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1 Introduction 

In this paper we estimate small ball probabilities for locally nondeterministic 
Gaussian processes with (approximately) stationary increments and use the 
estimates to prove Chung type laws and to refine the Strassen law of the 
iterated logarithm for fractional Brownian motion. A main goal is to develop 
techniques and results for processes with dependent increments. In this section 
we give some background, and an overview of our results. 

Let {X(t); t > 0} be a centered continuous Gaussian process, let M(t) = 
maxo<_s<_tlX(s)l, and write LLt= loge[ loge t [ .  If {X(t)} is a standard 
Brownian motion, then Chung's law of the iterated logarithm [7] gives the 
local growth rate 

f M ( t ) / ~  .... / ~  lira in = zc . 
t~0 

Chung's result relies on estimates of the probabilities 

P(M(t) < e) 

for small values of e (for a sharp bound, see [13, p. 1047]). 
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Now, let 
tlt(S ) = X ( s t ) / ( 2 t L L t )  1/2, 0 <- s <- 1. 

For the case when {X(t)} is a Brownian motion, Strassen [23] proved that as 
t $ 0 or t T oc, {~/t} is a.s. relatively compact in C [0, 1], with cluster set equal to 
the unit ball in a Reproducing Kernel Hilbert Space (RKHS) connected with 
Brownian motion. The result was extended to fractional Brownian motion in 
Oodaira [19]. (Oodaira's proof contains a gap. On page 298 it is not enough 
to show that for each fixed j, P(lim supr (s) Cr ) = 1. Instead we could use the 
Cramer-Wold device [14, Theorem 3.1] to prove that the cluster set equals K. 
However, the results of Sect. 4 below contain much more.) 

Csaki [8] established a functional law of the iterated logarithm for 
Brownian motion which at the same time gives a "rate of convergence" in the 
Strassen law and extends Chung's result to small C[0, 1] balls centered 
around general functions in the unit ball of the RKHS. His results correspond 
to the case e = 1 in Sect. 4 below (see also [1, 15]). Professors Kuelbs and Li 
kindly suggested to us that a combination of our techniques and those of the 
above mentioned papers would yield similar functional laws for fractional 
Brownian motion. 

In Sect. 2 we obtain the bounds for small ball probabilities for strongly 
locally nondeterministic processes. We refer to [3, 4, 9, 18], and to Sect. 2 for 
information on local nondeterminism. An important special case is fractional 
Brownian motion (fBm). The process {X(t); t > 0} is a standard fBm if it is 
a centered continuous Gaussian process with covariance function 

E {X(s)X(t)} = {s �9 + t - I s  - tl }, (1.1)  

where 0 < c~ < 2. We say that c~ is the index of the fBm. I f e  = 1, then we have 
ordinary Brownian motion. By [17], a standard fBm with index ~ may be 
represented as 

0 

X ( t )  = k g  ~ f {(t - s) ( ~ - ~ / 2  - ( - s) (~-~)/a} dB(s )  
- o o  

+ k~ -1 j (t - -  S) ( c ~ - 1 ) / 2  dB(s), (1.2) 
0 

for t > 0, where {B(s): - oo < s < oo } denotes a standard Brownian motion 
and 

0 1 

k 2 = f {(1 - s) (~ 1)12 _ ( _ s ) (~-1)12}2ds  + f (1 - s ) ~ - l d s .  
--oO 0 

It is easily seen that fBm is selfsimilar, i.e., that {X(s); s => 0} and { t - ~ 1 2 X ( s t ) ;  
s > 0} have the same distribution for any t > 0. As discussed in Sect. 2 below 
fBm is strongly locally nondeterministic. 
For  fBm our bound for small ball probabilities is that, for 0 < e < t ~/2, 

e -c '~  ~ < P { M ( t )  < e} = e -ct~-2j" (1.3) 

for some strictly positive constants c and C (Corollary 2.2). 
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In Sect. 3 we show that it follows that for fBm's (and for more general strongly 
locally nondeterministic Gaussian processes) 

lim inf M(t) /{ t  a/2 (LLt)- a / 2  } a .s .  Ca 
t$0 

for some positive constant ca. For fBm's a corresponding result holds for 
t-+ oo, 

lim infM (t)/{t a/2 (LLt)- a/2 } . . . .  , C a . 

t--+ o0 

The extensions of the theory of Csaki [8] are considered in Sect. 4. Let I[ f [I oo 
denote the sup-norm on C [0, 1], and Ha --- C [0, 1] the RKHS of the kernel 

V(s,t)=l{s=+ta-ls-t?}, 0_<s_<l, 0 _ < t < l .  

Put 

K = { f e H a :  < f f ) a  < 1}, 

where < f  9)a denotes the inner product in Ha. (A slightly more explicit 
characterization of K can be found in Theorem 4.1 (C) of [10].) According to 
[-19], for fit given by 

rh(S ) = X(st) /(2ULLt) 1/2, 0 -< s < 1, (1.4) 

the set of functions {t/,} is a.s. relatively compact, with cluster set K, as t ~ 0 or 
tToo.  
We strengthen this result as follows. If < f f ) a  < 1, then 

a , s .  

lim inf(LLt) (a+ 1)/(a+2)II ~, - f  1[ oo < oo. 

Furthermore, 

lim inf (LLt) ('+ 1)/2 IP*1, - f  II oo a.s .  7(f), 

for some constant 0 < 7(f)  < oo, if and only if < f f ) a  < 1. Chung's LIL is 
the special case f -  0. Finally, we establish that among the functions f e Ha 
with < f f ) a  = 1, there is a dense set for which a.s. 

0 < liminf(LLt) (~+a)/(a+2) ]rt/t - f l ]o~ < ~ .  

2 The probability that a Gaussian path is flat 

In this section we establish bounds of the type (1.3) for the probability that 
a Gaussian path stays within a narrow strip. Let {X(t): t __> 0} be a centered 
and continuous Gaussian process with incremental variance o-2(h)= 
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V(X( t  + h) - X(t)). Let 0 < e < 2 and let 6, cl, c2 be strictly positive con- 
stants. The bounds will follow from the assumptions 

and 

a2(h)<__clh ~, O<_h<_8, O < t < 8 - h  (2.1) 

V ( X ( t + h ) l X ( s ) : O < _ s < _ t ) > c e h  ~, O<_h<_8, O < _ t < - 8 - h .  (2.2) 

The main case when (2.1) is satisfied for suitable 8, cl is when o-2(h) = r 
does not depend on t, and 

a2(h) ~ c o n s t - h  ~, h --* 0. (2.3) 

If (2.1) holds, (2.2) is the same as requiring that {X(t)} is strongly locally 
nondeterministic, see [9]. 
From the representation (1.2) it easily follow that if {X(t)} is a fBm of index e, 
then 

( ?  ) V ( X ( t + h ) l X ( s ) : O < _ s < _ t ) > V  k~ 1 ( t+h- s ) (~ - l~ /2dB( s )  

= k22o~-lh ~, 

and that (2.2) hence holds, with c2 = k22o~- 1. General conditions for (strong) 
local nondeterminism are given by Marcus [18] and Berman [5], who show 
that o-~ (h) = a2(h), independent of t, with o-2(h) --* 0, h --* 0 and a2(h) concave 
in [0, 267 is sufficient, and by Berman [3] who requires (2.1) and that the 
increments of {X(t)} are stationary with spectral measure whose absolutely 
continuous component has a density f (2)  which satisfies 

f(2) > const. 121 -~-1  

for large I,~l- 
Let ~ (x) = f_'~ (2re)-1/2 exp( - y2/2)dy denote the distribution function of the 
absolute value of a standard normal random variable. We will use the easily 
proved inequality 

log Kx 0 _< x _< 1, (2.4) 
logt/(x) > [ _ Ke_X~/2 1 < x. 

Here and in the sequel K is a generic positive constant whose value may 
change from appearance to appearance. Further, write 

M ( t ) =  max I X ( t ) - X ( O ) l .  
O < s < _ t  

Theorem 2.1 Let {X(t): t => 0} be a centered, real valued Gaussian process with 
continuous sample paths. I f  (2.2) holds then there is a constant c > 0 such that 
the right-hand inequality in (2.5) below is satisfied for t < 6 and 0 < ~ < t ~/2. I f  
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(2.1) holds then there is a constant C > 0 such that the left-hand inequality in 
(2.5) is satisfied for t < 6 and e < t ~/z. Hence if both (2.1) and (2.2) hold then 

e -c'~-2/~ <= P(M(t) <= ~) <- e -ct~-2/~ (2.5) 

for t <= f and O < e < U/2. 

Proof We first prove the right-hand inequality. We may assume that 
X(0) = 0. Fix t _<_ 6. By considering the process {c21/2t-~/2X(st): 0 <= s}, 
instead of the process {X(s): 0 =< s} we may assume that t = 1, e < c21/2 and 
that 

V(X(t+h)lX(s):O<_s<_t)>>_h ~, 0_<h_<l ,  O < _ t < _ l - h .  (2.6) 

Let n and k be integers with 1 _< k _< n. The probability that the modulus of 
a Gaussian random variable is smaller than a constant increases if the mean is 
set to zero and the variance is decreased. Hence, since conditional distribu- 
tions in Gaussian processes are Gaussian it follows from (2.6) that 

P([X(k/n)[ <= ~[X(j/n) = xj, 1 <= j <= k - 1) =< r/(~n~/2), 

with t /as  defined just before the theorem. Thus, by repeated conditioning, 

P(M(1)<~)<= = P (  max ,X(k/n)[<=~) 
l<_k<_n 

=< n (~n~/2) ~ 

Choosing n = [2c~1/~ -2/~] _> 2 we get that 

n (M(1) =< e) =< t/(2 ~/2 C 21/2)[2c~' /~e 2/~3 

_-< exp( - K(2c21/~e-2/~ - 1)) 

< exp( - Kc 21/~ s-2/~), 

where K = - log ~/(2 ~/2 c 21/2) > 0. This proves the right-hand inequality in 
(2.5). 

We next prove the left-hand inequality, by bounding the increments 
over a dyadic partition. Fix t = 6. This time considering the process 
{c~l/2t-~/2X(st): s >_>_ 0} instead of {X(s): s => 0}, we may assume that t = 1, 
e<_c~ 1/2 and that a2(h)<h ~, O _ < h < l .  For  0 < 0 < 1 ,  put c(O)= 
(1 + 0 ) / (1  - O) so that 

01,-  ,ol < c(O) (2.7) 
n = l  

for any integer no. Choose 0 e (2 -'/2, 1) such that c(O) >= c;  1/2. Further, for 
n --1,  2, ... and i = 1 , . . . , 2 "  let A , . ~ = X ( i 2 - " ) - - X ( ( i  - 1 ) 2  -") so that 
A,,~ is normal with zero mean and variance less than 2 -"~. Since any t e [0, 1] 
may be written as t = ~ , ~ a  b,(t)2-", where each b,(t) is zero or one, 

X (t) = ~ b.(t) A.,~.,,), 0 < t < 1, 
n = l  
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where 1 =< i(n, t) <= 2". It follows that, for 0 < t < 1, 

M(t) < ~ max IA,,i[. 
n =  l 1 _ < i _ < 2 '  

Hence by (2.7), and using [22, Corollary 3J in the second step, 

P(M(1) =< c(O)e) >= P(lA,,~[ =< 0 I,-nol~, 1 =< n, 1 _< i <_ 2") 

fi ri > P(IA,,,,I < 0 I" -"~ e) 
n = l  i = 1  

>= FI rl(OIn-n~ 2"" 
n = l  

Assume that e < 1 and put 

=  al~ 1 no L el~ 2 + 1. 

Then 

(2.8) 

1 < g2 n~ __< 2 ~/2 and 2 "0 ~ 2g -2/~. (2.9) 

By (2.8) and the first part of (2.9), 

logP(m(1) _<_ c(O)~) >- ~ 2"logr/(01"-"~176 (2.10) 
n =  1 

Since 02 -~/: _-< 1, it follows from the upper inequality in (2.4), and using the 
second part of (2.9) in the third step, that 

n o - 1 no - 1 

2"1ogr1((02-~/2) "o-") > ~ 2"{logK + (no - n)log(O/2~/2)} 
n=l n=l 

= - e-2/~K, (2.11) 

with the last K-value positive. 
Next, using in turn the second part of (2.4), that 0 is chosen to make 02 ~/a > 1, 
and the second inequality in (2.9), 

n = n  0 n = O  

> _ e-2/~2K 2nexp --~(022~) n 
n = 0  

- e-2/~K. (2.12) 
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Replacing e by e/c(O) < 1 it follows from (2.10)-(2.12) that 

( ~ - 2 i ~  
logP(M(1) < e) > - K, 

= = t c(O)) 
which proves the left inequality of (2.5), with C = c(O)al~K. This concludes the 
proof. []  

It may be noted that the constant c in (2.5) is independent of 6 and only 
depends on ~, cz and that similarly C is independent of 6 and only depends on 
c~, cl. Simple modifications of the proof show that the left inequality in (2.5) in 
fact holds for e < max{l ,  t "/2 } and t < 6, and that it also holds for arbitrary 
values of t if the restrictions 0 < h _< c~, 0 < t < 6 - h are removed. Since 

P(M( t )  <-_ g) <- P(M(s)  <= ~) 

for 0 _< s ___ t it follows from the right inequality in (2.5) that for, any t, 

P(M(t )  <= ~) <= exp{ - c(t)t  - 2/~} 

for e _< t ~/2, with c(t) depending on t but not on ~. The selfsimilarity of fBm's 
makes it easy to remove the restrictions on t entirely from the result. We state 
this as a corollary. 

Corollary 2.2 Let {X(t): t _> 0} be a standard fractional Brownian motion with 
exponent  a. Then there are constants 0 < c <= C < ~ , which are independent o f  
e and t, such that 

e -ct~-2/~ < P(M( t )  < g) <= e -a~-2/~ for  e < t ~12. (2.13) 

Proof  As discussed before the theorem, fBm's satisfies the hypotheses of 
Theorem 2.1, so that in particular (2.13) holds for some to > 0. The general 
case then follows at once from the fact that the processes {X(s): s > 0} and 

X s : s > 0 have the same distributions. []  

The restriction ~ =< t ~/2 cannot be removed entirely from the right inequality in 
(2.13), for any c > 0, since it is known that 1 - P(M(t )  <= ~) decreases exponen- 
tially in t~ - zl~ a s  t~; - 2 / ~  --+0 while 1 - e x p { -  c t ~  - 21~} ~ c t e  - 2 /~ .  However, 
for our purposes this is a less interesting case. It is also possible to find 
examples of locally nondeterministic processes which are periodic, and for 
which the righthand inequality in (2.5) fail as e = const" t ~ /2  ~ o0. 

Remark.  Professor Qi-Man Shao derived the inequalities in (2.13) indepen- 
dently almost simultaneously with the authors using essentially the same 
arguments. 

3 Chung's law of the iterated logarithm 

The bounds of the preceding section immediately lead to the easy half of 
Chung's law of the iterated logarithm for Gaussian processes satisfying (2.1) 
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and (2.2). Fo r  the harder  half, some form of approx ima te  independence is 
needed. We restrict our  a t tent ion to Gauss ian  processes with s ta t ionary  
increments.  F o r  such processes we obta in  the necessary independence by 
splitting up their spectral  representat ion.  
Let X = {X(t): - oe < t < oo } be a real-valued, centered Gauss ian  process. 
We assume tha t  X(0) = 0 and that  X has s ta t ionary  increments  and  continu-  
ous covar iance function 

R(s, t) = E{X(s)X(t)}  = f (e 'sa - 1)(e -"~ - 1)A(d2), (3.1) 
-o0  

where the symmetr ic  spectral  measure  A satisfies 

f 22 
_ o0 1 + 22 A (d2)  < o o .  

There  exists a centered, complex-valued,  Gauss ian  r a n d o m  measure  W (d2) 
such that  

0o 
X(t) = f (e " ~ -  1)W(d2). 

- -o (3  

The measures  W and A are related by the identity 

E{W(A)W(B)}  = A(Ac3B) 

for all real Borel sets A and B. Fur thermore ,  

(3.2) 

W ( -  A) = W(A). 

We shall need the following version of Fernique 's  l emma  (see [12, L e m m a  1.1, 
p. 138]). 

L e m m a  3.1 Let {X(t): t ~ O} be a separable, centered, real-valued Gaussian 
process with incremental variance at 2 (h) = V (X (t + h) - X (t)). Assume that 

~rt(h) ~ cp(h), t > O, h > O ,  

for some continuous nondecreasing function ~ with ~o(O)=O. Put 
M(t) = s u p o  _<s _< t l X (s) - X(O)]. For any positive integer k > 1 and any posit- 
ive constants t, x and O(p), p = 1, 2, 3, ... , 

P(M(t) > x(p(t) + ~" O(p)cp(tk-ZP)) <= k2e -x2/2 + ~ kZP+le -~ 
p = l  p = l  

Using this inequali ty we are able to prove  Chung type laws of the i terated 
logar i thm for a large class of  Gauss ian  processes. 

Theorem 3.2 Let {X(t): - c~ < t < oo } be a real-valued, centered Gaussian 
process with continuous sample paths. Assume that X(O) = 0 and that X has 
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stationary increments. Also assume that (2.1) and (2.2) hold and that for some 
l > 0 ,  

liminflAl3A ([2 ,2  + l]) > 0. (3.3) 
I.q--, oo 

Then there exists a positive constant Cx such that 

lim inf M (t) .... -- Cx. (3.4) 
t;o ta/2(LLt) -a/z 

A standard fractional Brownian mot ion  with covariance function (1.1) is easily 
seen to satisfy the assumptions of Theorem 3.2. We have the following result. 

Theorem 3.3 Let {X(t): t > 0} be a standard fractional Brownian motion with 
exponent ~. There exist positive constants ca and c'~ such that 

lira inf M (t) .... = ca ( 3 . 5 )  
t~O ta/2(LLt) -a/2 

and 

lira inf M ( t ) .... 
t-~ oo ta/2(LLt) -a/2 = c'a" (3.6) 

Remark. For  s tandard Brownian mot ion  (the case e = 1) we have cl = 

c~ = n/x//8. We have not  been able to compute  ca or c'a for a ~ 1. 

Proof  of  Theorem 3.2 Throughout ,  it is sufficient to consider t-values which 
make  the i terated logari thm positive. We first show that  

a . s .  

l iminfM(t) /~k(t)  >= c a/2 > 0, (3.7) 
t.~ o 

for O(t) = ta/Z(loglogt-1)  -a/2 and c given by (2.5). Let  e > 0 and 7 > 1, and 
for k = 1, 2 . . . .  put  tk = 7 -k, fl = (C/(1 + 0)  a/2. Then, by (2.5), 

P(M(tk) /O(tk)  <_ fl) <= ~ (1ogyk) -('+~) < oo, 

where the sums are over all k large enough to make  k log 7 > 1 and 
fl(log log 7k) -a/2 < 1. Hence,  by the Borel-Cantel l i  lemma, M(t , )  > fl@(tk) for 
all k greater  than some ko = ko (co). Further ,  for k > ko and tk + 1 <-- t < tk, 

Hence 

M(t)  >= M( tk+l )  >= f l~(tk+,)  _--> f l~(t)~(tk+l)/~(tk) .  

a . s .  

l iminfM(t ) /@(t)  > fly-a/z (3.8) 
t~o 

Since e and 7 may be chosen arbitrari ly close to 0 and 1, respectively, this 
proves (3.7). 
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Next, we prove that 

a.s .  

l imin fM(O/O(t  ) <__ C~/2< oo (3.9) 
t$o 

for C given by (2.5). This time we choose 

[3 = C a/a, tk = k -k, dk = k k+(2-a) /2 .  

It follows from (2.5) that 

co 

P(M(tk)/gC(tk) < 13) > ~ (klogk) -a = oo, (3.10) 

where the sums are over all k > 2 large enough to make [3(LLtk) -~/2 < 1. If 
the events in the first sum were independent, this would conclude the proof. 
However, they are not. 
We shall use the spectral representation (3.2) to get the necessary indepen- 
dence. It follows from (3.1) that 

a2(h) = 2 7 (1 - cos(h2))A(d2). 
- o 0  

Under assumption (2.1) there exists a constant K > 0 such that for all t > 1, 

f d(d2)<Kt -~ 
121 2 t 

and 

f ,~ d (d2) __< Kt  2 -~. 
I,ll _-< t 

(See the truncation inequalities on p. 209 of [16]). Define for k = 1, 2, ... and 
- -  cO < t <  o 9 ,  

XffO = f (e ~a - 1) W (d2), (3.11) 
12[ e(dk-l,dk] 

Xk(t) = X (t) -- Xk(t). (3.12) 

By standard Borel-Cantelli arguments, (3.9) follows if we prove that 

~P(0__<t__<t~max [Xk(t) l/O(tk)<=[3)= O0 (3.13) 

and 

~ P (  max ' X k ( t ) ] / ~ ( t k ) > ~ ) <  oo, 
O_-<z<tk 

since the events in (3.13) are independent. 

for any ~ > 0, (3.14) 
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Here (3.13) follows from (3.10) since 

P (  max IXk(t)J/t)(tk) < fi~ > P(M(tk)/t)(tk) <= fl), 
\ O<=t<=tk / 

according to [2, Corollary 4]. 
For  0 <_ h <_ tk, 

V(Xk(h)) = 2 f (1 - cos(h2))A (d2) 
121 r (dk l,dk] 

< t 2 f 22A(d2) + 4 f A(d2) 
I)~l < dk ~ I~1 > dR 

Kk -~k-~(2-~)/2 . 

Put ~ = a(2 - a)/2. For  a suitable constant K (that does not depend on k) 

9k(h) 2 = Kmin  {h ~, k -~k-*} > V (Xk(h) ) (3.15) 

for 0 <<_ h <_ tk. 
We shall now apply Fernique's lemma to the process Xk. Put  Xk = (8 log k) 1/2. 
Given ~ > 0 define 

Ok(p) = ~(p + 1)- 2~(tk)/(pk(tk k- 2") 

for p = 1, 2, ... For  large enough k, 

Ok(p) > 4(logk)a/22p/2 for all p => 1, 

in addition to 

Since 

Xkq)k(tk) + ~ Ok(p)%(tk k-2") < eO(tk). 
p = l  

~ k2e-X~/2+ ~ ~ k2P+le-8(logk)2P< 00, 
k = l  k = l  p = l  

it follows from Fernique's lemma that 

P (  s u p  ]Xk(S)]>~l]l(tk))< O0. 
k = l  \O<s<tk 

We have thus established that 

c ~/2 = < l iminfM(t) /$( t )  = < C ~/2 a.s. 
t$o 

A zero-one law [21, Theorem 2.1] guarantees that the liminf is constant (it is 
here we use assumption (3.3)). [] 
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P r o o f  o f  Theorem 3.3 Let X = {X(t): t > O} be a s tandard  fBm of index e. 
The  covar iance function has the representa t ion 

R(s ,  t) = ~ {Isl ~ + Itl ~ - Is - t[ ~} (3.16) 

oo 

= c(~) f (e is)" - 1)(e - " z  - 1)lAl-(=+l)d2. (3.17) 
- - o 0  

The hypotheses  of  T h e o r e m  3.2 are thus satisfied and X obeys a Chung  law at  
t ime t = 0. 

The p roof  of the Chung  law at  t ime t = oo is identical to the p roof  of the 
law at t ime t = 0. We change the definition of ~k to ~k(t) = U/2( loglog t) -~/2, 
invert  the expressions defining tk, and change k + 1 to k - 1 in all expressions. 
To  establish that  the tail a -a lgebra  at t ime t = oo is trivial we use the fact that  
{X(t): t > 0} and { U X ( t - a ) :  t > 0} are equivalent  processes. The  ze ro -one  
law at t ime t = oo therefore follows f rom Pit t  and Tran ' s  z e ro -one  law at  t ime 
t = 0 .  [ ]  

Example  3.4 Let Y =  {Y(t): - oo < t < co } be a real-valued s ta t ionary  
Gauss ian  process with mean  zero and  covar iance function 

R (s, t) = e - Is - t[', 

where 0 < a < 2. The  spectral  measure  A(d2) has a density A(2) which 
satisfies 

lim [~ [~+ lz~ (~ )  = r  
121 ~ oo 

for some positive cons tant  c(~). The  hypotheses  of T h e o r e m  3.2 are therefore 
satisfied for the process X(t)  = Y(t) - Y (0). 

Example  3.5 The spectral  measure  A (d2) need not  be absolutely continuous.  
Consider,  for example,  the real-valued s ta t ionary  Gauss ian  process {Y(t): 

- c~ < t < oo} defined by 

s - - - - ~ - , = 1  ~ (~, cos((Zn -- 1)t) + t/, sin((2n - 1)t)), 

where (4,) and (t/,) are i.i.d, s tandard  normal .  

R ( s , t ) = l  . . . . .  2 I s  t[ for z c < s  t < m  
7~ 

I t  follows f rom Marcus '  result that  Y is s trongly locally nondeterminis t ic  with 
= 1. The  process X ( t )  = Y (t) - Y (0) therefore satisfies the assumpt ions  of  

Theo rem 3.2. 
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4 Functional laws of the iterated logarithm 

We shall need some well known facts about reproducing kernel Hilbert 
spaces. (For reference, see [6, 14]). Consider a separable Banach space E with 
dual E* and a centered Gaussian measure # on E. Let n denote the canonical 
map of E* into L 2 (E, #), i.e., the restriction to E* of the canonical map of the 
space ~2(E ,  #) of #-square-integrable functions into the quotient space 
L z (E, I~). We shall let E* denote the closure in L z (#) of n(E*). For  any t /e  E*,  
the measure tl(X)lz(dx) has a barycenter 

A(q) = f xq(x)u(dx)~ E, (4.1) 
E 

where the integral may be interpreted either in the Pettis or the Bochner sense. 
The map t/ ~ A 0/) is linear and injective. The reproducing kernel Hilbert 
space Hu of/~ is the range A (E*) c E with the inner product 

(An, A~), = f tl(x)#(x)u(dx), tt, ~ ~ E*. (4.2) 
E 

If we put A ~ = A o n, then A~(E *) is dense in H u . We shall write [I f II 2 = ( f f ) u  
for f ~ H u. 

The following inequalities are well known (see [6] or [1]). 

Proposition 4.1 Let V be a convex, symmetric, measurable subset of  E. For all 
f ~ H u and ~ ~ E*, 

{ 1  1 } 
# ( f +  V) < #(V)exp - ~ Ilfll 2 + ~ I I f -  S(~)II 2 + sup r . 

x ~ V  

Furthermore, 

_ 21 i lfl l2}. # ( f +  V) > # ( V ) e x p (  

Combining these two inequalities we can establish the following uniform 
version of a result proved by Borell [6, Theorem 2.3]. 

Proposition 4.2 Let V be a convex, symmetric, bounded, measurable subset of 
E of positive p-measure. I f  f ~ Hu, then 

lim t -2 { l o g # ( t f +  V) - log/~(V)} = - �89 11fl12. 
t~,oO 

(4.3) 

Furthermore, the convergence is uniform over all such sets V of diameter less 
than 1, and the limit is a lower bound for all t. 

Proof By Proposition 4.1 we have for every t > 0 and ~ e E*, 

t - 2 { l o g # ( t f +  V) - log#(V)} ~ -- �89 I[f[[u 2 
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and 

t - i { l og l~ ( t f+  V) - l o g / ~ ( g ) }  < - �89 IlfH 2 + �89 I l f -  A~(g) JI 2 + t-* sup g(x). 
x ~ - V  

The result now follows from the fact that I[ f -  A*({)]l 2 can be made arbitrarily 
small. [] 

Next let {X(s): s > 0} denote standard fractional Brownian motion of index ~. 
As in the introduction let 

th(S) = X(st)/(2ULLt) ~/2, 0 -< s < 1. (4.4) 

and let Ha _c C [0, 1] be the RKHS of the kernel 

V ( s , t ) = � 8 9  }, 0 - < s - < l ,  0 - < t - < l .  

Ha is the RKHS corresponding to the centered Gaussian measure/ ,  on the 
Banach space C[0, 1] induced by {X(s): 0 _< s _< 1}. As before let ( f ,  g)a be 
the inner product in Ha and let II f II oo be the sup-norm on C [0, 1]. I f f  e Ha, 
then If(s) - f ( t ) [  2 _< [s - t[ a ( f f ) , .  

We first take care of the case ( f f ) a  < 1. 

Theorem 4.3 Let ( f f )a < 1. As t $ 0 

lira inf (LLt) ('+ ,)/z [1 q, - f  II 0o "2 7 (f),  (4.5) 

where 7(f)  is a constant satisfyin 9 

2-~/2ca/2 (1 - -  { f , f ) a )  -a/2 ~ 7( f )  < 2-~/2Ca/2( 1 - { f f )=) -a /2 .  (4.6) 

Here c and C denote the positive constants in (2.13). The same result, possibly 
with a different constant 7 (f) ,  holds for t ~ oo. 

The case ( f , f ) a  = 1 is more delicate. Let C* denote the dual of the Banach 
space C [0, 1]. Combining the analysis of Kuelbs et al. [15] of i.i.d. Banach 
space valued Gaussian vectors with our technique of treating fractional 
Brownian motion as if the process had independent increments we get the 
following result. 

Theorem 4.4 (I) Let ( f f )a = 1. As either t $ O or t ~ oo, 

whereas 

liminf(LLt)(a+ ,)/a[L r/, - f  l[ oo "'=~' oo, (4.7) 

. . s .  

lim inf(LLt) (~+ 1)/(~+2) t[ ~/t - f  [[ oo < oo. (4.8) 

(II) I f  ( f f ) ~  = 1 and f e z](C*), then 

a . s .  

liminf(LLt)(,+ ~)/(~+ 2)n q, - f  N ~ > 0. (4.9) 
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(III)  I f  ( f , f } ~  = 1 and f r A(C*), then 

a . s .  

lim inf(LLt)  (~+ 1)/(,+2)II rh - f  II ~o = 0. (4.10) 

In  the proofs  of  bo th  Theo rem 4.3 and 4.4 we shall need the following two 
l emmas  which we adap t  f rom [1]. 

L e m m a  4.5 Let q~: N ~ IR + be such that 

(i) r is decreasin9 and qo(k) ~ O, 

(ii) kq9 (k) is eventually strictly increasing, 

(iii) ( logk) -1 (log~o(k)) ~ 0, 

(iv) (logk) ~+'  (rp(k)) ~ ~ O. 

Put tk = exp(  -- k~o(k)). Then 

(1) for all a > 1, Y~kexp{ -- aLLtk} < c~ 

(2) tk+ 1/tk --* 1, 

(3) (LLtk)~+ ~(tk -- ta+ ~,~/t~/ a --*0. 

L e m m a 4 . 6  For O < s < t < u < e-1 and f ~ Ha, 

( sCCu ~ ~/2 
(LLt) (~+ 1)/2 I 1 ~ , - f l l ~  ->- \u--L-~s / (LLs) (~+ 1)/2 I I ~ s - f  I1~o 

-- (ggu)  (=+1)/2 { II/11oo -{- (f,f)l/2}. 

The  proofs  are very similar to the proofs of deAcosta ' s  L e m m a s  5.2 and 5.3, 
respectively. 

Proof of  Theorem 4.3 We shall only consider case t $0. Let  e > 0. Pu t  

fl = (c/(1 + e))~/2(1 - ( f , f } , ) - , / 2 ,  (4.11) 

where c is given by (2.13). Let  tk = exp( -- k~o(k)), with r as in L e m m a  4.5. 
Consider  the events 

Ak = { 11 t [  ~/2 X ( ( ' ) t k )  -- (2LLtk) l /2f  ]] oo _-< f (LLtk) -~/2 }. 

By Propos i t ion  4.2 and  Corol la ry  2.2 we have for any 6 > 0 and  k > ko (6), 

(LLtk)-  1 log P(Ag) 

___< (LLtk) -1 l o g n ( M ( 1 )  =< fl(LLtk) -~/2) - ( f , f ) ~  + 6 

< - (1 + 0(1 - ( f , f } ~ ) -  ( f , f } ~  + 6 

= - [1 + e(1 -- ( f , f } ~ ) - -  6]. 

F o r  such k, 

P(Ak) < e x p (  -- [1 + e(1 -- ( f f } ~ )  -- f i]LLtk}.  (4.12) 
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Since we can choose 6 < ~ (1 - ( f , f ) ~ ) ,  it follows from Lemma 4.5(1) that  
Y~P(Ak) < o0. Hence 

a.$, 

lim inf (LLtk) (~+ 1)/2 [] ~/tk - f  ][ oo > 2-1/2 ft. (4.13) 
k-+oo  

It now follows from Lemmas  4.5 and 4.6 that  

a.s.  

l iminf(LLt)  (~+1)/2 [Iqt - f [ ] |  --> 2- i /2 f l  . (4.14) 
t$0 

(In Lemma 4.6, let u = tk and s = tk+ i as k ~ oo .) This proves half of Theorem 
4.3. Next  choose 

fi C~/2(1 - ~ / 2  = -- ( f , f ) = )  , (4.15) 

where C is given by (2.13). As in the proof  of Theorem 3.2, put  

tk = k -k, dk = k k+(2-~)/2 (4.16) 

for k = 2, 3 . . . .  Let  the processes Xk and )Tk be defined by (3.11) and (3.12), 
respectively. Fo r  e > 0 define the events 

Ak(e) = { [1 tk~/ix((')tk) --(2LLtk)l/zfl[ oo <_ fl(1 + e)(LLtk)-~/2}, 

Bk(e) = {[[ t2=/2 Xk((" )tk) -- (2LLtk)l/2 f ]]o~ </~(1 + e)(LLtk)- ' /2},  

Ck(e) = {[] t ~ / 2  Xk((')tk)1[ oo >-_ gfl(LLtk)-~/z}. 

Clearly, 

Ak(e) c Bk (2g) vOCk (~) c At  (3e) vo Ck (g). (4.17) 

In Sect. 3 we proved that  

P(Ck(e)) < oO. (4.18) 
k = l  

By Proposi t ion 4.2 and Corol lary  2.2 we have for large k, 

(LLtk)- l logP(Ak(e))  > --(1 + e)-2/ '(1 -- ( f f ) = )  -- ( f f ) ~ .  (4.19) 

Since the r ight-hand side is greater than - 1, it follows that  

P(Ak(g)) = oo. (4.20) 
k = l  

Combining (4.17), (4.18), and (4.20) we get 

~" P(Bk(Ze))= oo. (4.21) 
k = l  

Since the events in (4.21) are independent,  it follows from Borel-Cantel l i  that  

P (  l imsup B k ( 2 e ) ) = l .  (4.22) 



Small values of Gaussian processes 

Combin ing  (4.22), (4.17), and  (4.18) we get 

P (  limsup Ak(30 ) = 

In  other  words,  
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(4.23) 

a . s .  

l iminf(LLtk) (~+1)/2 II~tk - f l l ~ o  ~ 2-1/2fl(1 + 30. (4.24) 
k---~ oo 

Since e can be chosen arbi t rar i ly  close to 0, Theo rem 4.3 now follows f rom Pitt  
and  Tran ' s  z e ro -one  law. [ ]  

Proof of Theorem 4.4 We shall again only consider the case t ~ 0. We prove  
(4.7) in the same way we proved  the first half  of  Theo rem 4.3. Let  
t k = exp(  - kq)(k)), with q~ as in L e m m a  4.5. F o r  any large cons tan t  K > 0, 
consider the events 

Ak = { [[t;~/e x ((' )tk) -- (2LLtk)l/e f l[oo < K(ggtk)-~/2}. 

For  any 6 > 0 and  k > ko (6), 

(LLtk)-~logP(Ak) <= - - c g  -2/~ - ( f , f>~ + g. (4.25) 

Since ( f , f  >~ = 1 and  we can choose g < c K -  2/~, it follows f rom L e m m a  4.5(1) 
that  y~ P(Ak) < oo. Using L e m m a s  4.5 and 4.6 we can conclude tha t  

a . $ .  

l im inf(LLt)  (~+ 1)/21[ r/t - f  II ~ _-> 2-1/2 K. (4.26) 
t~0 

This proves  (4.7). In  our  p roo f  of (4.8), we follow 1-15]. F o r  k = 2, 3, . . . ,  let 
tk = k -k. Put  

flk = g(ggtg) -(~+l)/(~+z), fk = (1 - - /~kl l f  [l~ol)f (4.27) 

for a suitable, large cons tant  K. I t  follows f rom Propos i t ion  4.1 that  

e(llrhk - f l J ~  < 2fig) > P(JI~h~ - A I I ~  < ilk) 

= P( J] tk~/Zx(( " ) tk) -- (2LLtk)l/Zfk II ~ _-< flk(2LLtk) 1/2) 

> exp { -- (fk, fk >, LLtk } P(M(1)  < flk(2LLtk)l/2). 

Since ( f  f> ,  = 1, it follows f rom Corol la ry  2.2 that  for large k, 

log P(II ~,~ - f [ l ~  < 213k) 

> -- (1 --/~k I l f l l 2 ~ ) 2 t t t k  -- C~Z/~(2 t t t k )  -1/~ 

= - LLtk + (2K Ilfl12o x - CK-E/~2-1/~)(LLtk) 1/(~+2) 

- K211 f [I ~o2 (LLtk) -~/(~+ 2)- 
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If K is chosen large enough, then we have for k > ko (K), 

P(llrh~ - - f t l ~  <-- 2ilk) > exp( -- LLtk) = (k logk)  -1 

With this choice of K, 

~ P(llrlt~ - fllo~ <= 2ilk) = oe.  

Arguing as in the second half of the p roof  of  Theo rem 4.3 we get 

a . s .  

l iminf(LLtk)(=+ 1)/(e+2)[I/~tk - f  1[ ~ < 2K. (4.28) 
k - - *  co  

This proves  (4.8). 
Next  we prove  (4.9). Assume tha t  ( f f ) ~  = 1 and that  f =  A~(0 for some 

e C*. Again we follow [15]. We shall use the no ta t ion  

II ~ II = sup {~(g): g 6 c [0, 1], II o II 0o < 1}. 

Let  tk = exp(  -- k ( logk )  -(~+z)/~) for k > 2, and  put  

fig = e (LLtk)-  (~ + t)/(~ + 2) (4.29) 

for a suitable, small constant  e > 0. By Propos i t ion  4.1, we have for large 
enough k, 

P(  II ~,~ - - f  11oo </~k) < P(M(1) _<_ (2LLtk) ~/2ilk) exp { - LLtk + (2LLtk)flk II ~ I[ } 

=< exp { - LLtk - (ce- z/~2-1/~ _ 2e 11 ~ II)(LLtk) 1/(~+ 2)}. 

If  e is chosen small enough,  then we have for k > ko (0, 

P(llrh~ - f l l o ~  </~k) < exp - l ogk  + - -  L L k  - K~( logk)  1/(~+2) , 
c~ 

for some constant  K~ > 0. With  this choice of e, 

Y',P(llrh~ - f l l ~  </~k) < GO. (4.30) 

Hence  

a . s .  

l im inf (LLtk) ~ + 1)/(~ + 2) l] t/t~ - f tl co > e. (4.31) 
k- -+  oo 

Since cp (k) = (log k)-  (~+ 2)/~ satisfies the assumpt ions  of L e m m a  4.5, it follows 
f rom L e m m a s  4.5 and  4.6 tha t  

a . s .  

l i m i n f ( L L 0  (~+ 1)/("+2) IL t/t - N i l  ~ > e. (4.32) 
t+0 

This completes  the p roof  of  (4.9). 
We shall finally prove  (4.10). Let  tk = k -k. Given e > 0 define flk by (4.29). 

Consider  t he / - func t i ona l  defined for f e Ha and 6 _>_ 0 by 

I ( f ,  6) = inf{ (g,  g)~: g ~ H~, II f -  g II oo _-< c5}. (4.33) 
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Argu ing  as in L e m m a  1 of  [11] we see tha t  there  is a unique  e lementfk  e H~ 
such tha t  

I l f - A l [ ~  = ilk, I ( f  ilk) : ( fg, fk}~.  (4.34) 

It  fol lows f rom P r o p o s i t i o n  4.1 that ,  for large k, 

P(ll~,k -flloo _-< 21k) = e(ll~,k - A l l ~  _-< ik) 

> exp { - (J~,fk } LLtk} P (M(1) < flk(2LLtk) 1/2) 

__> exp { -- I (f, ilk) LLtk - C i  k 2/~(2LLtk)- ~/~}. 

Accord ing  to P r o p o s i t i o n  2 of [15], if ( f f } ~  = 1 and  f ~ A~(C*), then 
limos0 (1 - I ( f  ~)) /6  = oo. We conclude  tha t  for any  large cons tan t  K and  
all k > ko(K), 

P(II ~,k - f  II ~ < 2ilk) _-> exp { - (1 - Kfik ) LLtk - Cflk 2/~(2LLtk)-1/~} 

= exp{ - LLtk + (Ke - Ce-2/~2-a/~)(LLtk)a/(~+2)}. 

Since we can choose  K > Ce-(~+2)/~2 -1/~, it  follows tha t  

P(ll  ~,~ - f l l  0o < 2ik) = oO. (4.35) 

Argu ing  as in the second half  of  the p r o o f  of  T he o re m 4.3 we get 

a . s .  

liminf(LLtk) (~+1)/('+2) II~ - f l [ ~  < 2e. (4.36) 
k---~ oo 

Since e can be chosen a rb i t ra r i ly  small,  this comple tes  the p r o o f  of (4.10). [ ]  
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