Zeitschrift für Physik 169, 166-177 (1962)

Aus dem Institut für Neutronenphysik und Reaktortechnik des Kernforschungszentrums Karlsruhe

Zur Bestimmung des D₂O-Gehaltes in schweremWasser nach der Schwimmer-Methode*

Von

KARL KUMMERER

(Eingegangen am 2. April 1962)

For the evaluation of float measurements all individual steps of the calculations are comprised under the expression of "precise float formula". From this simplified approximations can be deduced. Their errors are estimated under little restraining conditions. The rather simple "difference formula" in the range of high D_2O -concentration together with a density scale for pure D_2O gained by interpolation suffice for most practical purposes. This is proved by numerical comparing with the precise formula.

1. Einleitung

Sehr genaue Dichtemessungen an H₂O-D₂O-Mischungen zur Bestimmung des D₂O-Gehaltes werden schon seit langem¹⁻⁷ nach der sog. Schwimmer-Methode (richtiger eigentlich: Schwebekörper-Methode) durchgeführt. Dabei wird die Dichte der gut gereinigten Schwerwasserprobe unbekannter Konzentration durch Temperaturänderung solange variiert, bis sie der Dichte des Schwimmers (Hohlkörper aus Glas) gleich wird. Der anfänglich langsam aufsteigende oder absinkende Schwimmer zeigt durch Erreichen des Schwebezustandes diese Dichtegleichheit an. Die Messungen sind dann am einfachsten und genauesten, wenn die Schwebetemperaturen in der Nähe der Zimmertemperatur, also etwa zwischen 20 und 30° C liegen. Diese Temperaturspanne verleiht einem Schwimmer einen Meßumfang von rund 2 Mol-% D₂O, z. B. den Bereich von 98 bis 100 Mol-% D₂O.

^{*} Herrn Professor Dr. G. HETTNER zum 70. Geburtstag gewidmet.

¹ KIRSHENBAUM, I.: Physical Properties and Analysis of Heavy Water. Nat. Nucl. Energy Series III-4A. New York 1951; dort auch Lit-.Übersicht.

² SAPIRSTEIN, L. A.: J. Lab. Clin. Med. **35**, 793 (1950).

³ CERRAI, E., G. MARCHETTI e M. SILVESTRI: Nuovo Cim. 9, 530 (1952).

⁴ BRIGOLI, B., E. CERRAI and M. SILVESTRI: Energia Nucl. 4, 43 (1957).

⁵ ADORNI, N., B. BRIGOLI and M. SILVESTRI: Energia Nucl. 4, 315 (1957).

⁶ BAERTSCHI, P., u. M. THÜRKAUF: Helv. Chim. Acta 42, 282 (1959).

⁷ SCHATENSTEIN, A. I.: Isotopenanalyse des Wassers. Berlin 1960; dort auch Hinweise auf eine Reihe russischer Arbeiten.

⁸ LONGSWORTH, L. G.: J. Amer. Chem. Soc. 59, 1483 (1937).

Die Auswertung der Messungen erfolgt entweder durch empirische Ermittlung einer Eichkurve mit mehreren Schwerwasserproben bekannter Konzentration oder durch eine Einzeleichung in einem D₂O-Standard und theoretische Berechnungen. Eine von LONGSWORTH⁸ erstmals angegebene Beziehung zwischen dem D2O-Gehalt und der Dichte wurde seither vielfach verwendet^{1,7}. Doch muß hierbei aus dem D₂O-Gehalt des Standards erst die Dichte des Schwimmers und hieraus unter Berücksichtigung der Wärmeausdehnung die Dichte der Probe ermittelt werden. Diese Einzelschritte lassen sich in einem geschlossenen Formalismus, wie er hier dargestellt werden soll, zusammenfassen. Ausgehend von einer neu hergeleiteten strengen "Schwimmerformel", die in ähnlicher, nicht ganz vollständiger Form bereits von den zitierten italienischen Autoren^{3,4,5} angegeben wurde, gelangt man durch Vernachlässigungen zu sehr einfachen, für die Meßpraxis gut brauchbaren Beziehungen. Während die strenge Formel für das ganze Konzentrationsgebiet 0 bis 100% D₂O gultig ist, wird mit zunehmender Vereinfachung der Anwendungsbereich natürlich enger. Die angeführten Fehlerabschätzungen geben hierzu nähere Auskunft. Die Näherungsformeln sind auf die praktisch sehr bedeutsamen Messungen im hohen Konzentrationsbereich (ab 98 Mol-% D₂O) zugeschnitten, könnten aber in ähnlicher Weise auch für niedrige D₂O-Konzentrationen (unter 2 Mol-%) entwickelt werden.

2. Die strenge Schwimmer-Formel

Ihrer Herleitung liegt die gut bestätigte Annahme^{8,9} zugrunde, daß sich das Volumen von $H_2O - D_2O$ -Mischungen additiv aus den einzelnen Volumina zusammensetzt. Mit den Bezeichnungen

- N_1 , N_2 Molanteile an H₂O bzw. D₂O M_1 , M_2 Molekulargewichte von H₂O bzw. D₂O V_1 , V_2 Molvolumina von H₂O bzw. D₂O
- $d_1,\,d_2$ Dichten von reinem H_2O bzw. D_2O

ergibt sich für die Dichte d eines H2O-D2O-Gemisches der Ausdruck

$$d = \frac{N_1 M_1 + N_2 M_2}{N_1 V_1 + N_2 V_2}.$$
 (1)

Die Definitionen

$$\begin{array}{ll} N_{1}=1\,-\,N_{2}\\ V_{1}=M_{1}/d_{1}\,; & V_{2}=M_{2}/d_{2} \end{array}$$

⁹ Swift, E.: J. Amer. Chem. Soc. 61, 198 (1939).

in (1) eingesetzt, führen zu

$$d = d_1 \cdot \frac{1 + N_2 \left(\frac{M_2}{M_1} - 1\right)}{1 + N_2 \left(\frac{M_2}{M_1} d_2 - 1\right)}.$$
 (2)

In (2) seien nun die temperaturabhängigen Dichtewerte d, d_1 und d_2 auf die Schwebetemperatur t des Schwimmers in der unbekannten Probe bezogen. Bei der Eichung des Schwimmers in einem D₂O-Standard mit bekannter D₂O-Konzentration N_2^0 wird die Schwebetemperatur t_0 gefunden. Auf diese bezieht sich der zu (2) analoge Ausdruck

$$d_{0} = d_{1}^{0} \cdot \frac{1 + N_{2}^{0} \left(\frac{M_{2}}{M_{1}} - 1\right)}{1 + N_{2}^{0} \left(\frac{M_{2} d_{1}^{0}}{M_{1} d_{2}^{0}} - 1\right)},$$
(3)

wobei d_0 die Dichte des Standards, d_1^0 und d_2^0 die Dichten von reinem H₂O bzw. D₂O bei der Eichtemperatur t_0 bedeuten.

Die beiden Schwebebedingungen

enthalten die Schwimmerdichten d_S^t und $d_S^{t_0}$ für die Temperaturen t bzw t_0 .

Die Schwimmerdichten und damit nach (4) auch d und d_0 sind durch den linearen Ausdehnungskoeffizienten β des Schwimmermaterials in folgender Weise miteinander verknüpft:

$$\frac{d_S^t}{d_S^{t_0}} = \frac{1+3\beta t_0}{1+3\beta t} = \frac{d}{d_0},$$
(5)

denn Dichte und Volumen des Schwimmers sind zueinander reziprok. Die in (5) enthaltenen einfachen Ansätze für die Volumenausdehnung – wobei β auf 0° C zu beziehen ist, wenn t und t_0 in ° C gemessen werden – sind genügend genau. Wie nämlich weiter unten gezeigt wird, verursacht die Volumänderung des Schwimmers nur eine kleine Korrektion.

Schließlich wird (5) in (2) eingesetzt und nach N_2 , dem D₂O-Gehalt der unbekannten Probe, aufgelöst:

$$N_{2} = \frac{\frac{d_{0}}{d_{1}} - \frac{1 + 3\beta t}{1 + 3\beta t_{0}}}{\left(\frac{M_{2}}{M_{1}} - 1\right)\frac{1 + 3\beta t}{1 + 3\beta t_{0}} - \frac{d_{0}}{d_{1}}\left(\frac{M_{2}}{M_{1}}\frac{d_{1}}{d_{2}} - 1\right)}.$$
 (6)

(6) wird etwas übersichtlicher, wenn man durch den Zähler dividiert:

$$N_{2} = \frac{1}{1 + \frac{M_{2}}{M_{1}} \frac{d_{1}}{d_{2}} \cdot \frac{d_{2}(1 + 3\beta t) - d_{0}(1 + 3\beta t_{0})}{d_{0}(1 + 3\beta t_{0}) - d_{1}(1 + 3\beta t)}}.$$
 (7)

 d_0 ist in beiden Formeln lediglich als Abkürzung für (3) zu betrachten. (6) oder (7) zusammen mit (3) stellt den strengen Ausdruck für die Auswertung einer Schwimmer-Messung dar. Durch die Eichung des Schwimmers sind N_2^0 und t_0 bestimmt, die Messung liefert t. M_1 , M_2 und β sind Materialwerte. d_1 und d_1^0 sowie d_2 und d_2^0 sind die als bekannt vorauszusetzenden Dichten von reinem H₂O bzw. reinem D₂O bei den Temperaturen t und t_0 .

Wenn die Formel (6) bzw. (7) physikalisch und mathematisch einwandfrei sein soll, dann muß sie hinsichtlich der Konzentrationen und Temperaturen symmetrisch sein; d.h. wenn man in (6) — und damit in (3) — anstelle von N_2^0 die Größe N_2 als Eichkonzentration einsetzt und t_0 und t, d_1^0 und d_1 sowie d_2^0 und d_2 vertauscht, muß (6) N_2^0 liefern. Der algebraische Beweis für diese Bedingung ist etwas umständlich und sei hier nur in allgemeiner Weise skizziert. Hierzu wird der Ausdruck (6) als Funktion seiner Variablen geschrieben:

$$N_2 = N_2 \left(N_2^0; t_0, d_1^0, d_2^0; t, d_1, d_2 \right).$$
(8)

Nun werden die Variablen in der oben angeführten Weise vertauscht:

$$N = N \left(N_2 \, ; \, t, \, d_1 \, , \, d_2 \, ; \, t_0 \, , \, d_1^0 \, , \, d_2^0 \right) \,. \tag{9}$$

Wenn jetzt in (9) für N_2 die Beziehung (8) eingeführt wird, vereinfacht sich (9) nach einiger Rechnung zu der Identität

$$N \equiv N_2^0$$

womit die Symmetrie bewiesen ist.

Die strenge Schwimmer-Formel (6) bzw. (7) ist für die praktische Anwendung ziemlich kompliziert. Um den numerischen Rechenaufwand zu meistern, kann man sie für eine elektronische Rechenmaschine programmieren oder durch Vernachlässigungen unter kontrollierenden Fehlerabschätzungen vereinfachen.

3. Näherung durch Vernachlässigung von ß

Da der lineare Ausdehnungskoeffizient β des Schwimmermaterials immer sehr klein sein wird, bietet sich für den entsprechenden Quotienten in (6) eine Reihenentwicklung an:

$$\frac{1+3\beta t}{1+3\beta t_0} = (1+3\beta t) (1-3\beta t_0+\cdots).$$

Der Abbruch nach dem linearen Glied

$$\frac{1+3\beta t}{1+3\beta t_0} = 1+3\beta (t-t_0)$$

liefert, in (6) eingesetzt, eine sehr genaue, aber nur wenig einfachere Näherung:

$$N_{2} = \frac{\frac{d_{0}}{d_{1}} - \{1 + 3\beta(t - t_{0})\}}{\left(\frac{M_{2}}{M_{1}} - 1\right)\{1 + 3\beta(t - t_{0})\} - \frac{d_{0}}{d_{1}}\left(\frac{M_{2}d_{1}}{M_{1}d_{2}} - 1\right)}.$$
 (10)

Sie wurde bereits von CERRAI et al.³ benützt. Wie numerische Vergleichsrechnungen für das Schwimmermaterial Quarzglas zeigen, ergeben sich für N_2 nur völlig unbedeutende Abweichungen in der Größenordnung 10^{-5} Mol-%.

Eine spürbare Vereinfachung ergibt sich, wenn $\beta = 0$ gesetzt wird. Diese hinsichtlich β nullte Näherung ändert (6) und (7) zu

$$N_{2} = \frac{\frac{d_{0}}{d_{1}} - 1}{\left(\frac{M_{2}}{M_{1}} - 1\right) - \frac{d_{0}}{d_{1}}\left(\frac{M_{2}}{M_{1}}\frac{d_{1}}{d_{2}} - 1\right)}$$
(11)

sowie

$$N_2 = \frac{1}{1 + \frac{M_2}{M_1} \frac{d_1}{d_2} \cdot \frac{d_2 - d_0}{d_0 - d_1}}.$$
 (12)

Der hierbei auftretende Fehler F_0 ist gegeben durch die Differenz zwischen (6) und (11) oder, da sich (6) und (10) nur unwesentlich voneinander unterscheiden, durch die Differenz zwischen (10) und (11):

$$F_{0} = \frac{\frac{d_{0}}{d_{1}} - \{1 + 3\beta (t - t_{0})\}}{\left(\frac{M_{2}}{M_{1}} - 1\right)\{1 + 3\beta (t - t_{0}) - \frac{d_{0}}{d_{1}}\left(\frac{M_{2} d_{1}}{M_{1} d_{2}} - 1\right)} - \left\{\frac{\frac{d_{0}}{d_{1}} - 1}{\left(\frac{M_{2}}{M_{1}} - 1\right) - \frac{d_{0}}{d_{1}}\left(\frac{M_{2} d_{1}}{M_{1} d_{2}} - 1\right)}\right\}$$
(13)

Das in den beiden Nennern auftretende Glied

$$\frac{d_0}{d_1} \left(\frac{M_2 \, d_1}{M_1 \, d_2} - 1 \right) \leq \frac{d_2}{d_1} \left(\frac{M_2 \, d_1}{M_1 \, d_2} - 1 \right) = \frac{M_2}{M_1} - \frac{d_2}{d_1}$$

vermindert, wie eine numerische Abschätzung zeigt*, jeden Nenner nur um höchstens 5%, selbst wenn man für die Messungen einen Bereich der Schwebetemperaturen von 10 bis 40° C zuläßt. Es wird deshalb weggelassen und durch den Faktor 1,05 im Zähler ersetzt. Damit wird aus

*
$$\frac{M_2}{M_1} =$$
 1,111717; $\frac{d_2}{d_1} >$ 1,106, s. Anhang I.

(13) nach Ausführung der Subtraktion:

$$F_{0} \leq 1,05 \cdot \frac{\frac{d_{0}}{d_{1}} 3\beta |t - t_{0}|}{\left(\frac{M_{2}}{M_{1}} - 1\right) \{1 - 3\beta |t - t_{0}|\}}.$$
(14)

Die Abschätzung

$$\frac{d_0}{d_1} \leq \frac{d_2}{d_1} < 1,109$$
*

in (14) eingesetzt, führt zu dem Größtfehler:

$$F_{0} < 10.4 \cdot \frac{3\beta |t - t_{0}|}{1 - 3\beta |t - t_{0}|} \approx 31.2 \cdot \beta |t - t_{0}|.$$
⁽¹⁵⁾

Für Quarzglas mit $\beta = 0.45 \cdot 10^{-6}$ /° C und einer Temperaturspanne zwischen Messung und Eichung von $|t - t_0| = 5^{\circ}$ C wird dieser Größtfehler z.B. zu E < 0.007 Mol %

$$F_0 < 0,007 \text{ Mol-}\%$$

Diese Genauigkeit der Formel (11) bzw. (12) ist in fast allen praktischen Fällen ausreichend. Allerdings erhebt sich die Frage, ob nicht für Routinemessungen, z. B. am Schwerwasserkreislauf eines Reaktors, noch weitere Vereinfachungen tragbar sind. Diese Überlegungen führen zur Herleitung der sehr einfachen "Differenzformel".

4. Die Differenzformel für hohe D_2O -Konzentrationen

Wie ihr Name andeutet, gibt sie die Differenz zwischen der D₂O-Konzentration der unbekannten Probe und der Eichkonzentration an:

$$\Delta N = N_2 - N_2^0. \tag{16}$$

Ihre Herleitung geht von der Näherung (12) aus, welche mit einer Abkürzung D geschrieben wird:

$$N_{2} = \frac{1}{1 + \frac{M_{2}}{M_{1}}D},$$

$$D = \frac{d_{1}}{d_{2}} \cdot \frac{d_{2} - d_{0}}{d_{0} - d_{1}}.$$
(17)

wobei

 N^0_2 ist aus der strengen Formel (7) zu gewinnen, indem dort $t\!=\!t_0$ und damit $d_1\!=\!d^0_1$ sowie $d_2\!=\!d^0_2$ gesetzt wird:

$$\begin{bmatrix}
 N_2^0 = \frac{1}{1 + \frac{M_2}{M_1} D_0} \\
 D_0 = \frac{d_1^0}{d_2^0} \frac{d_2^0 - d_0}{d_0 - d_1^0}.
 \end{bmatrix}$$
(18)

mit

* Siehe Anhang I.

KARL KUMMERER:

Die Verbindung von (17) und (18) entsprechend (16) liefert

$$\Delta N = \frac{M_2}{M_1} \cdot N_2^0 \cdot N_2 \left(D_0 - D \right).$$
(19)

Für die Formulierung der Differen
z $D_{\rm 0}-D$ liegt es nahe, folgende immer sehr kleine Größen einzuführen:

Für D erhält man damit aus (17) den Ausdruck:

$$D = \frac{d_1^0 - \delta_1}{d_2^0 - \delta_2} \cdot \frac{d_2^0 - d_0 - \delta_2}{d_0 - d_1^0 + \delta_1}.$$
 (21)

Die einzelnen Faktoren in D werden nun so umgeformt, daß sie sich für Reihenentwicklungen eignen:

$$D = \frac{d_1^0}{d_2^0} \cdot \frac{d_2^0 - d_0}{d_0 - d_1^0} \cdot \frac{\left(1 - \frac{\delta_1}{d_1^0}\right) \left(1 - \frac{\delta_2}{d_2^0 - d_0}\right)}{\left(1 - \frac{\delta_2}{d_2^0}\right) \left(1 + \frac{\delta_1}{d_0 - d_1^0}\right)}.$$
 (22)

Die beiden Klammern im Nenner werden durch Reihenentwicklungen ersetzt und die Differenz $D_{\rm 0}-D$ gebildet:

$$D_{0} - D = \frac{d_{1}^{0} (d_{2}^{0} - d_{0})}{d_{2}^{0} (d_{0} - d_{1}^{0})} \times \left\{ 1 - \left(1 - \frac{\delta_{1}}{d_{1}^{0}}\right) \left(1 - \frac{\delta_{2}}{d_{2}^{0} - d_{0}}\right) \left(1 + \frac{\delta_{2}}{d_{2}^{0}} + \cdots\right) \left(1 - \frac{\delta_{1}}{d_{0} - d_{1}^{0}} + \cdots\right) \right\}.$$

$$(23)$$

Nun wird ausmultipliziert und nach Potenzen von δ_1 und δ_2 geordnet. Es treten für D_0-D folgende Glieder auf:

1. Ordnung:

$$\frac{d_0}{d_2^0(d_0-d_1^0)} \left\{ \frac{d_2^0-d_0}{d_0-d_1^0} \,\delta_1 + \frac{d_1^0}{d_2^0} \,\delta_2 \right\}. \tag{24}$$

2. Ordnung:

$$-\frac{d_0}{d_2^0(d_0-d_1^0)} \left\{ -\frac{d_2^0-d_0}{(d_0-d_1^0)^2} \cdot \delta_1^2 + \frac{d_1^0}{(d_2^0)^2} \cdot \delta_2^2 - \frac{d_0}{d_2^0 d_{(0}-d_1^0)} \delta_1 \delta_2 \right\}.$$
 (25)

3. Ordnung:

$$\frac{d_{0}}{d_{2}^{0}(d_{0}-d_{1}^{0})} \begin{cases} \frac{d_{2}^{0}-d_{0}}{(d_{0}-d_{1}^{0})^{3}} \,\delta_{1}^{3} + \frac{d_{0}}{d_{2}^{0}(d_{0}-d_{1}^{0})^{2}} \,\delta_{1}^{2} \,\delta_{2} \\ - \frac{d_{0}}{(d_{2}^{0})^{2} \,(d_{0}-d_{1}^{0})} \,\delta_{1} \,\delta_{2}^{2} + \frac{d_{1}^{0}}{(d_{2}^{0})^{3}} \,\delta_{2}^{3} \end{cases} \end{cases}.$$
(26)

4. und höhere Ordnung: liefern sicher keinen merklichen Beitrag mehr.

Nun werden alle Glieder ab 2. Ordnung vernachlässigt. Auch das Glied mit δ_1 sei weggelassen, da es bei hohen D₂O-Konzentrationen wegen $d_2^0 - d_0 \ll d_0 - d_1^0$ klein wird gegen das Glied mit δ_2 . Nach dem Einsetzen des so gekürzten Ausdruckes (23) in (19) verbleibt schließlich:

$$\Delta N = \frac{M_2}{M_1} \cdot N_2^0 \cdot N_2 \cdot \frac{d_0 d_1^0}{(d_0 - d_1^0) (d_2^0)^2} \,\delta_2. \tag{27}$$

Außer der Differenz $\delta_2 = d_2^0 - d_2$ sind alle Glieder in (27) nur wenig veränderlich. Sie werden mit Ausnahme von N_2 zu einer Größe H zusammengefaßt, und die Differenzformel erhält mit δ_2 nach (20) die Gestalt:

$$\Delta N = N_2 \cdot H \left(d_2^0 - d_2 \right). \tag{28}$$

Der Ausdruck

$$H = \frac{M_2}{M_1} \cdot N_2^0 \cdot \frac{d_0 d_1^0}{(d_0 - d_1^0) (d_2^0)^2}$$

läßt sich durch Einsetzen von (3) für d_0 vereinfachen zu:

$$H = \frac{d_1^0}{d_2^0 (d_2^0 - d_1^0)} \left\{ 1 + N_2^0 \left(\frac{M_2}{M_1} - 1 \right) \right\}.$$
 (29)

Er hängt nur von der Eichkonzentration N_2^0 und der Eichtemperatur t_0 ab. Die Formel (28) enthält auch auf der rechten Seite die gesuchte Größe N_2 . Man könnte sie als Rekursionsformel verwenden. Doch läßt sie sich ohne wesentliche Vernachlässigungen noch weiter vereinfachen. Bevor dies geschieht, sollen die bis hierher auftretenden Fehler abgeschätzt werden. Dazu seien die wenig einschränkenden Voraussetzungen angenommen:

a)
$$0.98 \le N_2^0$$
, $N_2 \le 1.00$
b) $20^{\circ} C \le t_0$, $t \le 30^{\circ} C$
c) $|t - t_0| \le 2^{\circ} C$.
(30)

a) und b) entsprechen etwa dem Meßumfang eines Schwimmers; c) verlangt, daß Eich- und Meßkonzentration sich nicht um mehr als 0,4 bis 0,5 Mol-% D₂O unterscheiden sollen.

Der Fehler der Ausgangsnäherung (17) beträgt für einen Schwimmer aus Quarzglas nach (15):

$$F_0 < 0,0028 \text{ Mol-}\%$$
 .

Die Vernachlässigung des Gliedes mit δ_1 in (24) verursacht*:

$$F_1 < 0.0121 \text{ Mol-}\%$$
.

^{*} Die Abschätzung von F_1 , F_2 und F_3 ist im Anhang II näher erläutert.

Die Glieder 2. Ordnung nach (25) ergeben maximal:

$$F_2 < 0.0038 \text{ Mol-}\%$$
.

Die Glieder 3. Ordnung liefern einen Beitrag:

$$F_3 < 0,0001 \text{ Mol-}\%$$
.

Eine hier anschließende weitere Vereinfachung setzt in (28) für N_2 den nach (30) passenden Mittelwert

$$N_2 = 0.99 \pm 0.01 \tag{31}$$

ein, was bei $\Delta N \leq 0,48$ Mol-% einen weiteren Fehler

$$F_4 \leq 0,0048 \text{ Mol-}\%$$

Tabelle 1. H in cm^3/g

370	to			
N_2°	20° C	25° C	30° C	
0,98 0,99 0,10	9,348 9,357 9,366	9,322 9,332 9,341	9,304 9,313 9,323	

verursachen kann. Schließlich sei noch die wenig veränderliche Größe H numerisch untersucht*. Sie nimmt für den Bereich (30) die Zahlenwerte nach Tabelle 1 an.

Ein konstanter Mittelwert für H ist demnach:

$$H = 9.335 \pm 0.032 \text{ cm}^3/\text{g}.$$
 (32)

Die maximale Abweichung von diesem Wert bringt als Größtfehler:

$$F_5 < 0,0017 \text{ Mol-}\%$$

Mit den Zahlenwerten (31) und (32) wird aus (28) somit die einfachste Darstellung der Differenzformel, gültig in dem durch (30) gegebenen Bereich:

$$\Delta N = 9,242 \ (d_2^0 - d_2) \,. \tag{33}$$

Da der Zahlenfaktor in (33) die Dimension cm³/g hat, sind die Dichtewerte d_2^0 , d_2 in g/cm³** einzusetzen. ΔN ergibt sich dann in Molanteilen (nicht Mol-%!).

Der abgeschätzte Größtfehler erhält durch Summation von $F_{\rm 0}$ bis $F_{\rm 5}$ den Wert

$$F(\Delta N) < 0.025 \text{ Mol-}\%$$
 .

Die wirklichen Abweichungen von der strengen Formel bleiben weit unter dieser Grenze, wie die den Gültigkeitsbereich (30) teilweise sogar überschreitenden numerischen Beispiele in Tabelle 2 für einen Schwimmer aus Quarzglas zeigen. Die größte Abweichung ist 0,003 Mol-%. Diese

^{*} Dichtewerte im Anhang I.

^{**} Zur Umrechnung: 1 g/ml = 0,999972 g/cm³.

Differenzformel (33) stellt somit ein einfaches und recht genaues Hilfsmittel für die Auswertung von D₂O-Gehaltsmessungen im hohen Konzentrationsbereich dar. Man benötigt lediglich die Dichtewerte von reinem D₂O in Abhängigkeit von der Temperatur. Diese werden zweckmäßigerweise in Form

eines Diagramms oder einer handlichen Tabelle bereitgelegt.

Abschließend sei noch darauf hingewiesen, daß ein höherer Gehalt an den schweren Sauerstoffisotopen O¹⁷ und O¹⁸, als er der natürlichen Zusammensetzung entspricht, die Dichte einer Schwerwasserprobe erhöht und einen entsprechenden zusätzlichen D₂O-Gehalt vortäuscht. Die Konzentrationswerte N_2 und N_2^0 enthalten grundsätzlich auch diesen vorgetäuschten Anteil. Wenn sich die O-

Tabelle 2.	Vergleich	zwischen	der	strengen	Formel
und der Differenzformel					

N ⁰ 2 Mol-%	t₀ °C	t ℃	N ₂ Mol-% nach (6)	$N_2^{\prime\prime} = N_2^0 + \Delta N$ nach (33)	$\begin{array}{c} \text{Abweichung} \\ N_2^{\prime\prime} - N_2^{\prime} \\ \text{Mol-\%} \end{array}$
98	20 20 25 25 30 30	18 22 23 27 28 32	97,755 98,299 97,626 98,421 97,513 98,529	97,757 98,296 97,629 98,418 97,516 98,526	$\begin{array}{r} + \ 0,002 \\ - \ 0,003 \\ + \ 0,003 \\ - \ 0,003 \\ + \ 0,003 \\ - \ 0,003 \end{array}$
99	20 20 25 25 30 30	18 22 23 27 28 32	98,756 99,297 98,627 99,420 98,513 99,528	98,757 99,296 98,629 99,418 98,516 99,526	$\begin{array}{r} + \ 0,001 \\ - \ 0,001 \\ + \ 0,002 \\ - \ 0,002 \\ + \ 0,003 \\ - \ 0,002 \end{array}$
100	20 25 30	18 23 28	99,758 99,627 99,514	99,757 99,629 99,516	-0,001 +0,002 +0,002

Zusammensetzung zwischen Vergleichssubstanz (D_2O -Standard) und Probe unterscheidet (was im Zweifelsfall eine gesonderte Untersuchung erfordert), ist an den Ergebnissen der Auswertung eine diesbezügliche Korrektion anzubringen.

Anhang I: Dichte von reinem H_2O und D_2O im Temperaturbereich 15 bis 40° C

Die Dichte d_1 von reinem $\mathrm{H}_2\mathrm{O}$ erhält man aus der Dichte von natürlichem Wasser d_w aus der Beziehung

$$d_1 = d_w - 0,000016 \,\mathrm{g/cm^3} \star.$$

 d_w in Abhängigkeit von der Temperatur ist sehr genau bekannt¹⁰.

Die Dichte von reinem D_2O wurde mehrmals experimentell ermittelt, u.a. von Chang und Chien¹¹, Wirtz¹², Chang und Tung¹³, Schrader und Wirtz¹⁴ und Schatenstein⁷.

Das Dichteverhältnis

$$d_t^t = d_2 / d_w$$

^{*} Diskussion und Literaturhinweise in¹.

¹⁰ LANDOLT-BÖRNSTEIN, 6. Aufl., Bd. IV, Teil 1, S. 101. 1955.

¹¹ CHANG, T. L., and J. Y. CHIEN, J. Amer. Chem. Soc. 63, 1709 (1941).

¹² WIRTZ, K.: Naturwissenschaften 30, 330 (1942); - Phys. Z. 43, 465 (1942).

¹³ CHANG, T. L., and L. H. TUNG: Nature, Lond. 163, 737 (1949).

¹⁴ SCHRADER, R., u. K. WIRTZ: Z. Naturforsch. 6a, 220 (1951).

hat nach neueren Untersuchungen von KIRSHENBAUM¹ und Isberg u. LUNDBERG¹⁵ mit ziemlicher Sicherheit den Wert

$$d_{25}^{25} =$$
 1,10774

Mit dem schon früher recht genau ermittelten Dichteverlauf^{13,14} läßt sich durch Interpolation mit Hilfe höherer Parabeln für d_t^t und d_2 eine Tabelle für ganze °C berechnen. Wiewohl die Meßunsicherheiten für d_2 in der Größenordnung 10⁻⁵ g/cm³

t °C	$d_t^t = \frac{d_2}{d_w}$	d_2 g/cm ³	d_1 g/cm ³	$\frac{d_2}{d_1}$
15	1,106904	1,105906	0,999082	1,106922
16	1,107003	832	0,998926	1,107021
17	098	741	758	116
18	189	633	579	207
19	277	509	389	295
20	1,107 361	1,105370	0,998188	1,107379
21	422	217	0,997977	460
22	520	050	755	538
23	596	1,104869	523	614
24	669	675	282	687
25	1,107740	1,104468	0,997030	1,107758
26	809	248	0,996769	827
27	876	016	498	894
28	942	1,103772	218	960
29	1,108007	516	0,995929	1,108025
30	1,108070	1,103248	0,995632	1,108088
31	131	1,102969	325	149
32	191	679	010	209
33	249	378	0,994687	267
34	305	066	355	323
35	1,108360	1,101744	0,994015	1,108378
36	413	412	0,993668	431
37	465	070	313	483
38	515	1,100718	0,992950	533
39	563	356	579	581
40	1,108610	1,099983	0,992202	1,108628

Tabelle 3. Dichte von reinem D_2O und reinem H_2O bei natürlicher Zusammensetzung der Sauerstoff-Isotopen

liegen, ist es sinnvoll, bei der Interpolation auch die 6. Stelle nach dem Komma zu berücksichtigen. Denn in der Näherungsformel (33) treten (oftmals sehr kleine) Dichtedifferenzen auf, deren Wert durch einen etwaigen "Niveaufehler" von z. B. $\pm 0,00002$ g/cm³ nicht beeinträchtigt wird.

Tabelle 3 bringt die so ermittelten Werte von d_t^i und d_2 sowie für d_1 und das Dichteverhältnis d_2/d_1 im Bereich von 15 bis 40° C. Ähnliche Tabellen wurden auch von BAERTSCHI und THÜRKAUF⁶ sowie von SCHATENSTEIN⁷ angegeben.

¹⁵ ISBERG, P., u. L. LUNDBERG: Z. Naturforsch. 9a, 472 (1954).

Anhang II: Abschätzung der Fehlergrößen F_1 , F_2 und F_3

Der Anteil mit δ_1 in (24) ergibt, eingesetzt in (19):

$$F_1 = \frac{M_2}{M_1} \cdot N_2^0 \cdot N_2 \cdot \frac{d_0 (d_2^0 - d_0)}{d_2^0 (d_0 - d_1^0)^2} \left| \delta_1 \right|.$$

Für $N_2^0 = 1$ und damit $d_0 = d_2^0$ verschwindet F_1 . Es wird im Rahmen des Bereiches (30) am größten für $N_2^0 = 0.98$ und $t_0 = 30^\circ$ C. Mit den Zahlenwerten für 30° C

$$\begin{aligned} a_0 &= 1,101\,103\,\text{g/cm}^n \\ d_2^0 &= 1,103\,248 \\ d_2^0 - d_0 &= 0,002\,145 \\ d_0 - d_1^0 &= 0,105\,471 \\ |\,\delta_1| &= 0,000\,586 \\ N_2 &\leq 0,984 \end{aligned}$$

und

ergibt sich:

-

$$|F_1| \leq 0,000\,121 = 0,0121\,\text{Mol-}\%$$

Zur Abschätzung der Glieder 2. Ordnung nach (25) werde das kleine, immer negative Glied mit δ_1^2 gegen das positive Glied mit δ_2^2 weggelassen. Mit $d_0 \leq d_2^0$, $\delta_2 < \delta_1$ und N_2^0 , $N_2 \leq 1$ führt dies zu:

$$F_2 < \frac{M_2}{M_1} \cdot \frac{1}{d_0 - d_1^0} \left\{ \frac{d_1^0}{(d_2^0)^2} + \frac{1}{d_0 - d_1^0} \right\} \delta_1^2.$$

Im ungünstigsten Fall wird daraus:

$$F_2 < 0,000\,038 = 0,0038 \,\mathrm{Mol}$$
-%.

Von den Gliedern 3. Ordnung ist in der Klammer von (26) das dem Betrag nach größte:

$$\frac{d_0}{d_2^0(d_0-d_1^0)^2} \,\, \delta_1^2 \, \delta_2 \, .$$

Da insgesamt vier Glieder vorkommen, ist die Abschätzung erlaubt:

$$F_3 < 4 \cdot rac{M_2}{M_1} \cdot \left(rac{|\delta_1|}{d_0 - d_1^0}
ight)^3.$$

Das Maximum tritt für $N_2^0 = 0.98$ und $t_0 = 30^\circ$ C auf und beträgt:

 $F_{\rm 3} <$ 0,000001 = 0,0001 Mol-%.