d  
~ ' 16 ' ' I ' 28 '  lb24 

Fig. 9. Total time versus number of nodes 
(IDTf = 5,000,000). 
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10 

Fig. 10. 

seconds TCUP 
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Response time versus number of nodes 
(I DTI = 5,000,000). 

ring transitively closed relations for TCPP. Since the number of messages is 
not high in TCPP (inter-node communication is 1 -  1), the difference is 
low. This results in excellent total time of TCPP compared to TCPO. The 
total time of TCPO is always the worst and degrades dramatically as the 
number of nodes is greater than 64. This behavior is due to the cost of 
partitioning the new tuples, which increases significantly with the number 
of nodes. 

In Fig. 8, TCUP obviously provides the worst response time. The 
response times of both TCPP and TCPO improve constantly as the num- 
ber of nodes increases. Performance of TCPP is slightly better than this of 
TCPO with a few nodes. Above four nodes, TCPO is the best and the per- 
formance difference increases with the number of nodes. With 1024 nodes, 
the improvement factor of TCPO is about two orders of magnitude over 
TCUP and one order of magnitude over TCPP. This good performance of 
TCPO is due to its constant degree of parallelism. 

Figures 9 and 10 depict total time and response time, respectively, 
when producing a larger relation having 5,000,000 new tuples. The perfor- 
mance curves relative to one another are similar to those observed in 
Figs. 7 and 8. However, total times and response times are higher because 
of the larger result. In Fig. 10, the performance of the parallel algorithms 
with respect to the centralized one is slightly better than in Fig. 8. 

Figures 11-14 illustrate the performance of the algorithms for a fixed 
number of nodes (d= 32). Two important performance parameters have 
been varied: the number ]DT[ of new tuples generated by the transitive 
closure (Figs. 11 and 12) and the processor speed per node (Figs. 13 
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' 1000  

I00 

10 
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seconds T C / /  

ID~CUPTI 
1ObK iM l'OM 

Fig. 11. Total time versus number  of new 
tuples (32 nodes). 

and 14). The total time of TCPP is not shown in Figs. 11 and 13 since it is 
always a little higher than that of TCUP. 

In Fig. 11, the increase of the total time of both algorithms is almost 
linearly proportional to the increase of the size of relation ]DT]. Again, 
TCPO incurs the worst total time. TCPO generates large messages when 
the result is large and smaller messages when the result is small. However, 

I000 

100 

10 

-seconds / 

PO 

I 1OK lOOK IM 
IDTI 

IOM 
Fig. 12. Response time versus number of 

new tuples (32 nodes). 
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,seconds 

2000 

1000 

T C U P ~  

200 MIPS/node 

' ' ' ~ . . . .  io 
Fig. 13. Total time versus processor speed (32 

nodes). 

the number of messages remains high even for a small result and the fixed 
cost per message is the dominant factor. Therefore, the performance 
difference between TCPP and TCPO is higher when [DTI is small. As the 
result becomes larger than 1M tuples, the performance difference remains 
approximately constant. 

In Fig. 12, the increase of the response time of all algorithms is almost 

1000 I-seco~ 

1~176 

- ' - . . . ~ p o  

MIPS/node 
1 5 I0 

Fig. 14. Response time versus processor speed 
(32 nodes). 
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linearly proportional to the increase of the size of relation [DT]. Again, 
TCPO incurs the best response time. 

In Figs. 13 and 14, the total time and response time of all algorithms 
linearly decreases as the processor speed of each node increases. Going 
from one MIPS to 10 MIPS processors yields exactly one order of 
magnitude improvement for all algorithms. The reason is that, in our 
model, all of processing time (parameter newtup) and the most important 
part of communication time (parameter msg) are given in number of CPU 
instructions. 

In conclusion, parallel algorithms for the transitive closure can 
provide significant performance improvement over the centralized 
algorithm. The improvement factor is best (between one and two orders of 
magnitude) with a high number of nodes and a large amount of work. The 
centralized algorithm always involves the best total time. TCPO always 
incurs the worst total time which becomes prohibitive above 64 nodes. 
However, TCPO is almost always better than TCPP. Finally, TCPP 
provides a better compromise between response time and total time than 
TCPO. 

7. C O N C L U S I O N  

We have proposed and analyzed two parallel algorithms to compute 
the transitive closure of a database relation in a shared nothing parallel 
data server. These algorithms are parallel versions of the iterative transitive 
closure algorithm. Compared to the centralized algorithm, the parallel 
algorithms may significantly improve response time when the number of 
nodes is high (about 100) and the transitive closure produces a large num- 
ber of new tuples. The response time of the algorithm TCPO (with parallel 
operations) is generally superior to the algorithm TCPP (with parallel 
programs). The best response time improvement over the centralized 
algorithm is one order of magnitude for TCPP and two orders of 
magnitude for TCPO. However, TCPP provides a better compromise 
between response time and total time than TCPO. 

In this paper, we were mostly interested in studying the value of 
parallelism for recursive query processing with respect to a centralized 
algorithm. Therefore, we chose a simple transitive closure algorithm, the 
iterative algorithm, that is easily amenable to parallel execution. However, 
there are better centralized algorithms to compute the transitive 
closure. (13'17) The parallel algorithms introduced in this paper were based 
on two principles: (1) executing the individual operations of the transitive 
closure in parallel (TCPO) or (2) executing the transitive closure program 
in parallel (TCPP). We believe the same principles could be applied to 
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paral le l ize  more  efficient t ransi t ive closure a lgor i thms,  which looks  a 
p romis ing  research area. 

The  per formance  results were ob ta ined  using a s imple analyt ica l  mode l  
which ignored  m a n y  prac t ica l  cons idera t ions  like ne twork  conten t ion  and 
nonun i fo rm d i s t r ibu t ion  of work  a m o n g  the nodes.  I t  is our  object ive to do  
real exper iments  when the p r o t o t y p e  of  a shared no th ing  para l le l  da t a  
server being deve loped  at  M C C  (3) is completed .  
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