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Summary.  Let F ( W )  be a Wiener functional defined by F ( W )  = In( f )  where 
I , ( f )  denotes the multiple Wiener-I to integral of  order n of the symmetric 
L2([0, 1]") kernel f We show that  a necessary and sufficient condit ion for 
the existence of a cont inuous extension of F, i.e. the existence of  a function 
q~(.) from the cont inuous functions on [0, 1] which are zero at zero to 
which is cont inuous in the supremum norms and for which ~b(W)= F(W)  
a.s, is that  there exists a mult imeasure #(dr1 . . . . .  dtn) on [0, 1] n such that  
f ( t l  . . . . .  t n ) = # ( ( q , 1 ] ,  ( t2,1] . . . .  , (tn, 1]) a.e. Lebesgue on [0 ,1]  n. 
Recall that  a mult imeasure #(A t . . . .  , An) is for every fixed i and every fixed 
Ag . . . . .  A i - 1 ,  Ai+ 1 . . . . .  A,  a signed measure in Ag and there exists multi- 
measures which are not  measures. It is, furthermore, shown that  if f ( t  1, 

of oxist t2, . . . ,  t,) = #(( t l ,  1] . . . . .  (t., 1]) then all the t r a c e s j  , = 

e a c h f  ~k) induces an n - 2k mult imeasure denoted by/~(k), the following relation 
holds 

. . . . .  

I , ( f )  = k=O ~ -- k! (n - 2k)I to, 11--2, "- 

and each of the integrals in the above expression equals the multiple 
Stratonovich or Ogawa  type integral of the trace f~k), namely 

W t ~  " " " W t .  = ~ # ( k ) ( d t l  . . . . .  d t ._  2k) = 11._ 2k ~ ( f t k ) )  . 
[0, 1]"- 2k 

1. Introduction 

A. Statement o f  the Problem 

Let K(t  1 . . . . .  t,) t i~E0,1]  be a symmetric n-kernel and assume that  
K ~ L 2 ( [ 0 ,  l]n). {Wt,  0 <_ t <_ 1} is the s tandard Brownian mot ion  on Cn([0, 1]) 
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where Co([O, 1]) denotes the class of real valued continuous functions on [0, 1] 
which are zero at zero. Let F(W) be the Brownian functional defined by 

F ( W ) =  I , ( K ) =  ~ K( t~ ,  . . . , t , ) W ( d t ~ )  . , . W ( d t , ) .  
[0, 1] ~ 

Then F(W) is defined for almost all sample functions of the Brownian motion and 
the question arises whether there exists a function f: Co(J0, 1 1 )~  ~ which (i) is 
continuous on Co(J0, 1]) in the supremum norm and (ii)f(W) -- F ( W )  a.s.. Note 
that given F ( W ) ,  F(2W) is not defined since the measures induced by {W} and 
{2W} on (7o([0, 11) are mutually singular and we are free to define F( i tW) ,  [2[ 4: 1, 
given F(W), in anyway we please. Also note that a continuous extension, if it exists, 
is unique since W is dense in Co([0, 11) in the sense that the Wiener measure of a 
neighborhood of a continuous function is non zero (we will express this by saying 
that the support of W is Co([0, 11)). 

B. The Case n = 1 

Let us start with a sufficient condition: suppose that there exists a signed measure # 
on [0, 11 with p((0}) = 0. Set K(t )  = #((t, 1]), note that K(1) = 0, therefore integ- 
rating by parts 

I I ( K ) =  f K ( t ) W ( d t ) =  ~ W(t) l~(dt) .  
[0, 1] [o, 1] 

For x c Co(J0, 11) serf(x) = ~ x~#(dt) thenf(x) is continuous and linear. Turning 
[o, 11 

to the converse direction: Given K ( t ) ~ L 2 [ O ,  1], we start by showing that a 
continuous extension, if it exists then it must be linear. Let - 1 _< a _< 1, and let W" 
and W b be independent Brownian motions, then 

K ( t ) d ( ~ W ~  + x / 1  - ~2 W b) ~- ~ K ( t ) a W a ( d t )  + ~ x / 1  _ ~2 K ( t ) W b ( d t )  . 
[o, 1] 

Therefore, if a continuous version f ( . )  exists then 

f( w a + - w b )  =  f(w o) + -  2f(wb) a.s. 

This holds for W a, W b however it implies linearity o f f ( ' )  on c o l e ,  11 since the 
support of the Wiener measure is Co(J0, I1) and f ( , )  was assumed to be continu- 
ous. Now, if f ( .  ) is linear and continuous then by the Riesz representation theorem 
there exists a measure #, with/~({0}) = 0 such that 

f ( x ) =  j" xA~(ds) 
[0 ,1]  

and a straightforward calculation of integration by parts yields 

f ( x ) =  S I~((s, 1 ] ) x ( d s ) .  
[0, 11 
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For n = 2, measures on [0, 1] 2 induce bilinear continuous 
Co(J0, 1]) x Co([-0, 1]) via 
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functionals on 

f ( x , y ) =  ~ x(s)y(t)p(ds, dt), 
[0, 112 

however it is known that not all multilinear continuous functionals on Co([0, 1]) 
x �9 �9 �9 x Co([0, 1]) are representable via measures. For the purpose of the con- 
struction of multilinear continuous functionals on Co ([0, 1]) x . . .  x Co(J0, 1]) 
the natural notion is that of a bimeasure for n = 2 and more generally, that of a 
multimeasure for n > 2. A bimeasure p(A1, A2) is a real valued function on pairs 
A1, A 2 of Borel measurable sets on R such that p(dt 1, Az) is a signed measure in dt 1 
for every fixed A2 and I~(A1, dt2) is a signed measure in dr2 for every fixed A1. 

In the next section we first summarize very briefly some definitions and known 
results on multimeasures. For  more information and further references cf. [1, 2, 5, 
7]. In the remaining part of section 2 we present some specific results which are 
needed in the later sections. The characterization of kernels K ( t l , . . . ,  t,) which 
induce Wiener functionals possessing a continuous extension will be derived in 
section 3. Two problems are considered in section 3, the first is that of the 
continuous multilinear extension of functionals of the type defined by equation 
(3.1) and the second, the main result, is that of the continuous extension of 
functionals F(W) = I,( f) .  Multiple Ogawa and Stratonovich integrals are defined 
and discussed in section 4. The relation between these stochastic integrals and the 
original one introduced by N. Wiener in [-15] is also discussed in this section 4. 

The characterization results of section 3 can be extended in several directions. 
One generalization is to replace W =  {W(t), tel,0, 1]} with {W(_t), _tEl-0, 1]"} 
another direction is to replace Wwith {(W1 ( t ) , . . .  , Wd(t)), t ~ [0, 1] }. Still another 
possibility is to formulate a "mixed" case combining theorems 3.1 and 3.2. These 
extensions are not pursued since they follow along the same lines as the results 
presented in this paper. 

In a recent paper [13], H. Sugita introduced the notion of essential continuity 
of Wiener functionals and considered the characterization of symmetric kernels K 
for which I (K)  is essentially continuous. The setup of [13] is an abstract Wiener 
space (B,/4, p) where B is a real Banach space, H is a real and separable Hilbert 
space continuously and densely imbedded in B, # is a Gaussian measure of B. A 
Wiener functional F: B --+ ~ is defined in [131 to be essentially continuous if there 
exists a Banach space B1 and a functional FI:BI ~ R such that: (i) (B1, H, #) is an 
abstract Wiener space (ii) p (B1)=  1 (iii) F I ( W ) =  F(W) a.s. /~ and (iv) E l ( ' )  is 
continuous in the B 1 norm. The notion of essential continuity is intrinsic as it does 
not depend on the particular Banach space B, note however, that the space B1 on 
which F ( W )  (or I(K)) possesses a continuous extension may depend on F (or K). 
The results of the present paper are less intrinsic since we deal with the continuity 
on a particular B space (regardless of F(.  ) or K). Note that continuity in the sense 
of the present paper implies essential continuity. 
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2. Preliminaries 

A, Let (X, ,  ~ ) ,  (X2, g 2 ) , .  �9 �9 (XN, ~JN) be measurable  spaces. The not ion of a 
mul t imeasure  or  pseudomeasure  is an extension of the not ion of a measure  and is 
defined as follows. 

Definition. A mapp ing  #: ~ 1  X " ' '  X ~ N  "-+ ~ is said to be a mul t imeasure  
if for every i, 1-< i__<_ N and fixed B , , . . . ,  Bi_ 1, Bi+l  . . . . .  BN with B j s ~ j ,  
# ( B 1 , . . . ,  Bi-1 ,  F, B i + I , . . . , B N )  is a signed measure  in the variable F s ~ i ;  
namely, # is the difference of two positive finite measures  in F. 

In this paper  we will consider the case where N is the Borel a-field on [0, 1] and  
~ = 9~, i = 1, 2 . . . . .  N. C([0,  1]) will denote  the real valued cont inuous  functions 
on [0, 1] and Co(J0, 1]) will denote  the elements of  C([0, 1]) which vanish at zero. 
Let  {Akl . . . . .  A~t } denote  a measurable  part i t ion of Xk. 

Definition. Let # be a mul t imeasure  on ~ x . . .  x 9~ N. The Fr6chet var ia t ion 
F V N of # is defined as 

M 

1] # II FV N = sup ~ % "ei~" . . . .  ei,~#(A,~ . . . .  , A~)  (2.1) 
i ~ , . . . , i / v =  1 

where ei are - 1 or 1, 1 < i < N and the sup remu m is over  e e  { - 1, 1}n, and over  
all finite part i t ions of  Xk. 

Since # is a mult imeasure,  it follows that  II#llvv ~ < oe. The  class of multi-  
measures  normed  by I['Jlvv ~ will be denoted by F N becomes a Banach  space under  
this norm. A theory of integrat ion with respect to mul t imeasures  follows natural ly  
along lines similar to those of integrat ion with respect to signed measures.  Let 
f e L ~ ( X 1 )  then 

#A ..... A = J" f l ( t l ) . f2( t2)  . . . . .  f k ( t k ) # ( d q , . . .  , d tk , . )EF N-k (2.2) 
X1 x .." x XR 

and 

/l#m ..... f~lIFv ~-x <= Ilf ,  II~ �9 [If~Jl~" II/~l/fv~ �9 (2.3) 

Fur the rmore  the integral is independent  of the order  of integration. 
F r o m  now on we consider the case where Xi = [0, 1] and ~ i  is the Borel s igma 

field on [0, 1]. Let V N denote the following collection of measurable  functions 
on RN: 

v N =  { f ( q , . . . ,  tN)= g=~ akg(k~)(tl) . . . . .  g(km(t,):Zlak[ < 09 and [[g~J'llo~ _-< 1 } .  

(2.4) 

V~ and V~o will denote  the subset of V N generated by the functions gg j) ~ C([0,  1]) 
and ggJ)~Co([O, 1]) respectively. We no rm V N (and Vg.o) by setting 
I I f l IvN=inf{Elakl}  where the inf imum is over  all representat ions of  f as 

f =  ~ akg(k 1) " " " g(k u) with Ilg(k~)l[~o < 1, g(ki)Ec([o, 1]) (and for V u = c , o ~  

k = l  
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g(k j) ~ Co ( [0, ! ]))" Then obviously, ~f d# can be extended to f e  V N, # ~ F N and 

I~fd#[  < I l f l l v ~ "  II/~]IF~ < Hfllv~o" I I# l lv~  ; 

furthermore l e t f be  a function in V k, then #y(A~ . . . . .  A N - k )  belongs to F N - k  and 

I I~ts l lvv~-~ < I l f l l v . "  II~IIF~ - (2 .5)  

Let Fo ~ denote the class of N-multimeasures # ~ F N such that # ( A ~ , . . . ,  AN) 
= 0 whenever A~ = {0} for some i, 1 _<i<  N. Then we have the following 
extension of the Riesz representation theorem (Fr6chet [4], cf. theorem 4.12 of [ 1] ): 

Theorem 2.1. The dual to V N is FNo ; namely,  every  bounded mult i l inear func t iona l  on r 

Co([0, 1]) • " " • Co([0, 1]) can be represented as a mult imeasure.  

B. Some results regarding multimeasures which will be needed later will be briefly 
presented now. We start with the following result on the approximation of 
integration of elements in Vff. 

P r o p o s i t i o n  2.2. L e t  f ( t l  . . . . .  tN) ~ V~,  let n~ be a sequence o f  pcirtitions o f  [0, 1] 
such that  rim+ 1 is a ref inement  o f  gin, and In,,] = sup {]tj+ 1 - tj]}, with ]n~]--*0. 

t j ~ r n  
Set  

f ~ ' ( t l  . . . .  , tn) = f (t'~ ~, . . . .  t~ ~) 

where  t ~" denotes  the part i t ion point  nearest  to t f r o m  below. Then ,  as m ~ 

S f ~ " d # - - *  ~ f d # .  (2.6) 
[0, 1] N [0, 1] N 

Proof.  Since f s  Vff, f has an expansion 

f ( t l  . . . . .  tN) = ~ c~,h~')(tO. . . h~)(tN) 
i = l  

with IIh}~ 1 and Elcq[< oo, with all h} i) continuous on [0,1] and 
Lffd ~1 =< II ~ lily N" :~ 1~1. Note that f~m e V N but in general ffm ~ Vff. Now, 

f ( t l ,  . . . , tN) --  f ( t~  . . . .  , t } )  

N - 1  

= 2 { f ( t l  . . . .  , t j_  1, t~ . . . . .  t ~ ) - f ( t  I . . . .  , t j ,  ty+ 1 , . . .  t~v)} 
j=o 
N - 1  

=: F_, f~,,,(t, . . . .  , t , ,), 
j = O  

N 
and f j ,=(t, . . . .  , tN )=  ~ ~ o:ihiO(t,) . ' '  h}i) l ( t  j_ l ) [h }O( t~) -  h}i)(tj)] . 

i = l j = 1  

. h ( i )  {t~r "~ . .  
" j + l ~ j + l }  "hg)( t~) .  

Therefore It fj,~ I1 v N < 2N Z {ai[ and 
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Note that the right hand side converges to zero as 17c1 ~ 0 by the continuity (hence 
uniform continuity) of h}(t) and by dominated convergence applied to the sum. This 
completes the proof�9 

By the following result (t/x s ) =  min(t, s)~ V2o, the proof of lemma 2.3 is 
straightforward and therefore omitted. 

Lemma 2.3. Assume  that  

K ( t l  . . . .  , t s ) =  (tl  /x t2) .... (t2k_ 1 A t 2k ) f ( t 2k+l  . . . . .  tS) (2.7) 

w h e r e f ( t z k +  l ,  tN)6 V N-2k  then K ( t l ,  tN)E V N 
�9 �9 . ~ c , o  ~ �9 " �9 ~ c , o "  

There are several possible definitions for the notion of "the trace of order k, 
k < [n/21" associated with n-kernels (cf. [9, 12, 131)�9 For  the purpose of the present 
paper we define (cf. [9]): 

Definition. The symmetric kernel K ( t  1 . . . . .  t , )  in L2([0, 1]") will be said to 
possess a multiple trace of order k, k < [n/2] if for all complete orthonormal 
sequences on L2([0, 1]), (e = 1 , . . .  , k) {qS~, i > 1} the infinite sum 

N N 
�9 " �9 , . . . .  " "" 4i~(t2k-  1)(o~k(tzk)dtl �9 . .  dt2k ~ j K ( t l  tn)q~l,(tl)O~,(t2) k k 

ix = i i, = 1 Eo, iI 2~ (2.8) 

converges in L 2 [0, 1] n- 2k as N --* oc and moreover the limit is independent of the 
choice of the complete orthonormal sequence. The limit will be denoted trace k K 
and/t~r will denote the set of symmetric square integrable kernels possessing traces 
for all k _-< In/2], 

Proposition 2.4. L e t  K ( t  1 . . . . .  tN) be a symmetr ic  L 2 kernel  sat is fyin9 

K ( t  i . . . . .  tN) = # ( ( t l ,  1 ] , . . . ,  ( tN ,  1] )  

f o r  all ( t i , . . . ,  tN)e [0, 1] N, then the traces trace ~ K ,  k < In/2], ex i s t  and sat is fy  

trace k K = 

P r o o f  We have 

~ " "  ~ ,o,!i~ 11=i ik=l 

I (01 A 02)  � 9  (02k _ 1 A 02k)#(dO 1 . . . . .  dO2k, 
[0, I12k 

(tl, 1] , . . . ,  (tN-2k, 1]). (2.9) 

[ 
K( tx  . . . .  , t ~ ) ~ ( t x ) @ ~ ( t 2  ) . . .~Oi~(tzkk _ 1)qS~(tEk)dtx. . . dt2k ] 

i l = l  i k = l  [0,1] k,O 

�9 #(d~, dt2 . . . . .  dt2k-~, dt2k, (t2k+~, 13 . . . .  , (t., 11) 

_-< II,(', (t2k+l, 11,. . .  ,(t,, 1])liFV--2k 

•  i 6 ~ ( s ) d s Z ) ' " ( , = ~ s u p  i c k ' ( s ) d s 2 )  < oo , 
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0o t 2 

because for every t e [0, 1] we have i~,__ ! (o~(s)ds = t and the convergence of this 
t y  

series is uniform in t due to Dini's convergence theorem. Consequently,  the sum in 
(2.8) can be computed  as an i terated sum. Now, using Lemma 2.3 we deduce that  
the trace k K exists and (2.9) holds. 

Let rc = n,, be a finite part i t ion of  [0, 1], n = {0 = t o < tl < �9 "" < tm = 1}. 
Consider the part i t ion of [0, 1] 2 induced by r~ x re; in particular, consider the 
elements dj(rc), 0 < j < m - 1 of the part i t ion on the main diagonal of [0, 1] 2 where 
d~(~) = (t~, t]+ 1] x (t~, t~+ 1] and let fdj[ denote the Lebesgue area ofdj .  Then we 
have 

Proposition 2.5. Le t  N = 2 and assume that K ( t l ,  t2) is induced by a bimeasure and 
that ~m is a sequence o f  refinements satisfying in,.] ~ 0 as m ~ oo then 

1 
lira }-' ]dj(rcm)]l/2 S K ( t  1, t z )d tad t  2 = t r a c e K .  (2.10) 

m ~ o:3 d j (~2m ) 

and K is right continuous. 

Remark.  For  N __> 3 and K ( t  1 . . . . .  tN) induced by a symmetric multimeasure, the 
same results hold with respect to any two variables with the other  N - 2 variables 
fixed. 

P r o o f  Choose for the complete o r thonormal  sequence on [0, 1] the modified Haar  
o r thonormal  sequence which was constructed in [11]. Then the limit (2.10) follows 
by the same arguments as in [11]. Turning to the proof  of right continuity, this 
proper ty  follows from the following Grothendieck inequality which holds for 
bimeasures but not  for multimeasures with n > 3. This inequality assures that 
given a bimeasure I~(dtl, dt2), we can find a regular probabil i ty measure v on [0, 1] 
such that  

/ "~ m 
f f l ( t l ) f 2 ( t2 )p (d ta ,  dt2) < GII/~IIFv lift l ion(  I f 2 ( t ) v ( d t ) )  

[0, 1] 2 \ [ 0 ,  11 / 

for all C([0, 1]) funct ionsf i  ,f2 and G is a universal constant  ([2, 5]), therefore the 
inequality also holds for any functions f~, f2 which are measurable and bounded.  
Now  assume that  s. $ s and t. + t. Then 

K(s , ,  t . )  = p((s , ,  1], (t . ,  1]) = S l (~ . , l~( t l ) l ( t . , , l ( t z )a(dt l ,  d t 2 ) ,  
[0, 112 

and the right continuity of K follows since 

[K(s, t) - K ( s . ,  t.)[ = I f {l(~, l l ( t l ) l , ,11(t2)  - l(s., l l(tl  ) l(t., ll(t2) } lA(dtl , dr2) 
I [0, 112 

< 
[o,~112 1( .... l(tl)l(t, ll(t2)It(dt~,dt2) 

+ ~o,~ 1(~., 11(tl) l~t,t.l(t2)t~(dtl, dt2) 

< GIl~llrv s . ] )  + -*0  as n ~  oe . 
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C. The following combinatorial  lemma will be needed in the next section: 

Lemma 2.6. For any n > 1 the product x l ' . . x  . belongs to the subspace o f  
multinomials o f  degree n in the variables x 1 . . . . .  xn spanned by (~1 x l  + �9 �9 �9 + a, xn)", 
~ n .  

Proof  We proceed by induction on n. For  n = 1 it is obvious. Suppose that  the 
K 

�9 i n result holds for n, that  means, x 1 �9 �9 - x,  = ~ 7i(~]xl + " - �9 + ~ ,x , ) .  Then, to get 
i = 1  

a similar expression for x l  �9 �9 �9 x , x ,  + ~ it suffices to write the mult inomial  ynx as a 
linear combinat ion  of multinomials of the form (~y + x)" + 1, ~ real numbers. This is 

n + 2  

possible, because the equat ion y"x = ~ (aiY + x)" + 17i is equivalent to 
i = l  

,+2 if k -- n 
E k 

(~i 7 i  n -}- l 

i=1 0 if k = 0 ,  1,2 . . . . .  n - l , n + l  

and if we choose arbitrary numbers  0 < ~ < ~2 < " " " < c~,+ 2, the (n + 2)Z-matrix 
(c~), 1 _< i _< n + 2, 0 _< k _< n + 1, is invertible, completing the proof  of the lemma. 

3. The Characterization of Multiple Stochastic Integrals 
Possessing a Continuous Extension 

The purpose of this section is to present a characterization of multiple stochastic 
integrals possessing cont inuous extensions. Let F ( W ) =  In(K) be a multiple 
stochastic integral of a symmetric kernel K ~ L2([0, lff), Let 

G ( W 1 , . . . , W ~ ) =  ~ Q ( t l , . . . , t n ) W l ( d q ) ' "  VV,(dtn) (3.1) 
[0, 1] ~ 

where Q is a (not necessarily symmetric) kernel on L2([0, 1]") and the W i are 
s tandard independent Brownian motions. The first result in this section will 
characterize the kernels Q for which G has a version which is cont inuous and 
multitinear on Co(J0 , 1]) • ' ' '  x Co([0, 1]). The second result will characterize 
the symmetric kernels K for which F has a version which is cont inuous on 
Co([0, 1]). Returning to the cont inuous extensions of  F and G, as already men- 
tioned earlier, if a continuous extension to F or G exists then it is unique, this is a 
direct consequence of the fact that  W i s  dense in Co([0, 1]) and ( W 1 , . . . ,  IV,) is 
dense in C o ( [ 0 , 1 ] ) x . . . x  Co([0,1]) .  Assume that n = 2  and K ( q , t 2 )  
= Q ( t l , t 2 ) -  1; then F ( W ) =  W 2 ( 1 ) -  1 and G(W1, W 2 ) =  WI(1)" W2(1) and con- 

sequently, in general, F ( W )  + G(W,  . . . .  W), cf. the concluding remark following 
proposi t ion 4.2 regarding the relationship between these two functionals. 

Theorem 3.1. Let  G be as defined above, then the following are equivalent. (a) G 
possesses an extension on Co([0, 1]) x . . .  x Co([0 , 13) which is continuous and 
multilinear. 
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(b) There exists a multimeasure # on [0, 1]" satisfying # e F t ,  I~(A 1, . . . ,  A , )  = 0 
whenever for some i, Ai = {0} and 

Q(t 1 . . . . .  t,) = p((t l ,  1 ] , . . . ,  (t,, 1]) 

almost everywhere with respect to the Lebesgue measure on [0, 1]". 

Proof  Assume that  G possesses a cont inuous version and denote by q5 the version 
of the r a n d o m  variable G on Co([0, 1]) x - �9 �9 x Co([0, 1]) given by the continu-  
ous extension. By the generalized Riesz-Frechet  representat ion theorem (Theorem 
2.1), there exists a mul t imeasure  p on [0, 1]" belonging to F~ such that  

~ ( W  1 . . . . .  W . ) =  j W x ( t l ) ' " W . ( t . ) 1 2 ( d t  1 . . . . .  d t . ) ,  (3.2) 
[0, 1] n 

for all W 1 . . . . .  W, in Co([0, 1]). In  order  to check the equality (3.1) it suffices to 
show that  

G = ~ #((tx, 1] . . . . .  (t,, 1 ] ) W l ( d t l ) ' "  W,(dt,)a.s.  (3.3) 
[0, 1]" 

Let n, be a sequence of subdivisions of [0, 1] such that  lim ]nm[ = 0 and ~m+ 1 is a 
t .  

refinement of z~,, for all m. We denote by W~ m the piecewise linear approx imat ion  of 
the Brownian  mot ion  W~, defined by 

k~n t - -  t j _  1 
W ~ ( t )  = ~ Wi( t j -1)  + (Wi(tj) - W~(tj_l))10j_,,tjl(t), (3.4) 

j = X  t j - - t j -  1 

where n,, = {0 = t o < " "  < tkm = 1}: 
The independence of the Brownian mot ions  W~, 1 _< i _< n implies that  the sequence 

S #((tl ,  1] . . . .  , ((t., 1])W~m(dtl) . . .  W~m(dt.) 
[0, 1] ~ 

converges in probabi l i ty  as m tends to infinity to the right hand  side of (3.3). On  the 
other  hand,  for every m we can apply  the integrat ion by parts  formula  on each 
coordinate,  obtaining by i terat ion that  (3.4) is equal to 

w ~ m ( t l )  . . .  w ~ ( t . ) ~ ( d t l  . . . . .  d t . ) .  (3.5) 
[0, 1] ~ 

Finally, using the propert ies  of mul t imeasures  we deduce that  (3.5) converges to 
(3.2) and therefore to G as m tends to infinity. Conversely,  assuming that  (3.3) holds, 
(3.2) follows by the same arguments  as before and consequently G possesses a 
mult i l inear cont inuous  extension which completes  the proof. 

As an example,  consider the case n = 2, Q(tl ,  t2) = l ( t l  < t2) (cf. p. 27 of [14] 
and remark  4 in [13]), in this case G(W1, W2) = ~ Wa(t2)dW2(t2). Since in this 

[o, 1] 
case Q is not induced by a b imeasure  [3], it follows that  G(W1, W2) does not  
possess a cont inuous extension. 

Theorem 3.2. Let  F -- I , (K)  be as defined at the beginning o f  this section, then the 
following are equivalent. (a) F possesses a continuous extension on Co([0, 1]). 
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(b) There exists a symmetric multimeasure # on [0, 1]" satisfying # e F t ,  
#(A 1 . . . .  , A , )  whenever for some i, Ai = {0} and # induces K namely 

K ( q  . . . . .  t,,) = #( (q ,  1] . . . . .  (t,, 1 ] ) .  (3.6) 

Proof  (i) We prove  first that  (a) implies that  for the given kernel K, 

o =  ~ K(tl . . . . .  t . )Wl(dt~) . . .  Wo(dtn) 
[o, 17" 

possesses a continuous,  symmetr ic  multi l inear extension on Co([O, 1 ] ) •  . . .  
x Co([-0 , 1]). Denote  b y f t h e  cont inuous version of F given by condit ion (a). To  

illustrate the idea of the proof  consider first the case n = 2, and define 

= _ ] - 
4 ) ( m l ,  m2)  (3.7) 

\ ~ ) \ ,</2 ) '  

for W 1, W2eCo([O, 1]). This functional 4) is a version of G =  ~ K ( q ,  
[0, 1] 2 

t2) Wl(dt l )W2(dt2)  because 4)(W1, W2) is equal, a lmost  surely, to 

m l ( d t l )  - W 2 ( d t l ) ~  ( W l ( d t 2 )  - m 2 ( d t 2 )  ) 
This functional 4) is cont inuous multi l inear and symmetric.  The  multi l inear pro-  
perty is p roved  as in the case n = 1 (see sect. I.B). That  means  that  the fact that  the 
suppor t  of the Wiener  measure  is Co([0, 1]) implies that  

4)(~W~' + x/1 - ~2 W~, W2) = ~4)(W~, W2) + x/1 - cd4)(W~, W2) (3.8) 

for any - 1  _< c~ _< 1. Then, taking into account  that  4) is cont inuous we deduce 
f rom (3.8) that  4) is linear in the first coordinate.  The symmet ry  of 4) follows from 
the proper ty  f ( W )  = f ( -  W) for all W e  Co([0, 1]), which holds again using the 
continuity o f f  and the suppor t  p roper ty  of the Wiener  measure.  Hence  (b) holds 
for n = 2. 

The  extension of this a rgument  to an arbi t rary  n is not  straightforward.  We 
have to express the product  x l  " " " x ,  as a linear combina t ion  of polynomials  of  the 
type (~lx i  + " �9 �9 + %x,)",  where e = (cq . . . .  , en) is a vector  of no rm one. This 
can be done by means  of L e m m a  2.6. More  precisely, by L e m m a  2.6, we can write 

ko 
k n xl ' "  x,  = ~ 2k(c~]x 1 + " ' "  + c~,x,) , (3.9) 

k =1 . 

where )~ ~ ~ and ]c~kj = 1 for all k = 1 . . . . .  ko. 
For  any k = 1 . . . . .  ko, yk = c~] W 1 + �9 �9 �9 + ~ W,, is again a Brownian mot ion  

and we denote by I~k(K) the multiple stochastic integral of the kernel K with 
respect to yk. A version of this multiple stochastic integral is provided by f ( yk ) .  



Multiple Wiener-I to  Integrals Possessing a Cont inuous  Extension 141 

Then we have 

G =  
ko  

K ( h , . . . ,  t , ) W z ( d t ~ ) . . .  W~(d t , ) - -  ~ 2 k I ~ ( K )  
[0 ,  1] ~ k = 1 

ko  

= ~ 2 k f ( a ~ W l +  " ' "  + ~ k w , ) ,  a.s. 
k = l  

ko  

Therefore,  g o ( W 1 , . . . ,  W,)  -- ~ 2k f (a~  W1 + " " " + ak W,)  is a cont inuous ver- 
k = l  

sion of G. The  symmet ry  and the mult i l inear p roper ty  of this function (~ is p roved  
as in the case n = 2. 
(ii) By the result of par t  (i) and Theo rem (3.1) the existence of a cont inuous  version 
implies (3.6). Turn ing  to the p roof  that  (3.6) implies (a), note  first that  the kernel K 
given by (3.6) is measurable  and bounded  by the constant  ]L # [[Fv-. Thus  we can 
define the r a n d o m  variable F -- I , ( K ) .  We want  to show that  F has a cont inuous  
version on Co([O, 1]). We will prove  this p roper ty  by induct ion on n. We know that  
it is true for n -- 1. Assume that  it holds up to n - 1. 

We claim that  
[n /2 l  

W ( t l )  " " W ( t , ) p ( d h  . . . .  , d t , )  = ~ ~, , ,kI ,_2k(tracekK),  (3.10) 
[0 ,  1]n k = 0 

n! 
where a,, k - (n - 2k)!k!2 k' and trace k K is given by expression (2.9). We recall that  

(see L e m m a  2.3) the function (h /x t2) �9 �9 �9 (t2k- 1 /X t~k) belongs to Vc 2k and by (2.5) 
(h /x t2) �9 �9 �9 (t2k_ 1 /X t2k )# (dq  . . . . .  dt2k, ") defines a (n - 2k)-dimensional 

[0, l] 2k 
symmetr ic  mul t imeasure  belonging to Fo"- 2~. Therefore,  by the induction hypoth-  
esis all terms in the right hand side of (3.10) with k > 0 possess cont inuous versions 
and,  consequently,  f rom (3.10) we deduce that  In(K) possesses a cont inuous  version. 

In  order  to show (3.10) consider the Wiener-Chaos  expansion of the r andom 
variable Wtl " ' "  Wt,: 

["/-Z-El ~n k 
W~I . . . W~. = k~o ~ , ~  (t~(~) A t a ( 2 ) )  " " " ( ' t r ( 2 k _ l )  A ' a , 2 k ) )  

.I,_ :k( l [0 ,  t.,:~+ ~ , ] |  " " " | 1[0, to, . ,]) ,  (3.1 1) 

where a ,  denotes the collection of all permuta t ions  of the first n integers. The 
expression (3.11) can be proved  by induct ion on n, using the produc t  formula  for 
multiple stochastic integrals. Notice tha t  every term of the form 

(t~(~) A t,(2)) �9 �9 �9 ( t~,(2k-  1 ) / x  t ~ ( 2 k ) ) ' I  n 2k(l[0, to, . . . . .  ] | ' " ' | l[0, t~(~ 

belongs to V~; o a lmost  surely. Indeed, assuming o- = I d, in order  to simplify the 
notat ion,  this is due to L e m m a  2.3 and the fact that  the multiple stochastic integral 
I,_2k(1EO, t . . . .  ] | " ' "  | l[0, t.] ) can be writ ten as 

l , - zk - l ( l to , ,2~+~l |  " ' "  | l t o , ~ . j ) W ( t 2 k + l ) +  ~ (t2k+l A tj) 
j = 2 k + 2  

" I , - 2 k - z ( l t o ,  t .... j| - . . | lto,~j~| - . . | lto,,.~), 

so we can use an induct ion argument .  
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Finally, note that the following Fubini type relation 

(t 1 /x tz)  " " " (t2k_ 1 A t2k)In_ 2k(l[o,t . . . .  J @ ' ' '  @llo, t , l )~ (d t l , . . - , d tn )  
[0, 11 n 

( ~ (tl A t2) ' ' ' ( t2k-1At2k)[A(dt l  . . . .  ,dt2k),(S2k+l,1] . . . . .  (Sn, l ] ) ,  = I n - 2 k \  [0, l]2k 

(3.12) 

holds (since the function (tzk+ 1 . . . .  , t,)~--~I,_~k(Iio,,2~., ~ | . . .  | lto, t,~ can be 
approximated by step functions and in this way the order of the multiple Wiener 
integration and the integration with respect to the multimeasure /~ may be 
interchanged). Consequently (3.10) follows from (3.11) by integrating both sides of 
the equality with respect to p, proposition 2.4 and (3.12). This completes the proof 
of the theorem. 

4. Multiple Ogawa and Skorohod Integrals 

Let K ( t l , . . . ,  t , )  be a symmetric Lz([0, 1]") kernel, following [10] we can define a 
mult ip le  O g a w a  integral  as follows. Let {el, i >  1} be a complete orthonormal 
system on L2([0, 1]). For any multi-index r = (rl . . . .  , r,) set 

K r = ~ K ( t l  . . . . .  t , ) e r , ( t l ) . . ,  e r , ( t , ) d t l  . . . . .  d t , .  
[0, 1p 

Definition. We will say that K is O g a w a  in tegrable  if the series. 

Irl s N 

converges in L z to a limit and the limit does not depend on the particular complete 
orthonormal system. The limit will be called the multiple Ogawa integral and will 

O 
be denoted 6"K. 

It is easily verified that every kernel K in /4t"~ is Ogawa integrable and 
furthermore, the following Hu-Meyer formula [8] holds 

0 [n/2] 
~"K = ~ ,,,kI,_2k(tracekK), (4.1) 

k=0  

where ",,k = n ! / ( n -  2k)!k!2 k. Note that in the particular case of a kernel K 
associated with a multimeasure/~, K ~/4~'r by Proposition 2.4 and from (3.10) and 
(4.1) it follows that 

O 
6 " K  = ~ W ( t l )  ' ' '  W ( t , ) p ( d t  1 . . . . .  d r , ) .  (4.2) 

[0, 1] n 
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Moreover, using the inverse formula to (4.1) (cf. [8]) we obtain 

[n/21 O 
I . (K) = ~, ( -  1)kcc.,g6"- 2k(tracek K )  

k = O  

[n/21 

= ~ (--1)kc~.;k ~ W ( t x ) ' ' "  W(t . -Ek)#k( t l  . . . . .  t . - 2 k ) ,  (4.3) 
k = 0 [0, l ]  n 2k 

where # k  is the (n - 2k)-dimensional multimeasure defined by 

#k(A 1 . . . . .  A,_2k)= J" (01 /X 02) ' ' ' (02k_ 1 /X 02k)#(dO1,...,dO2k , A 1 . . . . .  An_2k ) 
[0, 1] 2k 

The Hu-Meyer formulas ((4.1) and the first line of (4.3)) were introduced in [8] on a 
somewhat formal basis. The results presented here give a justification to these 
formulas. For  other justifications cf. [9, 12, 13]. 

The multiple Stratonovich integral can be introduced by generalizing the one- 
dimensional case, as follows. Let rc = {0 = t I =< �9 �9 �9 __< t~ = 1} be a finite partition 
of [0, 1] and consider the piecewise linear approximation of the Wiener process 
given by (3.4). Set A i = (ti ,  t ~ + l ] ,  I4 / (Ai )  = l/gtt~+ 1 - l/gtt, and IA~I = tf+~ - t~. Define 
for any finite set of indexes i~ . . . . .  i ,s{1,  2 . . . . .  m}, and for a given symmetric 
kernel KsL2([0 ,  1]"), 

1 
= ~ g ( t ~ , . . . ,  t,)dt~ " " d t , .  

K i , . . . i ,  IAi, l " " lAf l  A,, • .. .  •176 

Set 

S~(K) = ~ K h . . .  ~. W ( A , , ) . . .  W(Ar 
i l  . . . . .  i n = l  

= ~ K( t  1 . . . . .  t , ) I V T , ' "  I V T d t l " " d t , ,  
[0, i ]  ~ 

where W7 denotes the derivative of W7 with respect to t, which exists except for a 
finite set of points. 

Definition. We will say that K is Stratonovich integrable if the limit of the sums 
S=(K) exists in L2(Q) as Ire] tends to zero. In that case, this limit will be called the 
multiple Stratonovich integral of K, and will be denoted by I, o K. 

Notice that for n = 1 any square integrable kernel is Stratonovich integrable 
and its integral coincides with the Wiener integral. For  n > 1, the following result 
(Sole-Utzet, [ 12]) provides a necessary and sufficient condition for the existence of 
the Stratonovich integral. 

Proposition 4.1 (Sole-Utzet, [12]): Let  K be a symmetric square integrable kernel in 
I " - - 1  

1]". Then K i s  Stratonovieh integrableprovided t h a t f o r a n y  l-< [0, 

following limit exists in L2([0, 1]"-2k): 

ilk(K) = lim ~ 1 
I~1$o h . , i k = l  IA.I""" IA~I& • ' ' "  u - - -  x A~k 

K( t l  . . . . .  t2,, . )dt l  " " " dt2k (4.4) 
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In this case, the Hu-Meyer  formula becomes: 

[n/2] 

I, o K =  ~, C(,,kI,_zk(flk(K)). 
k - O  

The relation between the Ogawa and Stratonovich multiple integrals is given by 
the following result. 

Proposition 4.2. l f  K belongs to I4~r then, in addition to being Ogawa integrable, K is 
0 

also Stratonovich integrable, ilk(K) = trace k K and I, o K = 6" K where I, o K denotes 

o 
the multiple Stratonovich integral and 6"K denotes the multiple Ogawa integral. 

Remark. Let G ( W  1 . . . . .  W,) and F ( W )  be as in the statements of Theorems 3.1 
and 3.2 respectively, then by (3.3), (3.10) and Proposition 2.2 it follows that 

O 
G(W, . . . ,  W) = (5"K = I, o K # F(W) (since obviously F(W) = I,(K)).  

Proof  By substituting in equation (2.8) for the complete orthonormal system on 
[0, 1] the modified Haar orthonormal sequence which was constructed in [11], we ['l can show that the limits (4.4) exist for all k __< ~ , and ilk(K) = trace k K. Then 

from Proposition 4.1 and equation (4.1) it follows that K is Stratonovich integrable 
and the multiple Stratonovich integral I, oK coincides with the Ogawa-type 

o 
integral ~"K. 

O 
With the three multiple integrals, I~(K), I, o K and 6"K considered till now it is, 

of course, natural to ask which, if any, is the multiple integral which was introduced 
by N. Wiener in [15]? The discussion of the multiple integral in [15] takes place 
between the middle of page 917 till the top of page 919. Changing a little the 
notation of [15], the starting point is a special step functionf(t~ . . . . .  t,), tl ~ [0, 1], 
"taking only a finite set of finite values, each over a set of values t 1, . . . ,  t,, which is 
a product set of measurable sets in each variable tk", namely 

N 

f ( t  1 . . . . .  t,) = • Ck~O](tl) " " " q~k,(t,) 
i = 1  

where the q~(tl) are indicator functions of measurable sets. From the lines between 
equations (77) and (78) it seems quite obvious that the definition of N. Wiener for 
the multiple integral in this case was 

N 1 i 

Z  , (O)dWo . . . . .   o .(O)dWo 
i = I  0 0 

Next, (equations (80), (81) of [15]), f ( t  1 . . . . .  t,) is assumed to be a measurable 
step-function satisfying 

1 

I f ( t x  . . . . .  t,)l _-< [f~(tl) . . . . .  f,(t,)l, ~f~z(t)dt <-_ A, i = 1 . . . . .  n .  (4.5) 
0 



Multiple Wiener-Ito Integrals Possessing a Continuous Extension 145 

Finally (equations (82)-(87)) the multiple integral is extended to measurable 
kernelsfsatisfying (4.5) without being a step function. It follows therefore from [15] 
and also from Lecture 3 of [16] that the multiple integral drafted by N. Wiener is 

o 
"in spirit" near to the 6" integral. 
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