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Summary - -  Zusammenfassung 

Free Vibration of Rectangular Beams of Arbitrary Depth. The state space approach 
is extended to the two dimensional elastodynamic problems. The formulation is in a form 
particularly amenable to consistent reduction to obtain approximate theories of any desired 
order. Free vibration of rectangular beams of arbitrary depth is investigated using this 
approach. The method does not  involve the concept of the shear coefficient k. I t  takes into 
account the vertical normal stress and the transverse shear stress. The frequency values are 
calculated using the Timoshenko beam theory and the present analysis for different values of 
Poisson's ratio and they are in good agreement. Four cases of beams with different end 
conditions are considered. 

Freie Sehwingungen reehteekiger Balken beliebiger H/~he. Die Zustandsraum- 
Tcchnik wird auf zweidimensionale elastodynamische Probleme ausgedehnt. Die Formu- 
lierung ist besonders gecignet ffir die Aufstellung yon N~herungstheorien beliebigen Grades. 
Freie Schwingnngen yon l~echteckbalken beliebiger HShe wurden mit  ttilfe dieser Technik 
untersucht. Das Verfahren umgeht den Begriff des Sehubbeiwerts /c. Es berfieksichtigt die 
senkrechte Normalbeanspruchung und die Querkraft. Die Frequenzwerte werden mit  Hilfe 
der BMkentheorie yon Timoshenko und der vorliegenden Analyse bereehnet, und zwar fiir 
verschiedene Werte der Querdehnzahl. Die berechneten Werte befinden sich in guter Uber- 
einstimmung. Vier F~llc yon Balken mit  versehiedenen Endbedingungen werden untersucht. 

Notation 

2h depth of beam 
k Timoshenko shear constant 
L length of the beam 
n mode number 
u, v displacement in x, y directions 
A area of cross section 
A n coefficient in series representation 
E modulus of elasticity 
G modulus of rigidity 
I moment of inertia about z-axis 

mass density 
/~ Poisson's ratio 
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0 r X ~  
&rx, ay direct stresses 
tzy shear stress 

eigenvalue of square matrix 
w frequency of harmonic vibration 

3. eigenvalue = V ~  ~L 

frequency parameter ~ --]/~-A 
eel  2 

~9 

.(2* f requency pa rame te r  ~ Q X 0 

1. Introduction 

The Bernoulli-Enler equation for beams does not consider the effects of shear 
deformation, rotatory inertia and the vertical normal stress, l~ayleigh [1] intro- 
duced the effect of rotatory inertia and Timoshenko [2] incorporated the effect of 
shear deformation. The shear stress and shear strain are not uniformly distributed 
over the cross section. Timoshenko introduced a dimensionless constant k to 
account for this. By taking ]c as the ratio of the average shear stress on a cross 
section to the product of the shear modulus and the angle of shear at the centroid, 
he arrived at a value of 0.67 for rectangular cross sections. Later he [3] suggested 
a value of 0.889 in order to bring the predictions of his equation into closer 
agreement with the three dimensional theory of small vibrations of elastic bodies. 
Cowper [4] derived the equations of the Timoshenko beam theory, by integration 
of the equations of the theory of elasticity. He obtained expressions for shear 
constant for different cross sections as functions of Poisson's ratio. For rectangular 
cross section its value is 10(1 + ,u)/(12 ~- 11/x). 

A different approach, using the two dimensional elasticity theory is given 
here to determine the frequencies of beams of arbitrary depth. This method does 
not resort to the selection of any shear constant. 

Vlasov [5] developed the method of initial functions (MIF) for rectangular 
regions by expanding the unknowns in Maclaurin series in thickness coordinate. 
This method has been extended to twodimensional elastodynamic problems by 
Das and Setlur [6]. Bahar [7] used state space view point to approach Vlasov's 
formulation of elasticity. In the present pape r the state space approach is extended 
to two dimensional elastodynamic problems. Using this method, the natural 
frequencies have been calculated for beams with various boundary conditions. 
The values by Timoshenko beam solution are also given for comparison. 

2. Formulation of the Problem 

The governing equations of the plane stress case, without body forces, of the 
theory of elasticity are (Fig. 1) 

~ax ~Vxy __ ~ ~27z 

Ox + @ - ~t - - ~  
(1) 

&ry e ~2v 
~x ~y ~t 2 
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2h 

Iy L 

~ 2 

Y 

Fig. I. Coordinate system 

Using Hooke's law the stresses can be written as 

(7 x -- 

% - - 1 - ~  
(2) 

Let  

U ~ G u ,  V ~ Gv ,  X ---- ~:xy, Y ~- ay 

_ ~ ,  _ = ~ ,  _ _  =~2. 
~x ~y G ~t 2 

(3) 

By eliminating ax between (1) and (2) the following basic equation is obtained 

I 0 
0 ~2 0 - -  

_ _ - - 2 ( 1  - ~  ,u) ~2 _~ ~2 0 - - # ~  

(4) 

Let  Z denote the state vector 

Eq. (4) can be written as 

[u, v, r , x ] ~ .  

d 
Yd-- [Z] = [A] [Z]. (5) 

The integration of the vector matrix differential equation yields 

[Z] ~- exp [y.  A] Z(0), (6) 
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where Z(0) correspond to Z a t  y = 0. The exponent ia l  ma t r ix  is the  t ransfer  
ma t r ix  t h a t  maps  the initial s ta te  vector  into the field. The characterist ic  equat ion 
of the  de te rminan t  associated with the  ma t r ix  [A] is 

The  roots  are 

where 

[~72 -t- (c~2 - -  $2)] [~2 @ (c~ 2 - -  ~-~ ~IIXl = 0. (7) 
2 /J 

= ~i61,  •  (8) 

d1=V~-r ~ = ~  ~-~2 ~2. (9) 

According to the  Cayley-I-Iamilton theorem the square ma t r ix  sarisfies its own 
characterist ic  equation.  Hence  the exponent ia l  ma t r ix  can be wri t ten  as 

exp [yA] ~ ao[ + a lA  + a2 A') + a3A 3. ( lO) 

The expression (10) mus t  also be satisfied if the ma t r ix  A is replaced b y  its own 
eigenvalues. Hence  

exp (yr/) = ao + a~7 + a2~ 2 + aarl a. (11) 

Subst i tu t ing  the  roots (8) into (11) and  solving the  sys tem of equat ions the  
following values are ob ta ined  for  ao, aa, a,) and  aa. 

a0 = 2(622 cos ydl - -  612 cos y62)/(! + #) ~2 

= 2 (6: Y q/(1 ~---~ - ~ ~ ! /  + '~) ~ 

a2 = 2(cos ybl - -  cos y52)/(1 @ #) ~e 

(sin yS, sin--Y6~-t/(1 ~2. 

(12) 

Subst i tu t ing these values in (10) the t ransfer  ma t r ix  [L] is obtained.  F rom (6) 
we get 

= i L2q Vo (13) 

where Uo, Vo, Yo, X0 are all initial unknown funct ions in the  plane y = 0. The 
coefficients Lll ,  L12 etc., of the t ransfer  ma t r ix  are all differential  opera tors  and  
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have  t he  fo l lowing va lues  

Lt l  = L~4 - -  ( -2~2  § ~2) cos Y(~I 4.  2a--~ cos Y~2 

L12 ---- La4 - -  2~(c~ --  ~2) s in  Y~I a(2a~ --  ~2) s in yb~ 
~2~ 1 ~262 

a c~ 
L13 = L24 = ~'2 COS Y~I 4. -~  COS y62 

_ _  ( X2 
L14 (a2 _ ~2) s in Y~$1 4- - -  s in  Y~2 

L21 = L4a - -  ~(2~e --  ~) s in Y~I - -  a[2a2 --  (1 - g) r~] s in Y($2 
~z61 ~2~ 2 

(14) 

L22 = L33 = 2~---~ cos Y~I (2~  - $~) cos Y52 

c~ (2~ ~ --  (1 --  t~) ~)  s in y ~  L_~a = ~2(~-~ s in  y ~  - -  2 ~  

L3~ = L~2 - -  2a(2~2 - ~)  cos yO~ 2a(2~2 _ ~2) cos Y62 

La2 = - 4 ~ ( ~  --  ~)  s in y6~ 4- (2a~ --  ~)~ sin Y~2 

L4 ~ (2a" --  ~2)e 2a212a ~ --  (1 -- ~) ~]  s in y52. - -  s in  y ~  - -  

The  a b o v e  coeff icients  of t h e  t r ans f e r  m a t r i x  are s y m m e t r i c  wi th  respect  to the  
s e c o n d a r y  d iagona l ,  due  to  t h e  i s o t r o p y  of t h e  elast ic  body .  Thrse  express ions  are  
in  a g r e e m e n t  w i th  those  g i v e n  in  Ref .  [6], where  t h e y  h a v e  been  o b t a i n e d  b y  
a s s u m i n g  the  so lu t ion  of (4) in  t h e  fo rm of M a c l a u r i n  series in  the  y d i rec t ion .  

3. Appl ica t ion  of the  Method 

3.1. Beam Subjected to Symmetrical Loading 

T a k i n g  y = 0 as t h e  reference p lane ,  because  of s y m m e t r y  in  l oad ing  we 
o b t a i n  

Vo = X0 = 0.  (15) 

H e n c e  Eqs .  (13) s imp l i fy  to  

On t he  p l a n e  y = •  

U = L l l  Uo 4- L13 Yo 

V - L21Uo 4- L2a Yo 

Y = L31Uo 4- L33 Yo 

X = LalUo 4. L43 Yo. 

(16) 

y = - p ( x ,  t), x = o.  (17) 
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Using these values of Y and X, the Eqs. (16) reduce to the following two equations 

IL31 L331 lUll = I--:]. (18) 
Lal Laajy=h 

The second equation is made an identity by  introducing an auxiliary function 
such tha t  

The first equation of (18) becomes 

(LalL4a - -  La3Lal)a ~ z - - p .  (20) 

Substituting the values of the operators from Eq. (14), the following exact 
partial  differential equation is obtained for the free vibration symmetric with 
respect to the middle plane 

[2o~212~2 - (1 - ~t) : 2 ] sinh($2 (2a2-- :2, 2 ] 
�9 -~T cosh~l ~2 ~2 ' cosh~2(sinh~l)/~1 ~ ~-- 0 (21) 

Expanding the trignometrie expressions and retaining terms up to h a, we get a 
fourth order theory. Taking terms of higher powers of h, higher order theories arc 
obtained. When ~ is known U0 and Y0 can be obtained from Eq. (19) and the 
stresses can be obtained from Eq. (16). 

3.2 Beam Subjected to A n t i  Symmetrical Loading 

Taking y ~ 0 as the reference plane, because of an t i symmetry  in loading we 
obtain 

Uo ~-- Y0 -~ 0. (22) 

On the plane y ~- ~ h  

Y : :J:p(x, t) X : 0. (23) 

Using these values of :Y and X, the Eqs. (13) reduce to the following two equations 

L42 L44jy=h 

Introducing an auxiliary function F such that  

V0 T(~)~ Xo r ( ~  (25) ~44 ~, 
the second of Eq. (24) is identically satisfied and the first of Eq. (24) leads to the 
following differential equation for the free vibration 

h l COS 0 (26) ~-~2 COS h(~ 1 sin h(~2 ~2~1 

Eq. (26) is the exact transcendental partial  differential equation for the free 
vibration anti-symmetric with respect to the middle plane. Expanding the 
trignometric expressions and retaining a finite number of terms, solution of a 
desired order can be obtained. When F is known, the values of X o and V 0 can be 
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obtained f rom Eq.  (25) and  the stresses can be obtained from Eq. (13). Since the 
present formulat ion has no restriction on the  depth  the theory  could be used for 
bo th  shallow (long) and deep (short) beams. Sundara  Ra ja  Iyengar  et al. [8] have 
given detailed numerical  work for higher order theories for static case. 

3.3 Boundary Conditions 

The bounda ry  conditions can be expressed in terms of the auxil iary funct ion 
or F.  As an illustration, the bounda ry  conditions are given for a sixth order 
theory  of the  an t i symmetr ic  case. 

(i) Hinged E n d  (v ---- 0, u = 0) 

v = 0 gives 

u = 0  gives 

1 2 + # h ~ . 2 ] F = O  
2 J 

a2F = ~dF = 0. 

Combining them we get  the necessary conditions as 

F = ~2F = ~4F = O. 

(ii) Clamped E n d  (u = O, v = O) 

I X - -  m 

(iii) Free E n d  (a. = O, z.u = O) 

~ F  = ~aF = 0 

2 + ~  h 2 ~  ] F = O. 
2 ] 

(27) 

.(2s) 

Of the two conditions a ny  one can be satisfied exact ly  and  the other  approxi .  
mately.  Assuming tha t  as is satisfied exact ly  then  

~2F : ~4F : O. (29a) 

The remaining condition is obtained by  satisfying zxy ~ 0 approximate ly  as 

h 

f~xy dy : 0. (29b) 
- - h  

3.4 Solution o/ the Differential Equation 

As the methods  of solution of the differential equat ion for the symmetr ic  and 
the ant i -symmetr ic  case are identical, the method  is explained for the anti- 
symmetr ic  case. 

Expand ing  the r ignometric terms in Eq. (26) and  retaining terms upto  h 8 the 
following differential equat ion is obtained 

[ 2(l+tOh)~ 2 -- 1 3 -~- (2 -~- kt) h3o~2~ 2 -~- 7 12 /z ha~4 _]_ he 2 E = O. (30) 

In  the expanded form, this will be 

[2(1 -k/~) ha a' 2(2 q-/z)~ h8 0 a 7 - - #  ha {0 ~2 04 h0 02] 
3 ex' 3G ax 2~t 2 -1- 12 k-G/ ~ + -G-~-~J F = 0 .  (31) k 
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For free vibration one can assmne 

F ( x ,  t) = F l ( X )  cos (or, (32) 

where o~ is the circular frequency and FI(x) is a function of x only. For a beam 
with hinged ends, the required boundary conditions will be satisfied if FI is taken 
as 

Oo 

F1 = z~ ~ A,, sin n~_xx (33) 
n=l L 

Substituting Eqs. (32) and (33) into Eq. (31) we get a fourth degree polynomial in 
o~ from which c0 can be obtained. The frequency is expressed in the nondimensional 
form as eigenvalue 2 where 

2 = oL.  (34) 

In the case of higher order theories, the polynomial in 2 will be correspondingly 
of higher degree. From Eq. (25) as a first approximation one obtains 

Vo = F .  (35) 

If in Eq. (31) the first and last term only are retained one has 

[2(1+#)  h8 ~ ~o ~2] 
3 ~x --~ + h -5 ~7~ F = 0. (36) 

Substituting Eq. (35) in Eq. (36) and simplifying we obtain the following familiar 
equation of elementary beam theory. 

[ 2  Eh ~ ~ +2hQ ~'~] a~--~ ~ ~ = 0 (37) 

where ~ is the transverse deflection of the middle plane. 
The numerical values of 2 have been computed by the fourth, sixth and eighth 

order M.I.F. theories. Some of the frequency values are given in Table 1 for 
Poisson's ratio of 0.3. In Table 1 0 is defined as 

0 = ~ V~-7-A (38 )  
L 

The frequency parameter .(2 is defined as 

V ~A o~L 2 (39) 

The value of D by the elementary theory is ~2 and is independent of the depth- 
span ratio. The values of Q are also computed by the Timoshenko beam theory 
using the shear constant k given by Cowper [4]. Table 2 gives the comparison 
between the frequency values computed using the eighth order M.I.F. theory and 
Timoshenko beam theory for different values of Poisson's ratio. 

For beams with other boundary conditions, assuming trial values of 2, the 
general solution is written for the ordinary differential equation in F 1. Substituting 
this solution in the expressions for boundary conditions, we get a set of homo- 
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geneous simultaneous equations. For non-trivial solution the coefficient deter- 
minant should be zero. The value of 2 which satisfies this condition is found. In  
Tables 3 to 5 the first five eigenvalues 2 computed using the fourth and sixth order 
M.I.F. theories are given for beams with other boundary conditions. In these 
three tables, the values of )~ are given for two values of r where r is defined as 

g/V5 
r - -  

L 

The value of the Poisson's ratio is 0.3 in all the cases. The eigcnvalues computed 
using the Timoshenko beam theory and elementary beam theory are also given for 
comparison. 

In  the case of vibration symmetric with respect to the middle plane, for beam 
with hinged ends, the frequency parameter D is ~/0 for a given value of 0. In 
otherwords the parameter ~(2" = D X 0 is a constant and is g. 

4. Discussion of Results and Conclusion 

In the case of hinged beams the nth harmonic of a particular beam of span L, 
correspond to the fundamental frequency of a shorter beam of span L/n.  Hence 
the depth span ratio and the mode number are combined in the single parameter 0 
and the non-dimensional frequency parameter are given for different values of O. 
From the values given in Table 1 it can be seen that  the frequencies calculated 
using the elementary beam theory are always higher and the difference increases 
for higher values of O. From the same table it can be seen that  the frequencies 
computed using the present approach show convergence as the order is increased. 

Table 1. Frequency parameter • /or beam with hinged ends, 
Poisson's ratio = 0.3 

0 MIF IV MIF VI ~ I F  VIII  

0.01 9.847 6 9.8502 ) 8502 
0.05 9.3633 9.422 9 9.4233 
0.1 8.2703 8.4202 8.4237 
0.5 3.1882 3.3132 3.3336 
1.0 1.6957 1.7509 1.766 6 
2.0 0.863 5 0.8863 0.898 3 
3.0 0.577 7 0.592 0 0.595 0 

From Table 2 it is clear that  the frequencies depend on the value of the Poisson's 
ratio and the frequency values a re  in agreement with the Timoshcnko beam 
theory with the values of ]c given by Cowper. 

From Tables 3 to 5 it is clear that  the results by the present theory are in 
agreement with Timoshenko beam theory. In the case of beams with both ends 
clamped, and one end clamped and the other end hinged, the eigenvalucs obtained 
by the sixth order M.I.F. theory are slightly higher than those obtained using 
Timoshenko beam theory. In  the case of beam with one end clamped and the 
other end free, the eigenvalues obtained using the sixth order M.I.F. theory are 
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l ower  t h a n  t h o s e  o b t a i n e d  u s i n g  T i m o s h e n k o  b e a m  t h e o r y .  S i m i l a r  r e s u l t s  a r e  

a lso o b t a i n e d  in  t h e  case  of  b e a m s  w i t h  o n e  e n d  h i n g e d  a n d  t h e  o t h e r  e n d  f ree .  

I n  t h e  case  of  v i b r a t i o n  s y m m e t r i c  w i t h  r e s p e c t  t o  t h e  m i d d l e  p l a n e ,  t h e  

r e s u l t s  a r e  i n  a g r e e m e n t  w i t h  t h e  u s u a l  t h e o r y  of  e x t e n s i o n ~ !  v i b r a t i o n  of  rods .  

T~ble 2. Frequency parameter ~2 for beam with hinged ends ]or di]/erent values 
of Poisson' 8 ratio 

# = 0 # : 0.3 # ~ 0.50 

MIF  V I I I  Timoshenko MIF V I I I  Timoshenko I~HF V I I I  Timoshenko 

0.01 9.8531 9.8531 9.8502 9.8499 9.8482 9.8478 
0.05 9.4859 9.4859 9.4233 9.4169 9.3822 9.3716 
0.1 8.5976 8.5975 8.4237 8.4047 8.3125 8.2820 
0.5 3.6066 3.6233 3.3336 3.3029 3.1767 2.1265 
1.0 1.9230 1.9612 1.7666 1.7546 1.6703 1.6467 
2.0 0.9701 1.0050 0.8983 0.8927 0.8432 0.8354 
3.0 0.6571 0.6733 0.5950 0.5971 0.5627 0.5595 

T~ble 3. Frequency parameter 2/or  beam with clamped ends. Poisson's ratio ~ 0.3 

r ~[ode Elementary  Timoshenko MIF IV MIF  VI  
theory 

0.03 

0.06 

1 1.082 3 1.0109 0.9852 1.0096 
2 2.9833 2.584 7 2.5000 2.5897 
3 5.8485 4.6498 4.6282 4.6706 
4 9.6679 7.0408 6.956 8 7.112 9 
5 14.4421 9.6461 9.5416 9.7798 

1 2.1645 1.7229 1.7153 1.7277 
2 5.966 6 3.9203 3.8533 3.9325 
3 11.697 0 6.5127 6.492 4 6.712 9 
4 19.335 8 9.2847 9.2817 9.5583 
5 28.8843 12.1740 12.1145 12.5460 

Table 4. Frequency parameter ~ /or beam with one end clamped and the other end hinged. 
Poisson's ratio ~ 0.3 

r Mode E lemanta ry  Timoshenko MIF IV MIF VI 
theory 

0.03 1 0.7458 0.7161 0.7160 0.7162 
2 2.417 0 2.179 5 2.1792 2.1798 
3 5.042 8 4.2064 4.2019 4.2148 
4 8.6235 6.6099 5. 1291 6.6750 
5 13.1591 9.257 6 9.1895 9.3648 

0.0~ 1 1.4917 1.290 6 1.2901 1.2913 
2 4.8340 3.5204 3.519 8 3.523 5 
3 10.0856 6.1979 6.1783 6.3246 
4 17.2471 9.0796 9.0854 9.3608 
5 26.3181 12.0541 12.076 6 12.4062 
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Table 5. Frequency parameter ~ /or beam with one end clamped and the other end/ree. 
Poisson' s ratio = 0.3 
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r Mode E lementa ry  Timoshenko MIF  IV MIF  VI 
theory  

0.03 1 0.1701 0.1687 0.1661 0.1635 
2 1.0659 1.0081 0.9902 0.9762 
3 2.984 5 2.643 0 2.6298 2.5847 
4 5.848 4 4.778 3 4.675 3 4.5361 
5 9.667 9 7.252 6 7.190 2 6.996 5 

0.06 1 0.340 2 0.329 3 0.323 2 0.319 0 
2 2.1318 1.759 6 1.743 7 1.717 8 
3 5.969 0 4.165 8 4.146 8 4.022 8 
4 11.696 9 6.887 3 6.865 4 6.742 8 
5 19.335 8 9.765 9 9.799 9 9.584 7 
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