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Summary. Let F(W) be a Wiener functional defined by F(W) = L(f) where
L,(f) denotes the multiple Wiener-Ito integral of order n of the symmetric
L*([0, 1]") kernel f. We show that a necessary and sufficient condition for
the existence of a continuous extension of F, i.e. the existence of a function
¢ () from the continuous functions on [0, 1] which are zero at zero to R
which is continuous in the supremum norms and for which ¢(W) = F(W)
a.s, is that there exists a multimeasure u(dt,, ..., dt,) on [0, 1]" such that
Sy, ..., t)=pt, 1], @,,1], ..., (t,,1]) ae. Lebesgue on [0, 17"
Recall that a multimeasure y(4,, ..., 4,) is for every fixed i and every fixed
Ajy ooy Ay Aiey, - -+, A, a signed measure in A4; and there exists multi-
measures which are not measures. It is, furthermore, shown that if f(,,

sy ooy tyy=pu((ty, 1], ..., (t,, 1]) then all the traces f®, k < B} of f exist,

each f® induces an n — 2k multimeasure denoted by u®, the following relation
holds

[n/2] k t
L= (=2 ™ Wiy, dty )
k=0 2 k’(n—Zk)f [0,1]7" 2k ! no 2

and each of the integrals in the above expression equals the multiple
Stratonovich or Qgawa type integral of the trace f®, namely

Wy W ai®dey, o dt,_ ) =150 (f®).

o, 1]n—2k

1. Introduction
A. Statement of the Problem

Let K(t;,...,t,) t;€[0,1] be a symmetric n-kernel and assume that
KeL*([0,17"). {W,, 0 <t <1} is the standard Brownian motion on C,([0, 1])
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where C,([0, 17) denotes the class of real valued continuous functions on [0, 1]
which are zero at zero. Let F(W) be the Brownian functional defined by

FW)=1L(K)= | K(t, ..., t,)W(dt,) - W(dr,).
[0, 11

Then F(W) is defined for almost all sampie functions of the Brownian motion and
the question arises whether there exists a function f: C,{[0, 1]) - R which (i) is
continuous on C,([0, 1]) in the supremum norm and (ii) f (W) = F(W) a.s.. Note
that given F(W), F(AW) is not defined since the measures induced by {¥} and
{AW} on C,([0, 1]) are mutually singular and we are free to define F(AW), | 4| =+ 1,
given F(W), in anyway we please. Also note that a continuous extension, if it exists,
is unique since W is dense in C,([0, 1]) in the sense that the Wiener measure of a
neighborhood of a continuous function is non zero (we will express this by saying
that the support of W is C, ([0, 1])).

B. The Casen=1

Let us start with a sufficient condition: suppose that there exists a signed measure g
on [0, 1] with u({0}) = 0. Set K(t) = u((z, 1]), note that K(1) = 0, therefore integ-
rating by parts

L(K)= [ KoOWdy= | WHudr).

[0,1] [0,1]

ForxeC,([0, 1])setf(x) = [ x,u(dt)thenf(x)is continuous and linear. Turning

.. Ion .
to the converse direction: Given K(t)e L*[0, 1], we start by showing that a
continuous extension, if it exists then it must be linear. Let — 1 < a £ 1, and let W*
and W? be independent Brownian motions, then

[ K@d@W? + /1—a2W?) = | K@aW(d) + [ /1 — o2 K() W"(dr) .

[0.1]

Therefore, if a continuous version f(-) exists then

f@We+ /1 —a? WP =af (W) + /1 — 2 f(W?) as.
This holds for W*, W?® however it implies linearity of f(-) on C,[0, 1] since the
support of the Wiener measure is C,([0, 11) and f(-) was assumed to be continu-
ous. Now, if f(-) is linear and continuous then by the Riesz representation theorem
there exists a measure g, with u({0}) = 0 such that

fG)= [ x.u(ds)

10,11
and a straightforward calculation of integration by parts yields

f& = [ s 1D)xds) .

[0,1]
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For n =2, measures on [0, 1]? induce bilinear continuous functionals on
C,([0,17) x C,([0, 11) via

fy)= | x(s)y(t)ulds,dr),

[0,1]?

however it is known that not all multilinear continuous functionals on C,([0, 1])
x -+ x C,([0, 1]) are representable via measures. For the purpose of the con-
struction of multilinear continuous functionals on C, ([0, 1]) x - - - x C,[0, 1])
the natural notion is that of a bimeasure for n = 2 and more generally, that of a
multimeasure for n = 2. A bimeasure u(4,, 4,) is a real valued function on pairs
Ay, A, of Borel measurable sets on R such that u(dt,, A,) is a signed measure in dt,
for every fixed 4, and u(A4,, dt,) is a signed measure in dt, for every fixed A4, .

In the next section we first summarize very briefly some definitions and known
results on multimeasures. For more information and further references cf. [1, 2, 5,
7]. In the remaining part of section 2 we present some specific results which are
needed in the later sections. The characterization of kernels K(t,, . . ., t,) which
induce Wiener functionals possessing a continuous extension will be derived in
section 3. Two problems are considered in section 3, the first is that of the
continuous multilinear extension of functionals of the type defined by equation
(3.1) and the second, the main result, is that of the continuous extension of
functionals F(W) = L(f). Multiple Ogawa and Stratonovich integrals are defined
and discussed in section 4. The relation between these stochastic integrals and the
original one introduced by N. Wiener in [15] is also discussed in this section 4.

The characterization results of section 3 can be extended in several directions.
One generalization is to replace W = {W(z), te[0, 1]} with {W(t), te[0, 11"}
another direction is to replace W with {(W,(t),. . ., W,(1)), te [0, 1]}. Still another
possibility is to formulate a “mixed” case combining theorems 3.1 and 3.2. These
extensions are not pursued since they follow along the same lines as the results
presented in this paper.

In a recent paper [13], H. Sugita introduced the notion of essential continuity
of Wiener functionals and considered the characterization of symmetric kernels K
for which I(K) is essentially continuous. The setup of [13] is an abstract Wiener
space (B, H, u) where B is a real Banach space, H is a real and separable Hilbert
space continuously and densely imbedded in B, u is a Gaussian measure of B. A
Wiener functional F: B — R is defined in [13] to be essentially continuous if there
exists a Banach space B; and a functional F,:B, — R such that: (i) (B,, H, p) is an
abstract Wiener space (i) p(B;) =1 (iii) F{ (W)= F(W) as. g and (iv) F.(*) is
continuous in the B; norm. The notion of essential continuity is intrinsic as it does
not depend on the particular Banach space B, note however, that the space B, on
which F(W) (or I{K)) possesses a continuous extension may depend on F (or K).
The results of the present paper are less intrinsic since we deal with the continuity
on a particular B space (regardless of F(-) or K). Note that continuity in the sense
of the present paper implies essential continuity.
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2. Preliminaries

A. Let (X,,4,), (X,,%,), ..., {Xn, By) be measurable spaces. The notion of a
multimeasure or pseudomeasure is an extension of the notion of a measure and is
defined as follows.

Definition. A mapping u: #, X - - X #y— R is said to be a multimeasure
if for every i, l £i < N and fixed B,, ..., B;_y, B;4,,..., By with B;e%,,
uBy,...,B;_,, F, B;y,,...,By) is a signed measure in the variable Fe%,;
namely, p is the difference of two positive finite measures in F.

In this paper we will consider the case where 4 is the Borel g-field on [0, 1] and
B, =HR,i=1,2,...,N.C([0, 1]) will denote the real valued continuous functions
on [0, 1] and C,([0, 1]) will denote the elements of C([0, 1]) which vanish at zero.
Let {A%, ..., A%} denote a measurable partition of X,.

Definition. Let y be a multimeasure on %, x - -+ x #By. The Fréchet variation
FV¥ of u is defined as

lulppy=sup ) 1 &y By BN (AL, s AR 2.1)
iy,ee, iy =
where ¢;are —1 or 1,1 £i < N and the supremum is over ee{ —1, 1}, and over
all finite partitions of X.

Since u is a multimeasure, it follows that | u|ppv < oo. The class of multi-
measures normed by || - || 7+ will be denoted by F¥ becomes a Banach space under
this norm. A theory of integration with respect to multimeasures follows naturally
along lines similar to those of integration with respect to signed measures. Let
feL®(X,) then

B = | A ) L) K@) uldey, ..., dt, )eFNTF (2.2)
Xy x o x X,

T, gt S 0 fillo o Wkl Nitlippn - (2.3)

Furthermore the integral is independent of the order of integration.

From now on we consider the case where X; = [0, 1] and 4, is the Borel sigma
field on [0, 1]. Let ¥V denote the following collection of measurable functions
on RY:

and

Z gy () gV (t,): Zlay| < o0 and |gi|, =1
(2.4)

V¥ and VY, will denote the subset of I'™ generated by the functions g € C([0, 1)
and ¢¥eC,([0,1]) respectively. We norm ¥ (and VY,) by setting
(| fIly» = inf{Z]a,|} where the infimum is over all representations of f as

f=2 gl g with |gPl. =1 g’eC([0,1]) (and for VI,
k=1

VN:{f(tl,...,tN)z
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g” € C,([0, 1])). Then obviously, {fdu can be extended to fe ¥¥, ue F" and

Iffdel S 1 f v lpller S WS m, Nllpe s
furthermore let fbe a function in V%, then pp(A4,, . . ., Ay_,) belongs to F¥ % and

g lleym=x < NS Tore Nl - 2.5)

Let FY denote the class of N-multimeasures ue F" such that u(4,, ..., Ay)
=0 whenever A4; = {0} for some i, 1 £i < N. Then we have the following
extension of the Riesz representation theorem (Fréchet [4], cf. theorem 4.12 of [1]):

Theorem 2.1. The dual to V7Y, is F); namely, every bounded multilinear functional on
C,([0,1]) x -+ x C,([O0, 1]) can be represented as a multimeasure.

B. Some results régarding multimeasures which will be needed later will be briefly
presented now. We start with the following result on the approximation of
integration of elements in VN,

Proposition 2.2. Let f(t, ..., ty)e V¥, let =, be a sequence of partitions of [0, 1]

such that m,, ., , is a refinement of m,,, and |m,,| = sup {|t;,, — t;|}, with || - 0.
LiETm

Set

o, tw) =F @, 1)

where t™ denotes the partition point nearest to t from below. Then, as m — oo

[ fodu— | fdp. (2.6)
[o, 17¥ o, 11

Proof. Since fe V¥, fhas an expansion

fltrreeont) = 3 b)) - W)

with AP, <1 and Z|o| < oo, with all kA continuous on [0,1] and

ffdul < “ﬂ“FVN X |a;|. Note that f™e N but in generalf""'et VN, Now,
f(tla' L) tN)-_f(t19' . ,t%)

N—1
.Zo{f(tl,...,Jl,t"... (I A (YR P NPT 3
J= .

i

I

N-1
Y fixlte, o ty) s
j=0

0 N
and f.(ty,...,t8) = -21 '21 achP(t) - - B (8- ) [RP(EF) — hP(t)]
i=1j=

'h§i)+1(t}'+ ) 'h%’(tﬁ) .
Therefore | f; ,lty* < 2N Z|a;| and

i=1

Ifﬁ-,ndﬂl§< Z lo]- Suplh"’(t") h§~i’(t,-)|)'llullpv~-
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Note that the right hand side converges to zero as |n| — 0 by the continuity (hence
uniform continuity) of #%(r) and by dominated convergence applied to the sum. This
completes the proof.

By the following result (¢ A s) = min(t, s)e V2,, the proof of lemma 2.3 is
straightforward and therefore omitted.

Lemma 2.3. Assume that

K(ty, . s tw) =t Aty (a1 A L) kw1 -+ -5 EN) 2.7)
where f(ty 1y ..., ty)E VYT, then K(ty, ..., ty)e VY,
There are several possible definitions for the notion of “the trace of order k,

k < [(n/2]” associated with n-kernels (cf. [9, 12, 13]). For the purpose of the present
paper we define (cf. [9]):

Definition. The symmetric kernel K(t,,...,t,) in L*([0,1]") will be said to
possess a multiple trace of order k, k < [n/2] if for all complete orthonormal
sequences on L*([0,1]), (@ = 1, ..., k) {¢f, i = 1} the infinite sum

N N
PR Y j” K(ty, ..., t)@L(t)dl(ts) - - - Phlta— )P (Ea)dty - . . diy

if=1 k=1 [0, 1%k
(2.8)

converges in L2[0, 1]~ 2* as N — oo and moreover the limit is independent of the
choice of the complete orthonormal sequence. The limit will be denoted trace* K
and H" will denote the set of symmetric square integrable kernels possessing traces
for all k < [n/2]. '

Proposition 2.4. Let K(t,, . . ., ty) be a symmetric L? kernel satisfying
K(ty, ..., ty)=p((t, 1], .., tx, 11)
forall (t,, ..., ty)e[0, 1]V, then the traces trace® K, k < [n/2], exist and satisfy

trace* K = f (01 A 05) (01 A Oy )pu(dly, ..., dOy,

[0, 1]12%

(tln 1]7 ey (tN—Zk.a 1]) (29)
Proof. We have

ST f K )L ) Bt ) ey dey
i1=1 w=1][0,17?k 5

cp(dey,dty, oo dty g, digy, (s s 1 o005 (G 1])‘

2
)<

IIA

”.u(’ (t2k+1’ 1]: < (tm I:I)HFV"-Z’c

© 2 0
(Z e ) (o

i~ 1

t

| ¢i(s)ds

g $4()ds
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2
= t and the convergence of this

because for every te [0, 1] we have )
i=1

J 2(s)ds
4]

series is uniform in ¢ due to Dini’s convergence theorem. Consequently, the sum in
(2.8) can be computed as an iterated sum. Now, using Lemma 2.3 we deduce that
the trace® K exists and (2.9) holds.

Let m = m,, be a finite partition of [0,1], n={0=¢,<¢t;, < - - <1, =1}.
Consider the partition of [0, 1] induced by = x =; in particular, consider the
elements d;(n), 0 < j < m — 1 of the partition on the main diagonal of [0, 1]*> where
d;(m) = (¢7,t741] x (¢f, 7 ] and let [d;| denote the Lebesgue area of d;. Then we
have

Proposition 2.5. Let N = 2 and assume that K(t,, t,) is induced by a bimeasure and
that m,, is a sequence of refinements satisfying |n,,| = 0 as m — oo then

lim Zld TG | K, t,)dt,dt, = trace K . (2.10)
m= o FAUTY PR

and K is right continuous.

Remark. For N =z 3 and K(ty, . . ., ty) induced by a symmetric muitimeasure, the
same results hold with respect to any two variables with the other N — 2 variables
fixed.

Proof. Choose for the complete orthonormal sequence on [0, 1] the modified Haar
orthonormal sequence which was constructed in [11]. Then the limit (2.10) follows
by the same arguments as in [11]. Turning to the proof of right continuity, this
property follows from the following Grothendieck inequality which holds for
bimeasures but not for multimeasures with n > 3. This inequality assures that
given a bimeasure u(dt,, dt,), we can find a regular probability measure v on [0, 1]
such that

12
[oj] f@) f(ta)pu(@ey, dt)| < Gllplley - L ||oo'< Of ff(t)v(dt))
,1)2 [0,1]

for all C([0, 1]) functions f;, f, and G is a universal constant ([2, 5]), therefore the
inequality also holds for any functions f;, f, which are measurable and bounded.
Now assume that s, | s and ¢, | t. Then

K(Sm tn) = ﬂ((sn, 1]9 (trv 1]) = j l(sn,l](tl)l(tn,1]([2)1“(dt13 dtZ) )
[0,1]2

and the right continuity of K follows since

|K (s, t) — K(S,, t,)| = _f {1(5,1](t1)1(z,1](t2) = L 1@ ) g, 15(t2) Y u(dty, dt,)

[0,1]2

s L st M g, 1t pldt, dt,)

[0,1)?

+

T ()10 (82) peldty, dty)
[0,1]2

< Gnmm(\/v((s, 5¢1) + +/v((t, r,,])) ~»0asn— oo .
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C. The following combinatorial lemma will be needed in the next section:

Lemma 2.6. For any n =1 the product x, ‘- x, belongs to the subspace of
multinomials of degree n in the variables x,, . . . , x, spanned by (%, + * -+ + a,x,)",
oeR"

Proof. We proceed by induction on n. For n =1 it is obvious. Suppose that the
K

result holds for n, that means, x; -+ - x, = Y. y,(aix; + - - - + aix,)" Then, to get
i=1

a similar expression for x; - - - x,x, , it suffices to write the multinomial y"x as a

linear combination of multinomials of the form (xy + x)***, o real numbers. This is
n+2

possible, because the equation y"x = Y (¥ + x)"*'y; is equivalent to

i=1

+

n+2

if k=
0‘?%‘2 n+1 "

! 0 if k=0,1,2,...,n—1,n+1

i

and if we choose arbitrary numbers 0 < a; < oy < -+ < &, ,, the (n + 2)%-matrix
(@),1<i<n+20Zk=n+ 1,isinvertible, completing the proof of the lemma.

3. The Characterization of Multiple Stochastic Integrals
Possessing a Continuous Extension

The purpose of this section is to present a characterization of multiple stochastic
integrals possessing continuous extensions. Let F(W)= [ (K) be a multiple
stochastic integral of a symmetric kernel K e L2([0, 1]*). Let

GWy, ..., W)= [Oj;] Qty, ..., )W dty) -~ - Wy(dL,) (3.1
where Q is a (not necessarily symmetric) kernel on L*([0, 1]") and the W, are
standard independent Brownian motions. The first result in this section will
characterize the kernels Q for which G has a version which is continuous and
multilinear on C,([0, 1]) x - - - x C,([0, 1]). The second result will characterize
the symmetric kernels K for which F has a version which is continuous on
C,([0, 1]). Returning to the continuous extensions of F and G, as already men-
tioned earlier, if a continuous extension to F or G exists then it is unique, this is a
direct consequence of the fact that W is dense in C ([0, 1]) and (Wy, ..., W,) is
dense in C,([0,1]) x - - - x C,([0,1]). Assume that n=2 and Kf(t;,t;)
= Q(t,,t,) = 1;then F(W) = W?(1) — 1 and G(W,, W,) = W,(1)- W,(1) and con-
sequently, in general, F(W) + G(W, . .., W), cf. the concluding remark following
proposition 4.2 regarding the relationship between these two functionals.

Theorem 3.1. Let G be as defined above, then the following are equivalent. (a) G
possesses an extension on C,([0, 17} x + -+ x C,([0, 1]) which is continuous and
multilinear.
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(b) There exists a multimeasure u on [0, 11" satisfying ueFy, WA, ..., 4,)=0
whenever for some i, A; = {0} and

Q(t15 R tn) = H((tla 1]a v (tna 1])
almost everywhere with respect to the Lebesgue measure on [0, 1"

Proof. Assume that G possesses a continuous version and denote by ¢ the version
of the random variable G on C,([0, 1]} x --- x C,([0, 1]) given by the continu-
ous extension. By the generalized Riesz-Frechet representation theorem (Theorem
2.1), there exists a multimeasure p on [0, 11" belonging to F such that

¢(W19 AR Wn) = [Ojl]" Wl(tl) e I/Vn(tn).u(dtla LRI ] dtn) L] (32)

forall Wi, ..., W,in C,([0, 1]). In order to check the equality (3.1) it suffices to
show that

= j :u((tla 1]9 A | (tm 1])Wl(dt1) e l'/Vn(dtn) a.s. (33)
[0, 1]"

Let m, be a sequence of subdivisions of [0, 1] such thatlim |z,| =0and %, isa

refinement of &, for all m. We denote by W/ the piecewise linear approximation of
the Brownian motion W, defined by

fom ti-
win() = Z (tj—1) + _2_1 (Wilt;) — Wit ) g, e0® . (3.4)
= J ji—1
where 7, = {0=1t, < - <, =1}
The independence of the Brownian motions W, 1 < i < nimplies that the sequence

‘[ :u((tla 1]9 s ((tn’ IJ)W?m(dtl) e W:m(dtn)
[0, 1]
converges in probability as m tends to infinity to the right hand side of (3.3). On the
other hand, for every m we can apply the integration by parts formula on each
coordinate, obtaining by iteration that (3.4) is equal to

[ Wity - Wirt)pdey, . .., dt,) (3.5)
[0, 1"

Finally, using the properties of multimeasures we deduce that (3.5) converges to
(3.2) and therefore to G as m tends to infinity. Conversely, assuming that (3.3) holds,
(3.2) follows by the same arguments as before and consequently G possesses a

multilinear continuous extension which completes the proof.
As an example, consider the case n = 2, Q(t,, t,) = 1(¢; < t,) (cf. p. 27 of [14]
and remark 4 in [13]), in this case G(W,, W,) = j W, (t,)dW,(t,). Since in this

case @ is not induced by a bimeasure [3], it follows that G(W,, W,) does not
possess a continuous extension.

Theorem 3.2. Let F = I,(K) be as defined at the beginning of this section, then the
following are equivalent. (a) F possesses a continuous extension on C,([0, 1]).
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(b) There exists a symmetric multimeasure p on [0, 11" satisfying pekFr,
w(Ay, ..., A,) whenever for some i, A; = {0} and u induces K namely

K(tla et tn) = :u((tl, 1]> sy (tm 1]) . (36)

Proof. (i) We prove first that (a) implies that for the given kernel K,

G= [ K(ty,...,t,)Widt,) - W,ds,)
[0,
possesses a continuous, symmetric multilinear extension on C,([0, 1]} x - -
x C,([0, 1]). Denote by f the continuous version of F given by condition (a). To
illustrate the idea of the proof consider first the case n = 2, and define

MW\ (W= W,
d(Wy, Wz)-f( NE > f( NG ) (3.7

for Wy, W,eC,([0, 1]). This functional ¢ is a version of G= | K(,

[0,1]

t,) Wi(dt,) Wy(dt,) because ¢(W,, W,) is equal, almost surely, to

[ K@ Z2)<W1(dt1) + Wz(dtl))<Wl(dz2) + Wz(dzz)) B

[0, 112 V2 V2
wi(dt,) — Wz(dt1)> < Wi (dty) — Wz(dtz))
- K 1s L2 .
[o,ju2 ot )< J2 V2

This functional ¢ is continuous multilinear and symmetric. The multilinear pro-
perty is proved as in the case n = 1 (see sect. 1.B). That means that the fact that the
support of the Wiener measure is C,([0, 1]) implies that

W + /1 — a2 W, W) = ap(W§, Wy) + /1 — a2p (W, W) (3.8)

for any —1 < « < 1. Then, taking into account that ¢ is continuous we deduce
from (3.8) that ¢ is linear in the first coordinate. The symmetry of ¢ follows from
the property f(W) = f( — W) for all We C,([0, 11), which holds again using the
continuity of fand the support property of the Wiener measure. Hence (b) holds
for n = 2.

The extension of this argument to an arbitrary » is not straightforward. We
have to express the product x; - - - x,, as a linear combination of polynomials of the
type (o xy + -+ + a,x,)", where a = (o, . . ., «,) 1s a vector of norm one. This
can be done by means of Lemma 2.6. More precisely, by Lemma 2.6, we can write

kg
Xp o x, =y Alefxy + o+ okx,), (3.9)
k=1
where ,eRand |o¢f| = L forallk=1,...,k,.

Foranyk=1,...,k,, y* =i W, + -+ + of W, is again a Brownian motion
and we denote by I<(K) the multiple stochastic integral of the kernel K with
respect to y*. A version of this multiple stochastic integral is provided by f(y*).
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Then we have )
G= j K(tla L) tn) Wl(dtl) e VVn(dtn) = Z j'kIrJ:k(I<)
k=1

[0,1]"

ko
= Z wfCEW, + - + kW), as.
k=1

ko
Therefore, ¢(W,, ..., W)=Y Af@W, + - + «W,) is a continuous ver-
k=1

sion of G. The symmetry and the multilinear property of this function ¢ is proved
as in the case n = 2.
(i) By the result of part (i) and Theorem (3.1) the existence of a continuous version
implies (3.6). Turning to the proof that (3.6) implies (a), note first that the kernel K
given by (3.6) is measurable and bounded by the constant | pt| py». Thus we can
define the random variable F = I,(K). We want to show that F has a continuous
version on C,([0, 1]). We will prove this property by induction on n. We know that
it is true for n = 1. Assume that it holds up ton — 1.
We claim that
[n/2]
j W(tl) U W({n).u(dtls vt d{:n) = 2 an,kIn—Zk(tracekK) » (310)
[0, 1" k=0
n!
(n — 2k)\KI2%
(see Lemma 2.3) the function (£; A £,) - (tzx— 1 A ty) belongs to ¥2* and by (2.5)

[ty Aty) e (tge—1 A ta)pldty, . .., dty, ) defines a (n — 2k)-dimensional
[0’ 1]2k
symmetric multimeasure belonging to F!~ 2% Therefore, by the induction hypoth-

esis all terms in the right hand side of (3.10) with k > 0 possess continuous versions
and, consequently, from (3.10) we deduce that I,(K) possesses a continuous version.

In order to show (3.10) consider the Wiener-Chaos expansion of the random
variable W, -+ - W, :

where «, , = and trace® K is given by expression (2.9). We recall that

[n/21

.= Z 1 z (tory A tozy) " Uoae—1) A Lozn)
k=0 M. sea,

.I”_Zk(l[o; t¢(2k+l)]® T ® l[oat ) ’ (311)

where o, denotes the collection of all permutations of the first n integers. The
expression (3.11) can be proved by induction on #n, using the product formula for
multiple stochastic integrals. Notice that every term of the form

an,k

W, - W,

c(n)]

(o) A toz) " Wozk—1y A toaiy) Ta— 2k, 1, 1 ® - @1y 9)

belongs to V7, almost surely. Indeed, assuming ¢ = I;, in order to simplify the
notation, this is due to Lemma 2.3 and the fact that the multiple stochastic integral
Loy, 1® - ® 1 ,7) can be written as

n

Liak- 1o, e @ " ® o, e )Wiltan s 1) + sz: (takv1 A L))
ji= +2

'In—zzc—z(l[o,tzk”]@ T ® i[o,zj]® T ® 1[0.:,,]) >

so we can use an induction argument.
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Finally, note that the following Fubini type relation

I (ty Aty) (tam g A oy 2i(Ljo, 10y 1 ® 77 ® Iy, dueldly, - . ., dt,)

fo, 1]»

= n—-2k< f (ty Atg) (oo g At duldey, .o digy), (Sapegs 100 (Sps 1]),
[0’1]21(
(3.12)

holds (since the function (fy, 44, - - -5 L= Lo (b0 e, n® - @ 1pp 4,y can be
approximated by step functions and in this way the order of the multiple Wiener
integration and the integration with respect to the multimeasure u may be
interchanged). Consequently (3.10) follows from (3.11) by integrating both sides of
the equality with respect to u, proposition 2.4 and (3.12). This completes the proof
of the theorem.

4. Multiple Ogawa and Skorohod Integrals

Let K(t,, . . ., t,) be a symmetric L*([0, 1]") kernel, following [10] we can define a
multiple Ogawa integral as follows. Let {e;, i = 1} be a complete orthonormal
system on L*([0, 1]). For any multi-index r = (r{, . . . , 1)) set

K,= | K(ty,....t,)e,t). .. (t)dt,, ..., dt,.

N (S

Definition. We will say that K is Ogawa integrable if the series

> K{(j e,l(s)dWs) e (jl' e,n(s)dWs)

7| EN o

converges in L? to a limit and the limit does not depend on the particular complete
orthonormal system. The limit will be called the multiple Ogawa integral and will

(4]
be denoted 4"K.

It is easily verified that every kernel K in H" is Ogawa integrable and
furthermore, the following Hu-Meyer formula [8] holds
0 [n/2]
'K =Y o, I,y (trace*K) , (4.1)
k=0
where a,, = n!/(n — 2k)!k!2* Note that in the particular case of a kernel K
associated with a multimeasure u, K € H%. by Proposition 2.4 and from (3.10) and
(4.1) it follows that

[0
FK = | W) Wedt, . .., d.,) . 4.2)
[0, 11"
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Moreover, using the inverse formula to (4.1) (cf. [87]) we obtain

[n/2] o
L(K)= kzo (— 1o, 0"~ **(trace* K)

[n/2]
= kZO (— o, j Wity) - Wty )i (trs o tem ) 4.3)

[0, 1]n~ 2k

where 4" is the (n — 2k)-dimensional multimeasure defined by

H(As - A ) :[0 !}Zk Oy A6 (Ogk—y A O )pu(dOy, ..., dOy, Ay, Ap_ )
The Hu-Meyer formulas ((4.1) and the first line of (4.3)) were introduced in [8] on a
somewhat formal basis. The results presented here give a justification to these
formulas. For other justifications cf. [9, 12, 13].

The multiple Stratonovich integral can be introduced by generalizing the one-
dimensional case, as follows. Let n = {0 = t; < - - - <t,, = 1} be a finite partition
of [0, 1] and consider the piecewise linear approximation of the Wiener process
given by (3.4). Set 4, = (t;, t;., 1, W(4;,) = W,,,, — W,,and |4;| = t;,, — t;. Define
for any finite set of indexes iy, ..., i,€{1,2,..., m}, and for a given symmetric
kernel K e L2([0, 17",

1
K, ...=

g, = K(ty,...,t,)de, ---dt,.
i |Ai1|"‘|Ain\A‘_‘x.‘.§ ! i

C x4,
Set

SH(K) = . Z Kil---i,, W(Ail) e W(Ai,.)

= | Kty,...,t)Wr - Wrdt, -+ dt,,
0,11
where WT denotes the derivative of W[ with respect to ¢, which exists except for a
finite set of points.

Definition. We will say that K is Stratonovich integrable if the limit of the sums
S.(K) exists in L2(Q) as |n| tends to zero. In that case, this limit will be called the
multiple Stratonovich integral of K, and will be denoted by I,° K.

Notice that for n = 1 any square integrable kernel is Stratonovich integrable
and its integral coincides with the Wiener integral. For n > 1, the following result
(Sole-Utzet, [12]) provides a necessary and sufficient condition for the existence of
the Stratonovich integral.

Proposition 4.1 (Sole-Utzet, [12]): Let K be a symmetric square integrable kernel in
[0, 171" Then K is Stratonovich integrable provided that for any 1 £k < [g} the
Sollowing limit exists in L*([0, 11"~ 2*):

1 1

B(K) = lim

Iml 0 i, ..., ik=1|Ai1|'”|Aik|A?‘xA,-22x-~-><Azzk

K(ty, ..., ty, )dty - dty 4.4)
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In this case, the Hu-Meyer formula becomes:

[n/2]
L,°K = kZO Lt — 21 (Bi(K)) -

The relation between the Ogawa and Stratonovich multiple integrals is given by
the following result.

Proposition 4.2. If K belongs to H" then, in addition to being Ogawa integrable, K is
0
also Stratonovich integrable, B,(K) = trace* K and I,° K = 6"K where I, ° K denotes

o
the multiple Stratonovich integral and §"K denotes the multiple Ogawa integral.

Remark. Let G(W,, ..., W,) and F(W) be as in the statements of Theorems 3.1
and 3.2 respectively, then by (3.3), (3.10) and Proposition 2.2 it follows that

(]
G(W, ..., W)=45§K = I,°K + F(W) (since obviously F(W) = [,(K)).

Proof. By substituting in equation (2.8) for the complete orthonormal system on
[0, 1] the modified Haar orthonormal sequence which was constructed in [11], we

can show that the limits (4.4) exist for all k < [g], and f,(K) = trace* K. Then

from Proposition 4.1 and equation (4.1) it follows that K is Stratonovich integrable
and the multiple Stratonovich integral I,°K coincides with the Ogawa-type

o
integral 6"K

o
With the three multiple integrals, I,(K), I, ° K and §"K considered till now it is,

of course, natural to ask which, if any, is the multiple integral which was introduced
by N. Wiener in [15]? The discussion of the multiple integral in [15] takes place
between the middle of page 917 till the top of page 919. Changing a little the
notation of [15], the starting point is a special step function f(t,, . . . , t,), t;€ [0, 1],
“taking only a finite set of finite values, each over a set of values ¢y, . . . , £,, which is
a product set of measurable sets in each variable t,”, namely

f(tl’ tery Z ck(pl t (Pﬁ(tn)

where the @¥(t;) are indicator functions of measurable sets. From the lines between
equations (77) and (78) it seems quite obvious that the definition of N. Wiener for
the multiple integral in this case was

Y cf oHOdW,e - jqo )W,
Q

Next, (equations (80), (81) of [15]), f (¢, . .., t,) is assumed to be a measurable
step-function satistying

i S A £, if,-z(t)dt <Ai=1....n. @45
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Finally (equations (82)—(87)) the multiple integral is extended to measurable
kernels f satisfying (4.5) without being a step function. It follows therefore from [15]
and also from Lecture 3 of [16] that the multiple integral drafted by N. Wiener is

o
“In spirit” near to the 6" integral.
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