
Soc Choice Welfare (1990) 7:279-317 

Social Choice 
 Welfare 

© Springer-Verlag 1990 

The Borda dictionary* 

D.G. Saari 

Departments of Mathematics and Economics, Northwestern University, 
Evanston, IL 60208-2730, USA 

Received November 28, 1988/Accepted September 17, 1990 

Abstract. For  n candidates, a profile of voters defines a unique Borda election 
ranking for each of the 2 n -  (n ÷ 1) subsets of two or more candidates. The Borda 
Dictionary is the set of all of  these election listings that occur for any choice of 
a profile. As such, the dictionary contains all positive features, all flaws, and all 
paradoxes that can occur with single profile, sincere Borda elections. After the 
Borda Dictionary is characterized, it is used to show in what ways the Borda 
Count (BC) is an improvement over other positional voting methods and to derive 
several new BC properties. These properties include several new characterizations 
of  the BC expressed in terms of axiomatic representations of social choice func- 
tions, as well as showing, for example, that the BC ranking of n candidates can 
be uniquely determined by the BC rankings of all sets of k < n candidates for 
any choice of k between 2 and n. 

The Borda Count (BC) is the simple method used to tabulate ballots where, for 
n candidates, n - i  points are assigned to a voter's i th ranked candidate; the 
candidate with the most points wins. While the BC has both attractive features 
and flaws, only some of them are known. To redress this situation, I characterize 
everything that could possibly happen when the BC is used. To understand this 
assertion, note that a profile determines a unique ordinal BC election ranking 
for each of  the possible subsets of candidates; i.e., associated with a profile is a 
unique listing of election rankings. In this paper I characterize all possible BC 
election listings that could ever occur. I call this collection of all possible BC 
election listings a Borda Dictionary. By construction, the Borda Dictionary con- 
tains everything that could possibly occur with a BC election, so it catalogues 
all of  the BC flaws, all of  the "single profile" BC paradoxes, and all of the "single 
profile" BC positive features. 

* This research was supported, in part, by NSF grants IRI8415348, IRI-8803505 and a Fel- 
lowship from the Guggenheim Memorial Foundation. 
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This goal of characterizing the Borda Dictionary continues my program, 
initiated in [10] (also see [8, 9]), to characterize everything that could possibly 
occur with positional election procedures. 1 A conclusion of [10], repeated in 
Sect. 1.2, is that the Borda method is the unique positional voting method to minimize 
the kinds and number of paradoxes that can occur. Thus, this conclusion explains 
why one should expect to find statements in the literature suggesting that the BC 
enjoys a favored status. It also follows from this assertion that, in some sense, 
the BC plays a critical role within the class of positional voting methods. In my 
development of the Borda Dictionary, given here and in the companion paper 
[12], I outline the mathematical reasons why the BC has this favored status. Also, 
I show in what ways the BC is an improvement over other positional voting 
methods, and I indicate in Sect. 1.3 how these results can be used to understand 
the class of paradoxes involving changes in the profiles. In doing so, I discuss 
certain paradoxes involving choice procedures such as tournaments, the Hare 
method, runoff elections, etc. 

Because the Borda Dictionary contains all possible listings of BC election 
outcomes, one might correctly surmise that it can be used to derive and extend 
many of the known BC conclusions. To illustrate this, I rederive Smith's impor- 
tant conclusion [15] that the BC ranking of the candidates is related to the majority 
vote rankings of all pairs of candidates. As I show, Smith's result is just one of 
many different possibilities; e.g., I show for any value of k satisfying n > k >= 2 
that the BC ranking of all n candidates is related to the BC rankings of all sets 
of k candidates. (There are many other collections of subsets of candidates with 
the nice property that the BC rankings are related; one of the purposes of the 
companion paper [12] is to completely characterize these families of subsets.) To 
indicate another way in which the Borda Dictionary can be applied, I show how 
to use the dictionary to significantly extend, in several different directions, those 
characterizations of the BC based on the axiomatic properties of social choice 
functions. (These results, which start in Sect. 3.2, can be read independently of 
the technical Sect. 2.) Indeed, if one views the BC Dictionary as a reference tool 
- a place to start in the analysis of choice methods involving positional voting 
methods - then a surprisingly large number of other kinds of conclusions can be 
derived by use of the BC Dictionary. Therefore, rather than trying to provide an 
exhaustive listing of all of these new results, I adopt the strategy of showing how 
to use this dictionary to obtain these new statements. In this spirit, several of my 
examples are designed not only to illustrate particular points, but also to offer 
new BC conclusions. 

In summary, one theme of this paper is that if a collection of subsets of 
candidates admit relationships among their positional election rankings, then the 
number and kinds of possible relationships is maximized if the BC is used. The 
main purpose of this paper is to create the mathematical tools needed to determine 
the entries in the BC Dictionary and the relationships among BC election rank- 
ings. After notation is introduced, the remainder of this introductory section is 
devoted toward suggesting the advantages of using "dictionaries" and the prop- 
erties of the BC to analyze social choice issues that involve positional voting 
rankings. In Sect. 2 the mathematical structures needed to construct the Borda 
Dictionary are developed. These technical aspects place an emphasis on a vector 
space interpretation for election outcomes. The purpose of Sect. 3 is to indicate 

Although my proofs use the arguments developed in [10], familiarity with [10] is not required 
for a first reading of this paper. 
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some of  the consequences of  the Borda Dictionary; one of the main themes of 
this section is to introduce several new axiomatic characterizations of the BC. 
Another theme is to analyze the kinds of relationships admitted by the BC over 
specified collections of subsets of candidates. 

So, if a family of subsets admits relationships among the BC rankings, the 
techniques of this paper can be used to determine them. The converse issue is to 
determine what collections of  subsets of candidates admit relationships among 
the BC tallies. For  instance, if one is interested in considering only the triplets 
of candidates, will there be a relationship among the BC rankings? (There will.) 
This issue of  characterizing the collection of  sets of  candidates that do admit 
relationships among the BC rankings is the theme of  the companion paper [14]. 

1.1. Notation and dictionaries 

To motivate the notation and the idea of  a dictionary, consider the following 
two "paradoxes". 

Example 1. a. One of  the oldest voting paradoxes, the Condorcet Cycle, occurs 
when, say, 5 voters have the rankings cl > c2 > c3, 5 have c2 > c3 > ca, and 5 
have c3 > cl > c2. By majority votes of 10 to 5, these voters prefer c 1 > c2, and 
c2 > c3. Therefore, one might suspect that the voters prefer Cl to c3. The paradox 
is that, by a vote of 10 to 5, they prefer c3 > Cl; the voters' election rankings 
create a cycle. 
b. A second example [10] has 6 voters with the ranking c3 > el > c2, 5 with 
c2 > ca > c3, and 4 with c~ > c2 > c3. The plurality ranking is c3 > c2 > c~. If  
candidate Cl were to withdraw, then it is not uncommon to assume that the 
electing group's ranking now is given by the truncated ranking of  c3 > c2. How- 
ever, by majority votes of at least 9 to 6, the majority vote ranking of  each pair 
is the exact opposite of its relative ranking in the plurality outcome. By majority 
votes, these same, sincere voters prefer c~ > c2, c2 > C3, and e I ~> c 3. 

Thus, a "paradox",  as used here, is where a profile of voters (i.e., choices of 
complete, binary, transitive rankings without indifference of the candidates for 
each of the sincere voters) determines election rankings among the subsets of 
candidates that unveil an unexpected, counter-intuitive outcome. As indicated in 
(b), paradoxes illustrate that the way we use and interpret election rankings may 
be incorrect. So, to understand what actually can occur (i. e., to find all possible 
paradoxes of  this kind), we need to determine all listings of election rankings 
over all possible subsets of candidates that are associated with a profile. To start, 
list all feasible subsets of  candidates. With the n > 2 candidates C n = [c~ .. . . .  cn~, 
there are 2 n -  (n + 1) subsets with enough candidates (at least two) to permit an 
election. List these subsets as [$1,.. . ,  S2,-(n+ l)] where, for convenience, the first 
n(n-1)/2 subsets are the pairs of  candidates, the next n!/3!(n-3)! are the sets 
of three candidates, etc. Also, in each Sj, list the candidates in the lexicographic 
order determined by the subscripts. For  example, with C 3 = [c~, c2, c3~, the sets 
could be $1 = [Cl,  c2),  $2 = Ida,  c3),  $3 = [c2,  c3),  and S 4 = [Cl,  c2, c3). 

For  each Sj, let Rj be the set of all complete, binary, reflexive, transitive 
rankings of Sj. Thus Rj is the listing of all possible ordinal election rankings 
associated with the Sj candidates. For  instance with $3=[c2, c3~, R3 
= ~C 2 > C3, C 2 = C3, C 3 > C2~ , while R4 contains all 3! linear rankings of the three 
candidates in $4 along with the 7 rankings that have a tie among the candidates. 
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The  universal space, U n = R1 × R2 × ... × R 2 n - ( n +  O, is a p roduc t  space, so an el- 
ement  o f  U n is a listing o f  2 n - (n + 1) rankings - there is a ranking  assigned to 
each subset o f  candidates.  (To illustrate, ~c2 > cl, cl > c3, 
e 3 > e2, c I = C 3 > C2) specifies a ranking  for  each subset o f  candidates,  so it is an 
element of  U3). Thus  U n is the space o f  all possible, as well as all impossible 
coord ina ted  (ordinal)  election outcomes  over  the subsets o f  candidates.  

A posi t ional  vot ing system for  a set o f  candidates  is where specified weights, 
~wi), are used to tally the ballots. In tabulat ing the ballots, wi points  are assigned 
to a voter ' s  i th ranked  candidate,  and the election ranking  of  each candidate  is 
determined by  the total  n u m b e r  of  points  she receives. Fo r  k candidates,  the 
assigned weights define a voting vector W = (wl, w2 ..... wk) where wi=> wi+ 1 and 
wl > w~.2 Let  Wj designate the vot ing vector  assigned to tally the ballots for  the 
candidates  in S i. The  listing of  the 2 n - (n ÷ 1) selected vot ing vectors,  the system 
voting vector is 

W n = (W~; W2;. . . ;  W2,-~n + o) - (1.1) 

The obvious  equivalence relat ionship a m o n g  the vot ing vectors  can be described 
with the vector  Ek where, with k candidates,  Ek = (1, . . . ,  1). 

Proposit ion 1. Let W be a voting vector for a set o f  k candidates. I f  a > 0 and b 
are scalars, then the ordinal election rankings o f  an election tallied with the voting 
vector W and with aW + bEk must always be the same. 

This propos i t ion  holds because the factor  a W  just  scales the final tally while 
bE~ just  adds the same value to the tally o f  each candidate.  T h r o u g h o u t  this 
paper ,  I always use equivalence classes o f  voting vectors. For  instance, for  
k = 4 ,  bo th  ( 2 2 , 1 8 , 1 4 , 1 0 ) = 4 ( 3 , 2 , 1 , 0 ) + 1 0 ( 1 , 1 , 1 , 1 )  and ( 3 , 1 , - 1 , - 3 )  
= 2(3, 2, 1, 0) - 3(1, 1, 1, 1) are Borda  vectors.  

Definition. A Borda voting vector for  k >_ 2 candidates  is any  vot ing vector  equiv- 
alent to the BC vector  (k - 1, k -  2 , . . . ,  0). A Borda system voting vector, denoted 
by B n, is where a Borda  vot ing vector  is used to tally the ballots for  all subsets 
o f  candidates.  

In  the obvious  fashion, once a system vot ing vector,  W n, is specified, then a 
given profile o f  voters,  p, uniquely determines a listing o f  rankings.  This listing, 
denoted by f ( p ;  Wn), consists o f  the election ranking  for  each subset  o f  candi- 
dates. 

Example 2. List the subsets o f  C 3 as ~[cl, c2), [cl ,  c3], ~C2, C3~, ~el, e2, c 3 ~ .  
a. I f  the system vot ing vector  is W 3 =  [ 1, 0; 1,0; 1,0; 1,0, 0), (i. e., a major i ty  elec- 
t ion is used for  the first three subsets o f  candidates  and a P31urality election for  
$4) and  if p~ is the profile f rom Example  1.a, then f (p~ ,  W ) = (el > c2, c3 > c~, 
c2 > c3, ci = c2 = c3) ~ U 3. 
b. I f  Pb is the profile in Example  1 b, then f (Pb ,  W 3) = (Cl > C2, Cl > C3, C2 > e3, 
c3 > c2 > c~) ~ U 3. 
c. f (p~,  B 3) = (c 1 > c2, c 3 > c I , c 2 > c3, e I = c 2 = c3) , wh i l e  f (Pb, B3) 
= (e I > c2, Cl > c3, c2 > e3, Cl > c 2 > c3). 

2 A reversed positional voting system is where wj__< Wj+l and where the winning candidate is the 
one with the lowest total. The main difference is to admit negative values for "a" in Proposition 1. 
With only minor changes, the conclusions of this paper and [10] hold for such systems - some 
of these extensions are included here with "scoring methods." See [6, 7] for more discussion. 
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The paradox in Example 1 b disappears when the BC, rather than the plurality 
vote, is used to tally the ballots. As shown in Sect. 3, this is no coincidence. 

Definition. Let n >= 2 candidates be given. For  a given W", the dictionary generated 
by W" is the set 

W n D (W n) = I f ( p ,  ) :p  is a profile for a finite number  of  voters; 
the number of  voters can change with the profiles ~ . (1.2) 

An entry in the dictionary - the sequence of  election rankings over the various 
subsets of  candidates - is called a word. Each ranking within a word is called a 
symbol. 3 

In the discussion about  axiomatic representations of  the BC, we will have 
need to look at scoring rules (Young [16]). This is where the voting vector is 
replaced by any vector; the only requirement is that all of  the components are 
not the same. Thus, for example, ( -  2, 5, 0) is a scoring vector where - 2 points 
are assigned to a voter 's top ranked candidate, 5 points to the second ranked 
candidate, and zero points for the bot tom ranked candidate. It  follows imme- 
diately that a positional voting vector is a scoring vector, but a scoring vector 
need not be a voting vector. A system scoring vector is a vector Wn= 
(W1 ....  , W2n--(, + ~) where Wj is a scoring vector for Sj. In characterizing scoring 
methods, I will need to use the reversed BC. This is where the value of  "a"  in 
Proposition 1 is negative. Thus, let BC" be a generic representation for a system 
scoring vector where each scoring vector entry is either a BC vector, or a negative 
multiple of  a BC vector. Notice that BC n can represent a large number of  different 
choices; e.g., for n = 4 candidates, there are 5 sets of  three or more candidates. 
Thus, there are 2 5 - 1 different choices of  BC n that are not system voting vectors. 

1.2. Character&ation of dictionaries 

There is an important  difference between a word in D (W n) and an element of  
U n. A word is a listing of election outcomes realized by a profile whereas an 
element of  U n is a sequence of rankings where it may, or may not be possible to 
achieve them with an election. In other words, if an element of  U" is not in 
D (Wn),then it identifies a listing of rankings that never can be attained in an 
election tallied with the system vector W n. (For instance, the sequence from 
Example 1.b, {cl > c2, Cl > C3, C 2 > C3; C 3 > C 2 > Cl] , is in U 3, but, as shown in 
Smith [15] and in Corollary 3.1, this listing cannot be in D(B3). Thus such a 
listing of  election outcomes never can occur with the BC). Therefore a dictionary, 
D (Wn), catalogues all lists of  election rankings that ever can happen with W n, 
while the complement of  D (W n) in U n specifies those listings of  rankings that 
never can occur as election outcomes with W n. 

By construction, D (W n) is a subset of  U n. I f  a system voting vector W n admits 
only a small number  of  inconsistencies and potentially undesired outcomes, then 
D (W n) is a small subset of  U n. This is not the general situation. The following 
theorem summarizes those results f rom [10] basic for my current discussion. Recall 

3 This useful terminology correctly emphasizes my theme that a dictionary serves as a starting 
point for the analysis of election procedures. Moreover, this term and others reflect the fact 
that the motivation for this approach came from "Chaos" and "Symbolic Dynamics" in dy- 
namical systems. See [7, 8] for an exposition of the connection. 
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that W n is a vector in a Euclidean space and that an algebraic set is a lower 
dimensional subset of  this Euclidean space determined by the zeros of a given 
set of  polynomials. 

Theorem 1 [10] a. Let n >= 3 candidates be given. With the exception o f  an algebraic 
subset, a n, o f  possible choices for  system voting vectors, 

D(W n) = U ~ . (1.3) 

b. For n = 3, B 3 is the only system voting vector in a 3. Namely, D (B 3) is a proper 
subset o f  U 3, and i f  W 3 O: B 3, then D (W 3) = U 3. 
e. For all n >= 3, i fWn~:B n, then D(B n) is a proper subset o f  D (Wn). 
d. Let  n >= 3. Let w be a word in D (Bn). There exists a profile o f  voters, p, so that 
for  any choice o f  a system voting vector, W n, f ( p ,  Wn) =w. 
e. Let W n be a system scoring vector. With the exception o f  an algebraic set o f  
choices, D (W n) = U n. I f  D (W n) is a proper subset o f  U n but where some scoring 
vector component o f  W n is not a scalar multiple o f  a BC vector, then there is a 
choice o f  a BC ~ system vector so that D (BC n) is a proper subset o f  D (Wn). 

Part a asserts that for almost all system voting vectors, anything can happen. 
To appreciate the implications of this statement, notice that while many of the 
surprising, counter-intuitive election examples found in the literature compare 
election outcomes over different subsets of  candidates, most of  them use only a 
few of  the symbols of  a word. Part a asserts that far more startling paradoxes 
exist. To create one, just fill in the remaining symbols of  the word in any desired 
manner, and Theorem 1 ensures there is a profile to support this conclusion. 
Thus, by using Theorem 1 it becomes trivial to extend all such examples and 
paradoxes from the literature in all possible ways. By using a dictionary it is 
possible to examine the effects of  certain kinds of  election properties. To illustrate 
these comments, recall that there are statements asserting that should the majority 
vote lead to a cycle, then there appears to be no way to select a winner. (For a 
nice review of  this literature, see Nurmi [5]). However, a majority cycle with n 
candidates specifies only n of  the symbols of  a word; the remaining symbols can 
be filled in any desired fashion. For  instance, the remaining 2 n - (2n + 1) symbols 
could be filled in to be compatible with the ranking cl > c2 > ... > cn. In this 
way, it is clear that even with the majority cycle, the outcomes of  all other elections 
can dramatically support the notion that cl is a "natural" selection for the voters. 

By using the dictionary it now becomes quite easy to raise questions about 
almost any procedure. This is because a procedure often uses the rankings of  
only a limited number of  subsets of candidates. These rankings specify the entries 
for a limited number of the symbols of  the word; the rest of  the symbols can be 
filled in any desired manner. In particular, they can be filled in a manner to 
suggest that a completely different outcome is more appropriate than the one 
advanced by the procedure. For  example, in a standard run-off, the two top 
ranked candidates from the first stage are advanced to a second stage; here the 
majority vote winner is declared the winner. This procedure uses only two sym- 
bols, so fill them so that cn and cn-~ are advanced to the run-off and cn wins. 
Next, let all other symbols so be compatible with the ranking c~ > c2 > ... > cn. 
Thus, the winner is cn, but a very strong argument can be advanced that she 
should be bottom-ranked, not the selected alternative. 

As an extreme case, part a guarantees that the wildest imaginable situations 
actually occur. As asserted in [10], one could even use a random number generator 
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to determine a ranking for each subset of  candidates, and, for almost all system 
voting vectors, there is a profile so that the randomly selected rankings are the 
sincere election outcomes of  these voters. This conclusion that anything can 
happen is disturbing; it is difficult to accept that a voting procedure reflects the 
voters' true wishes when the outcomes can radically change with even minor 
changes in which group of candidates just happens to be considered. For  example, 
suppose that with only one exceptional case, the ranking of  all subsets of can- 
didates is consistent with the ranking c~ > c2 > ... > cn; the exceptional case is 
if cn, and only cn is absent. In this setting, the election ranking is cn-i  
> c,,-2 > ... > c2 > c~. Thus, it is reasonable to believe that c~ is the top-choice 

of these voters; but this is not reflected by the election outcome if, for some 
reason, cn, and only cn drops out of  the election. By choosing other words from 
a dictionary, the reader can design many other similar examples. 

To avoid these difficulties where the rankings can radically change with minor 
changes in what candidates are available, it is reasonable to seek procedures that 
admit relationships among the election rankings of  the different sets of candidates. 
In this way, one has assurances that it is not as likely for radically different 
outcomes to occur with only minor changes in what candidates are standing for 
election. Thus the crucial issue is to find a method that permits some consistency 
among the election rankings. Part b asserts that with three candidates, the only 
possible way relief can be attained is to use the BC; only the BC offers protection 
from all imaginable inconsistencies and paradoxes. This is illustrated in 
Example 2 b, c where the plurality ranking is in direct conflict with the same voters' 
majority vote rankings of  the pairs of  the candidates while, with the same profile, 
the BC ranking is consistent with the pairwise rankings. 

It turns out that part b of Theorem 1 does not extend; for all n > 4, there are 
other choices of W n*  B, where D (W n) is a proper subset of U n. (An argument 
outlining why this is so is given in the last paragraphs of Sect. 3). However, even 
if D (W") is a proper subset of  U n, part c asserts that D (B ") always is a proper 
subset of D (Wn). In other words, B" is the unique choice of  a positional voting 
method which minimizes both the number and the kinds of  paradoxes. Thus, for 
instance, whenever one can find a situation (a word) that illustrates an undesirable 
feature of  the BC, it follows from part c that this same feature must also occur 
with all other choices of positional voting methods. Part d strengthens this state- 
ment by asserting that associated with each word in the Borda Dictionary is a 
profile whereby this word (this same feature) is realized for all possible positional 
voting methods. Part e asserts that this same favored status for the BC extends 
to the setting where all possible choices of  tallying ballots, including scoring and 
positional voting, are considered. To see the need of  using different BC n vectors, 
consider the system scoring vector W 3 = (1,0; 1,0; 1,0; 0, 1,2). Here, the symbols 
in the words from D(W 3) corresponding to the set of  all three candidates is the 
exact reversal of the BC ranking. 

1.3. Social choice procedures and Borda 

One way to illustrate the central role played by the BC is to consider some of 
the properties of those procedures, such as tournaments, and various kinds of 
runoff  elections that are based on the rankings of several subsets of candidates. 
These procedures include an "agenda", which is a listing of candidates 
[C l ,  C2 . . . .  , cn]. Here a majority vote is held between the first two listed candidates, 
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and the winner is advanced to be compared in a majority vote with the next listed 
candidate. In general these social choice procedures (i.e., instead of  ranking the 
candidates, the procedure finds the "best" candidate or candidates) start by 
ranking certain specified subsets of candidates. Then, the rankings and the rules 
of  the procedures determine which candidates are ranked at the next stage. For  
instance, bottom ranked candidates may be dropped from further consideration, 
as in a runoff election; replaced with other candidates, as with an agenda; or 
matched against other "winning" candidates, as in certain kinds of  tournaments. 
This process continues until a final set of  candidates is ranked. The chosen 
candidate(s) is determined by the rankings of the final set. 

The traditional way to analyze these social choice procedures is to construct 
a profile to verify that certain suspected properties do occur. However, con- 
structing an appropriate profile can be a difficult combinatorial task. (This is 
why many of the results in the literature are restricted to small values of n and 
the plurality vote). Often the only purpose of  constructing such a profile is to 
establish the existence of a particular word. But, the dictionaries catalogue all 
possible words that ever could occur, so there is no need to continue with this 
complicated combinatorial step. Indeed, by treating such social choice procedures 
as a mapping from a dictionary to the non-empty subsets of C n, denoted by 
P (Cn), the analysis becomes both more complete and much simpler. To provide 
a distinction, in this section a mapping from D (W n) to the set of  non-empty 
subsets of C n = [c~,..., cn) is called a social choice mapping. In other words, the 
dictionary - the domain of the mapping - now becomes a candidate to replace 
the profiles as the primitive in the analysis. A social choice procedure, then, is 
the composition of  the social choice mapping with the function f (p )  used in 
Eq. (1.2). (However, after this section, I will not make this fine distinction; the 
word mapping and procedure will be used interchangeably.) 

To illustrate an advantage of  taking this approach, I offer an important new 
result. Namely, the possible outcomes o f  a given social choice procedure based on 
the Borda rankings are more restrictive than those based on any other positional 
voting ranking. This statement, which is difficult to prove if profiles are the 
primitives, is an immediate consequence of  the assertion that the Borda Diction- 
ary is a proper subset of any other positional voting dictionary; i.e., the associated 
social choice mapping is restricted to a smaller domain. What this assertion 
implies is that one can expect more consistency among social choice mappings 
if their outcomes are based on the BC rankings rather than the rankings of any 
other positional voting method. 

As a first example of  this assertion, notice that it is almost an immediate 
consequence of  the properties of the plurality dictionary (D (W n) = U n) that the 
Hare method (see, for instance, Nurmi [5]) need not elect a Condorcet winner. 
(Recall, Hare's method is based on the plurality rankings. The bottom ranked 
candidate is eliminated, and the profile is used to rerank the remaining candidates. 
The procedure continues until only one candidate remains. To prove that a 
Condorcet winner need not be victorious, choose a word from D (W n) where a 
Condorcet winner exists, but she is bot tom ranked in the set of  all candidates. 
According to Theorem 1, such a word exists, so this completes the proof). One 
might wonder whether Hare's method could be modified to avoid this property 
by using a positional voting method other than the plurality vote. According to 
the above assertion, to answer this question one must investigate what happens 
to Hare's method should it be based on rankings given by the BC; if this Con- 
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dorcet property cannot happen with the BC, then it cannot occur with any 
positional voting procedure. However, as shown in Smith [15], if the BC is used, 
then this modified procedure does select a Condorcet winner when one exists. In 
other words, when analyzing any choice procedure based on the rankings, one 
should start with the BC rankings to find what faults and what positive aspects 
can occur; all faults will be inherited when any other positional voting method 
is used, but the positive features may be unique to the BC. 

As another illustration, consider the IIA property from Arrow's Theorem. 
(Arrow [1]). Namely, for Sj a subset of S~ and for each fixed profile, the IIA 
condition requires the ranking of  candidates in Sj to mimic the ranking of the 
candidates in Sk. As we see from the dictionaries for positional voting, this 
condition is not satisfied. Indeed, one can choose the symbols corresponding to 
these two subsets of  candidates in any desired manner, and, as asserted by 
Theorem 1, there is a profile leading to this outcome. So, because IIA cannot be 
satisfied, it is reasonable to seek "relaxed versions" of  the IIA condition; con- 
ditions that are weak enough so that they admit at least one choice of a positional 
voting method. According to the above assertion, a necessary and sufficient 
condition for the new axiom to satisfy this condition is if it is satisfied by the 
BC. This theme is examined in Sect. 3. 

As a third illustration of this new assertion about the BC, we consider the 
problem of  understanding which social choice procedures admit the troubling 
"abstention paradox. ''4 This is where, by abstaining, a voter forces the final result 
to be personally more favorable than had he voted. This problem seems to have 
been primarily discussed in the context of  run-off elections with the plurality vote 
(see Smith [15] and Brains and Fishburn [2]). But by using a dictionary, this issue 
can be analyzed for a large class of  social choice procedures - including runoff 
elections, tournaments, and agendas - rather than just individual procedures as 
typically is the case when profiles are the primitive. 

Definition. A social choice mapping is an assignment of  profile to a set in P (Cn); 
that is, a nonempty subset of candidates from C" = [c~, c2 ... .  , c,]. A social choice 
method based on the W" rankings of subsets of the candidates is a mapping 

f :  D ( W n ) ~  P ( C  ") . (1.4) 

A social choice mapping is binary susceptible if 
i) The method is based on the positional voting rankings, W',  of  the candidates. 

ii) There are k => 1 stages. At each stage, the rankings of  specified subsets of  
candidates are examined. After the first stage, the choice of some of  the specified 
subsets of candidates may depend upon the rankings of  sets of  candidates at 
earlier stages. At the k th and final stage, there is only one subset of candidates. 
iii) There is a subset of candidates, called the swing set, and a ranking of  this 
set whereby the reversal of two adjacently ranked candidates changes the choice 
of the final set of  candidates to be ranked. 
iv) The selected candidate is based on the ranking of the final set of candidates. 
v) The image of  f contains at least two different outcomes. 

For  many of  the widely discussed binary susceptible procedures, such as 
tournaments, agendas, Hare's method, a standard runoff election, etc., any set 
of candidates, other than the final one, is a "swing set". This is because the 

4 I don't know the history of this paradox, but at least the flovor of it is described in Smith's 
paper [15]. It may have been discussed much earlier. 
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reversal of the relative rankings of some two candidates, usually the one just 
above the cutoff and the one just below, changes which set of candidates are 
advanced. 

In [10] I show for almost all choices o f  W n (i.e., those that are not in an), that 
all binary susceptible social choice methods admit the abstention paradox. (In [10], 
the term "disjoint procedure" was used). Namely, there is a profile p and two 
additional voters with identical rankings whereby if the two voters vote, the 
outcome will be personally less favorable than had they abstained. (The proof  
of this assertion shows how to use dictionaries to construct paradoxes involving 
a change in profile). Although this conclusion significantly extends the assertions 
found in the literature, it has the weakness that it does not identify whether a 
binary susceptible procedure can avoid this negative conclusion by using a W n ~ a n. 
To resolve this questions, we need to use the properties of the Borda Dictionary. 

Corollary 1.1. For n > 3, i f  a binary susceptible social choice method based on the 
B n rankings admits the abstention paradox, then the abstention property holds for 
all choices W n. In particular, all runoff elections have this property. 

Again, this corollary underscores a basic consequence of Theorem 1. If a 
"negative" election phenomena occurs with the BC, then it must occur with all 
positional voting methods. Thus, to understand a social welfare or social choice 
procedure based on positional voting methods, the analysis must start with the 
Borda Dictionary to determine what can and cannot occur. 

Outline of proof  for Corollary 1.1. (The proof  is in Sect. 4). To outline the 
ideas, I show that for n = 3, the BC runoff election has the abstention property. 
The basic ideas extend to all n >_ 3. By using results in Sect. 3, it follows that 
(C 1 < C2, C 3 > Cl,  C 2 > C3, C 1 > C 3 ~ C 2 )  ff D (B3). This means there is a profile p that 
yields this word, and, of  course, any fixed scalar multiple of the number of  voters 
with the same ranking yields the same outcome. As shown in Theorem 6 of [10], 
this profile can be selected so that at least one of these voters has the ranking 
c2 > c3 > c~. Add another voter with the identical ranking. Choose the scalar 
multiple determining the replicated number of  voters to be large enough so that 
the outcomes of the pairwise elections are not affected by whether or not these 
two voters vote. On one hand, if these two voters abstain, then the ranking of 
the swing set, the set of all candidates, is ci > c3 > c2, and c3 wins the runoff  
between c~ and c3. On the other hand, should these two voters vote, the outcome 
is c~ > c2 > c3, and the undesired cl wins the runoff. This completes the proof. 
The general proof, in Sect. 4 is similar. It just involves using related words from 
D (B n) where, by changing from one to the other, the final outcome changes. 

Notice that this proof  involves outcomes based on changes in profiles. It is 
interesting to note that the approach used in this proof  extends to many other 
settings involving small changes in profiles. For  instance, to see how similar ideas 
can be used to analyze the possibility of  manipulating the outcome of a positional 
voting election, see Saari [13]. As another example, the same ideas can be used 
to prove that a binary susceptible choice procedure need not be monotonic if it 
is based on the rankings of positional voting procedures. Thus, for example, we 
recapture and extend the known result that the Hare method need not be mon- 
otonic. (For a definition, discussion and references, see Nurmi [5]). 

Corollary 1.2. A necessary condition for a binary susceptible choice method to be 
monotonic is i f  it is monotonic when it is based on the BC rankings. 
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Based on the above results, the BC appears to be superior to any other positional 
voting method - at least with respect to the kinds of issues addressed by Theorem 1. 
(See [10] for a more detailed discussion). A shortcoming of Theorem 1 is that it 
does not indicate whether the BC provides only a marginal, or a significant 
improvement over other positional voting systems. After all, if the difference 
between D (W n) and D (B n) is only a small number of words, then the advantage 
achieved by using Borda's method may not be of  importance. This would imply 
that the BC merely avoids a small number of paradoxes. 

The BC offers a significant improvement; I show in this section that the Borda 
Dictionary has far fewer words than any other dictionary. In fact, for five can- 
didates the general situation is that 

1014 IN (BS) I ~ [D (WS)[ , (2.1) 

and for six candidates 

1054 I O (B6) I ,~ I D (W6) l (2.2) 

For  instance, suppose for six candidates that each of the 2 6 -  7 = 57 possible 
subsets of two or more candidates are plurality ranked. It follows from Eq. (2.2) 

s4 that, on the average, each Borda word must be replaced with at least 10 different 
words to complete the plurality election dictionary. To appreciate the magnitude 
of this number, recall that the projected supercomputers will perform about 1012 
operations per second, and that there have been about 102o seconds of  time since 
the "Big Bang". Thus, if such a supercomputer started at the Big Bang to list 
the words that replace just one Borda word from D (B6), then, at the very best, 
the computer would only be 1/1022 through. 

The large multiples in these inequalities not only underscore the point that 
the BC avoids a shockingly large number of paradoxes 5, but also why it is im- 
possible to list the entries in a dictionary. To circumvent the listing problem, I 
develop a geometric approach to characterize the words in a dictionary, where 
I concentrate on the Borda Dictionary. This vector space representation also 
characterizes all possible tallies for ballots, so it can be used to describe all cardinal 
relationships relating the election tallies among different subsets of candidates. 
Consequently, this approach allows one to address issues such as: what profiles 
define certain specified words in D (Bn), what percentage of the BC points cast 
does a candidate need to acquire in order to avoid (or to achieve) certain BC 
properties, etc., etc. This is illustrated, in part, in Sect. 3. 

This geometric representation for election tallies, partially developed in [6, 7, 
10], is critical for what follows. To simplify the exposition, first consider the set 
S2n-(~+ ~)= [c~,..., e,,]. In the n-dimensional Euclidean space, E n, identify the k th 

component, xk, with the k th candidate, ck, in the following manner. For  
x = (Xl,..., xn), let larger values of  x~ denote a "stronger" preference for c~. With 
this identification, the hyperplane xk = x j  divides E n into three regions; the two 

5 With the large cardinalities of D(W n) one might wonder whether most of the words in a 
dictionary require profiles with more voters than admitted by the population of the world. 
However, notice that from 30 voters and six candidates (6!)3°= 5.24 × 1085 profiles can be con- 
structed; a number that significantly exceeds the cardinality of any D(W6). Thus reasonable 
numbers of voters probably suffice. 
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half spaces are identified with the strict ordinal rankings (e.g., x ~ E n satisfying 
xk > xj corresponds to the ordinal ranking c~ > cj), and the hyperplane is iden- 
tified with indifference between the two candidates. By allowing the choices for 
k a nd j  to vary over all pairs of  indices, the resulting n (n - 1)/2 hyperplanes divide 
E n into cones that represent all possible ordinal rankings of the n candidates. 
Call each of these regions a ranking region. In this way, each ranking of the n 
candidates corresponds to a unique ranking region. For  instance, Ix E ES]x2 
> x4 = x5 > x 3 >  xl] is identified with the ranking c2 > c4 = c5 > c3 > cl. The line 

passing through the origin of  Enand (1, 1,.. . ,  1) represents the ranking of  complete 
indifference among the candidates; this line is the intersection of the n (n - 1)/2 
"indifference" hyperplanes. 

For  what follows, let A represent the ranking cl > c2> ... > cn. If 
W2o-(n+l) is the voting vector for S2n_(n+l), then W 2 n _ ( n + l  ) is in the closure of 
the ranking region identified with A. (If two or more of the components, wj, 
agree, then W2,-(n+ 1) is on the boundary of the ranking region; otherwise it is 
in the interior.) This vector serves as the tally of  a ballot with the ranking A. 
When used as a tally, denote it as WA,z,-(n+I~. Any other strict ranking of the 
N alternatives is a permutation of A, where I denote the generic representation 
of a permutation of A as rc (A). The tally for the ranking rc (A) is the appropriate 
permutation of  W2,-(n + 1), denoted by W~ (A~,2-(n + 1)" Again, W~ (A),2,,-(n + 1) is in 
the closure of the ranking region associated with rc (A). 

Example 3. For n = 3 and the voting vector (wl, w2, w3), the ranking c2 > Cl > c3 
is tallied with the vector (w2, wl, w3) to represent that w2, wl, w3 points are as- 
signed, respectively, to Cl, c2, c3. 

Let f~ (~) denote the fraction of all the voters with the ranking ~ (A). The tally 
of an election is given by 

F([f~ (A)], W 2 n  - (n + 1)) = ~ g  (A)f~ (A)W~ cA), 2 n -- (n + 1) , (2.3) 

where the summation index varies over all n! permutations of A. The election 
outcome is determined by the ranking region that contains this vector sum. 

The non-negative variables [f,~(A)~ sum to unity. Thus the associated profile, 
p, is identified with a vector in the unit simplex in the positive orthant of  E"~; 
i.e., Si (n!) = ~ x e R"~I Xx~ = 1, xj >= 0 ~. Consequently the point defined by Eq. (2.3) 
is in the convex hull of  [W,(A),2,-(n+ 1)]~(A~ where, as always, rc (A) varies over 
all n ! permutations. Thus the set of  all possible election outcomes is in this convex 
hull. (Conversely, any ranking region in this convex hull is an election outcome 
for some profile of voters.) In turn, this hull is in the affine plane defined by the 
p o i n t s  [W~(A),2,,_(n4-1)]~z(A) and r (1,. . . ,  1) where r =Z'wj. The analysis is con- 
siderably simplified when this plane is a linear subspace of E b. This motivates 
the first of  two assumptions imposed on the voting vectors. The first assumption 
specifies a value for "b" in the representation of Proposition 1. 

Vector normalization. The sum of the components of  a voting vector equals zero. 

Example 4. 1. The voting vector for a plurality election is (1,0, . . . ,0) ,  so a nor- 
malized form is n (1, 0,. . . ,  0) - (1,..., 1) = (n - 1, - 1,..., - 1). If n = 3, all election 
outcomes are in the convex hull determined by (1,0, 0), (0, 1, 0), and (0, 0, 1). For  
the normalized vector, the convex hull is defined by (2, - 1, - 1), ( -  1, 2, - 1), 
and ( -  1, - 1,2). 
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2. A vector  normal ized  fo rm for  the BC vector  (n - 1, n - 2 , . . . ,  1, 0) is 

(n - 1 . . . . .  n ÷ 1 - 2 i , . . . ,  1 - n) . (2.4) 

I f  n = 2 ,  this vector  is ( 1 , - 1 ) ;  if n = 3 ,  it is ( 2 , 0 , - 2 ) ;  and if n = 4 ,  it is 
(3, 1, - 1, - 3). 

The  vector  normal iza t ion  assumpt ion  forces each of  the normal ized  vectors,  
W~(A~,2,,-(n+ 1), to be o r thogona l  to (1, . . . ,  1), so the vote tally, given by Eq. (2.3), 
also mus t  be o r thogona l  to (1, . . . ,  1). Let  E n* be the linear subspace o f E  n defined 
by the no rma l  vector  (1 . . . .  ,1). Because this is the subspace E n* of  the vote tally 
vectors,  it is the space of  interest. Fo r  instance, if n =  3, then E 3 .  is the two 
dimensional  space x + y + z = 0. 

N o w  consider all 2 n -  (n ÷ 1) subsets o f  candidates.  Cor responding  to the set 
Sj is the division of  an Euclidean space of  dimension I Sjl into ranking regions. 
Deno te  the coordinate  functions of  this space by x~,j where the first subscript  
identifies the candidate ,  c~, while the second identifies the subset  S~. F o r  example,  
for  S j =  [c~, C4, C7) the coordinates  of  the corresponding E 3 a r e  (x~j, x4,j, X7,j) , 
and the ranking regions are in the two dimensional  subspace,  E 3., defined by 
X I , j ÷ X 4 , j ÷ X 7 , j = O ,  with (1, 1, 1) as a no rma l  vector.  

Let  f2 n be the cartesian p roduc t  o f  the 2 n - (n ÷ 1) linear subspaces E ~*. A 
ranking  region in f2 n is given by the p roduc t  o f  ranking  regions of  the componen t  
spaces. Fo r  instance, g? 3 is a five dimensional  space where the ranking region 
(X l, 1 = X2,1, X2, 2 > X3,2, X3, 3 > X l, 3, X2,4 > X3,4 > X 1,4) corresponds  to the ranking  
(c~ = c2, c2 > c3, c3 > c~, c2 > c3 > Cl). I t  is impor tan t  to note  that  there is a one 
to one correspondence  between the ranking regions of  g? n and the entries o f  U r'. 

Using the obvious  restriction, ranking A defines a ranking for  each subset  o f  
candidates.  I f  W n is a system vot ing vector,  then W ~ is in the closure of  the 
ranking region o f  f2n where each ranking  is determined by A. Thus,  this system 
vot ing vector  represents how a voter  with ranking A has his bal lot  tallied over  
each of  the 2 n -  (n ÷ 1) subsets o f  candidates.  When  treated as a tally, denote  
this vector  as W~. Any  other  ranking of  the candidates  is a pe rmuta t ion  of  
A, g (A), so the tally o f  the bal lot  for  each subset o f  candidates  is given by the 
appropr ia te  pe rmuta t ion  o f  the vector  componen t s  of  W ". This permuta t ion ,  
denoted by W ~ ( ~ ,  is in the closure of  the 7r (A) ranking region o f  fa ". Fo r  a 
profile ( f~ (A~], the s imul taneous vot ing tally for  all subsets o f  candidates  is 

F ( [  f~ (A~, W ~) = 27~ (A~ f~ (A~ W~ (A) • (2.5) 

This summat ion  has the same in terpre ta t ion as Eq. (2.3); it defines a point  in the 
convex hull o f  [W](A~]~(A~. This point  is in one and  only one ranking  region o f  
fa ~; the ranking  associated with this region is the word  in D (W ~) defined by this 
profile. 

Example 5. Suppose the elections over  the sets [c~, c3, c4~ and [Cl, c2, c3, c4) are 
tallied with the vot ing vectors  (2, 0, - 2; 3, 1, - 1, - 3); i.e., bo th  are BC elections. 
Consider  the profile where five people  have the ranking  Cl > c2 > c3 > c4, three 
have c 4 > c ~ > c 2 > c 3 ,  and  two have c ~ > c 4 > c 3 > c 2 .  The  tally is 
(1/2) (2, 0, - 2; 3, 1, - 1, - 3) + (3/10) (0, - 2, 2; 1, - 1, - 3, 3) ÷ (1/5) (0, - 2, 2; 
3, - 3, - 1, 1) = (1, - 1, 0; 2.4, -.04, - 1.6, - 0.4), so it corresponds  to the word  
(Cl > C 4 > C3; Cl > C 2 = C 4 > C3). 

The key observa t ion  used to characterize the dictionaries is that  a word, w, 
is in D (W ~) i f f  the product regions associated with w intersects the convex hull of  
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the vectors [W,~ (A))~ (A~. This convex hull is in the linear space, V(W"), spanned 
by f W,~ (A))~ (A~. The importance of this observation is based on the fact that it 
is much easier to analyze a linear space rather than a convex hull. 

Proposition 2. For n >__ 2, let W n be given. A word is in D (W n) i f f  the product ranking 
regions in £2 n associated with this word has a non-empty intersection with V(Wn). 

This proposition transfers the emphasis of characterizing D (W n) to the simpler 
task of characterizing V(Wn); e.g., V(Wn)=£2 n iff D(W ") = UL 6 For instance, 
critical parts of Theorem 1, restated in this framework, assert for n >__ 3 candidate 
that with the exception of an algebraic subset, a n, of possible choices for system 
voting vectors, 

V(W n) = ~ n.  (2.6) 

Moreover, for n = 3, if W 3 . B  3, then V(W 3) = £2 3. However, V(B 3) is a proper 
linear subspace of £2 3. Indeed, for all n => 3, V(B n) is a proper linear subspace of 
~n. 

The added structure obtained by emphasizing the geometry of the vector space 
V(Wn), rather than the dictionary D (W~), can be exploited in many ways. The 
first involves using the dimension of V(Wn). To develop insight, consider the 
siinplified setting of two sets of candidates (Cl, c2) and (c~, c3). The coordinate 
representation for each pair is in E 2.. If x = ( x l , x 2 )  and y =  (Yl,Y3) are the 
coordinates, then £2 is [(x, y) I xl = - x2,y~ = - Y 3 ) .  Thus, £2 is a two dimensional 
vector space that contains 32 ranking regions. A one dimensional linear subspace 
of g2 meets only three regions. So if V1 is a proper linear subspace of V2 in £2, 
then V2 meets at least three times as many ranking regions as Vj. This argument 
generalizes to prove the next statement. 

Proposition 3. Let  Wj,, j =  1, 2, be two system voting vectors where V(W~,) /s a 
proper linear subspace o f  V(W2,) and the difference in the dimension o f  the spaces 
is d. Then 

3d[ D (W1°) I < I D (W2° I (2.7) 

The multiple 3 ~ is overly conservative because it is based on the assumption that 
the vector spaces differ in dimension only in those component spaces correspond- 
ing to pairs of candidates. This never happens. A more appropriate multiple is 
obtained by analyzing the geometry of the ranking regions. In particular, this 
multiple always is larger than 4 .  The estimates in the introductory comments of 
this section are based on the conservative Eq. (2.7), so the BC actually provides 
far stronger relief from paradoxes. 

It follows from the proposition that dim (V(Wn)) serves as a crude measure 
of ID(Wn) I. The next statement imposes a lower bound on the dimension of 
any voting vector space. 

Proposition 4. For any n >= 2 

dim (V(Wn)) >__ n (n - 1)/2 . (2.8) 

6 An entry in V(W ") is a vector whose coefficients are uniquely determined by the profile 
[f~(A)l; thus information about which profiles cause what kind of behavior are contained the 
V(W") representation. 
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An immediate corollary of Theorem 1 is that all possible rankings can occur 
with the majority vote rankings of the n (n - 1)/2 pairs of candidates. The vector 
space representation for a pair of candidates is one dimensional, so the subspace 
corresponding to the rankings of all pairs of candidates has dimension n (n - 1)/ 
2. As this is a subspace of V(Wn), Inequality (2.8) follows immediately. In other 
words, it is the dimension of the subspace of the rankings of the pairs of candidates 
that forces this lower bound on dim(V(W~)). 

It is clear that if V(W~) is a proper subspace of V(W~), then D (W~) must be 
a proper subset of D (W~). However, without imposing additional assumptions 
on the voting vectors, the converse is false. In fact, even if two system voting 
vectors are equivalent (so their dictionaries are identical), the vectort spaces need 
not agree. This can be seen with the two Borda vectors B~ -- (1, 0;1, 0; 
1, 0; 2, 0, - 2) and B 3 = (1, 0; 1,0; 1,0; 6, 0, - 6) where the scaling difference in the 
voting vectors force V(B~) =¢ V(B3). This example isolates the difficulty. Namely, 
if a dictionary of one system voting vector is properly contained in the dictionary 
of another, then the voting vector subspaces can have this same relationship only 
with an appropriate scaling of the voting vectors. This second normalization 
specifies the value of "a" from Proposition 1. 

Definition. a. Let the system voting vector Wn= (Wa .... .  W2n-(,+ ~)) be given. A 
scalar normalization of W n is a choice of 2 ~ - (n ÷ 1) positive scalars ~sj~ used to 
define the equivalent system voting vector (s~Wl, s2W~ .... ). 
b. The standard scalar normalization for the Borda system voting vector is where 
the Borda vectors are given by Eq. (2.4) and the voting vectors for sets of two 
candidates is (1, - 1). 
e. Let the system voting vector Wn= (W1 .... .  W2,-(,+ 1)) be given. A scalar nor- 
malization of W" is a choice of 2 " - ( n  + 1) non-zero scalars [sj~ used to define 
the equivalent system voting vector (SlW~, s2W2,...). 

The next theorem is a much stronger version of Theorem 1. To appreciate 
the dimension assertions, note that d i m ( O " ) = K ( n ) = Z ~ = 2 , ( k - 1 ) n ! / ( n  - 
k)!k!.  Thus K(3) = 5, K(4) = 17, K(5) = 49, and K(6) = 129. 

Theorem 2. a. F o n  >= 3, d i m ( V ( B n ) ) = n ( n  - 1)/2. 
b. For n >  3 and W~¢B ~, there is a scalar normalization o f  W ~ so that V(B ") is 
a proper linear subspace o f  V(W~). 
e. With the exception o f  a lower dimensional algebraic subset a ~ o f  system voting 
vectors, V(W ~) = ~2 ~. 
d. I f  n = 3 ,  and ~fW3 =t=B 3, then V(W3) = f~ 3. 
e. The assertions of  parts a, b, c, d hoM for all choices o f  system scoring vectors 
W ~. (The scalar multiples o f  some o f  the scoring vectors may need to be negative). 

An amazing assertion of this theorem is that d im(V(B" ) )=n (n -1 ) /2 ;  this 
dimension agrees with the lower bound given in Proposition 4. By use of Prop- 
osition 3, this means that D (B ~) is a very small subset of U" relative to the size 
of the dictionaries for most other methods. For instance, if W" corresponds to 
where each subset of candidates is plurality ranked, then the difference in di- 
mension between V(B ~) and V(W ~) is K ( n ) - n ( n -  1)/2. Thus dim (V(BS))= 10 
while dim (V(WS))=49 and the dimensional difference is 39; dim (V(B6))= 15 
while dim(V(W6))= 129 and the dimensional difference is 114. With Proposi- 
3, one can appreciate the effect the dimensional differences make in the com- 
parative sizes of the dictionaries. 
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Another  surprising assertion is part  e. For  instance, it follows from part  e 
that the favorable BC properties do not depend on the monotonicity associated 
with the voting vectors (e.g., w;>=Wi+l), so, they must be a consequence of a 
deeper fundamental property of  the BC. 7 For  instance, it follows from part  e 
that V(W3)=g2 3 for W3=(1 ,  - ;  1, - 1; 1, - 1; 5, - 4 ,  - 1). W 3 is not a system 
voting vector because (5, - 4, - 1) is equivalent to (10, 1, 4) which requires giving 
10 point to a top ranked candidate, 4 points to a bot tom ranked candidate, but 
only 1 point to a second ranked candidate. A key point is part  e is that the scales 
may be negative; this eliminates the need to consider the class of  vectors BC ~ as 
needed in Theorem 1. 

Part  b geometrically extends the assertion that if a word is in D (Bn), then it 
is in D (Wn). Moreover, as it will become clear with the techniques developed in 
Sect. 3, it also means that if W n e an, then it must be constructed in terms of the 
properties of  the BC. 

From Theorem 2 it follows that the BC is, in certain important  ways, a 
significant improvement  over any other choice of  a positional voting method. 
But, what about  other kinds of  social welfare procedures? For  instance, positional 
voting methods can be viewed as determining certain weighted means over a 
profile. One could design other voting procedures based on the nonlinear methods 
commonly used in statistics. In such a manner,  or with the use of  other techniques, 
wouldn' t  it be possible to find a method much better than the BC? How does 
the BC fare within this larger class of  voting procedures? 8 

Definition. A smooth, majority preserving social welfare mechanism is a mapping 
G":Si(n!)--*£2 n where the rankings of  the pairs of  candidates is determined by 
majority vote. Let I(G n) be the image set of  G n. 

The intersection of I(G ~) with the ranking regions of  £2 n determines what 
rankings and what paradoxes this social welfare mechanisms admits. With the 
above argument, it follows that a crude measure is d im(I(G")) ,  where smaller 
values indicate fewer paradoxes. Here, if I(G ~) is a smooth manifold, then 
dim (I(G")) is the dimension of the manifold. I f  it is not a smooth manifold, then 
let dim (I(G n) be the minimum dimension of all smooth manifolds that contain 
I(G").  

Corollary 2.1. I f  G n is a smooth, majority preserving social welfare mechanism, 
then dim (I ( Gn)) >= dim (V(B"). 

In other words, for the class of smooth, majority preserving, social welfare mech- 
anisms, a class which ineludes all positional voting procedures and many others, 
one cannot do better than Borda's method with respect to the dimensional measure. 
For  related comments concerning social choice mechanisms, see Corollary 3.2. 
By using the ideas and techniques developed in [11], the smoothness requirement 
can be dropped. 

7 This property is due to the fact the BC creates a singularity in the orbit of the wreath product 
of permutation groups. This singularity is based on the symmetry created by the requirement 
that wi-wi+~ is the same constant for all choices of i. 
8 As one might suspect, the ideas developed in [10] and here can be used to analyze certain 
statistical procedures. Results of this kind are in Haunsperger [4] where she completely analyzes 
the Kruskal-Wallis Dictionary, etc. It is related to the Borda Dictionary. 
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3. The Borda dictionary and vector space 

To characterize D (B n) it suffices to characterize V(Bn). But V(B n) is a linear 
subspace of f2 n, so it is uniquely determined by its normal bundle. (This is the 
set of all vectors that are orthogonal to V(Bn).) Thus V(B n) is characterized once 
a basis for its normal bundle in /2 n is determined. To do this, the sets 
[S~, S2,...,S2o-(n+l)~ are used to identify the component spaces of ta n. Recall 
that the we are using a lexicographic ordering where the first n ( n -  1)/2 sets S i 
are the pairs of alternatives and where the candidates in Sj are listed according 
to the subscripts. Also, recall that f2 n is a cartesian product of E ~* spaces. Let 
Ind (Sj) be the set of the indices (the subscripts) of the candidates in Sj. 

Theorem 3, given below, asserts that a basis for the normal bundle of V(B n) 
is given by the vectors [Zk.j}, j =  1 + n ( n -  1)/2, 2 + n ( n -  1)/2,.. ., 2 n -  (n + 1), 
k e Ind (S j), where the first subscript identifies the candidate and the second 
identifies the subset Sj. Because of the ordering, the second subscript corresponds 
only to subsets Sj with three or more candidates. The vector Zk,j is defined in 
the following manner. 
1. In the component subspaces of f2 n corresponding to Si, i > n (n - 1)/2, Zk,j has 
only one non-zero vector component, Ykd- Vector Ykd, in the component space 
of f2" corresponding to Sj, has - ( I  S j l -  1)/I Sjl in the Xkd coordinate, and 
1/I Sjl in all others. 
2. For each pair of candidates, Si, i<= n(n-  1)/2, the Si vector component of Zk,j 
is 
i. 0 = (0, 0) iff either ck¢ Si, or Si is not a subset of Sj. 

ii. (1/2, - 1/2) if c~ is the first listed candidate in S~, ( - 1/2, 1/2) if e~ is the second 
listed candidate in S~. 

Example 6. 1. For n = 3  and ~[cl,c2~, [e2, c3~, [el,c3 ~, [c1,c2, c3~, the vector 
Z2,4 = ( -  1/2, 1/2; 1/2, - 1/2; 0, 0; 1/3, - 2/3, 1/3) is identified with c2 in S4.This 
vector corresponds to the $4 ranking where c2 is bottom ranked and cl, c3, c4 are 
tied for first, but where c2 is top ranked for each of the pairs, S~, $2. (The $3 
component is 0 because c2¢ $3). Because Z2,4 is a normal vector for V(B3), this 
is an impossible outcome for a Borda election. 
2. For n = 4 ,  let Sl=~Cl,C3} , $2=[c2, c3~ , $3=~c3,c4~, $7=[c2, c3, e4~, and 
S l l  = [el,c2, c3,c4~. The vector Z3,7, which is identified with c3 in $7, has 
( -  1/2, 1/2) as the $2 component, (1/2, - 1/2) as the $3 component, (1/3, -2 /3 ,  
1/3) as the $7 component, and 0 for all other components. By being identified 
with c3 in $7, this vector corresponds to the $7 ranking where c3 is bottom ranked 
and the other $7 candidates are tied for first place, but c3 is top ranked in the 
pairwise comparisons with either of these candidates from $7 (i.e., in the $2 and 
5:3 rankings). Thus, such an sequence of election rankings is not a word in D (B4); 
it corresponds to an impossible outcome for a Borda election. The vector Z3, ~t 
also is identified with c3, but now it relates how c3 fares among the candidates 
in $1~ rather than in $7. This vector has ( - 1/2, 1/2) for the S~ and $2 components, 
(1/2, - 1/2) for the $3 component, (1/4, 1/4, - 3/4, 1/4) for the S~t component, and 
0 for all other components, Again, this normal vector is in a ranking region that 
can never be attained by a Borda election. This ranking region has a similar 
interpretation where c3 is SI~ bottom ranked and top ranked in a pairwise com- 
parisons with any candidate from SH. 
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3.1. The basic result 

Theorem 3. a. For n ~ 3, V(B n) is the n (n - 1)/2 dimensional linear subspace of  ~ n 
defined by the normal vectors ~Z~,j~, j = 1 + ~n (n - 1)/2~ ... . .  2 n - (n ÷ 1), k ~ Sj-. 
h. Suppose V(W n) admits a normal vector where the only non-zero components are 
in those component spaces corresponding to pairs of  alternatives and to Sj where 
ISjl >_3. The voting component of  W ~ used to tally the ballots for Sj is a Borda 
vector. 
e. Consider a vector space V(W") defined by F(p; W n) where W" is a system scoring 
vector. The assertion in part b holds true for V(W"), where the S i component is 
either the vector component from Z~j or the negative of  it. 

This theorem can be used to completely specify the properties of the Borda 
Count. As I stated, my emphasis is to show how to use this theorem, rather than 
to provide an extensive listing of new results. To start, consider n = 3 and the 
(normalized) election tally d=(10/15,  5/15; 11/15, 4/15; 9/15, 6/15; 6/15, 5/15, 
4/15) corresponding to the word (c~ > c2, c2 > c3, cj > c3, Cl > c2 > c3). One might 
wonder whether d is a normalized BC election tally. The proof  that it is not is 
simple; if it were based on the BC, then the scalar product of d with all choice 
of Zk, jwould  be zero. However, the scalar product of d with Z2, 4 (see Example 6) 
is 2/32 > 0. 

To continue to show how to use Theorem 3, I use it next to recover and 
extend, in a simple, elementary fashion, several well known conclusions about 
the BC. To state the first result, recall that a Condorcet or majority winner is a 
candidate that wins all pairwise comparisons (by a majority vote), while the anti- 
majority candidate is a candidate that loses all of  the pairwise comparisons. (In 
Example 1, b, cl is the Condorcet winner, while c3 is the anti-majority candidate.) 
Smith [15] discovered the important relationship, described in Corollary 3.1, a, 
that a Condorcet winner cannot be BC ranked last. Smith also showed that this 
particular property is satisfied by no other positional voting method. Combining 
Smith's assertion with some of Young's results [16, 17], Fishburn and Gehrlein 
[3] strengthened Smith's statement to obtasin the assertion that the BC is the 
only positional voting method whereby the winner can be determined ". . .  solely 
on the basis of  the outcome of  pairwise votes between candidates." 

These two statements are special cases of  a more encompassing issue; namely, 
for what choices of  positional voting mehtods do there exit any relationships, what- 
soever, among the rankings of  the positional voting method and those o f  the pairwise 
comparisons with a majority vote? 9 For instance, for a positional voting method 
other than the BC are there pairwise rankings (such as when each pairwise 
elections ends in a tie, or when both a Condorcet winner and an anti-majority 
candidate exist, or when the pairwise election rankings define a transitive, binary 
relationship) that preclude the possibility of at least one positional election rank- 
ing from occurring? More generally, as scoring methods include positional voting 
methods, one might wonder from what choices of scoring methods are there 
relationships, whatsoever, among the rankings of the n candidates and the pair- 
wise majority vote rankings? This more general issue is answered in 
Corollary 3.1 b, c. 

9 There always are some relationships among the tallies; e.g., a trivial one is if a particular 
candidate wins all pairwise elections by unanimous votes, then she is top ranked with any 
positional method. 
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Corollary 3.1a. Consider n> 3 candidates. A Condorcet winner can never be BC 
bottom ranked, and an anti-majority candidate can never be BC top-ranked lo 
b. The BC is the only positional voting method that admits any relationship among 
the rankings of the positional voting procedure and those of the pairwise votes. 
e. Consider the class of scoring methods. There is a relationship among the rankings 
of this method and those of the pairwise votes only if the scoring method is a scalar 
multiple of the BC. 

With  T h e o r e m  3, the p r o o f  of  Corol la ry  3.1 reduces to a simple computa t ion .  
This compu ta t ion  is carried out  in full detail to demons t ra te  the ideas. 

Proof Suppose a profile p = [f~(A)] admits  c~ as the Condorce t  winner,  but  Cl is 
BC b o t t o m  ranked.  Let  F(p ,  B n) = (X~ .. . .  , X2n--(n+ 0) '  SO X~ is the normal ized BC 
vote tally for  & .  The  assumpt ion  tha t  Cl is BC b o t t o m  ranked  requires the 
corresponding c o m p o n e n t  o f  Xz.- (n+ 1) to be algebraically the smallest; namely,  
x~,~ < xy, k, j = 2  . . . . .  n, k = 2 n - ( n +  1). Because X/xz2 ._ (n+~)=o  (by the vector  
normal iza t ion  assumption) ,  it follows tha t  x~,2.-(.  + ~) < 0. I t  follows f rom a direct 
computa t ion ,  using the vector  normal iza t ion,  that  

(YI,2--(n+ 1), X2~-(n-1)) = [ -  (n - 1)Xl,2,-(n + l )+  [~7]> lXj, 2n_(n+ l) )]/n 

- -  x < 2 - - ( ~ + O  > 0 . ( 3 . 1 )  

The assumpt ion  that  Cl is a Condoree t  winner  means  that,  for  each k where 
I Sk I = 2 and c~ e S~, the x~,e c o m p o n e n t  of  Xk is positive. F o r  each such choice 

of  k, it follows tha t  

((1/2, - 1/2), Xk) = x,,e > 0 . (3.2) 

Wi th  Eqs. (3.1), (3.2), the compu ta t i on  of  the scalar p roduc t  is 

(F(p,  B"), Z l , 2 n _ ( n  + I)) = - -  X1,2n--(nq- I) -~-"¢~kXl,k > 0 , (3.3) 

where the summat ion  is over  the values o f k  selected for  Eq. (3.2). But, T h e o r e m  3 
requires this scalar p roduc t  to be zero. This contradic t ion proves that  such a 
ranking  is not  a Borda  outcome.  

The  p r o o f  that  an ant i -major i ty  candidate  cannot  be BC top ranked  is essen- 
tially the same. 

Proof of Part b, c. F is a linear mapping ,  so if a system vot ing vector  W" imposes 
any relationship,  whatsoever ,  a m o n g  the ou tcomes  o f  the pairs and the ranking 
of  a set o f  candidates,  then the image o f  F lies in a lower dimensional  linear 
subspace of  the specified coordinate  subspace of  £2 ". This forces V(W ~) to have 
a no rma l  vector  with its only non-zero  vector  componen t s  in these coordinates  
subspaces of  f2 n. According  to Theo rem 3, the vot ing vector  is a Borda  Vector.  
The  p r o o f  of  par t  c is similar. 

m A nice, related statement about the BC, by Fishburn and Gehrlein [3], asserts for n=3  
candidates and for a specified probabilistic measure over the profiles that, for large numbers 
of voters, the BC is the unique positional voting method to maximize the likelihood that a 
Condorcet winner is top ranked. Using the mathematical structures introduced in Sect. 2 and 
in [10], Jill van Newenhizen [18] significantly extends this statement in many different ways. In 
part, she shows that the same conclusion holds for all n >= 3 and for a much larger class of 
probability distributions. 
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3.2. Some axiomatic characterizations of  the BC 

To  illustrate Corol la ry  3.1 b, c, I use it to extend Young ' s  insightful axiomat ic  
character izat ion o f  the BC that  is based on propert ies  o f  social choice functions 
[16]. Say that  two social choice functions, f g, are equivalent i f  f (p) = g (p) for all 
p. To  state Young ' s  result, recall that  two s tandard  assumpt ions  on social choice 
functions are that  f is anonymous if its ou tcome  depends only on the numbers  
of  voters  with each preference,  and that  f is neutral if  when a is a pe rmuta t ion  
o f  the indices o f  the candidates,  then f (o" (p)) = ~r f (p). (That  is, bo th  the different 
candidates  and the different voters  are t reated equally; the ou tcome does not  
depend on their names.)  The  next assumpt ion  is that  f is consistent; namely,  if  
p and p '  are profiles for  distinct voter  sets, then f ( p ) n  f (p ' ) ~  q~ implies that  
f (p) n f ( p ' )  = f (p + p ' ) .  (Suppose a group  is subdivided into two subcommit -  
tees represented by p and p ' .  I f  the subcommit tees  agree in tha t  
f (p) n f ( p ' )  ~ ~, then consistency requires the c o m m o n  set f (p) n f ( p ' )  is the 
choice of  the full g roup  p + p ' . )  The  funct ion f is faithful if  for  a profile o f  a 
single voter  with cj as his top ranked  candidate,  f ( p ) =  cj. Finally, Young  states 
that  f has the cancellation property if when a profile p causes all n ( n - 1 ) / 2  
pairwise compar i sons  to result in a tie vote, then f (p) = C .  Y o u n g  proved  for 
n >= 3 that i fa  social choice function is anonymous, neutral, consistent, faithful, and 
has the cancellation property, then it is equivalent to choosing the top ranked 
candidates from the BC ranking of  C ~. 

Definition. A social choice procedure  for  C n is a general scoring method based 
on the scoring vector  W l = ( w l  . . . .  ,wl~) with tie breaker  methods  W j 
= ( ~  . . . .  , wan), j = 2 . . . .  , s, if the following condit ions are satisfied. 
1. N o t  all o f  the ~ ' s  in W j have the same value. 
2. A voter ' s  k th ranked  candidate  receives w~ points.  
3. The  candidate ,  or candidates  with the largest point  total  are selected. I f  a tie 
breaker  is used to determine a m o n g  several candidates  with the largest poin t  
total,  then, inductively, at the i th stage allcandidates are reranked with W i. Those  
candidates  with the largest  point  total  that  also are selected at the ( i -  1) th stage 
are selected for  the i th stage. 

As a l ready emphasized,  the weights for  a scoring vector  need not  satisfy any 
monoton ic i ty  condit ion;  e.g., the vector  ( - 1, - 1,4, - 3), where the third ranked  
candidate  gets 4 points,  the first and second get - 1 points,  and the last ranked  
candidate  gets - 3  points,  is a scoring method .  Y o u n g  [17] found an interesting 
axiomat ic  character izat ion o f  general scoring methods.  

Proposit ion 5 [17]. For n> 3, i f  a social choice function is anonymous, neutral 
consistent, and does not have a f ixed value, then it is equivalent to a general scoring 
method ~1 

i~ Young incorrectly asserts that the procedure is a scoring rule, not that it is only equivalent 
to one. To see that the condition of equivalence is needed, consider the procedure that chooses 
the winner of a plurality election should she receive no more than 65% of the vote. Otherwise, 
choose the top ranked candidate based on the voting vector (1, 1/40, 0). This procedure satisfies 
all of Young's conditions, it is not a scoring rule, but it is equivalent to the scoring rule based 
on the plurality vote. However, as stated in Proposition 5, the assertion is correct. These same 
comments apply to Young's characterization of the BC; his conditions define a procedure that 
is equivalent to the BC, but not necessarily the BC. While this point is not of importance for 
the kinds of issues raised here, it is of importance for other kinds of social choice issues. See, 
for instance, Saari [13]. 
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To understand the tie breaking scheme, suppose for n = 5 that the set is initially 
ranked with the BC, and that the two successive tie breakers are (1,0, 0, 0, 0) and 
(1, 1, 1, 1, 0). So, according to this procedure, first find the BC ranking of  the 
candidates. If there is a tie for top place, than choose the tied candidates that 
have the most first place votes. If  there still is a tie, of the remaining candidates, 
choose the ones with the least number of last place votes. The dictionaries can 
be used to illustrate some of the properties of this procedure. For  instance, there 
is a profile [10] so that the rankings of  these three procedures are, respectively, 
C 1 = C 2 = C 3 ) C 4 > C 5 , C 5 > C 4 = C 3 = C 2 > C 1 , and Cx > c5 > c4 > c3 > c2. From, the 
first election, c~, c2, c3 are advanced to the first tie breaker scheme. In the first 
tie breaker, the fact that cs is top-ranked plays no role in the process; the only 
relevant fact is that of the three remaining candidates, ca is bot tom ranked. Thus, 
ca and c3 are advanced to the second tie-breaker. In the second tie-breaker, it 
just so happens that all of  the eliminated candidates are ranked above the re- 
maining two candidates, but this ranking plays no role in the procedure. The 
important fact is that c2 is ranked below c3, so c3 wins. Notice how sensitive this 
procedure is to the order in which the tie-breakers are used. For  instance, if 
(1, 1, 1, 1, 0) is used for the first tie-breaker, rather than for the second one, then 
cl wins rather than c3. 

One might wish to streamline the tie breaking procedure by using the first 
runoff among only [c~, c2, c3~, rather than reconsidering c4 and c5; after all, c4 
and cs are eliminated from further consideration. However, any such procedure 
violates consistency. The proof  of this fact again illustrates an application of 
the dictionaries. For  example, consider the symbols [ct = c2--- c3 > c4, 
C 1 = C 2 > C3, C 1 = C2, C 3 > C2~ and ~c2 = c3 = c4 ~ C l ,  c2 = c4 > c3 ,  c2 = c4 ,  c3 > c 2 ) .  It 
follows from Theorem 2 that for any choice of scoring methods, satisfying part 
e, there are profiles p and p '  defining the above two listings of election outcomes. 
Thus with a tie breaker for a set of three and a set of two candidates, f (p) = [c~, c2) 
while f ( p ' ) =  [c2, c4~, so f ( p ) n f ( p ' ) =  (c2~. However, f ( p + p ' ) =  [c3~. (This 
is because the linearity of summing tallies forces the top ranked candidates for 
p + p '  to be [c2, c3~.) Again, from the linearity of  summation processes, c3 is the 
winner of the run-off. Thus, while consistency may appear to be a natural, fairly 
weak requirement, in fact it imposes a very strong condition on the social choice 
procedure. (Weaker versions of consistency are discussed and characterized in 
Saari [13].) 

"Faithfulness" in Young's Theorem plays two roles. The first is to impose a 
monotonicity on the choice of a scoring method; it requires wl > wj for j >  2. A s 
such, this condition prohibits W 1 from being (1, 1,0, 0, 0), or any other voting 
vector where the weights assigned to a voter's first and second ranked candidates 
agree. I use a weaker condition that includes "faithfulness" as a special case. The 
new condition admits all positional voting methods because it only requires that 
wn, the weight assigned to the bottom ranked candidate, must have a smaller 
value than at least one other weight. The second role of "faithfulness" is to ensure 
that the image of f contains singletons; i.e., there are situations where only one 
candidate is selected. It turns out that this property is not needed for what follows. 
On the other hand, this property does significantly simplify the proofs of the 
results, so, for convenience, I include it as part of  the following definition. 

Definition. A social choice function, f ,  is somewhat faithful if the image of f 
contains a singleton and if for a profile p of a single voter, his bot tom ranked 
candidate is not in the set f (p). 
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To illustrate the difference between faithfulness and somewhat faithful, con- 
sider the single voter profile p where the voter has the ranking c1 > c2 > e3 > c4. 
I f  a ,P3rocedure is faithful, then f ( p ) =  {c~]. If  it is somewhat faithful, then there 
are 2 ways to define f (p); this image set can be any set of candidates that does 
not contain e4. Thus, the requirement of being somewhat faithful admits far more 
procedures. As specific examples for n = 4, the positional voting methods (1, 1,0, 0) 
and (1, 1, 1, 0) and the scoring methods (1, 0, 1, 0) and (0, 0, 1,0) all define some- 
what faithful procedures that are not faithful. 

In light of Proposition 5, the role of the cancellation property in Young's 
result is to impose a pairwise ranking restriction on the choice of the quasi- 
positional voting method. It now follows immediately from Corollary 3.1 b, c, 
that the only possible choice is the BC. Indeed, in light of Corollary 3.1 b, c, it 
follows that Young's result can be extended in many different directions simply by 
replacing the cancellation property with any other BC property. For instance, the 
same conclusion holds when the cancellation property is replaced with the much 
weaker requirement of non-determinancy whereby if p creates a tie vote in all 
pairwise elections, then f (p) is not a singleton. Another natural choice is to 
replace the cancellation property with the desirable requirement that if cj is an 
anti-majority candidate, then cj ¢ f (p). This substitution of the cancellation prop- 
erty does admit tie breakers. Either of these appealing, substitute axiomatic rep- 
resentations of the BC appears to be difficult to prove directly, but they are 
immediate consequences of Theorem 3 and Corollary 3.1. Indeed, most of the 
BC properties derived in this essay serve as substitute conditions for the cancel- 
lation property. This fact is emphasized in the first part of the following statement. 

Corallary 3.2. a. For n >= 3, suppose an anonymous, neutral, consistent, and some- 
what faithful social choice function, f ,  satisfies another specified condition whereby 
the pairwise rankings o f  the candidates imposes a (non-trivial) constraint on the 
image o f  f .  I f  this specified condition is not satisfied by the BC, then no such f 
exists. I f  the condition is satisfied by the BC, then f is equivalent to first choosing 
the BC top ranked candidates o f  C n where possible ties may be broken by tie 
breakers. 
b. For n >= 3, there does not exist an anonymous, neutral, consistent, somewhat 
faithful social choice function that always selects the Condorcet winner. 
e. For n >__ 3, i f  an anonymous, neutral, consistent, and somewhat faithful social 
choice function satisfies the non-determinacy property, then it is equivalent to the 
BC with no tie breakers. 

By a "non-trivial constraint", in part a, I mean that when the designated 
pairwise rankings occur for a profile p, then there is a subset of P (C n) that cannot 
be the image for f (p). The proof of part b, which serves as an example of a 
condition that leads to an impossibility theorem, follows from the observation 
that the Condorcet winner need not be BC top ranked. Part c is a direct extension 
of Young's statement, but it is not obvious whether Young's techniques could 
be used to prove this stronger assertion. One purpose for including this result is 
to indicate in the proof (Sect. 4) why tie breakers are not admitted. Finally, the 
only role played by the "somewhat faithful" condition is to impose enough mon- 
otonicity on the procedure to outlaw the reversed Borda Count - this is equivalent 
to choosing the BC bottom ranked, rather than top ranked candidate. One could 
replace this condition with one of many different substitute monotonicity con- 
ditions. 
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3.2. The Borda rankings 

To extend Corollary 3.1 a, note that the proof just uses the fact that F([ f~  cA)), Bn) 
is orthogonal to each Zkj. In the proof I separately computed the contribution 
of the scalar product due to the outcomes of the pairwise elections and the 
contribution due to the Borda tally. This same computation generalizes 
Corollary 3.1a from an assertion about the ranking of a Condorcet winner to a 
statement about any candidate who fares well in pairwise comparisons. More 
precisely,/f the pairwise election outcomes for candidate ci satisfy Zkxi,~ > O, where 
the summation index k is over the pairs of  candidates SI~ that include c~, then c~ 
cannot be BC bottom ranked. Equivalently, i f  this summation is negative, then ci 
cannot be BC top ranked. This condition permits candidate ci to lose several of 
the pairwise majority vote comparisons as long as she wins other elections by a 
sufficiently large margin. To further appreciate the flexibility offered by this 
condition Ekx~,~ > 0, note that if Sj= [c~, co), then (x i j+  1)/2 is the fraction of 
the voters that prefer c~ to co. Thus, this generalization of Corollary 3.1 a asserts 
that if a candidate receives enough votes over all of the pairwise comparisons to 
be, on the average, over 50% (i.e., if the sum of the fractions of votes from each 
of the n - 1 pairwise elections exceeds (n - 1)/2), then she cannot be BC ranked 
last. Therefore, it is possible for her to lose all but one of the pairwise election 
and still satisfy the inequality! 

This assertion, which involves the use of all of the vectors Zi,2,,-(n+ ~, holds 
because in light of Theorem 3 the assumption about the pairwise elections forces 
the scalar product (Y~,2n--(n+l),X2---(n--~)) to be negative. In turn, this negative 
value forces the angle between X2,,-(n-~) and Y~,2~,-(,,+~ to be greater than 
rr/2. It now follows from the position of Y~,2,,-(n+l~ and the geometry of the 
ranking regions that, not only is it impossible for ci to be BC bottom ranked, 
but it is impossible for her even to be BC tied for last. 

Example 7. a. What words are admitted in D (B ") ? To illustrate both the geometry 
and how algebraic relationships are found, I'll show that (Cl > c2; c~ > c3; c; > c3; 
C2"-~-C 1 > C 3 ) E D ( B 3 ) .  This word corresponds to the components (x~,~,x~,~; 
Xl,2,-Xl,2; x2,3,-x2,3; Xl,4, xl,4,--2X~,4) where x~, j>0 for j = 1 , 2 , 4 ,  and 
x2,3> 0. The orthogonal scalar product of this vector with Z~,4 yields 
Xl 1 @ Xl 2 = Xl 4, while with Z2 4 it is - xl 2 + x2 3 = Xl 4" ( 2 3 4  = - -  ( Z l  4 @ Z 2 4 ) ,  
so'it provides no new information.) Thus, ti~e word is admissible in D (B 3') because 
it is possible to satisfy the equation 

x1,1 + 2xl,2 -- x2,3 • (3.4) 

Therefore, not only is such a word in D (B3), but Eq. (3.4) is a necessary and 
sufficient condition for a Condorcet winner to be BC tied for first place. A necessary 
and sufficient condition for c2 to be BC top ranked is if x2,3 has a larger value. 
Notice that this imposes a significant burden on her winning margin over c3, 
particulrly if c~ does not just barely win both pairwise elections. Alternatively, a 
sufficient condition for c~, the Condorcet winner, to be BC top ranked is 
Xl,l ~-2X1,2 > 1/2(>=Xa,3). As extreme examples, this happens if she just barely 
beats c2 (x~, ~ > 0) but gets at least 62.5% of the vote against c3 (x~,2 > 1/4), or if 
she beats c2 with a 75% vote (x~,~ = 1/2,x~,2 > 0). The main purpose for these 
new conclusions is to indicate how similar supporting relationships for any word 
in D (B n) and for any n > 3 can be found. 
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b. If  the BC is used, what words can accompany the symbols c1 >c2 ,  
ca > c3, cl > c3? The choice of  the one remaining symbol is governed by the above 
equations for xj,4. It follows immediately that this symbol can be filled with any 
ranking that has cl, the Condorcet winner, ranked strictly above c3, the Condorcet 
loser. 
c. What words are in the dictionary for the plurality ranking, but not in D (Bn)? 
If  St = [c~, C2] , S 2 = [Cl ,  c3]  and S 7 = [Cl,  c2, c3]  , then, by using Z1,7, it follows 
that a word with the three symbols c~ > c2, Cl > c3, c2 > c3 > Cl is not in D (B~). 
On the other hand, all such words are in D (W 4) if the system vector is based on 
plurality votes. So, by permuting the indices, by filling in the other symbols in 
an arbitrary fashion, etc., this simple assertion accounts for 172, 974, 204 of the 
words that are in the plurality dictionary but not in D (B4). 

In his paper, Smith reminds the reader that Black questioned the naturalness 
of the Condorcet winner. For  instance, the Condorcet winner, Cl, may barely 
win each pairwise election, while c2 barely loses to cl and then wins all other 
pairwise elections by substantial margins. It is reasonable to feel that c2 should 
be the winner. Smith notes that "it would be interesting to try to formulate this 
feeling as a precise property; it may be that a suitable formulation is a necessary 
and sufficient condition for a [positional voting] system." To continue this line 
of thought, note that it is possible for a Condorcet winner to achieve her status 
not throught excellence, but rather through mediocrity by serving as the com- 
promise - the second choice candidate - for most voters. For  instance, suppose 
three voters have the ranking c~ > c2> c3, 50 have c3>c1 >c2 ,  50 have 
c2 > Cl > c3, and two have c2 > c3 > cz. Here, because 52 voters have c2 as top 
choice, 50 have c3, and only three have cl, it is reasonable to believe that the 
true choice is between c2 and c3. Nevertheless, because 100 of  the voters rank c1 
in second place, c~ is the Condorcet winner, and c3 is the anti-majority candidate. 

Examples and criticisms of  this kind do raise concern about the virtue of  the 
Condorcet winner, so they add emphasis to Black's and Smith's obxervations. 
Actually, Smith's question is easy to answer because, according to Proposition 
5, the imposition of  natural assumptions force the social choice function to be 
equivalent to a scoring method. If  the social choice procedure is to be related in 
any manner whatsoever with the pairwise election outcomes - and this is man- 
datory if one is to follow Smith's suggestion - then, according to Corollary 3.1 
b, c, the procedure can only be the BC. Thus, to avoid an impossibility conclusion, 
the appropriate condition must be based on BC properties. Example 7a illustrates 
the sensitivity of  the BC to the pairwise tallies, while Eq. (3.4) illustrates that 
when the BC does allow a non-Condorcet winner to be BC top ranked, she can 
do so only by overcoming a significant burden. For  instance, in the example of  
the previous paragraph, c2 is the Borda winner with 107 points, while the Con- 
dorcet winner, c~, is Borda second ranked with 106 points. (The interested reader 
may wish to expand these comments to address other issues surrounding the 
conflict between the choice of  the Condorcet winner or the BC. For  example, 
see Nurmi [5] for more details.) 
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3.4 Other subsets and feasible sets 

The above argument just uses the vectors [Zi,2o-(,+ 1)]. Many other conclusion 
follow by using all of  the vectors [Ziu). A first step is Corollary 3.3 given below. 
Part c is included to handle an obvious gap of Corollary 3.1a; namely, is it 
possible for a Condorcet winner be BC ranked below an anti-majority candidate? 

Corollary 3.3. a. Let n >= 3, and consider the subset Sj where [ S;I >= 3. Each com- 
ponent of  the BC tally for Sj, Xj is given by 

x i j =  Zkxi,~ (3.5) 

where the summation is over all pairs of  candidates, S~, where ci ~ Sk and S~ is a 
subset of  Sj. 
b. Suppose for a set Sj, Z,~xi, k > 0, where the summation is as described in part a. 
Then, candidate ci cannot be BC ranked or tied for last in SJ" I f  this summation 
equals zero, then c~ can be BC bottom ranked or top ranked iff  the election ra~nking 
has all candidates in a tie. 
e. I f  c~ is the Condorcet winner and cn is the anti-majority candidate, then the BC 
ranking for any subset of  candidates that includes cl and c,, ranks cl strictly above 
cn. The BC is the only positional voting method for which this is true. 

Example 8. a. To illustrate Eq. (3.5), return to the introductory beverage example 
where cl corresponds to water, c2 to beer, and c3 to wine. This means that 
Xl, l = - -  X 2 , 1  = (6/15) - (9/15) = - 3/15, x~,2 = - x3,2 = - 3/15, and x2, 3 = - -  X3, 3 
= (5/1 5) -- (9/15) = -- 4/1 5. Therefore, according to Eq. (3.5), these pairwise tallies 
uniquely define the BC tally to be x~,4= -6 /15 ,  x2,4 = -1 /15 ,  and x3,4=7/15. 
This leads to the BC ranking c3 > ca > cl, or wine > beer > water. 
b. Suppose the runoff election is being designed so that if a Condorcet winner 
exists, she will be elected. If  the elimination procedure is based on ordinal rank- 
ings, then as Smith noted, each set of candidates must be BC ranked and, at each 
stage, only the bottom ranked candidate is dropped. Notice that this procedure 
is the generalization of the Hare method by using the BC (see Sect. 1). This 
procedure can be generalized by using the normalized BC tally. At each stage, 
drop all candidates with a negative (vector normalized) BC tally, or, if at least 
one candidate has a positive tally, then drop all candidates with a non-positive 
normalized tally. As the Condorcet winner always has a positive normalized tally, 
she is advanced to all stages and she becomes the winner. The advantage of this 
procedure is that it accelerates the process because more than one candidate can 
be eliminated at each stage. A similar procedure holds for other social choice 
methods, such as a "generalized agenda" where the candidates are listed in some 
order and then the first k > 2 candidates are ranked. The idea is to replace those 
candidates dropped from further consideration by the next listed candidates. 
Again, to ensure a Condorcet winner, at each stage, the candidates with a negative 
(or non-positive) normalized BC tally should be dropped.  

Equation (3.5) follows from the requirement that (F([f~(A) ~, B'),  Zi , j)= 0 for 
all i andj.  Part c follows because if cl ~ Sj, then, according to Eq. (3.5), x~j > 0. 
Similarly, if cn ~ Sj, xnu < 0. Part b is a simple illustration. Corollary 3.3b sig- 
nificantly extends Corollary 3.1 to all candidates (not just the Condorcet winner) 
and to all subsets of candidates (not just the set of all candidates). Based on the 
approach used by Borda, it wouldn't  surprise me to discover that he already 
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knew of  a result of  the general nature of  Eq. (3.5) for n = 3. Versions of it do 
appear in Smith [15], and then later in Young [16], but only for the set of all 
candidates. By using this relationship for all sets of  candidates, one can address 
issues such as whether there is a relationship between the BC ranking of  a can- 
didate in the set of  all candidates and her BC ranking in the set where the bottom 
ranked candidate is removed. This question is easily answered below; the basis 
for the solution is stated for all subsets in Corollary 3.4a [by use of  Eq. (3.5)], 
and it is illustrated, with one simple example, in Corollary 3.4b. Corollary 3.4a 
also shows that only the BC admits such relationships. As such, Corollary 3.4 
extends Corollary 3.1, and it can be used, in the obvious fashion, to extend 
Corollary 3.2. But, before the corollary is stated, a related issue, coming from 
social choice theory, is introduced. 

An important theme from social choice is to understand the appropriate 
restrictions on the "feasible" sets of  candidates that leads to a possibility theorem. 
(Social choice functions are extended to subset of  C n by asserting that for Sj, 
f (p, Sj) is a subset of  Sj.) A natural condition, introduced by Arrow [1], is based 
on the idea that if a candidate is top ranked in Sj and she belongs to & ,  a subset 
of Sj, then she should remain top ranked when consideration is restricted to Sk. 
Namely, if f ( p ,  Sj) is a subset of & ,  where S~ is a subset of Sj, then 
f ( p ,  S~)= f ( p ,  Sj). However, when combined with some other natural assump- 
tions, this condition turns out to be too strong to permit the existence of any 
social choice function. (For a geometric explanation that is related to the ap- 
proach used in this paper, see [11].) Therefore, it is worth searching for alternative 
restrictions. As argued in Sect. 1, if such a restriction is to be successful for 
procedures based on positional voting rankings, the restriction must be based on 
the properties of the BC. 

An Arrow type condition leads to an impossibility conclusion. So it is rea- 
sonable to suspect that the appropriate substitute condition is based on the notion 
that the selection of who is the "best" candidate depends on how she compares 
with the other available candidates. To see some of the possibilities, suppose that 
Ann, Rose and Kay are three of  several candidates running for President where 
Rose may, or may not decide to run. Suppose if Ann (c3) and Rose (c2) were 
compared in a pairwise majority election, Rose would win. Nevertheless, should 
Rose choose to join the other candidates, Ann would win. It is reasonable to 
assume that if Rose decides not to run for office, then Ann's comparative ad- 
vantage could only improve by the absence of Rose - Ann would have an even 
better chance to win. Namely, it is reasonable to expect that Ann still would be 
top ranked whether or not Rose stands as a candidate. However, such an axiom, 
which is closely related to Arrow's condition, can lead to iml~ossibility assertions. 

As an alternative, instead of  designing a substitute condition for IIA in terms 
of  who should win with the truncated set of candidates, we might examine those 
conditions specifying who does not win should Rose choose not to run. So, 
suppose that Kay (Cl) would beat Rose in a pairwise election. This implies that 
part of Kay's appeal in a general election is derived from her favorable compar- 
ison with Rose. (We do not specify whether Kay is, or is not a winner should 
Rose decide to run.) Therefore, should Rose decide not to run, then Kay loses 
some of her comparative advantage. Thus, it is reasonable to suspect that Kay 
will not win should Rose decide not to be a candidate. However, when the natural 
extensions of  this scenario are converted into an axiom, it can still lead to im- 
possibility assertions. 



The Borda dictionary 305 

What does lead to a possibility conclusion is if these two scenarios are com- 
bined. In other words, while we can't say that Ann would win should Rose decide 
not to run, we can say that because Ann is a candidate and because Ann stands 
to benefit more from Rose's withdrawal than Kay, Kay will not win. Thus, by 
combining these two scenarios based on Kay's (c~) and Ann's (c3) different kinds 
of comparative advantage with respect to Rose (c2), we end up with a constrained 
Arrow type condition that does lead to a possibility assertion, but only for certain 
classes of procedures. 

Definition. a. A social choice function satisfies the comparative advantage property 
if for any subset of candidates, Sj, the following hold: Suppose c2 ¢ Sj and that 
cj e S i beats c2 in a pairwise election. If  there is a candidate c3 ~ f ( p ,  SjU[c2)) 
that loses to c2 in a pairwise election, then cl¢ fp ,  Sj). 
b. A social choice function satisfies the condition of independence of missing 
alternatives (IMA) if the following condition holds for every feasible set Sj. If  p 
and p '  are two profiles where the relative rankings of the candidates in Sj are 
the same, then f (p, Sj) = f (p ' ,  Sj). 

The IMA condition is, in fact, a form if the IIA condition; it asserts that the 
rankings of the candidates depends only on what candidates are being considered, 
not on what candidates may be admitted. I choose to give it a different name to 
underscore the fact that no assumption is made about how f (p, Sk) may compare 
with f (p, Sj). 

Corollary 3.4. a. Let Sj be a set of  candidates and Sk a proper subset of  at least 
three of the candidates in Sj. The BC is the only positional voting method that 
admits a relationship among the tallies or rankings of Si, Sk, and the pairwise 
comparisons of the candidates in S i. I f  Sa = S j - S ~ ,  then the BC relationship for 
each candidate ci ~ Sk is 

xi j  = xi, k + X~xi, ~ (3.6) 

where the summation is over all pairs S~ = [ci, c~] where r ~ Ind (Sa). 
b. Suppose IS j[ >= 3 and that Sk = SJ[ca]. For c~ ~Sk ,  denote the pair [ci, ca] by 
Sa. Then, xgd= Xi, k + Xi, a. In particular, i f  ci has over half of  the BC total vote tally 
in Sj and if  ca beats ci in a pairwise election, then ci cannot be bottom ranked, nor 
tied for bottom ranked in Sk. Such an assertion holds only i f  the BC is used to rank 
both sets. 
e. I f  for n >= 3, an anonymous, neutral, consistent, somewhat faithful social choice 
function f that satisfies the IMA and the comparative advantage properties, then f 
is equivalent to the BC where f ( p ,  S:) is the top ranked candidate from the BC 
ranking of  Sj. 

It follows from part c that if Arrow's IIA condition is replaced by the comparative 
advantage axiom, then a possibility theorem emerges. The proofs for parts a and 
b involve direct computations using the Zk,j vectors. The assertion that part b 
holds only for the BC is a consequence of Corollary 3.1. The combination of the 
IMA along with the other assumptions implies, from Corollary 3.2, that the choice 
method associated with each set Sj is equivalent to using a positional voting 
method to select the winner. As the rankings are based on pairwise comparisons, 
this positional method must be the BC. That the BC satisfies these conditions 
follows from parts a and b. Incidentally, comparative advantage property can be 
made simpler if the majority vote tallies, rather than just the rankings, are used. 
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For  instance, if Ann is the candidate to most  benefit f rom Rose not being a 
candidate (i.e., in a majority vote, Rose does better against Ann than against 
any other candidate), then the condition can read that Ann will win should Rose 
not run. There are many  other options; e.g., if Ann is the only person to lose to 
Rose in a pairwise election, then she wins whether or not Rose is a candidate. 

Example 9. As an example capturing much of the flavor of  the comparative 
advantage axiom as well as parts a and b of  the corollary, note that if c~ is BC 
bot tom ranked in S j=  [Ci, C2, C3, C4, C5,C6~ (SO Xi, j < 0) and BC top ranked in 
S~ = [Cl, c2, c3] (so Xl,k > 0), then it seems reasonable to expect that c~ must have 
lost at least one of the pairwise comparisons with c4, c5, and/or c6. After all, she 
must suffer in the voters '  comparisons of  her with respect to these added can- 
didates if she dropped from top-rank in S/, to bot tom-rank in Sj. While this 
assertion may seem to be obvious, it is surprising to learn that only the BC always 
satisfies it. 

3.5. A sufficient condition 

According to Eq. (3.5), and the various other expressions deriving from the Z~.j 
vectors, all sorts of  results can be derived just by determining the tallies for the 
majority vote elections. Once these tallies are known, then the BC tallies for all 
other sets are uniquely determined. On the other hand, a difficulty with this 
approach is that it useful o n l y / f  the tallies for all of  the pairwise elections are 
known. This suggests that in order to demonstrate various BC properties, ex- 
amples need to be constructed so that the right hand side has the appropriate 
value. For  normative or theoretical studies we need much more. We need to know 
what values of  ~xj,~, k__< n ( n -  1)/2, are admissible. With the vector space rep- 
resentation used here, the answer to this seemingly difficult combinatorial  prob- 
lems is immediate, and the solution is given in Corollary 3.5. To state the 
results, notice that the vector M~ = (1/2, - 1/2; 1/2, - 1/2; .... ,; 1/2, - 1/2) with 
n (n - 1)/2 vector components corresponds to the tally of  a ballot of  the pairwise 
comparisons for a voter with the ranking A. Similarly, M~A~ corresponds to the 
tally for a voter with the ranking ~r (A). 

Corollary 3.5. The vector X = (X~ .. . . .  Xn(n--1)/2) c a n  be realized by a profile of  
voters i f f  X ~ ~ JU  n, the convex hull o f  [M~(A~], and the components of  X are 
rationals. 

Example 10. a. While the normalized tally t = (l/2, - 1/2; 1/2; - l/2; - 1/2, 1/2) 
corresponds to the admissible ranking of the cycle Cl > c2, c2 > c3, c3 > c~, t is 

3 not an admissible outcome. Here, the six vectors defining M~(A~ are bl = (1/2, 
- -  1 / 2 ;  1 / 2 ;  - -  1 / 2 ;  1 / 2 ,  - -  1 / 2 ) ,  b2  = ( 1 / 2 ,  - 1 / 2 ;  - -  1 / 2 ,  1 /2 ;  1 / 2 ,  - 1 / 2 ) ,  b 3 = ( 1 / 2 ,  
- 1 / 2 ;  - 1 / 2 ,  1 / 2 ;  - -  1 / 2 ,  1 / 2 ) ,  b 4 = ( - 1 / 2 ,  1 / 2 ;  - 1 / 2 ,  1 / 2 ;  - 1 / 2 ,  1 / 2 ) ,  b5  = ( - 1 / 2 ,  
1/2; 1/2, - 1/2; - 1/2, 1/2), and b 6 = ( - -  1/2, 1/2; 1/2; - 1/2; 1/2, - 1/2). To see this, 
note that t = @. sj bj where Z'sj.= 1 and sj > 0. It  follows that in order to satisfy 
both this summation expression for t and the values of  the first two vector 
components of  t, if must be that s~ = 1; sj = 0 for j > 2. The contradiction is that 
the third vector component  of  t has the incorrect sign. 
b. Next I exploit the geometry of  the hull formed by the majority vote tallies. 
By use of  Corollary 3.5 and Eq. (3.5). one can show, for example, that there are 
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profiles where c~ is the Condorcet winner, but BC ranked in ( n -  l )  th place, c 2 
only loses to Cl in the pairwise comparisons, but she is BC ranked in ( n - 2 )  th 
posit ion, . . . ,  cn loses a pairwise comparisons to c j i f f j  < i < n but she is BC ranked 
in the (n - i) th position, and c~, the anti-majority candidate is BC bottom ranked. 
To prove this, note that 0 is an interior point of the convex hull specified in 
Corollary 3.5. Thus the x~,]s, for the pairwise comparisons, can be chosen to 
have arbitrarily small positive values. For  candidate c2, only the value for pairwise 
comparison with Cl is specified, so the remaining Xz,s's can be selected as arbitrarily 
small positive values that satisfy the requirement 0 < xl,2,, (n+~)< Xz, zn--(n+l)- 
Continuing, for candidate ci, only the values for the pairwise comparisons with 
c~, k < i < n, have been specified. The remaining values of xi, a, for the pairwise 
comparisons, can be selected so that they are positive and so that 
Xi--1,2n--(n+ 1) < Xi, 2n--(n+ 1)" All of the values for the pairwise comparisons with c~ 
have been specified, and they are all negative. Thus, Xn,2~_(n--t)< 0, and the 
conclusion holds. (I used the fact that all of  the hyperplanes associated with a 
tie majority vote pass through 0. It is immediate that the approxiate values are 
admitted because the relevant hyperplanes obviously have independent normal 
vectors.) 

With a similar argument, it is easy to show that if we only know that c~ is 
the Condorcet winner and cn is the antimajority candidate, then the only restrictions 
on the BC ranking is that Cl is strictly ranked above c~ (Corollary 3.3 c); all rankings 
satisfying this condition are admitted. Related statements hold for the various 
subsets S s. 
c. By use of  Theorem 1,d and using a special case of  the above, it follows that 
there is a profile of  voters, p, so that f o r  all choices o f  positional voting methods, 
the election ranking is cn- ~ > cn- 2 ~ ' ' '  ~ C3 ~ Cl ~ Cn ~ C2 while the pairwise 
rankings o f  the pairwise votes are ci > c s i f f  i < j .  Therefore cl is the Condorcet 
winner, c2 almost is the Condorcet winner (it only loses to c~), and cn is the anti- 
majority winner. 
d. Because I show in [10] how to extend voting paradoxes from the literature by 
use of  the dictionaries, I do not emphasize this approach here. However, when 
this approach is used with the BC, complications arise because D (B") is a subset 
of U ". This means that the existence of  certain symbols precludes the possibility 
that other symbols can occur. To find what symbols are admitted, note that 
Theorem 3 and Corollary 3.5 imply that they are determined by the image of a 
mapping from ~YC'n to the various component spaces of g2"; the components 
of the mapping are given by Eq. (3.5). 

To illustrate this with a simple example, consider all possible words in D (B 3) 
that have admit the Condorcet cycle Cl > c2, c3 > Cl, and c2 > c3. This corre- 
sponds to the region in ~ 3  defined by positive values for x1,1, x3,2, and x2,3. 
The easiest way is to find whether this region admits any symbols in $4 with a 
tie vote. But, according to Eq. (3.5), if all three variable are equal to e > 0, then 
the $4 ranking is x~,4 = x2,4 = x3,4, or Cl = c2 = c3. Because 0 is an interior point 
of cE~3,  the value of  e can be chosen so that xl,a = x2,3 = e is an interior point. 
Thus, by perturbing these values, it follows that the $4 symbol can be anything. 
This same approach holds for all values of n. 
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3.6. More general BC characterizations 

So far I have emphasized the relationship among the BC ranking of a set Sj and 
the rankings of the pairs of  candidates in Sj. This is not necessary; as already 
suggested by Eq. (3.6), there are relationships among the BC rankings of  other 
subsets of  candidates. The idea developed here is the following: Suppose for some 
reason we are not interested in the relationships among the BC rankings of  all 
subsets of  candidates, but rather just the relationships admitted by the BC rank- 
ings over a certain collection of specified subsets of  candidates. To illustrate, 
suppose n = 5, and we are interested in learning whether there is a relationship 
among the BC rankings of  the five subsets of four candidates. Call F, the specified 
collection of  subsets of  candidates, a family. Notice that a family F defines a 
linear subspace, OF, of  the space O n. Namely, O F is the product of only those 
component spaces corresponding to subsets of candidates in F. To find what 
relationships are admitted by the BC over this family F, one only needs to find 
the normal bundle corresponding to the BC. This construction reduces to nothing 
more than a linear algebra problem. Namely, a new basis is found for the vector 
space spanned by the vectors [Zj, k] given by Theorem 3. This basis is chosen so 
that all of  the basis vectors are either in Or  or orthogonal to OF. (That this can 
be done follows from the theory of elementary vector analysis.) Then, in the same 
way that the [Zj, k] vectors are used to determine the relationships among the 
BC tallies over all subsets of  candidates, the basis vectors that are in OF determine 
the relationships among the BC tallies of  the subsets of candidates in F. This 
approach is demonstrated in this last subsection. Thus, the only remaining prob- 
lem is to determine what are the families of subsets of  candidates that admit 
relationships among the BC rankings. This issue is solved in the companion paper 
[14]. 

To start this discussion, note that the above characterizations of the BC are 
based on election outcomes of  the n (n - 1)/2 pairs of candidates. It is natural to 
wonder whether the BC rankings also can be characterized strictly in terms of 
the BC rankings of  all triplets, or of  all sets of four candidates. It can. Corollary 
3.6 asserts that the BC ranking for the I Sjl = k candidates in Sj. can be determined 
by the BC rankings for all possible subsets of m candidates from Sj for 2 < m < k. 
As described above, the explicit relationships are easily determined with elemen- 
tary linear algebra techniques where the final result is of the form of Eq. (3.5) or 
of the form described in Example 11,d. 

For  a different kind of  motivation for Corollary 3.6, recall the "money pump" 
argument occasionally used by economists to dismiss intransitivities. The argu- 
ment is that a person with intransitive preferences soon would change his rankings 
to avoid being exploited. To see the idea, suppose a person has the rankings 
cl > c2, c3 > cl, c2 > c3. If  he is to choose a candidate from [Cl, c2~, he selects c~. 
Presumably, he would be willing to pay (a bribe?) to change to set [c3, ci] so he 
could select the personally more desirable outcome of  c3. For  similar reasons, 
after paying, presumably he will pay another sum to choose from the set [c2, c3~ 
rather than from [c3, cL]. Now, faced with selecting from [c2, c3], presumably he 
will pay to obtain the personally more favorable situation of choosing from 
[c~, c2~. So, after paying, our victim returns to the original situation; unless he 
changes his rankings, his cyclic preferences provide a never ending opportunity 
to pump money out of him. 

Can a money pump be applied to an organization? The same argument applies 
if there are subsets of candidates where an organization's top choices form a 
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cycle. For  instance, suppose a group's election rankings over triplets from C 4 are 
c2 > c4 > ci, c3 > Cl > c2, c4 > c2 > c3, and Cl > c3 > c4. In such a situation, pre- 
sumably, when faced with selecting from a specified set of three candidates, the 
organization would pay a sum of money for the privilege of  selecting from the 
next triplet of candidates in order to obtain a "significantly better" candidate. 
(The first set of candidates "follows" the last set.) After all, the top ranked 
candidate in any set is bottom ranked in the following set of candidates. Thus, 
such an organization is a "money pump" target. In light of this example, it is 
reasonable to question if positional voting methods avoid such cyclic rankings. 
It turns out that no positional voting method - not even the BC - can avoid all 
of them. However, only the BC gives partial relief from such a scam because the 
BC does avoid many of these kinds of cycles. This is becausae, for the family of 
triplets from C 4, there are relationships among the BC rankings. For  instance, 
it follows as a consequence of Corollary 3.6 that the BC does not admit situations 
where the triplets would have the above choices of rankings. (This follows from 
the first specified normal vector. The normal vectors stated in Corollary 3.6 are 
in the subspace of f2F identified with the family F of triplets.) 

Corollary 3.6. a. Let n = 4. The BC is the only positional voting method that 
admits relationships among the tallies o f  the four triplets of  candidates. I f  the sets 
a r e  listed as [[cl,  C2, C3~, [Cl, C2, C4], [Cl, C3, C4], [C2, C3, C4]], then all possible 
relationships among the BC tallies for these four sets of  three candidates are 
characterized by the normal spanned by the two normal vectors 
N ~ = ( 1 , - 2 , 1 ; - 2 , 1 , 1 ; 1 , 1 , - 2 ; 1 , - 2 , 1 )  a n d N 2 = ( - 2 , 1 , 1 ; 1 ,  - 2 , 1 ; 1 ,  - 2 , 1 ;  
1, 1, --2). 

b. Let Sj be a subset of  k > 3 candidates, and consider all subsets o f  m candidates, 
k > m >= 3. I f  all sets are BC ranked, then there is a relationship among the rankings 
that is uniquely determined by a set of  normal vectors of  co-dimension k ( k -  1)/2. 
e. Let Sj be a subset of  candidates with k > 3 candidates, and let m be an integer 
such that 2 <= m < k. The BC imposes a relationship among the Sj rankings and the 
k!/m! ( k - m ) !  subsets o f  m candidates from Sj. These relationships are uniquely 
determined by the vectors in a normal bundle. A basis of  this normal bundle o f  c- 
dimension k(k  - 1)/2 is given by the normal vectors determining the BC relationships 
among the sets o f  m candidates and by k -  1 additional vectors of  the following 
form." in the following manner." For ca ~ Sj, the Sj vector component is [ ( k - 2 ) ! /  
(m - 2 ) ! (k - m) !] Ya,j, while the Si component, for [ Si [ = m, ca ~ Si, is - -  Y a ,  i" All 
other components are zero. I f  k = 4, m = 3, and none o f  the sets are BC ranked, 
then there is no relationship among the admitted rankings. 

In part c, the new normal vector associated with ca is where she is top-ranked 
in all sets of m candidates that she belongs to while the remaining candidates are 
tied for bot tom ranked, yet she is bot tom ranked in the set of k candidates while 
the rest of the candidates are tied for top rank. This is a normal vector so such 
a ranking is not an admissible BC outcome. On the other hand, this ranking is 
an admissible election outcome for any other choice of a system voting vector. 
Along with Proposition 3, the dimension of  the normal bundle indicates the 
number of cycles and other phenomena avoided by the BC. The uniqueness 
assertion from part a extends to part c for k = 4, m = 3, and to other values of 
k and m. But, the approach used here to prove part a becomes overly complicated 
to prove part c. Therefore, a different kind of argument (this is not developed 
here) is required. Incidentally, this uniqueness assertion of part a is strong; if 
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even one o f  the sets is not  BC ranked while the other three are, then there is no 
relationships among  the set o f  all possible election outcomes.  

Proof of  Part a. Suppose the sets listed in par t  a are $7, $8, $9, and $ 1 0 .  To prove 
the corollary,  it suffices to show that  the vectors [ Z ~ j ] , j  = 7, 8, 9, 10, k ~ Ind (Sj), 
determine the specified normal  bundle over the specified linear subspace o f  f~n. 
This is a s t ra ightforward computa t ion.  The uniqueness assertion is proved in the 
next section. 

Example 11. a. Because F(p ,  B n) satisfies the neutrali ty condition,  other choices 
o f  normal  vectors can be determined f rom the first specified one by using 
the permuta t ion  g roup  theoretic structure. A quick way to find other normal  
v e c t o r s  
is to list the candidates in a repeating chain, such as 

- - ci - - c2 - - c3 - - c4 - - Cl - - c2 - - .  Each  candidate cj is the central 
candidate of  that  subset consisting o f  cj and the two candidates on either side o f  
her in the chain. A normal  vector for Corol lary  3.6a is determined in the following 
manner;  for  each subset, assign the value - 2  for  the central element and 1 for  
the other  two candidates. The first listed normal  vector  in the corollary comes 
f rom the above chain, while the second one comes f rom the chain 
- -  - -  C 1 - -  - -  C 2 - -  - -  C 4 - -  - -  C 3 - -  - -  - -  C 1 - -  - -  C 2 - -  - -  - - .  Another  normal  vector (but 
linearly dependent) comes f rom the chain - - cl - - c 4 -  - c 2 -  - c3 - - 
- - c 4 -  - ,  etc. One immediate consequence is that  it is impossible for all four 
of the central candidates to be BC bottom ranked, or to be BC top ranked The 
selection o f  normal  vectors for  other  sets can be determined by a graph theoretic 
argument.  
b. The two specified normal  vectors determine the relationships 

X 2 , 7  ~ -  X l , 8  ~ -  X 4 , 9  - t -  X 3  ' 10  = 0 (3.7) 

X l , 7  -~- X 2 , 8  -~- 3 , 9  -~- X 4 , 1 0  = 0 • (3.8) 

These are the only (independent) restrictions imposed on the Borda  outcomes.  
Consequently,  in either expression, it is impossible for the four  variables all to 
be o f  the same sign. This implies, as already noted in part  a, that  the central 
candidates cannot  all be top (or bo t tom)  ranked. In  particular, it implies that  
the example demonst ra t ing an organizat ional  "money  p u m p "  never can occur 
with the BC. On the other  hand, these expressions do permit the rankings 
Cl > c2 > c3, c4 > cl > c2, c3 > c4 > cl, and c2 > c3 > c4; rankings that  admit  cy- 
cles. This is because these rankings require Xl,7, x4,8, x3,9, and x2, i0 to be positive. 
A simple way to show these choices are compatible with Eqs. (3.7), (3.8) is to set 
all o f  the variables in Eq. (3.7) equal to zero. This forces xa,8 and x4,1o to be 
negative. So, values exist to satisfy Eq. (3.8). 
c. These results provide another  axiomatic representation o f  the BC. For  in- 
stance, for  n = 4 candidates, i f  a social choice function f satisfying the I M A  is 
defined over all subsets of  three candidates, i f  over each set it is anonymous, neutral, 
consistent, somewhat faithful, and if  it never selects the central candidates for any 
chain, then f is equivalent to the BC (without tie breakers). This serves as another  
alternative to Ar row ' s  condit ion discussed in Corol lary  3.4c. 
d. Par t  c asserts that  the BC admits a relationship among  the rankings o f  the 
four  candidates and those o f  the four  subsets o f  three candidates. The relationship 
is given by the specified normal  vectors. Therefore, the new equations relating 
the outcomes o f  the four  sets are o f  the fo rm 
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xl,7 + xl,8 + xl,9 = 2Xl, ll • (3.9) 

From this equation, all sorts of new conclusions, such as the impossibility of cs 
being BC bottom ranked in the three subsets of three candidates (which forces 
the left hand side of Eq. (3.9) to be negative), yet BC top ranked in S~ (so 
x~,~l > 0) follow immediately. 

In a similar manner, it now is easy to show for n candidates and for any m 
where n > m >_ 2 that c~ cannot be BC top (bottom) ranked in all possible sets of 
m candidates while being BC bottom (top) ranked in the set of all n candidates. 
The BC is the only positional voting vector with this property. (If another voting 
vector had this same property, then the linear space it defines would have the 
same dimension as the one for the BC. As the vector space for the BC is contained 
in this new vector space, they must agree. Thus the new vector is a BC.) When 
m = 2, this becomes a restatement of Corollary 3.1a. Moreover, by following the 
earlier arguments given in this paper, all of  the results given in terms of pairs 
and the ranking of n candidates extend to this new situation. 

3. 7. Other system voting vectors 

A remaining issue is to gain some insight into the structure and the properties 
of the other choices of system voting vectors that belong to a n. As shown here, 
the structure of these system voting vectors is governed by the structure of the 
BC. To see why this is so, recall that if W ~  a n where Wn:t: B n, then there is a 
scaling so that V(B n) is a proper linear subspace of  V(Wn). In turn, this means 
that the normal bundle of V(W n) (in f2 ") is a proper linear subspaee of the 
normal bundle of V(Bn). Therefore, a normal vector for V(W ") is given by a 
linear combination of the normal vectors for V(Bn). The importance of  this 
observation derives from the fact that these normal vectors determine what kind 
of relationships exist among the rankings (and tallies) of the different subsets of 
candidates. Therefore, it follows that any relationship which is admitted by the 
election rankings of  W n also is admitted by the BC election rankings. 

This linear combination assertion provides a stronger statement; the condi- 
tions admitted by other choices of W" ~ a n can be viewed as coming from linear 
combinations of the relationships admitted by the BC. Thus, while it is an in- 
teresting issue to characterize all choices of  Wn~ a n, it follows from the above 
argument that these other choices of vectors in a " do not add anything new to 
our understanding of  the kinds of relationships that can be admitted among 
positional election rankings. 

Corollary 3.7. Let W n e a n. 
a. A normal vector for V(W n) can be expressed as a linear combination o f  the 
vectors ~Zk,j~. 
b. I f  there exists a relationship among the election rankings o f  W n describing what 
kinds o f  rankings o f  the subsets o f  candidates cannot occur with the same profile, 
then the BC admits the same, or a more strict relationship among the BC election 
rankings. 

The task of finding, in a direct fashion, an example of  w N ~  a n , w n * B  ", 
appears to be difficult. However, by use of part a of the corollary, a more 
tractable, indirect approach can be fashioned to determine classes of such vectors. 
As an outline of how this is done, the emphasis is changed from finding an W n 
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to finding a normal bundle for a vector space of f2 n that can be identified with 
a space V(W n) for some choice of  W n. In this manner, once the space V(W n) is 
found, we can determine a choice for W n. 

What makes this approach simpler is that, according to part a of the corollary, 
the normal bundle for any such space V(W") must be based on linear combi- 
nations of  the normal vectors [Zk,j). Thus, by use of Corollary 3.7, we have a 
place to start our search - we consider all linear subspaces of  the normal bundle 
to V(Bn). However, not all such linear subspaces serve as the normal bundle for 
some space V(Wn). This is because such a space V(W n) must satisfy certain 
orientation properties to reflect that W n is a system voting vector and that po- 
sitional voting methods are neutral processes. These properties for V(W n) force 
any such linear subspace to assume a particular orientation in f2 n, which in turn 
forces its normal bundle to have a particular orientation. (This symmetry con- 
straint on the normal bundle is already exhibited by the obvious symmetry prop- 
erties exhibited by the Z~d vectors - for example, certain obvious permutation of 
indices map these vectors back into the set of these vectors. In more technical 
terms, these vectors are in the orbit of  particular algebraic group. Also, in more 
technical terms, the analysis of  these linear spaces is conceptually easier if it is 
done with Grassmanians. However, a straight forward approach does provide 
answers.) This outline provides a systematic method to determine other choices 
of W ~ ~ a". 

To see the kind of  outcomes that can occur, it follows that there exist choices 
of W s so that if cj is top-ranked in all subsets of four or fewer candidates, then 
cj cannot be bottom-ranked in the set of all five candidates. Notice that this is a 
much weaker assertion than that holding for the BC; for the BC the same assertion 
holds but where cj is top-ranked for, say, all subsets of k candidates where k 
assumes any value 2 _< k _< 4. Therefore, the conditions for this choice of  W s, then, 
need to combine the various conditions for the BC. This illustrates the above 
assertion that the kinds of relationships that emerge are weaker and are based 
on linear combinations of  the assertions for the BC. Incidentally, the normal 
vector defining such a process is given by an appropriate linear combination of 
all Zj, k vectors related to cj. The scalars in this linear combination determine the 
choices of  the W s. In this manner, the stratified structure of  a n can be determined. 
The main point for the current paper is to indicate that all of  these vectors along 
with the structure of  a n are determined by the BC. The BC does play a fundamental 
role in understanding the properties of positional voting processes. 

4. Proofs 

The proofs of  most of the assertions either are contained in the body of this 
paper, or they are immediate. The proofs of  the certain of the remaining state- 
ments follow directly from arguments developed in [10]. For  instance, with the 
exception of  the last part of  Theorem 1, both Proposition 2 and Theorem 1 are 
proved in [10]. The proof  of Theorem 2 also is given in the last section of [10]; 
indeed, while Theorem 2 is not formally stated in [10], the proof  of this statement 
is the manner in which Theorem 1 is proved. As an outline, recall that a basis 
for V(B n) is determined in the following manner. Starting with a ranking n(A), 
a new ranking n(A)" is determined by transposing some two adjacently ranked 
candidates. The basis is found by computing 
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B~A>-- B~(A), , (4.1) 

where the system vector B n is expressed in a vector normalized form. The resulting 
vector has a fixed vector form in each subset of  candidates containing these two 
candidates. By carefully choosing the two candidates that are to be transposed, 
it is shown that dim(V(Bn))=n(n - 1)/2. Moreover, as also shown in [10], each 
of the above basis vectors are in V(W n) for an appropriately scalar normalization 
of W n. To prove this, the vector from V(W n) involves the tally from more than 
one voter, and then an expression of  the form given in (4.1) is used. This com- 
putation uses nothing more than the fact that when W" is expressed in a vector 
normalized form, each voting vector component  is non-zero. Thus the last part  
of  Theorem 2 holds. 

The same argument extends to scoring vectors. The only difference is that 
there exist situations (where the scoring vector is in a lower dimensional algebraic 
set) where the scale multiple must be negative. This can be handled in either one 
of  two ways. The first is to change the appropriate vector component  of  B n to 
be the reversed BC. This is the approach used in Theorem 1. The second is to 
allow negative scale multiples. This is the approach used in Theorem 2. Both 
approaches are indicated because there exist settings where one approach is 
preferred to the other. 

Proof of Corollary 1.1. In the proof  (Sect. 1.3) that the BC run-off  election has 
the abstention paradox, the key step involved using three words that differed 
only in one symbols. The proof  for the general case is much the same; again I 
use three words from D(B n) that differ only in a specified symbol. One choice 
for this symbol has the relative rankings of  two candidates tied, a second choice 
has one candidate ranked above the other, and the third choice reverses this 
relative ranking. To do this, I first show that such rankings can be found; namely, 
if two words in D(B n) differ only in one symbol and if the only difference in that 
symbol has two adjacently ranked candidates in reversed positions, then the word 
where this symbol has a tie vote between these candidates also is in D(Bn). For  
instance, if (cl > c2, ct > c3, c2 > c3, Cl > c2 > c3) and (c1 > c2, cl > c3, c2 > c3, 
c; > c~ > c3) are in D(B3), then so is (cl > c2, c~ > c3, c2 > c3, Cl = c2 > Ca). 

This assertion is immediate. There are several vectors in V(W n) corresponding 
to each of the first two words; let v~ be a vector corresponding to the first word, 
v2 to the second, and vt = tv~ + ( 1 -  t)v2 to a point on the line segment between 
them. Of  course, because V(W n) is a vector space, v, e V(Wn). 

From Theorem 6 in [10], the region of profiles corresponding to a fixed symbol 
is a convex region, therefore all but one of the symbols of  v,, v~, v2 must agree. 
The remaining symbol is where the rankings of  the two candidates are reversed. 
Assume without loss of  generality that this is for the ranking of  the set Sj and 
that the candidates are [c~, c2~. This means that in the appropriate component  
space of  ~n, one ranking has x i j  > x2j and the other has the reversed inequality. 
For  all other values of  x~j, the same ordering applies. It now is immediate that 
there is a value of t so that the c~, c2 coordinates for v~ are x~,j = Xzj, while the 
remaining coordinate orderings are preserved. This completes the proof  of  the 
assertion. 

I f  a social choice method based on B n admits the abstention paradox, then 
there are three words in D(B~), based on three candidates, c~, c2, c3 where Cl 
and Ca are possible outcomes depending on the rankings of  two possible final 
sets. The choice of  which final set occurs depends on whether c2 can be advanced 
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one position in the ranking of a swing set. Start with the ranking of  the swing 
set where c2 is tied in the swing position. Choose the rest of the symbols of the 
word in D(B n) so that if c2 is lowered from the tie position, then c3 is the outcome, 
yet if c2 is advanced from the tie, then c~ is the final outcome. (Again, this is 
possible because the binary susceptible method has the abstention property.) This 
identifies the words that changes the outcomes. 

The selected profile will be associated with the word with the tie vote in the 
swing symbol. Construct the rankings for the two voters with c2 as top ranked, 
Cl is bot tom ranked, and c3 is ranked somewhere in the middle. By use of Theorem 
6 of [10], p can be selected so that it includes one of  these voters. So, if both 
vote, the outcome is the undesired c~, if they abstain, the outcome is the more 
desired c3. Because this argument is based on a particular word being in D(B n) 
and because this same word is in all choices of  D(Wn), the same argument proves 
that this phenomenon occurs holds for all choices of positional voting vectors. 
(A slightly more complicated argument extends the conclusion to a much wider 
class of procedures.) 

Proof of Theorem 3, a. This is a simple computation using the basis for V(B n) 
derived in [10]. 

Proof of part b. This follows immediately from Theorem 5.1 in [10]. An alternative 
proof  can be derived by using the scheme developed to prove Corollary 3.6a, c 
which is given below. 

Proof of part c. This follows from Theorem 2 and the fact, pointed out above, 
that the main component of the proofs for other choices of W n is that when W n 
is expressed in a vector normalized form, each voting vector component is non- 
zero. 

Proof of Corollary 3.2.,a. First I show that a somewhat faithful social choice 
function f cannot be single valued. If it could be, then f (p) is the same set from 
P(C n) for all choices of  p. Let cl ~ f ( p ) ,  and let Pl be a profile of a single voter 
where c~ is bottom ranked. Then, according to the assumption of being somewhat 
faithful, el ¢ f(Pl). This contradicts the assumption that f has only one value 
and proves the assertion. 

According to assumption and the above, f is an anonymous, neutral, con- 
sistent social choice function that takes more than one value. Thus, according to 
Propostion 5, f is equivalent to a general scoring method. It now follows from 
Corollary 3.1 b that the added assumption about f satisfying a condition involving 
pairwise rankings forces f to be equivalent either to the BC or to the reversed 
BC. However, because f is somewhat faithful, the weight assigned to the bottom 
ranked candidate must be less than that for some other candidate, so f must be 
equivalent to choosing the top ranked candidates from the BC ranking. This 
completes the proof. 

Incidentally, this assertion does not preclude the possibility of tie breakers. 
For  instance, suppose the binary condition is that the anti-majority candidate is 
not elected and that a single winner is being selected, then tie breakers are 
admitted. This is because, at the end of the first stage, the anti-majority candidate 
cannot be tied for first place. Thus, as the tie breaker is applied to those candidates 
that are top ranked, this does not involve the anti-majority candidate. 
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Proof of part b. The BC need not have the Condorcet  winner as top ranked, so, 
by part  a, an impossibility assertion follows. 

Proof of part c. According to part  a, the method at the first stage must be the 
BC. Thus, the first stage is equivalent to selecting the top ranked candidate(s) 
from the BC ranking. Now, suppose a tie breaker W2 is admitted where W2 is 
not a Borda Vector. According to Theorem 2, a profile can be found so that the 
pairwise votes are all ties (which forces the BC outcome to have all candidates 
tied for first place), but c~ is the top ranked candidate of  the W2 tally. This means 
that the social choice mechanism selects ca. This choice of  a singleton violates 
the assumption of non-determinancy. This completes the proof. 

Incidentally, this is one of  the few places I use the fact that the social choice 
function has a singleton in its image. On the other hand, if f does not admit any 
singleton sets in the image, only sets of  at least k > 1 candidates, then the social 
choice method is equivalent to selecting the k top ranked candidates from the 
election ranking. For  instance, this may correspond to selecting a committee of  
k candidates. In this case the BC ranking of C n can be reduced by a tie breaker 
to the top k candidates without coming into conflict with non-determinacy or 
consistency. To regain the same conclusion of a BC election without use of  a tie 
breaker, one just strengthens the non-determinacy condition to require more than 
k candidates in the set of  f whenever all of  the pairwise elections result in tie 
voters. 

Proof of Corollary 3.6b. Let k = n and let £2~ be the subspace of £~n corresponding 
to the entries in the sets of  m candidates. Let Pr:f2n~£2,~ be the obvious pro- 
jection mapping. Part  b holds iff the dimension of the vector space Pr  (V(Bn)) is 
n(n-1) /2 .  Because d im(V(Bn) )=n(n-1 ) /2 ,  we have that dim(Pr(V(Bn)))  
< n ( n - 1 ) / 2 .  It remains to show that the dimension cannot be smaller than 
n (n - 1)/2. 

The space Pr (V(B~)) can be viewed (Corollary 3.5) as the image of a mapping 
F: ~ Y n - - - '  f2,'~, where each coordinate of  F is given by Eq. (3.5). I f  the dimension 
of the image is less than n (n - 1)/2, then, by the linearity of  F, there is a point 
p ~ ~ Y ~  and a direction a so that F (p  + a t ) =  F(p). By the Taylor  series, this 
means that DF does not have rank n ( n -  1)/2. 

The matrix D F  is dim (£2~m) × n (n -- 1)/2 where each row corresponds to the 
value of xj, k while each column corresponds to a pair of  candidates. It follows 
from Eq. (3.5) that the entries in this matrix are either unity or zero. To show 
that the rank of D F  is n ( n -  1)/2, it suffices to show that the span of the row 
vectors includes the n (n - 1)/2 coordinate vectors in R n(n- 1)/2, ei, with unity in 
the ith component  and zero in all others. To show this, first consider the coor- 
dinates associated with ca (i.e., xij) and assume that the ( j -  1) th columns of DF  
represents the pair {ca, @ , j =  2,..., n. List all candidates other than c~ according 
to subscipt as c2, c3 . . . . .  c~, c2, c3 ... .  F rom this list form the set of  candidates 
& , k =  1 .. . . .  n - 1 ,  where ca is in Sk along with c~+~ and the m - 2  candidates 
listed to the right of  her. For  instance, S~ = (c~, c2,..., cm), $3 = (ca, c4 .. . . .  cn,+2), 
and Sn_ l = ~c~, c,,, c2 .. . . .  cm-~). Assume that the first n - 1 rows of  D F  are listed 
in the order Xlo where j corresponds to the sets Sj defined above. With this 
notation, the first row of DF  (for Xl ~) has unity in the first m - 1 columns, and 

t h  zero in all others. In general, the j "  row has unity on the main diagonal, and 
unity in the next m - 2 columns. I f  there are not m - 2 columns remaining in this 



316 D.G. Saari 

(n - 1 )  × (n - 1 )  block, then the remaining number of  ones are placed starting 
f rom the right hand side. All other entries in this row are zero. 

Either by noting that this matrix is a circulant matrix (see [7] and the listed 
references) whose determinant is non-zero, or by elementary row reduction, it 
follows that the resulting ( n -  1)× ( n -  1) block has non-zero determinant. This 
means that the row vectors with unity in a component  corresponding to a pair 
[cl, cj] and zero in all others is in the span of the row vectors of  DF. The same 
construction is continued with all other choices of  cj, and the conclusion follows. 

Part c. Again, let k = n. For  this part,  we are considering the projection of V(B") 
into the product space of  £2,~n with the vector space representing the outcomes of 
$2,-(n + 1). As this projection has a subspace of dimension n ( n -  1)/2 (by part  b), 
the dimension of the projection is no less than n ( n - 1 ) / 2 .  As 
dim(V(Bn)) = n ( n - 1 ) / 2 ,  the projection has exactly this dimension. Thus, it re- 
mains to find the n -  1 normal vectors that were not in Part  b. 

Start with candidate Cl. For  each term in the sum XjZI.j,  where the summation 
is over the ( n -  1 ) ! / (m-  1 ) ! (n -m)!  of  the sets Sj containing c~ and m -  1 other 
candidates, the vector component  for each pair is either (1/2, - l / 2 )  (c~ is top 
ranked) or 0. Each pair gets counted in a non-zero faction (n - 2)!/(m - 2)!(n - m)! 
times. Thus, if - [ ( n -  2 ) ! / (m -  2 ) ! ( n -  rn)!]Z~.=,_(n+ ~) is added to the sum, all of  
the components for pairs become zero. This is the vector described in the state- 
ment  of  the corollary. Clearly, by changing the choice of  the candidate from Cl 
to Ca, n -- 1 normal vectors are defined. 

What  remains is to show the uniqueness assertion of part  a. Namely, I prove 
that if any of the four sets of  three candidates is not ranked with a BC, then all 
possible election rankings occur. Let £2' denote the product space of the vector 
ranking regions for the four sets. Suppose there exist choices of  voting vectors, 
Wi, that admit a relationship among the ordinal election rankings for the four 
sets of  three candidates specified in part  a. This means that the span of the 
election tallies define a lower dimensional, linear subspace of £2', so this linear 
subspace has a non-zero normal vector, N, in f2 ' .  

My first assertion is that N must be a linear combination of  the two normal 
vectors specified in part  of  the corollary. Extend the above choices of  Wi's in 
any desired manner  to obtain a W n. Recall f rom Theorem 2 that V(B n) is a proper 
subset of  V(W n) for any W n that is not a Borda system vector. (Of course, this 
requires the proper  scalar normalization of  the components of  WL) Therefore, 
a normal vector for V(W n) must be in the span of  the normal vectors for V(Bn). 
Thus, N must be in the span of the two vectors specified in part  a of  the corollary. 
Namely, N = a ~ N I  +a2N= because we assume that N ¢ 0 ,  either a I or a= is non- 
zero. Without loss of  generality, assume that a~ ~ 0. Thus, N can be expressed as 
Nl + bN=. 

A scalar normalization of  the W/s  that suffices for Theorem 2 is to assume 
that W; = (2, x~, - 2 - x~), i = 1, 2, 3, 4, where - 2 < x~ < 2. Thus, each Wi becomes 
a Borda Count iff x~ = 0. As N is a normal vector, there are 4! = 24 resulting 
equations corresponding to the scalar product of  N with the vote tally assigned 
to a profile consisting of  a single voter where the voter 's preferences vary over 
each of  the possible permutations of  A = el > c2 > c3 > c4. This gives rise to a 
system of  24 equations with the four unknowns x;. Because N is a linear com- 
bination of  the normal vectors for the BC tally, each equation has at least one 
solution - the BC. It  remains to show that this is the unique solution. This requires 
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finding four equations where the coefficients, determined by the entries o f  N, are 
linearly independent.  

By looking at the equations for the cyclic permutat ions  o f  the ranking 
C 1 > C 2 • C 3 > C4, (i.e., ca > C2 > C3 > C4, C2 > C3 > 6'4 ~> Ca, C3 > C4 > Cl > C2, and 
c4 > el > c2 > c3), the equat ions for X = (xt, x2, .x3, x4) becomes B X ' =  0, where 
B is a 4 × 4 matrix with entries that  are scalars or  scalar multiples o f  b (the 
multiple o f  N2 in the definition o f  N). The unique solution for this system is the 
BC as long as the matrix B is non-singular.  The determinant  o f  B equals 
( -  5 + 5b + b2)(1 - b - b2), so b = ( -  5 _+ 31511/2)/2 are the only real values o f  b 
that  cause this matrix to be singular. On the other hand, if one looks at the 
equat ions resulting f rom the cyclic permutat ions  o f  the ranking c~ > c2 > c4 > c3, 
a similar matrix equat ion results where the determinant  o f  the coefficient matrix 
has the value - 1 - 4b + 9b 2 -  10b 3 + 5b 4. This new polynomial  has its real zeros 
at the values b = ( - 5 _+ 315]1/2)/10. Thus, no mat ter  what  is the choice o f  b, there 
exist some selection o f  four  independent  equat ions that  forces the only solution 
o f  the system to be the BC. This completes the proof.  
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