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Summary — Zusammenfassung

Free Vibration of Rectangular Beams of Arbitrary Depth. The state space approach
is extended to the two dimensional elastodynamic problems. The formulation is in a form
particularly amenable to consistent reduction to obtain approximate theories of any desired
order. Free vibration of rectangular beams of arbitrary depth is investigated using this
approach. The method does not involve the concept of the shear coefficient k. It takes into
account the vertical normal stress and the transverse shear stress. The frequency values are
calculated using the Timoshenko beam theory and the present analysis for different values of
Poisson’s ratio and they are in good agreement. Four cases of beams with different end
conditions are considered. :

Freie Schwingungen rechteckiger Balken beliebiger Hohe. Die Zustandsraum-
Technik wird auf zweidimensionale elastodynamische Probleme ausgedehnt. Die Formu-
lierung ist besonders geeignet fiir die Aufstellung von Néherungstheorien beliebigen Grades.
Freie Schwingungen von Rechteckbalken beliebiger Hohe wurden mit Hilfe dieser Technik
untersucht. Das Verfahren umgeht den Begriff des Schubbeiwerts k. Es beriicksichtigt die
senkrechte Normalbeanspruchung und die Querkraft. Die Frequenzwerte werden mit Hilfe
der Balkentheorie von Timoshenko und der vorliegenden Analyse berechnet, und zwar fir
verschiedene Werte der Querdehnzahl. Die berechneten Werte befinden sich in guter Uber-
einstimmung. Vier Fille von Balken mit verschiedenen Endbedingungen werden untersucht.

Notation

[
=

depth of beam

Timoshenko shear constant
length of the beam

mode number

displacement in #, y directions
area of cross section
coefficient in series representation
modulus of elasticity

modulus of rigidity

moment of inertia about z-axis
mass density

Poisson’s ratio
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1. Introduction

The Bernoulli-Euler equation for beams does not consider the effects of shear
deformation, rotatory inertia and the vertical normal stress. Rayleigh [1] intro-
duced the effect of rotatory inertia and Timoshenko [2] incorporated the effect of
shear deformation. The shear stress and shear strain are not uniformly distributed
over the cross section. Timoshenko introduced a dimensionless constant % to
account for this. By taking % as the ratio of the average shear stress on a cross
section to the product of the shear modulus and the angle of shear at the centroid,
he arrived at a value of 0.67 for rectangular cross sections. Later he [3] suggested
a value of 0.889 in order to bring the predictions of his equation into closer
agreement with the three dimensional theory of small vibrations of elastic bodies.
Cowper [4] derived the equations of the Timoshenko beam theory, by integration
of the equations of the theory of elasticity. He obtained expressions for shear
constant for different cross sections as functions of Poisson’s ratio. For rectangular
cross section its value is 10(1 -+ u)/(12 + 11g).

A different approach, using the two dimensional elasticity theory is given
here to determine the frequencies of beams of arbitrary depth. This method does
not resort to the selection of any shear constant.

Vlasov [5] developed the method of initial functions (MIF) for rectangular
regions by expanding the unknowns in Maclaurin series in thickness coordinate.
This method has been extended to twodimensional elastodynamic problems by
Das and Setlur [6]. Bahar [7] used state space view point to approach Vlasov’s
formulation of elasticity. In the present paper the state space approach is extended
to two dimensional elastodynamic problems. Using this method, the natural
frequencies have been calculated for beams with various boundary conditions.
The values by Timoshenko beam solution are also given for comparison.

2. Formulation of the Problem

The governing equations of the plane stress case, without body forces, of the
theory of elasticity are (Fig. 1)
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Fig. 1. Coordinate system
Using Hooke’s law the stresses can be written as
2G  {ou o
Gy = —— | — —
# 1—p (Bac T ay)
2G (ov ou
=5 tr 2
o= (G +n ) @)
ou o
=G (= 4 —=}.
b (3y + 396)

Let

9 b2} o & ; (3)

By eliminating o, between (1) and (2) the following basic equation is obtained

‘U‘l I’ 0 —a 0 ] [vU
14 — o 1= ol
B = 2 (4)
Y 0 2 0 —x Y
P | ~2(1 4 p)o? + 2 0 —po 0l X
Let Z denote the state vector
[U,V, 7, XT.
Eq. (4) can be written as
d
2 (2] = [4][Z4]. (5)

The integration of the vector matrix differential equation yields

[2] = exp [y - 4] Z(0), (6)
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where Z(0) correspond to Z at y = 0. The exponential matrix is the transfer
matrix that maps the initial state vector into the field. The characteristic equation
of the determinant associated with the matrix [4] is

I + (02— 0] |77 + (w2 = 52 22) | =, g
The roots are
1 = 10y, 0, (8)
where
W=VE =B h= |-t ©

According to the Cayley-Hamilton theorem the square matrix sarisfies its own
characteristic equation. Hence the exponential matrix can be written as

exp {y4] = apl + a1 4 + a,4% + a3, (10)

The expression (10) must also be satisfied if the matrix 4 is replaced by its own
eigenvalues. Hence

exp {yn} = ap + o + agn® + agy®. (11)

Substituting the roots (8) into {11) and solving the system of equations the
following values are obtained for a4, a,, , and aj.

oy = 2{0,% cos yd; — 8,2 cos ¥y)/ (1 + w) &2

ay = 2 (o T — o2 ) 1 ) 2
1 2
(12)

ax = 2(cos yo, — cos ydy)/(1 + ) &

%:Q(si_n_y_@_l _ Si_n_?lﬁ)/(l+#>§2_
0y By

Substituting these values in (10) the transfer matrix [L] is obtained. From {6)
we get

"Lu Lis Lyg Ly, | [ Us
. Loy Lyy Loy Ly, Vo

-
. (13)
Y Lygy Ly Ly Ly Y,

X_l | Ly Lap Lz Ly Xo_|

where Uy, Vg, Yy, X, are all initial unknown functions in the plane y = 0. The
coefficients Ly, Ly, ete., of the transfer matrix are all differential operators and
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have the following values

Ly=L,= (F22 4+ 8) cos yo, + —% cos 0,

-
2a(a? — 77) 202 — )
Ly = Ly, = —f“(aCTalé—) sin ¥, — oi(_szszC_z sin y6,
Ly =1Ly = _g_ cos ¥0; ~}~ cos yd,
_ =07
Ly = ~—;:—§— sin y6; -+ C—zg sin ydy
202 — 72) . 202 — (1 — u) 7] .
Ly = Ly = OL.O‘CTIC—) sin yd; — {20 Ciéz W £l sin yd,
(14)
Ly = Ly = zgi: cos yo; — (2o — ) cos Y0,
2 2 2 . 1 _ 2 .
Liyg = % sin yé; — (—CX——Z-{C%—’“)C) sin yd,
— 2
—do?(0® — ?) . 92 — (2)2 .
Ly = bi((;Tg; 8in 40, + QEE?C) sin yJ,
9.9 __ 73 — _ 2
L, = @%—652)2 sin y§; — 20202 Zzi; ) &1 sin y0,.
1 > Y2

The above coefficients of the transfer matrix are symmetric with respect to the
secondary diagonal, due to the isotropy of the elastic body. Thrse expressions are
in agreement with those given in Ref. [6], where they have been obtained by
assuming the solution of (4) in the form of Maclaurin series in the y direction.

3. Application of the Method

3.1. Beam Subjected to Symmetrical Loading

Taking y = 0 as the reference plane, because of symmetry in loading we
obtain

Vo= X4 =0. (15}
Hence Eqgs. (13) simplify to

U=LyUy,+ Li37Y,

V = Ly Uy + Ly Y,

Y = Ly Uy + Ly Y,

X = LyUy + LY,

(16)

On the plane y = +4
Y = —plz, 8), X =0. (17)
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Using these values of ¥ and X, the Eqgs. (16) reduce to the following two equations

R .
Ly Ly y="h Yo 0

The second equation is made an identity by introducing an auxiliary function ¢
such that
Up=Ligy, Yo=—Li{p. (19)

The first equation of (18) becomes
(L1 Ligg — LggLig ) = —p. (20)

Substituting the values of the operators from Eq. (14), the following exact
partial differential equation is obtained for the free vibration symmetric with
respect to the middle plane

[20;2[20@ _Cii — u) & cos o, Sinahéz . (20425_2. z2)2 cos kaz(sm hél)/él] g =0 (21)

2

Expanding the trignometric expressions and retaining terms up to k3, we get a
fourth order theory. Taking terms of higher powers of %, higher order theories are
obtained. When ¢ is known U, and Y, can be obtained from Eq. (19) and the
stresses can be obtained from Eq. (16).

3.2 Beam Subjected to Anti Symmetrical Loading

Taking y = 0 as the reference plane, because of antisymmetry in loading we
obtain
Uy= Y, =0. (22)
On the plane y = +&
Y = +4pt) X=0. (23)

Using these values of ¥ and X, the Eqgs. (13) reduce to the following two equations

AR S
Lyp Lys{y—n | Xo 0

Introducing an auxiliary function F such that
Vo= L¥F, Xo= —L¥F (25)

the second of Eq. (24) is identically satisfied and the first of Eq. (24) leads to the
following differential equation for the free vibration

[(20‘2_____@-_2)2. cos h51 sin h62 — w

%0, 728, sin Ad,[cos héz]] F =0. (26)

Eq. (26) is the exact transcendental partial differential equation for the free
vibration anti-symmetric with respect to the middle plane. Expanding the
trignometric expressions and retaining a finite number of ferms, solution of a
desired order can be obtained. When F is known, the values of X, and V, can be
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obtained from Eq. (25) and the stresses can be obtained from Eq. (13). Since the
present formulation has no restriction on the depth the theory could be used for
both shallow (long) and deep (short) beams. Sundara Raja Iyengar et al. [8] have
given detailed numerical work for higher order theories for static case.

3.3 Boundary Conditions

The boundary conditions can be expressed in terms of the auxiliary function ¢
or F. As an illustration, the boundary conditions are given for a sixth order
theory of the antisymmetric case.

(i) Hinged End (v = 0, « = 0)
v=0 gives [1 — Zzﬂ thxQ] F=0
u=0 gives «*F = a*F =0.

Combining them we get the necessary conditions as

F = o?F = «*F = 0, (27)
(ii) Clamped End (z =0, v = 0)
aF = o3F =0
[1 — 2L h%ﬂ] F—o. (28)

(iii) Free End (o, = 0, 7,5 = 0)
Of the two conditions any one can be satisfied exactly and the other approxi-
mately. Assuming that o, is satisfied exactly then

&*F = a'F = 0. (29a)

The remaining condition is obtained by satisfying r,, = 0 approximately as
3

[ 7ay dy = 0. (29b)

~n
3.4 Solution of the Differentiol Equation

As the methods of solution of the differential equation for the symmetric and
the anti-symmetric case are identical, the method is explained for the anti-
symmetric case.

Expanding the rignometric terms in Eq. (26) and retaining terms upto %2 the
following differential equation is obtained

[2___(1 0 g — 2 (2 gy a4 Tt g w] F=0. (30)
In the expanded form, this will be

20+ )55 8 2+ meg,, @ T—#gafe\ & | ke &1 4H
[ 3 dart 3¢ b ot T 12 b G| o G o F=0. 31
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For free vibration one can assume
F(x, t) = Fi(x) cos wt, (32)

where o is the circular frequency and Fi(x) is a function of « only. For a beam
with hinged ends, the required boundary conditions will be satisfied if F, is taken
as

Py — j’: 4, sin 22, (33)
=

Substituting Eqgs. (32) and (33) into Eq. (31) we get a fourth degree polynomial in
o from which @ can be obtained. The frequency is expressed in the nondimensional

form as eigenvalue 1 where
A= V—g- L. (34)

In the case of higher order theories, the polynomial in 4 will be correspondingly
of higher degree. From Eq. (25) as a first approximation one obtains

Vo= F. (35)
If in Eqg. (31) the first and last term only are retained one has
Mg & g0 8l p
[ - hax4—{—hGat2]F—0. (36)

Substituting Eq. (35) in Eq. (36) and simplifying we obtain the following familiar
equation of elementary beam theory.

2 g 8 ey
[3 mIe 2 i 2h W} =0 (37)
where 7 is the transverse deflection of the middle plane.

The numerical values of 1 have been computed by the fourth, sixth and eighth
order M.LF. theories. Some of the frequency values are given in Table 1 for
Poisson’s ratio of 0.3. In Table 1 0 is defined as

0~ 2HIA (38)
The frequency parameter £ is defined as
04 oL
ek, (39)

The value of 2 by the elementary theory is #? and is independent of the depth-
span ratio. The values of 2 are also computed by the Timoshenko beam theory
using the shear constant k given by Cowper [4]. Table 2 gives the comparison
between the frequency values computed using the eighth order M.I.F. theory and
Timoshenko beam theory for different values of Poisson’s ratio.

For beams with other boundary conditions, assuming trial values of 4, the
general solution is written for the ordinary differential equation in F,. Substituting
this solution in the expressions for boundary conditions, we get a set of homo-
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geneous simultaneous equations. For non-trivial solution the coefficient deter-
minant should be zero. The value of 1 which satisfies this condition is found. In
Tables 3 to b the first five eigenvalues 4 computed using the fourth and sixth order
M.IL.F. theories are given for beams with other boundary conditions. In these
three tables, the values of 4 are given for two values of » where 7 is defined as

7‘:@.
L

The value of the Poisson’s ratio is 0.3 in all the cases. The eigenvalues computed
using the Timoshenko beam theory and elementary beam theory are also given for
comparison.

In the case of vibration symmetric with respect to the middle plane, for beam
with hinged ends, the frequency parameter 2 is #/6 for a given value of 6. In
otherwords the parameter Q% = £ X 0 is 8 constant and is .

4. Discussion of Results and Conelusion

In the case of hinged beams the nth harmonic of a particular beam of span L,
correspond to the fundamental frequency of a shorter beam of span L/n. Hence
the depth span ratio and the mode number are combined in the single parameter 0
and the non-dimensional frequency parameter are given for different values of 6.
From the values given in Table 1 it can be seen that the frequencies calculated
using the elementary beam theory are always higher and the difference increases
for higher values of 6. From the same table it can be seen that the frequencies
computed using the present approach show convergence as the order is increased.

Table 1. Frequency parameter 2 for beam with hinged ends,
Poisson’s ratio = 0.3

0 MIF IV MIF VI MIF VIIT
0.01 9.8476 9.8502 ) 8502
0.05 9.3633 9.4229 9.4233
0.1 8.2703 8.4202 8.4237
0.5 3.1882 3.3132 3.3336
1.0 1.6957 1.7509 1.7666
2.0 0.8635 0.8863 0.8983
3.0 0.5777 0.5920 0.5950

From Table 2 it is clear that the frequencies depend on the value of the Poisson’s
ratio and the frequency values are in agreement with the Timoshenko beam
theory with the values of k given by Cowper.

From Tables 3 to 5 it is clear that the results by the present theory are in
agreement with Timoshenko beam theory. In the case of beams with both ends
clamped, and one end clamped and the other end hinged, the eigenvalues obtained
by the sixth order M.I.F. theory are slightly higher than those obtained using
Timoshenko beam theory. In the case of beam with one end clamped and the
other end free, the eigenvalues obtained using the sixth order M.L.F. theory are
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lower than those obtained using Timoshenko beam theory. Similar resuits are
also obtained in the case of beams with one end hinged and the other end free.

In the case of vibration symmetric with respect to the middle plane, the
results are in agreement with the usual theory of extensional vibration of rods.

Table 2. Frequency parameter $2 for beam with hinged ends for different values

of Poisson’s rafio

n=0 u=0.3 u = 0.50
MIF VIII  Timoshenko MIF VIII Timoshenko MIF VIII Timoshenko
0.01 9.8531 9.8531 9.8502 9.8499 9.8482 9.8478
0.05 9.4859 9.4859 9.4233 9.4169 9.3822 9.3716
0.1 8.5976 8.6975 8.4237 8.4047 8.3125 8.2820
0.5 3.6066 3.6233 3.3336 3.3029 3.1767 2.1265
1.0 1.9230 1.9612 1.7666 1.7546 1.6703 1.6467
2.0 0.9701 1.0050 0.8983 0.8927 0.8432 0.8354
3.0 0.6571 0.6733 0.5950 0.5971 0.5627 0.5595
Table 3. Frequency parameter A for beam with clamped ends. Poisson’s ratio = 0.3
r Mode Elementary Timoshenko MIF IV MIF VI
theory
1 1.0823 1.0109 0.9852 1.0096
2 2.9833 2.5847 2.5000 2.5897
0.03 3 5.8485 4.6498 4.6282 4.6706
4 9.6679 7.0408 6.9568 7.1129
3 14.4421 9.6461 9.5416 9.7798
0.06 1 2.1645 1.7229 1.7153 1.7277
2 5.9666 3.9203 3.8533 3.9325
3 11.6970 6.5127 6.4924 6.7129
4 19.3358 9.2847 9.2817 9.5583
5 28.8843 12.1740 12.1145 12.5460

Table 4. Frequency parameter A for beam with one end clamped and the other end hinged.
Poisson’s ratio = 0.3

r Mode Elemantary Timoshenko MIF 1V MIF VI
theory

0.03 1 0.7458 0.7161 0.7160 0.7162
2 2.4170 2.1795 2.1792 2.1798
3 5.0428 4.2064 4.2019 4.2148
4 8.6235 6.6099 3.3291 6.6750
5 13.1591 9.2576 9.1895 9.3648

0.08 1 1.4917 1.2906 1.2901 1.2913
2 4.8340 3.5204 3.5198 3.5235
3 10.0856 6.1979 6.1783 6.3246
4 17.2471 9.0796 9.0854 9.3608
5 26.3181 12.0541 12.0766 12.4062




Free Vibration of Rectangular Beams of Arbitrary Depth 259

Table 5. Frequency parameter A for beam with one end clamped and the other end free.
Poisson’s ratio = 0.3

7 Mode Elementary Timoshenko MIF IV MIF VI
theory

0.03 1 0.1701 0.1687 0.1661 0.1635
2 1.0659 1.0081 0.9902 0.9762
3 2.9845 2.6430 2.6298 2.5847
4 5.8484 4.7783 4.6753 4.5361
5 9.6679 7.2526 7.1902 6.9965

0.06 1 0.3402 0.3293 0.3232 0.3190
2 2.1318 1.7596 1.7437 1.7178
3 5.9690 4.1658 4.1468 4.0228
4 11.6969 6.8873 6.8654 6.7428
5 19.3358 9.7659 9.7999 9.5847
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