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Abstract. Given an ordered field K, we compute the natural valuation and ske- 
leton of  the ordered multiplicative group (K >~ -, 1, <)  in terms of  those of the 
ordered additive group (K, +, 0, <). We use this computation to provide neces- 
sary and sufficient conditions on the value group v(K) and residue field K, for 
the Locw-equivalence of the above mentioned groups. We then apply the results 
to exponential fields, and describe v(K) in that case. Finally, if K is countable or 
a power series field, we derive necessary and sufficient conditions on v(K) and 
K for K to be exponential. In the countable case, we get a structure theorem for 
v(K). 

1 Introduction 

Given an ordered field K, let v be its natural valuation, with value group G = 
v(K x ) and residue field K. Let va be the natural valuation of G. Classical results 
on the model theory of  valued fields have successfully shown how to analyze 
(elementary) properties of a valued field through those of its value group and 
residue field. One of  the aims of  this paper is to do something analoguous for 
exponential fields. 

What axioms should we require for an exponential? A hint to answer this 
question is to think about the best known exponential field, namely the ordered 
field of  the reals endowed with the exponential function exp(x). In view of 
the recent progress in the model theory of this structure (cf. [W], [D-M-M],  
[RE], [M-W]) and the proof of  the model completeness of its elementary theory 
Th((~,  exp(x))), it is desirable to give concrete descriptions of  the models. So 
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understanding the algebraic structure of exponential fields is important, since it 
will provide methods for the construction of examples as we shall see later. 

In this article, we shall first consider the simplest case: an exponential field 
here is a pair (K , f )  where K is an ordered field and f is an order preserving 
group isomorphism from the additive group of the field onto the multiplicative 
group of positive elements. Of course, f will also have to induce some extra 
structure on G and on K, if we want to do any reasonable analysis of (K, f ) .  
So, for instance, we would like f to induce a canonical map f on K (given by 
f(K) = f ( a ) ) .  This is equivalent to demanding that 

v(f(1) - 1) = 0 (1) 

which in turn is equivalent to the assumption that f maps the valuation ideal Iv 
onto the group of 1-units 1 + Iv (cf. Lemma 3.20). So we will always require 
(1) to be satisfied in an exponential field (although (1) is not an elementary 
sentence in the language of ordered fields, it may be replaced by an elementary, 
but stronger, one - -  cf. Sect. 3.3). Exponentials satisfying further axioms such as 
the growth and the Taylor axioms, will constitute the subject of the subsequent 
paper [K-K1]. 

We have seen above how to obtain (K , f )  for a given (K,f ) .  It is more 
complicated to do the same with the value group, and it requires first an un- 
derstanding of the structure of the multiplicative group (K >~ ., 1, <)  of positive 
elements, where K is an arbitrary ordered field, not necessarily endowed with an 
exponential. This anlysis is done in Sect. 3.2, and it turns out to be very fruitful 
indeed in its applications to exponential fields. The necessary preliminaries are 
given in Sect. 2. The crucial notion appearing there is that of the skeleton S(G) 
of an ordered Abelian group G. The important result of Sect. 3.2 is Theorem 3.19 
which computes the natural valuation and the skeleton of (K >~ ., 1, <) in terms 
of those of (K,+,0 ,  <) and G. 

In Sect. 3.3 we then apply the results of Sect. 3.2 to exponential fields, where 
(K >~ ., 1, <) and (K, +, 0, <) are isomorphic through an exponential f and thus 
have the same skeleton (since this is an invariant for ordered Abelian groups). 
Using the computation of Theorem 3.19, we are able to show that the existence 
of an exponential f puts a very restrictive condition on the value group of K 
(which we will say to be an exponential group - -  cf. our definition preceding to 
Theorem 3.23). In particular, f induces in a canonical way an isomorphism of 
chains 

~ f  : G<~ F - 

where _P- = vc(G \ {0}) denotes the value set of G \ {0}. We are now able 
to formulate the following more concrete problems to which this paper and the 
subsequent paper [K-K1] try to provide an answer: 

1) Study the structure and (elementary) properties of (K , f )  through those of 

(K , f )  and (G, ~f). 
2) Assume that G is an exponential group and K admits an exponential f :  when 
is it possible to lift it to an exponential f of K? 
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3) Given an archimedean exponential field (E, e) satisfying good properties (e.g. 
e is continuous, differentiable and equal to its own derivative), give a construction 
of a nonarchimedean exponential field ( K , f )  satisfying the same good properties 
and such that K = E and f = e. 

In the case where K is a nonarchimedean countable field, root closed for positive 
elements, we get a surprisingly simple result. Indeed, not only we are able to give 
an answer to the above problems, but moreover we get quite a strong structure 
theorem for those fields (cf. Theorem 3.33). In fact, given an exponential f on K, 
such a field K admits an exponential f lifting f if and only if G is isomorphic 
to the lexicographic sum of copies of the additive ordered group (K, +,0, <), 
taken over the rationals. Theorem 3.33 will also provide an answer to the third 
problem, as is shown in [K-K1]. 

The interest of this theorem is that it reduces the construction of nonarchi- 
medean countable exponential fields to that of archimedean ones. Indeed, given 
a countable exponentially closed subfield E of ~ ,  just take a countable valued 
field having E as its residue field and I ]Q E as its Value group (IT denotes 
lexicographic sums). 

A main ingredient of the proof of Theorem 3.33 is a result of R. Brown 
on countable valued vector spaces: any two countable valued vector spaces with 
isomorphic skeletons are isomorphic. Now let us remark that in order to compute 
the skeleton of (K >~ ., 1, <), we prove that for every ordered field, we have 

S(Iv,+,O, <) ~ S(1 +Iv,.,  1, < ) ,  

in other words, the valuation ideal (seen as an additive ordered group) and 
the multiplicative group of 1-units always have the same skeleton (cf. CoroI- 
lary 3.15). Hence, by Brown's Theorem, we know that if K is any countable 
ordered field, root closed for positive elements (which is equivalent to the as- 
sertion that (K >~ ., 1, <)  be divisible), then it admits a right exponential, i.e. an 
isomorphism 

f :  Iv , l + Iv 

of ordered groups. Here, the word "right" is suggested by the lexicographic 
decompositions (K, +, 0, <) = A l I  A' II Iv and (K >~ -, 1, <) = B LI B' II  1 + Iv 
given in Lemma 3.4 and Theorem 3.8. Now if in addition G --~ I lQ K, then we 
can find an isomorphism h between the "left" parts A and B of these groups. The 
"middle" parts A' and B' are taken care of by f .  The "lexicographic product" of 
h, f and f will then be the required exponential. 

This principle of decomposing those groups lexicographically and then sho- 
wing that the respective parts are isomorphic in order to "put an exponential 
together" will also be used several times in [K-K1], to obtain a strengthening of 
Theorem 3.33. The left parts are always taken care of by our conditions on the 
value group G, and the middle parts by conditions on the residue field K. A final 
remark concerning question 1) above: an extensive model theory for the value 
groups of exponential fields is now given in [KF2] and [KF3]. Also the relation 
between the exponential field and its residue field in the o-minimal case is by 
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now studied in [D-L]. At this point, I would like to thank F.-V. Kuhlmann for 
many useful discussions. I would also like to thank Arne Ledet and N.L. Ailing 
for a hint concerning these notes, and all other participants of  our seminar for 
their interest and patience. 

2 Valued and ordered modules 

2.1 Generalities about valued modules 

All modules considered in this section are left R-modules ,  for a fixed ring R. 
The definitions and results of this section also cover the case of  valued Abelian 
groups since they may be considered as Z-modules .  I f  {Mi ; i E I } is a family 
of  modules, then ~iE1 Mi will denote the direct sum. 

In the sequel, let M be a module and F a chain (i.e., a totally ordered set) 
with last element ~ .  A surjective map 

v : M - - - *  N 

is a valuation on M (and (M,v )  is a valued module) if for all x , y  E M and 
r C R, the following holds: 

(i) v(x) = c~ if and only if x = O, 

(ii) v(rx) = v(x) if r -~ O, 

(iii) v(x - y )  >_ min{v(x),  v(y)}. 

Axiom (ii) says that the scalar multiplication by nonzero elements preserves 
the value. So we might speak of a "valued module with value preserving scalar 
multiplication" in contrast to modules equipped with a map v which only satisfies 
axioms (i) and (iii). There are also important applications of  the latter, more 
general notion of a valued module. Both notions will be considered in subsequent 
papers (see [KF1]). In this paper, we will only need valued modules satisfying 
axiom (ii), so we will suppress the specification "with value preserving scalar 
multiplication". Note that axiom (ii) together with axiom (i) implies that M is 
torsion free. 

The following is a consequence of the above axioms: 

v(x) ~ v(y) ~ v(x + y) = min{v(x), v(y)} . 

We abbreviate F \ {c~z} by F -  and call it the rank of  M.  The restriction of v to 
a submodule of M is a valuation on that submodule. 

Let (M1, F1, vl), (M2, F2, v2) be two valued modules and 

h : M  1 >342 

an isomorphism of R-modules.  We will say that h preserves the valuation (or 
that h is an isomorphism of valued modules) if there exists an isomorphism of 
chains 
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: : F 1  ,-rE 

such that for all x E M1, 

~(Vl(X)) = v2(h(x)). 

We will say that (M1,/"1, Vl) and (M2,/"2, Vz) are isomorphic as valued modules 
if such an isomorphism h exists. Similarly, h is an embedding of valued modules 
if h is an isomorphism of valued modules of  M1 onto a submodule of  M2. We 
will omit "of  valued modules" and "as valued modules" if the context is clear. 
Two valuations vl and v2 on M are called equivalent, if the identity map on M is 
an isomorphism between the valued modules (M, vl (M), vl) and (M, v2(M),v2). 

Remark 2.1 The isomorphism h : Ml 
if the map 

hrk : F1 

given by 

M2 preserves the valuation if and only 

,_r2 

hrk(V 1 (X)) = v2(h(x)) 

is well defined and an isomorphism of chains. 

By an ordered system of modules we mean a pair 

[ r ,  {B ('~) ; 3, ~ r } ] ,  

where {B(7 ) ; "7 E F}  is a family of  modules indexed by F such that B(7) = 0 
if and only if 3, = c~. 

Let Si = [Fi, {Bi(7) ; 3 / c  Fi}] be an ordered system of modules, for i = l, 2. 
We will say that $1 and $2 are isomorphic if there exists an isomorphism 

~ : FI - - *  F2 

of chains, and for every -y E/"1, an isomorphism 

~.~ : BI (')') ~ B2(99('7)) 

of  modules. Then we will call [7~, {~7 ; 7 E/ '1  }] an isomorphism and write 

[~, ( ~  ; 7 c/'1}1 : & ~- S 2 .  

Let " / E / 1  and put 

M r = { x E M ; v ( x ) > ~ }  

M r = { x C M ; v ( x ) > ~ } .  

Then M "Y, M n are submodules (for ~ ~cx~) satisfying M r C M r C M.  We put 

B(M, y ) = M V  /M~ , B(M,e~)=O.  

We will say that B(M, ~/) is the component corresponding to % The skeleton of 
(M, F, v), denoted by S(M), is the ordered system IF, {B(M, 7) ;  7 E F}] .  We 



150 S, Kuhlmann 

will write B(3`) instead of B(M,3`) if the context is clear, and in what follows, 
Bi(3`) instead of  B(Mi, 3"), for i = 1,2. 

For every 3" E /", the coefficient map corresponding to 3" is the canonical 
homomorphism 

z r M ( 7 , - ) : M  "r >B(3`) def inedby z Y ( 7 , x ) = x + M . r ,  

and we write re(3`,-)  instead of zcM(3`,--) if the context is clear. 

The following lemma shows that an isomorphism of two valued modules 
induces an isomorphism of their skeletons: 

L e m m a  2.2 Suppose that h : M1 > M2 is an isomorphism of valued modules. 
Then for all 3  ̀E/"1, the map 

defined by 

h 7 "B1(3') ' B2(hrk("/)) 

7rM' (7, X) ~ 7r M2(hrk(7), h(x)) 

is an isomorphism of modules. Hence, 

[hrk, {hT; 'y E /"1}] : S(M1) -~ S(M2) . 

Let [F, {B(7) ;  3' E /"}] an ordered system of torsion free modules and 
1-I-rer B(7) the product module. If  s E l-ITer B(7), let 

supports = {3'; s(3') ~ '0} . 

The direct sum ~ - r ~ r  B(3') is the submodule of  all elements with fni te  support. 
We define 

Vmin : ( ~  B (7) F _______+ 

7 C F  

by v~,(s)  = min(supports)  (by convention, minO = oe). This is a valuation, 
and the valued module thus obtained is the Hahn sum, denoted by [I-~Er B(3"). 

The Hahn product, denoted by I-l~Er B(7), is the submodule of  1-I-rEr B(7) 
consisting of  all elements with well ordered support, equipped with the valuation 
Vmin. We have 

\ ~ e r  / 

Suppose that M1 C M2 and/"1 C/"2- We will say that (M2, v2) is an extension 
of (Ml,Vl) and write (Ml,vl)  C (M2, v2) if v2(x) = Vl(X) for all x E M1. In 
this case, for every 3` E /"1 there exists a natural identification of B1(3") with 
a subspace of B2(3"). In this context, if 2/ E /"2 \ F1, we set by convention: 
(MI) 7 = (M2) 7 N MI, (MI) 7 = (M2)7 71 M1 and Bl(3') = O. If/"1 =/"2 and for all 
3" E/"1, B1 (7) = Bz(3"), we will say that the extension is immediate. 
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Remark 2.3 The extension (M1, Vl) C (M2, ~32) is immediate if and only if for all 
x E M2 there exists y E Ma such that v2(x - y)  > vz(x). For example, 

TZB(7) c It B (~/) 
.ll..-lk "/Eft  

7 6 F  

is immediate. 

We will say that M is maximally valued if it does not admit any proper 
immediate extension. 

Let {xi ; i E I }  C M and M0 C M a submodule. We will say that {X i ; i E I }  
is (linearly) valuation independent over Mo if for all zo E Mo and ri E R such 
that ri = 0 for almost all i E I,  

v ( ~ - ~ r i x i + z o )  = man {v(x i ) ,v (zo)} .  
\ i E l  {iGl ; ris~O} 

If  this is the case, then in particular, {xi ; i E I } is linearly independent over M0. 
By convention, 0 is valuation independent over M0. We will say that {xi ; i E I } 
is (linearly)valuation independent if it is valuation independent over M0 = {0}. 
Note that this definition is given for the case of valued modules with value 
preserving scalar multiplication. For the general case, it is too strong and should 
be suitably adapted. In the theory of valued fields, there is also the notion of 
"algebraically valuation independent", but here we will only deal with the above 
defined notion, so we will omit the specification "linearly". 

Using Zorn 's  Lemma,  it may be shown that in every valued module, there 
exist maximal valuation independent subsets. 

I f { x i ; i  E I } C M , then 

rff ({xi ; i E I } )  

will denote the R-submodule  of  M generated by the elements xi (by convention, 
M R ((~) = 0). If  the context is clear, we will omit " M "  or "R". 

In the sequel, we will assume that R = K is a field, so that M = V is a 
valued vector space with S ( V )  = I F ,  {B(3 ' ) ;7  E F}].  For the proofs of  the 
facts that we will state now (Lemma 2.4 till Corollary 2.8), we refer the reader 
to the article [GRA1] of Gravett. 

L e m m a  2.4 I f  {xi ; i E I }  C V is maximal valuation independent, then 

x({xi  ; i E l } )  C V 

is an immediate extension, and 

K({Xi ; i E I } )  ~ H B('~) 
"/El" 

as valued vector spaces. 
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A basis ~ of V is called a valuation basis if it is a valuation independent set. 
In this case, c ~  is maximal valuation independent (cf. Corollary 2.11 below), and 
since I_I.~er B(7) admits a valuation basis, Lemma 2.4 gives us a characterization 
of those vector spaces which admit a valuation basis: 

Corollary 2.5 A valued vector space admits a valuation basis if and only if it is 
isomorphic to the Hahn sum taken over its skeleton. 

The notion of valuation independence is treated in more detail in the following 
section. 

The next theorem is central in the theory of valued vector spaces: 

Theorem 2.6 Suppose that 

(i) Vi and V i' are valued vector spaces and V i' is an immediate extension of Vi, 
f o r i  = 1,2, 

(ii) h is an isomorphism of valued vector spaces of V1 onto V2, 

(iii) Vj is maximally valued. 

Then there exists an embedding h r of  valued vector spaces of  V[ into VJ such that 
h ~ prolongates h. Moreover, h ~ is an isomorphism of valued vector spaces of 11[ 
onto V~ if and only if V( is maximally valued. 

One consequence is the following theorem which illuminates the role played 
by the Hahn sums and products: 

Theorem 2.7 Let {X i ; i E I } C V be maximal valuation independent and h the 
isomorphism of K < {Xi ; i E I}) onto IJ-c6r B(7). Then there exists an embedding 

h ~ of V into H.yo- B(7 ) prolongating h. 

As a corollary, we obtain a characterization of maximally valued vector spaces. 
Since H.yer  B(7) is maximally valued (cf. [GRA1]), the above theorem yields 

Corollary 2.8 A valued vector space is maximally valued if and only if it is iso- 
morphic to the Hahn product over its skeleton. 

Also the next lemma is a consequence of the foregoing theorems: 

Lemma 2.9 The following assertions are equivalent: 

1) V is maximally valued and admits a valuation basis 

2) l I ~ r  B(7) -~ H ~ e r  B(7) 

3) I[,v6 r B(7) = H.~ev B(7) 

4) every well ordered subset o f f  is finite 

5) 1" is the inverse of an ordinal. 
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2.2 Valuation independence 

Proposition 2.10 Let ~ C V. Then J 2  is valuation independent over Vo if and 
only if the following holds: for all n E N and different b l , . . . ,  b, E J Y  with 
V(bl ) . . . . .  v(bn) = 7, the coefficients 7r v (7, bl), . . . , 7r v (7, bn) in B (V , 7) are 
linearly independent over B (Vo, 3')- 

Proof. o :  Suppose there are b l , . . . , bn  E ~ with v(bl) . . . . .  v(bn) = 7 
such that 7rV(7, bl ) , . . .  ,Trv(7, bn) in B(V, 3') are not linearly independent over 
B(Vo,7). Then there exist nonzero k l , . . .  ,kn E K such that 7rv(%~kib i )  E 
B(Vo, 7). If  we choose zo E V0 satisfying 7rV(7,zo) = rcv(7 , -  ~-]~kibi)then we 
obtain 

v(klbl + . . .  + knbn + Zo) > 7 = min {v(bi), v(z0)} 
{iGI;kiTO} 

which shows that , ~ '  is not valuation independent over Vo. 

~ :  Let  ~]~iE1 kibi be a finite sum of elements b i E ~ with ki G K and let 
zo E Vo. Let 7 = min(ic1;k#)}{v(bi)}. I f  v(zo) < 7, then 

v (~ -~k ib i+zo~  =V(Zo)= min {v(bi), v(zo)}.  
{ i El ;ki:70 ) 

Assume now that V(Zo) _> 7. Without loss of generality, let 1 , . . . ,  n be precisely 
the indices for which ki 5i 0 and v(bi) = 7. If  7r v (7, b l ) , . . . ,  rrv (7, bn) are linearly 
independent over B(Vo, 7), that is, 

7 r v ( 7 ' Z k i b i + z ~  i=1 

then 

v ( Z k i b i + z o ] = 7 =  rain {v(bi)}= man {v(bi),v(zo)}. n 
{iEl;k,54)} { iEl ;k i~}  

\ i E l  

This proposition shows: 

Corollary 2.11 Let J 2  C V. Then ._~ is maximal valuation independent over 17o 
if and only if for every 7 E v(V), 

~ n  = {Trv(7,b);  b E ~.~andv(b) ='),} 

forms a basis of B(V , 7) over B(Vo, 7). 

A useful consequence of this corollary is the following well known fact. It 
may be used to prove by induction that every valued vector space of countable 
dimension admits a valuation basis (cf. [BR]). 

L e m m a  2.12 Let (V , v) be a valued K-vector space, l f W  is a finite dimensional 
subvector space of V having valuation basis ~ ,  and if a E V, then ~ can be 
extended to a valuation basis of W + Ka. 
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Proof. The value set of W is just {v(b) ] b E ~ }  and thus finite. Hence, there 
exists some ao E W such that v(a - ao) ~ v ( W )  or, if this is not possible, 
such that v(a - ao) E v ( W )  is maximal. Since the case a E W is trivial, we 
may assume a r W which yields that v(a - ao) 5r oo. If  v(a - ao) ~ v (W) ,  
then ~ '  U {a - a0} is the required valuation basis of W + Ka. Now assume that 
3' := v(a - a o )  E v (W) .  By the preceding corollary, ~ . / f o r m s  a basis of  B(W, 7). 
If  7rw(7, a - a o )  would lie in B ( W ,  3') then there would be a linear combination 
al of the elements in ~ '  with value 3" such that 7rw(3",a - a0 - al)  = 0. But 
this would mean that v(a - a0 - al)  > 7, a contradiction to the maximality of  
3". This shows that 7rw(3",a - a 0 )  cannot be an element of  B(W,3') .  In view of  
the above proposition, we find that a - ao is valuation independent over W and 
again, it follows that ~ O {a - a0} is the required valuation basis of  W + Ka. 

[] 

This proof shows that the lemma works as well if the condition "W is finite 
dimensional" is replaced by "every subset of  v ( W )  admits a maximal element" 
or equivalently, "v(W) is the inverse of  an ordinal" (cf. [K1]). 

Valuation independent sets may serve to obtain isomorphisms between valued 
vector spaces, on the basis of the following lemma. 

L e m m a  2.13 Let (V,v)  and ( V ' , v ' )  be valued K-vec tor  spaces containing 
(Vo, v) as a common valued subspace and such that v (V )  = v ' (V ' ) .  Let J5  ~ C V 
and J ] '  C V '  be valuation independent over Vo. Suppose that there exists a 
bijection 

such that 

h ~  : ,5~ ~ ~ '  

'fib E ~.~ : v ' (hj3(b))  = v ( b ) .  

Then h ~  extends linearly to an isomorphism over V o 

h:  V ( ~ u V o )  , v'(._~'UVo) 

of  valued vector spaces which also preserves the valuation (more precisely, which 

satisfies hrk = id). 

Proof  We put W = v < ~  U Vo) and W'  = v'  ( ~ ,  U Vo). Then ~ 2  and ~ '  are 
valuation bases of  W resp. W'  over Vo, and h : W --~ W'  is given as follows: 

for every z E Vo and ~-]~iEl kibi a finite linear combination of  elements b i in ~L~, 

Since ~ and ~ '  are valuation bases of W resp. W'  over Vo, and since 
v'(ho~(b)) = v(b) for every b E ~ by hypothesis, we have 



On the structure of nonarchimedean exponential fields I 155 

vP( i~Elk ih '~(b i )+z)= {iElmin; k~}{v/ (h~(bi ) ) 'v (z)}  

= min {v(bi), 'o(z)} 
{iel ; k~4)} 

\ iE l  

This shows that h preserves the valuation, which in turn yields that h is wellde- 
fined and bijective. [] 

2.3 Generalities about ordered modules 

In this section, let (R, <R) be a fixed commutative ordered ring with 1, satisfying 

Vr E R \ { 0 } 3 s  E R :  rs > 1. (2) 

Note that this condition is satisfied by every ordered field and by every archi- 
medean ordered ring. Let M be an R-module and < a total order defined on the 
set M. We will say that (M, <) is an ordered (R, <R)-module if its underlying 
additive group is an ordered Abelian group, that is, if the order < satisfies 

I) V x , y E M :  0 < x a n d 0 < y  ~ 0 < x + y ,  

2) x < y  if and only if 0 < y - x ,  

and if the scalar multiplication satisfies 

3) V r E R :  0 < x  a n d 0 < R r  ~ O < r x .  

Simple consequences are the following rules: 

i f x  < y ,  t h e n x + z  < y + z  for a l lz  E M ,  

i fx  < y, then rx < ry for all r E R with 0 <R r, 

0 < x  if and only if - x  < 0 .  

Every ordered (R, <R)-module is torsion free. Every ordered Abelian group is 
an ordered Z-module.  

Let (M1, <), (M2, <) be ordered (R, <R)-modules and 

h :  MI )M2 

a homomorphism of modules. We will say that h preserves the order (or that 
h is a homomorphism of ordered modules) if for all x, y E M1, x _< y implies 
h(x) <_ hfy). 

A submodule N C M is said to be convex (in M) if it satisfies: if xl,x2 E 
N a n d x  E M such that xl < x < x2, then x E N. The set of all convex 
submodules of M, ordered by inclusion, is a chain containing 0 and M and is 
closed under unions and intersections. If N is convex in M, the quotient module 
M IN, equipped with the order induced by 

x < y  ~ x + N  < y + N  
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is an ordered (R, <R)-module. 
Note that if h : M1 ~ M2 is a surjective homomorphism of ordered modules 

with kernel N,  then N is convex in M1 and h induces an isomorphism of ordered 
modules from M 1 / N  onto M2. 

For x C M we define: 

Cx(M) = 

Ox(M) = 

and by convention, 

A convex submodule of M 

N { c  ; c is convex and x c C} 

U { D  ; D is convex and x ~{ D } ,  

Do(M) = {0}.  

is called principal if it is of  the form Cx(M) for 
some x E M.  Note that if N is convex in M and x E N,  then 

Cx(N) = Cx(M) and Dx(N)  = D x ( M ) .  

The ordered module 

Bx(M) = Cx (M) / Dx (M)  

will be called the component o f  x in M.  We will write Bx, Cx and Dx if the 
context is clear. Note that Bo(M) = {0}. 

We put Ixl = m a x { x , - x } .  Let y E M;  we will say that x is R-equivalent to 

y and write x ~ y if there exists r E R such that 

rlxl >_ lY[ and rlyl >_ Ixt- 

R 
We will say that x is R-infinitely smaller than y and write x << y if r]xl < lYl 

R . 
for all r c R. We remark the following properties: ~ is an equivalence relation, 

R 
and << is compatible with this equivalence relation: 

R R R 
x < < y  a n d x ~ z  ~ z <<y 

R R R 
x < < y  a n d y ~ z  ==> x < < z .  

The equivalence class of  x will be denoted by [x] R, and the set of  equivalence 
classes by F.  We define on F an order in the following way: 

R 
[Y]R < [x ]R  if and only if x < < y .  

By the above mentioned properties, F is a chain with last element [0]R which we 
will denote by cx~. From condition (2) on the ring R it follows that for every r E R 

R 
we have rx ~ x. Now the proof of  the following proposition is straightforward: 

Proposi t ion 2.14 The map 

VR: M ~ 1" 

x ~ [XlR 

is a valuation on M. 
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We will call v R the R-natural  valuation on M .  Whenever we consider an ordered 

module as a valued module it will be understood that the valuation is the R -  

natural valuation, unless otherwise stated. Note that a given map v from M onto 
some chain is a valuation and equivalent to the R-natural valuation of M if and 
only if 

R 
v ( x ) > v ( y ) c = ~ x < < y  for a l l x , y E M .  

Let v be any valuation on an ordered module M ; v is called compatible with 

the order on M if for all x , y  E M with x > 0 and y > 0, v(x)  < v(y)  implies 
y < x. In particular, v R is compatible with the order on M.  

We will say that M is R-archimedean if (M,  v R) is homogeneous, that is, 
vie(M) contains only one element, apart from co. If  x E M with VR(x) = 7, 

then Cx = M "r and Dx = M.~; in particular, M is R-archimedean if and only 
if M does not contain any nontrivial convex submodule. Hence, Bx = B(7)  = 

Cx/Dx is an R-archimedean ordered (R, <R)-module, and the homomorphism 
7r(7, - )  preserves the order. To indicate the existence of the induced order on the 
components, we will speak of the ordered skeleton o f  M and write S ( M ,  <), and 
we will call B ('y) the R-archimedean component corresponding to "7. Similarly, 
we will say that S(MI ,  <)  and S(M2, <)  are isomorphic, or that S(M1) and S(M2) 
are isomorphic as ordered skeletons if there exists an isomorphism 

~:/~1 ,_r2 

of chains, and for every 7 c F1 an isomorphism 

~ : B(M1,'~) , B(Mz,~(~/))  

of ordered modules. And so on for all other notions defined in Sect. 2.1. 

If M and N are ordered modules, then M II  N denotes the sum M @ N 
equipped with the lexicographic order. We will not distinguish between external 
and internal sums, but we will occasionally indicate internal sums by writing 
"M t = M LI N"  instead of  "M t -~ M H N".  

L e m m a  2.15 a) Let M be an ordered module, C a convex submodule o f  M and 

C ~ a complement to C in M,  i.e. C ~ is a submodule o f  M such that M = C ~ | C. 

Then M ~_ C ~ 11 C as ordered modules. 

b) Let ~7 : M --+ N a surjective homomorphism o f  ordered modules and assume 

that ker ~/has a complement in M .  Then 

M _~ N LIkerr l .  

Proof. a) It is easy to verify that 

~p:M = C I  |  ~ C I H C  

b + c  ~ (b ,c)  

is an isomorphism of ordered modules. 

b) Let C ~ be a submodule of  M such that 
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M = C '  �9 kerr/ 

(C'  exists by hypothesis), hence by a), 

M = C '  II kerr/ 

(ker r /being convex), and 
r/ I C'  : C '  ----+ N 

is an isomorphism of ordered modules. [] 

For the computation of skeletons, there is an analogue to part b) of the 
preceding lemma which has the advantage that it will not require the existence 
of a complement to ker r/ in M. We first need some notations. If A~, A 2 are two 
chains, then A1 + A2 will denote their sum, that is, the set ({1} • A1) tO ({2} x 
,42) ordered lexicographically. Now let Si = [Ai ,  {Bi05);~ E Ai}] be ordered 
systems of modules, for i = 1,2. Then $1 LI $2, called the sum of S~ and $2, will 
denote the ordered system 

where 

[A~- + A2, {A(7) ; 7 C B~- + A2} ] 

{ B1(~5) if ,-/ = (1, ~5) E { 1 } x A ~ -  
A(q,) = B2(~5) if 7 = (2, ~5) E {2} x A 2 . 

L e m m a  2.16 Let r~ : M --+ N be a surjective homomorphism of  ordered modules. 
Then 

S ( M )  ~- S ( N )  l l  S(kerr/)  . 

More precisely, i f  v and v' are the natural valuations o f  M and N respectively 
and the restriction of  v to ker r/ is  again denoted by v, then the map 

w : M --+ v ' ( N ) -  + v(kerr/) 

given by 

I v'(r/(a)) if a ~g kerr/ 
zo(a) 

v(a) if a E kerr/ (3) 
% 

is welldefined, surjective and equivalent to the natural valuation v on M.  Further, 

Ba(M) ~- Bv(a)(N) i f a  ~ kerr/ 
Ba(M) = Ba(kerr/) i f a E k e r r /  

Proof. Since the epimorphism r/preserves _< (that is, a _< b ~ r/(a) _< r/(b)), its 
kernel is a convex submodule o f M .  It also yields that r/sends convex submodules 
of M to convex submodules of N, and that the preimage of a convex submodule 
of N is a convex submodule of M. If CI D C2 D ker r /are  convex submodules 
of M such that r/(C1) = r/(C2), then C1 = C2 + ke r r /=  C2. We have thus proved 
that C ~ r/(C) is a bijective correspondence of the convex submodules of M 
containing ker r / to  the convex submodules of N. The set of convex submodules 
of M is linearly ordered by inclusion, so the convex submodules which do 
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not contain ker r/ are themselves contained in kerr/. Consequently, the convex 
submodules of M not containing ker r /are precisely the convex submodules of 

kerr/. 
Everything that we have said holds as well for the principal convex submo- 

dules. Since the correspondence Cx ~ v(x) is an order reversing bijection from 
the set of  principal convex submodules of  an ordered module onto its value set, 
our above considerations prove that the valuation w defined by (3) is equivalent 
to the natural valuation v on M.  

By what we have said about the convex submodules of  kerr/, it is clear that 
B(M,"/) --- B(kerr/,3') whenever -y E v(keru). If  a ~ kerr/, then the minimal 
convex submodule Co of  M containing a, properly contains kerr/. The maximal 
convex submodule Do of M not containing a, will then also contain kerr/, and 
thus we may compute 

B(M, v(a)) = C a ~ D o  ~- (Ca~kerr~)~(Do~kerr~) ~-- r / ( C a ) / r / ( D a )  . 

By the correspondence that we have described at the beginning of this proof, it 
follows that r/(Co) is the least convex submodule of N containing r/(a) and that 
r/(Da) is the largest convex submodule of  N not containing r/(a). This shows that 
r/(Ca)/r/(Do) = B(N, v(r/(a))) which completes our proof. [] 

Since every convex submodule C of  M appears as a kernel of  some homo- 
morphism (namely, the canonical epimorphism M ~ M / C ) ,  the above lemma 
may also be read as a lemma about convex submodules. In the lexicographic 
sum A I I B  of  ordered modules, the submodule B is convex; hence, the lemma 
also shows that the skeleton of  a lexicographic sum ALI B is (isomorphic to) the 
lexicographic sum S(A)II  S(B) of their skeletons. This can even be shown for 
infinite lexicographic sums. 

The following two lemmas will be used in the present and the subsequent 
paper [K-K1]. Their proofs rely significantly on the foregoing lemma. 

Lernma 2.17 The lexicographic sum ALI B of ordered modules is maximally 
valued if and only if both A and B are. 

Proof. o :  If  B is not maximally valued, then there is an immediate extension 
B t of B, and by virtue of the foregoing lemma, also A I IB  t will be an immediate 
extension of A I I  B. A similar argument works if A is not maximally valued. 
~ :  Let M be a nontrivial extension of  A LIB. Then the convex hull B ~ of B in 
M is an extension of B and the canonical epimorphism M --+ M / B  ~ induces an 
embedding of A into M / B  ~. If  both A and B are maximally valued, then at least 
one of the extensions B C B ~ and A C M / B  ~ is not immediate, and it follows 
from the foregoing lemma that A H B C M cannot be immediate. [] 

L e m m a  2.18 The lexicographic sum AIIB of ordered modules admits a valuation 
basis if and only if both A and B do. 

Proof. Set M = A I I  B and denote by r/ the canonical epimorphism onto A with 
kernel B: 
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r / : M  ~ A 

a + b ~-~ a for all a E A, b E B. 

We shall use the notation of Lemma 2.16, with A in the place of N. The following 
fact will be used in the proof: since B is convex in M, we have for every x E M: 

x E B if and only if v(x)  >_ v(b) for some b E B. (4) 

=:~: Let {xi ; i E I}  be a valuation basis for M and set 

~2  = {xi ; i E I }  N B  . 

If b E B and b = ~ i E l  FiXi (where all but a finite number of the ri's is zero), 
then 

v(b) = rnin v(xi) �9 

Consequently, for all i E I with ri 5t O, v(xi) > v(b), so by (4), xi E B. This 
shows that ~ is a valuation basis of B. 

Now let ~ = 7/({xi ; i E I})  \ {0}. Clearly, ~ is a generating set for 
A. Moreover, it is valuation independent. Indeed, if ~ riTI(xi) is a finite linear 
combination of elements of . ~ ,  then 

V' (ZriTl(Xi)) =vt (Tl(~rixi)) 

since 7/is a homomorphism. On the other hand, in this last sum, ~7(xi) =/0 (by 
definition of ~ ) ,  so xi ~ B. Consequently, v(y'] rixi) = mini ~:(xi) < v(b) for all 
b E B (by (4)). It follows (again by (4)) that ~ rixi ~ B. Now we can apply 
Lemma 2.16 to obtain that 

which proves the assertion. 

( ~-~ ri xi ) = min w(xi ) = min v' (rl(xi ) ) , l 

~ :  Let ~-~ ( r e sp . .~ )  be a valuation basis of A (resp. of B). Then ~4  U ~ is a 
basis of M. Moreover, if ~-~ie/riai (resp. ~-]j~j sjbj) is a nontrivial finite linear 
combination of elements of ~4  (resp. of ~ ) ,  then by Lemma 2.16, 

\jeJ / 

where the last two equalities hold by assumption and Lemma 2.16. It follows 
that ~ U ~ is valuation independent. [] 

SO 
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Let us now consider isomorphisms of ordered modules. If  h is such an iso- 
morphism, then it preserves the valuation and induces an isomorphism of the 
ordered skeletons. But it is the converse to this statement which is important for 

us:  

Proposi t ion 2.19 Suppose that M1 and M2 are ordered modules and that 

h : Ml ~ M2 

is an isomorphism of valued modules. I f  

[hrk~ {h e ; 7 E -FI)] : S(MI)  ~ S(M2) 

is an isomorphism of ordered skeletons, then h preserves the order. 

Proof. Let x > 0 and put 3' = vR(x). Then 7rM~(3",x) > 0 (in B(M1,7)),  hence 
h~(TrMl(7,x)) > 0. That is, 7rM2(hrk(3,),h(x)) > 0 (in B(M2,hrk(7))), whence 
h(x) > 0. [] 

As a corollary, we obtain the following lemma due to R. A. H. Gravett 
([GRA2], Lemme 1). Gravett states it for the case R = ~ ,  but the lemma is true 
for arbitrary ordered R-modules .  

L e m m a  2.20 Suppose that 

(i) Mi and M[ are ordered R-modules, for i = 1,2, 

(ii) Mi C M/are  immediate extensions, for i = 1,2, 

(iii) h ~ : M[ ---+ M~ is an isomorphism of valued R-modules, and h ~ ~ M1 : M1 --* 
M2 is an isomorphism of ordered R-modules. 

Then h ~ is an isomorphism of ordered R-modules. 

Proof. Since h ~ ~ M1 : M1 --+ M2 preserves the order and Mi C Mi t are immediate 
extensions, we have that 

[hr~k, {h~; 3, ~ F1}] :  S(M;) ~_ S(M~) 

is an isomorphism of ordered skeletons, hence h ~ : M[ --~ M~ preserves the order 
by virtue of  the foregoing proposition. [] 

We want to exploit this lemma to obtain the analogues to Corollary 2.5, 
Theorem 2.6, Corollary 2.8 and Theorem 2.7 in the case of ordered vector spaces. 
To this end, we need the following definitions. Let [F, {B('),); 3, E / '}]  be a 
system of R-archimedean ordered (R, <R)-modules.  On @-r~r  B(7) '  we define 
the lexicographical order <~ : 

for all sl, s2 E @-~cr B(3,), sl <t s2 if s1(7) < s2(3,) for 3' = min support (sl - s2) .  

The ordered (R, <R)-module  obtained in this way is called the lexicographi- 
cal sum. Similarly, the lexicographical product is the submodule of 1- l .~r  B(3,) 
consisting of all elements with wellordered support, equipped with the order <t .  
Then for all sl, $2, 
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R 
sl ~ s2 if and only if min supports1 = min supports2. 

Hence, as valued (R, <R)-module, the lexicographical sum (resp. the lexicogra- 
phical product) is isomorphic to the Hahn sum (resp. Hahn product), and we will 
also denote it by I.I.~/" B(3') (resp. HTcF B(7)). We have 

\ ~ r  / 

as ordered skeletons. 

From now on, we will consider an ordered field (K, <K) and an ordered 
K-vector space (V, <). In this situation, we have the analogue to Corollary 2.5: 

Proposition 2.21 An ordered vector space admits a valuation basis if and only 
if it is isomorphic (as ordered vector space) to the lexicographical sum over its 
ordered skeleton. 

Proof Only " ~ "  is nontrivial. Let ~ = {xi; i ~ I } be a valuation basis of 
(V, <) and let 

> H B(V,'y) h :  V 
"yEF 

be the map given by xi ~-~ si, where the tuple si is defined by 

f 7rV(7,xi) if  ")/= vK(xi) 
si(~) 

0 otherwise, 

and 
h ( Z  kixi) = Z kiSi for ki E K . 

(Here, h is the isomorphism of valued vector spaces whose existence is stated in 
Corollary 2.5.) Calculating hrk and {h-y ; 7  C F}, one easily verifies that 

[hrk, {h.y ; 7 E F}] : S(V)  "" S ( H  B(V, 3')) 
-yEF 

is an isomorphism of ordered skeletons. Hence by virtue of Proposition 2.19, h 
preserves the order. [] 

As a corollary to Theorem 2.6 and Lemma 2.20, we obtain: 

Theorem 2.22 Suppose that 

(i) Vi and V/ are ordered vector spaces and 1I/is an immediate extension of Vi, 
f o r i  = 1,2, 

(ii) h : 111 ~ V2 is an isomorphism of ordered vector spaces, 

(iii) V~ is maximally valued 

Then there exists an embedding h r : V( --4 V~ of ordered vector spaces such that 
h ~ extends h. Moreover, h ~ is an isomorphism of ordered vector spaces if and only 
if V11 is maximally valued. 
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As a corollary, we obtain the analogue to Theorem 2.7: 

Theorem 2.23 Let {xi ; i E I}  C V a maximal valuation independent subset, 
and h : K({xi; i E I})  --~ [I.~ErB(V,'7) an isomorphism of ordered vector 

spaces. Then there exists an embedding h ~ : V ~ I-Iv~r B ( V , 7 )  of ordered 
vector spaces, extending h. 

As well, we obtain the analogue to Corollary 2.8: 

Corollary 2.24 An ordered vector space is maximally valued if and only if it is 
isomorphic (as ordered vector space) to the lexicographical product taken over 
its ordered skeleton. 

2.4 L~-equiva lence  of ordered vector spaces 

Let L be an arbitrary first order language, ~,g, ,5~ L-structures and ~ o  a common 
substructure (cf. [C-K] for these notions). We refer the reader to [BAR] or [POI] 
for the definitions of the infinitary language L ~ ,  the infinitary equivalence of 
~ g  and ~,~ over ~go (which we will indicate by ", .~ - - ~  ~ over ,~g0"), the 
local (or partial) isomorphism, the karpian family, as well as for the main results 
concerning these notions. 

Following the notation in [BAR], we will write 

I : ~ g ~ - p ~  (ove r ,go )  

if I is a nonempty karpian family of isomorphisms (over ~g0) of substructures 
of ~ g  onto substructures of ~ .  

Let us state here two results (Theorem 2 in [BAR] and Theorem 5.02 in 
[POI]) of which we will make constant use in this paper. For the notion of 
x-saturation appearing in the second theorem, see [POI]. 

Theorem 2.25 I f  ~ and ~ are countable or countably generated structures, 
then ~/g ~- J 2  if and only if ~ ~p ~ .  In fact, if I : ~ ~_p ~ and fo E I then 
fo can be extended to an isomorphism f : ~ ~- ~,~2. 

Theorem 2.26 If  ug  and ~ are elementarily equivalent and Ro-saturated, then 

For the proof of the next theorem, see [K1] or [K2]. The second assertion of 
part a) which was proved by R. Brown (cf. [BR]), is a special case of the first 
assertion by virtue of the preceding theorem. 

Theorem 2.27 Let K be an ordered field and V1, V2 two ordered K-vector spaces. 
a) 

Vl =--~ V2 (as ordered K-vector spaces) 

if and only if 
S(V1) ~ w  S(V2) (as ordered skeletons) . 
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I f  moreover dimxVi <_ Rofor i = 1,2, then 

V1 ~- V2 (as ordered K-vector spaces) 

if and only if 
S(V1) -~ S(V2) (as ordered skeletons). 

b) Suppose that S(V1) - o ~  S(V2) as ordered skeletons. Then 1"1 - ~  1"2 as 
chains, and for all 7 E Fl there is some 6 E 1"2 such that Bl(~/) --o~w B2(6) as 
ordered K-vector spaces. 

3 Applications to exponential fields 

In this chapter, we will deal with ordered Abelian groups (which are appearing in 
connection with exponential fields). They may be viewed as ordered ~-modules ,  
and we dispose of  the notions "Z-equivalent",  "~-naturat  valuation", "Z-a r -  
chimedean" and "ordered skeleton" introduced in Sect. 2.3. Since there is no 
danger of  confusion, we will abbreviate the terminology by omitting the "Z" .  
For example, an ordered Abelian group is "archimedean" if it does not contain 
proper nontrivial convex subgroups, and we have 

Theorem 3.1 Every archimedean group is isomorphic (as an ordered group) to 
a subgroup o f ( R ,  +, O, <). 

(Cf. Fuchs [FU] for a proof.) Hence, the skeleton of  an ordered Abelian group 
is an ordered system of subgroups of 11~. 

3.1 The natural valuation of an ordered field 

Let K be a field, G an ordered Abelian group and e,z an element greater than 
every element of G. A surjective map 

v :  K , G U {oo} 

is a valuation on K if and only if for all a,  b E K, 

(i) v(a) = oo if and only if a = 0 

(ii) v(ab) = v(a) + v(b) 

(iii) v(a + b) > min{v(a), v(b)}. 

As immediate consequences, we have: 

v(a) = v ( - a )  

v(a -1) = - v ( a )  for a 5/0 

v(a) 5r ~ v(a + b) = min{v(a), v(b)}. 

We write G = v(K x) and call G the value group of K. The valuation ring is the 
ring 

R v = { a ; a E K  a n d v ( a ) > 0 } ,  



On the structure of nonarchimedean exponential fields I 165 

and the valuation ideal is its maximal ideal 

Iv = {a ; a E K a n d v ( a ) > 0 } .  

The field Rv/Iv ,  denoted by K, is the residue field. The group o f  units of the 
valuation ring is the subgroup of the multiplicative group of Rv defined by 

~ v  = {a ; a C K and v(a) = 0} . 

Let now (K, +,-, 0, 1, <) be an ordered field. The set of positive elements of 
K will be denoted by K >~ Then (K,+,0,  <) and (K>~ -, 1,<) are ordered 
Abelian groups, and ( K , + , 0 , < )  is divisible. Consider the ordered set G of 
equivalence classes [a], for a E K, a 5/ 0, of the equivalence relation " • -  
equivalent" ("archimedean equivalent" in the usual terminology) defined on the 
divisible ordered Abelian group (K, +, 0, <), the order on G given by 

[ a ] < [ b ]  if and only if b < < a .  

On G, we define the addition: [a] + [b] = [ab]; equipped with this addition and 
order, G becomes an ordered Abelian group with neutral element [1], and the 
natural valuation on the divisible ordered Abelian group (K, +, 0, <) 

v K ~ Gu{cc} 
a ~ [a] 

is a valuation of the field K (which we call the natural valuation on the ordered 

field K). It is compatible with the order, which means that 

i r a  > 0 a n d b  > 0 , t h e n  v(a) < v(b) ~ b < a . (5) 

In this case, Rv and Iv are convex in K; as ordered (additive) groups, Rv and Iv are 
just C1 (the smallest convex subgroup containing 1) and D1 (the largest convex 
subgroup not containing 1) respectively. Hence, K equipped with the canonical 
order is an archimedean ordered field, and K is just the divisible ordered Abelian 
group CI/D1 equipped with the multiplication 

(a + DI) . (b + D1) = ab + D1 �9 

The coefficient map corresponding to v(1) 

7r(v(1),-)" Rv , K 

is a homomorphism of ordered rings, and it is just the residue map of the valued 
field (K, v). To abbreviate the notation, we will denote 7r(v(1), a) by fi- and omit 
"corresponding to v(1)". We have: 

Va,b  E Rv : -ff >-b ~ a > b and a > b ~ -~ >_-b . (6) 

In this paper, we will always consider the natural valuation v on an ordered 

field (and we will use (6) without explicit mentioning). Hence, Rv and Iv are 

always convex subgroups of (K,+,0,  <). As a field, K has multiplication, and 
an easy argument then shows that all archimedean components are isomorphic: 



166 S. Kuhlmann 

Lemma 3.2 The archimedean components (5r O) of  the divisible ordered Abe- 
lian group (K, +, 0, <) are all isomorphic to the divisible ordered Abelian group 
(K, +, 0, <). 

Proof Let a E K, a > 0. The map 

Ca --+ K 

x ~ x a -  1 

is a surjective homomorphisrn of ordered groups with kernel Da. [] 

Remark 3.3 An isomorphism of ordered fields preserves the natural valuation 
and induces isomorphisms of the corresponding residue field and value group. 
Hence, K and G are invariants for an ordered field. 

The divisibility of (K, +, 0, <) enables us to present it as a lexicographic sum 
of three summands which will play an independent role in the course of this 
paper. 

By the the convexity of Rv and Iv, Lemmas 2.15, 2.16 and 3.2, we obtain: 

Lemma 3.4 There exist a group complement A to Rv in (K, +, 0, <)  and a group 
complement A t to Iv in Rv such that 

(K, +,0, <)  = A H A '  LIIv .  (7) 

Both A and A t are unique up to order preserving isomorphism, and A'  is isomor- 
phic to the archimedean group (K, +, O, <). Furthermore, the value set of  A is 
G <~ U {cr the one of  Iv is G >~ U {oo}, and the nonzero components of  A and 
Iv are all isomorphic to (K, +, O, <). 

3.2 The skeleton of (K >~ -, 1, <) 

For the multiplicative group (K >~ -, 1, <) of positive elements, we will now 
derive a similar decomposition as we have done for the additive group (cf. Theo- 
rem 3.8 below). But the multiplicative group is in general not divisible. So, as 
a hypothesis in Theorem 3.8 we will require the divisibility which actually is 
equivalent to the property that K is root closed for positive elements (for every 
a E K, a > 0, and for every n E N,  there is some b E K such that b n = a). 
Note that every real closed field has this property. 

Let us consider the following subgroups of ~ v :  the group of  positive units 

~ > O = { a ; a  > O a n d v ( a ) = O } ,  

and the group of l-units 

l + Iv = {a  ; v (a  - 1 )  > O} . 
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Remark 3.5 

(i) By (5), for every a > 1, 

a E R r  r a E ' ~ v .  

(ii) For all a, b E K,  v(a - b) > v(a)  implies sign(a) = sign(b). 

(iii) For every a E 1 + Iv we have v(a - 1) = v(a -1 - l ) .  

(iv) If a E ~dv \ (1 +Iv) ,  then a -1 E ~ v  \ (1 +Iv) .  

The following two lemmas will give information on the summands of a 
lexicographic decomposition of (K >~ ., 1, <)  (cf. Theorem 3.8) in the case where 
this group is divisible. But the lemmas are true without this hypothesis and will 
yield a decomposition of the skeleton of (K >~ -, 1, <)  in any case. In view of 
(5), we have: 

L e m m a  3.6 The map 

(K > ~  , G 

a H - v ( a )  = v(a -1)  

is a surjective homomorphism o f  ordered groups with kernel ~ >o. It follows that 
~Z4 >~ is convex in (K >~ -, 1, <)  and that 

(K >~ ., 1, < ) / ~ , > o  ~ G 

as ordered groups. 

Next, we consider ~d>~ 

L e m m a  3.7 The map 

( ~ > o ,  , 1, < )  , (~>o ,  , 1, <) 

a ~ 

is a surjective homomorphism o f  ordered groups with kernel 1 +Iv. It follows that 
1 +Iv is convex in (~ .>o ,  ", 1, <), and 

(~2d~ >~ -, 1, < ) /1  + Iv  --~ (~->o ", 1, < ) .  

Consequently, 1 +Iv C ~d >~ is a jump, i.e. there is no convex subgroup C such 
that 1 + Iv ~ C ~ ~dv >~ . 

Proof. Follows immediately from the properties of  the residue map together with 
(5). The last assertion follows from the fact that K is archimedean, t3 

By virtue of Lemmas  2.15, 3.7 and 3.6, we now obtain: 
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Theorem 3.8 I f  (K >~ -, 1, <) is divisible, then there exist a group complement B 
to ~ v  >~ in (K >~ ., l, <) and a group complement B' to 1 +Iv in (~/~>o, ", 1, <) 
such that 

(K >~ -, 1, <) = B I IB '  II (1 + Iv, ", 1, < ) .  (8) 

Every group complement to cg~>o in (K >~ ., 1, <) is isomorphic to G, and every 

group complement to 1 +Iv in ( ~ > o  ", 1, <) is isomorphic to (~->0, ", 1, <). 

In the sequel, we will compute the natural valuation w and the ordered skele- 
ton of (K >o ", 1, <) in dependence upon the natural valuation vo and the ordered 
skeleton [/', {B(7) ; "y E ]7}] of G on the one hand, and upon the natural valua- 
tion v and the ordered skeleton of (K, +, 0, <) on the other hand. Although the 
first part of the preceding theorem requires the divisibility of the multiplicative 
group of positive elements of K, we may use Lemmas 3.6 and 3.7 to compute 
its skeleton even if divisibility does not hold, by means of Lemma 2.16: 

Corollary 3.9 For every ordered field K, 

S(K >~ ., 1, <) ~ S(G) H S(K ->~ ., 1, <) LI S(1 + Iv,-, 1, < ) .  

The value set in S(K ->~ ., 1, <) consists of just one element (apart from co) since 

(~->o ", 1, <) is archimedean. Consequently, the only component in this skeleton 

(apart from {0}) is itself isomorphic to ( ~ > o  ", 1, <). 

Our goal is now to give more detailed information on the valuation and 
the components of (K >~ -, 1, <). For this, we need some notations. As we are 
working with three different ordered Abelian groups, for "the smallest convex 
subgroup containing x" and "the biggest convex subgroup not containing x", we 
will write 

Cx and Dx fo rx  c ( K , + , 0 , < )  
Cx and Dx for x E (K >~ ., 1, <) 
~xx and~x  fo rx  c G .  

In (K >~ -, 1, <), for ~,  >>, << we will write ,L, ~> and << respectively. 

Now we are able to extract some more information from Lemmas 3.6 
and 3.7, again by means of Lemma 2.16. Note that for every a C K • we 
have vG(--v(a)) = vG(v(a)). 

Lemma 3.10 
a) Suppose that a ,b  C K >~ and v(a) ~r 0. Then b << a if and only if vG(v(b)) > 
vG(v(a)), and 

C a l D a  "~ r~v(a)l~Tv(a) . 

b) Suppose that a, b C ~ > o  \ 1 + Iv. Then a ~ b and 

Ca/D a ~.~ (~>o, ', 1, <) 

since the latter group is archimedean. 
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N o w  it remains  to cons ider  (1 + Iv , - ,  1, <) .  We wil l  relate  its natural  va luat ion  

to the natural  valuat ion v of  the addi t ive  group of  K, and we wil l  show that  its 

skele ton is i somorphic  to the skele ton of  (Iv, +, 0, <) .  

L e m m a  3.11 Suppose that a > 1 and b > 1. I f  v(a - 1) = v(b - 1), then a ~ b. 

Proof. We set el = a - 1 and e2 = b - 1. By  hypothesis ,  there exists  n > 1 such 
that ne l  > e2 and ne2 > el .  We write 

But 

hence  

~ ~ ( n  ) i 
( l + e l ) n  = 1 + n e l +  i e l '  

i=2 

i e 1 > 0 ,  
i=2 

(1 + e l )  n > 1 + n e t  > 1 + e 2 .  

S imi lar ly ,  one shows that  (1 + c2 )  n > 1 + e l .  [] 

L e m m a  3.12 Suppose that a > 1 and b > 1. Let v(b - 1) >_ O. I f  v(a - 1) < 

v(b - 1), then a >> b. 

Proof. We set ~1 = a - 1 and e2 = b - 1. We  want  to show for every  n > 0: 
(1 + e2) n < 1 + e l .  We have that for  every i > 0, 

V(e~) = iv(e2)  > ~U(e2) > V(el) 

and thus, 

whence  

In par t icular  (by(5)) ,  

On the other hand, 

hence,  

e~ < e l  - 

i=1 

i e ~ ,  
i=1 

(1 + e 2 )  n < 1 + e l  �9 []  

The fo l lowing  corol lary  wil l  serve us to descr ibe  the natural  valuat ion of  
l + I v :  
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Corollary 3.13 I f a  > t, b > I and v(b - 1) > 0 ,  then 

i f a n d o n l y i f  v ( a -  1 ) < v ( b -  1). a >>b 

Consequently,  the map  

a ~ v(a - 1) 

is (equivalent to) the natural valuation on (1 + Iv , . ,  1, <). 

Proof.  The  first assertion is an immediate consequence of  Lemmas 3.11 and 3.12. 
The second assertion is a consequence of the first, by virtue of Remark 3.5 iii). 

[] 

Lemma 3.14 For  every a E 1 + Iv, the ass ignment  c �9 D a w-+ c - 1  + Da_  1 

establishes an isomorphism 

Ca/Da  ~ ( C a - l / D a - l , + , O , < )  

o f  ordered groups. 

Proof.  Assume that a E 1 + I v .  We define 

~a : Ca > Ca- 1/Da- 1 

c F-+ c - l + D a - ]  �9 

Let us remark that by definition of C a and Corollary 3.13, c E Ca if and only 
if v(c  - 1) > v(a - 1). Hence, q~a is well defined and surjective. Similarly, c E 
Da if and only if v(c  - 1) > v(a - 1). Hence, Ker q~a = D~. 

It remains to show that qS~ is a homomorphism. Given c, d E Ca, we have 
to prove that ~ a ( c d )  = (ba(C) + ~ a ( d ) ,  i.e. that 

( c d -  1 ) - ( c -  1 ) - ( d -  1) E D a - 1 .  

This is equivalent to: 

v ( ( c -  1 ) ( d -  1 ) ) > v ( a  - 1).  

But this is true since 

v((c - 1 ) ( d -  1)) = v ( c -  1 ) + v ( d -  1) > 2v(a - l) > v(a  - 1) . 

F i n a l l y ,  q5 a preserves the order: if c > 1, then c - 1 > 0. [] 

From Corollary 3.13 and Lemma 3.14, we can deduce the following results: 

Theorem 3.15 For  every ordered f i eM K,  

S((t  + I v , . ,  1, <))  --~ S( ( Iv ,+ ,O,  < ) ) .  
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Proof. For v the natural valuation on Iv, Corollary 3.13 shows that w defined by 

w(a) = v(a - 1) is (equivalent to) the natural valuation on 1 +Iv.  The component 
of 1 + Iv  corresponding to 3' = w(a), a E 1 +Iv, is Ca/Da (this follows from 
Lemma 2.16 in view of the convexity of 1 +Iv). But by Proposition 3.14, Ca/Da 
is isomorphic to Ca-1/Da-1 which is the component of  Iv corresponding to 
v(a - 1) = w(a). This proves that the skeletons are isomorphic. [] 

Corol lary  3.16 Let K be an ordered field, root closed for positive elements. Then 
Iv - ~  1 + Iv as ordered groups. I f  moreover K is countable, then K admits 
an isomorphism f : Iv -+ 1 + Iv of  ordered groups, that is, K admits a right 
exponential. 

Proof. Since K is root closed for positive elements, 1 + Iv is a Q-vec to r  space. 
On the other hand, by Corollary 3.15, it has the same skeleton as Iv. So our 
assertions follow from part a) of Theorem 2.27. [] 

For the notions of pseudo Cauchy sequence and pseudo limit appearing in the 
next lemma, cf. [GRA1]. Here, L,, #, p will denote ordinals and A a limit ordinal. 

L e m m a  3.17 Let K be any ordered feld.  A sequence {a ,  ; L, < A} is pseudo 
Cauchy in (1 + Iv, . ,  1, <)  if and only if  {a~ - 1 ; t/ < A} is pseudo Cauchy in 
(Iv, +, 0, <). Moreover, a E 1 + Iv is a pseudo limit of  {a,, ; L, < 2~} if and only if  
a - 1 E Iv is a pseudo limit of  {a,  - 1 ; ~, < A}. 

Proof. Let p < / z  < L, < ),. Then by Corollary 3.13, 

w > w  if and only if v - 1  > v  - 1  . 

The latter is equivalent to 

v ( a ~ a , ) > v  ( a , ~ p a p )  . 

Since v(a~) = v ( a p )  = 0 ,  this in turn is equivalent to 

v(a~ - a~,) > v (a ,  - ap) , 

that is, 

v((a~, - 1) - (a~ - 1)) > v((a~ - l) - ( a p  - 1 ) )  . 

This proves the first assertion. The second assertion is proved similarly. [] 

A valued vector space is maximally valued if and only if every pseudo Cauchy 
sequence has a pseudo limit (cf. [GRA1]). For the case of  valued fields, this was 
originally shown by Kaplansky [KAP]. For the notion of  a power series field 
appearing in the next corollary, and a proof of  the fact that such a field is 
maximally valued, see [RIB]. Here, let E denote any archimedean ordered field 
and G any ordered Abelian group. 
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Corollary 3.18 Every power series field E((G)) admits a right exponential 

Proof Since E((G)) is maximally valued, its additive group is maximally valued 
and consequently, so is (Iv, +, O, <) (by Lemma 2.17). Hence, it follows from the 
foregoing lemma that (l +Iv, ", 1, <) is maximally valued as well. As a power 
series field, E((G)) is henselian with respect to v. By general valuation theory, 
this implies that its group 1 + Iv of 1-units is divisible. By Theorem 3.15 and 
Corollary 2.24 it now follows that the ordered groups Iv and 1 + Iv must be 
isomorphic. [] 

Note that this corollary can also be deduced in a different way using a result of 
B. H. Neumann (cf. [N]), as observed by Alling in [ALL], Sect. 3, pp. 709-710. 

The main theorem of this section now follows immediately from Corol- 
lary 3.13, Lemma 3.14 and Lemma 3.2: 

Theorem 3.19 Define a valuation 

w:  K >~ , / ' - + G  ->~ 

on the ordered group (K >~ ., l, <) as follows: w(1) = cr and for all a ~ 1, 

vo(v(a)) i f a  ~ ~gd >~ 
w(a )=  0 i f a  E cgd>~ \ (1 +Iv) 

v ( a - 1 )  i f a E ( l + I v ) .  

Then w is (equivalent to) the natural valuation on K >~ i.e. 

Va,b E K >~ : a << b r w(a) > w(b) .  (9) 

For A(6) the component of(K >~ ., I, <) corresponding to 6 E w(K>~ -,  we have 

B(6) i f6EF-  
A(6) -->o G>o, = (K , . , l , < )  / f 6 E  - 6 = 0  

(K, +,0, <) /f 6 E G->~ 6 > 0 .  

3.3 Exponential fields 

Let (K,+, .,0, 1, <) be an ordered field. We will say that K is an exponential 
field if there exists 

f : (K,+,0,  <) , (K>~ 1, <) 

such that 

1) f is an isomorphism of ordered groups 

2) v(f(1) - 1) = O. 
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A map f with these properties will be called an exponential on K.  Note that for 
the definition of "exponential field", condition 2) is in fact superfluous, because 
if (K, +, .,0, 1, <)  admits a map e satisfying 1), then it admits also a map f 
satisfying 1) and 2): let a E K >~ such that e(a) = 2, and put f ( x )  = e(ax). This 
procedure also shows a possible way how to cope with the fact that axiom 2) 
is not an elementary axiom if we do not add a symbol for the valuation to our 
language. Indeed, we are free to replace axiom 2) by the stronger but elementary 
axiom '~(1)  = 2". In the place of  2, we could choose any other rational number 
> 1. As well, we could take two rational numbers r2 > ra > 1 and use the 
axiom "rl < f (1 )  < r2". Finally, by a scheme of axioms of this sort, f ( 1 )  may 
be fixed to any real number, up to addition of an infinitesimal (an element e of 
value v(~) > 0). 

Lemma 3.20 Let 
f : (K,+,  O, <)  --+ (K >~ -, 1, < )  

be an isomorphism o f  ordered groups. Then the following are equivalent: 

1) v(f(1)  - 1) = 0 (i.e. f is an exponential), 

2) the map 

f : (K, +, 0, <)  ---+ (K->~ .,1, < )  

~ f ( a )  
m 

defines an exponential on K, 

3) f ( R v )  = ~ > o  a n d f ( l v )  = 1 +Iv. 

Proof. We first show 1)~2) .  

Assume 1) holds. By Lemma 3.2, the archimedean component  corresponding to 
1 in ( K , + , 0 , < )  is ( K , + , 0 , < )  = R~/I~, and by part b) of  Lemma 3.10, that 
corresponding to f (1 )  in (K >~ ., 1, <)  is (~gg>~ + Iv , - ,  1, <). 

So by Lemma 2.2, the map 

f0K--+ ~>~ 
a +I~ ~-+ f ( a ) . ( 1  +I~)  

is an isomorphism of ordered groups. Now note that 

'~gg>~ + Iv = (Rv/ lv)  >~ = ~ - > 0  

in fact, 
Vb E o-~>o : b . (l + Iv) = b + bI~ = b + Iv 

since v(b) = 0 for all b E ~ > o .  
So indeed we have that 

fo(a) = f ( a ) .  

Assume now that 2) holds. It is immediate to see from the properties o f f  that 
3) must hold. 
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If 3) holds, then for every a ERv we have v( f (a))  = 0 and thus v ( f (a )  - 1) >_ 0. 
So 3) implies 

Va E R r \ I v :  v ( f ( a ) - l ) = O .  

Since 1 E Rv \ Iv, we see that 1) holds as required. [] 

Remark 3.21 Suppose that f is an exponential on K. Then the multiplicative 
group of K is divisible since it is isomorphic to the additive group of K. Hence, 
there is a decomposition (8), according to Theorem 3.8. From Lemma 3.20 we 
know that f ( R v )  = ' ~ v  >~ Hence, A = f - l ( B )  is a group complement to Rv 
in (K,+,0,  <). Again from Lemma 3.20 we know that f ( Iv)  = 1 + Iv. Hence, 
A ~ = f - l ( B ' )  is a group complement to I ,  in Rv. With these groups A and A ~, we 
have a decomposition (7). Denoting the restriction o f f  to A byfL,  the restriction 
to A' by fM and the restriction to Iv by fR, we have obtained isomorphisms 

f L : A  ~ B 

f M "  A '  ----+ B' 

fR : Iv ~ 1 + Iv �9 

In view of the display of the lexicographic sums, this motivates the following 
definition, for every ordered field K with decompositions (7) and (8). 

An isomorphism fL from a group complement A to Rv in (K, +, 0, <) onto a 
group complement B to ~ > 0  in (K >~ -, 1, <) will be called a left exponential; 
in view of the uniqueness of the group complements, it automatically induces an 
isomorphism between A and G. Conversely, every isomorphism between A and 
G induces a left exponential. 

An isomorphism fM from a group complement A' to Iv in Rv onto a group 
complement B' to l+Iv in ,~.>0 will be called a middle exponential; in view of the 
uniqueness of the group complements, it automatically induces an isomorphism 

between (K, +, 0, <) and (~->o, ", 1, <), i.e., an exponential on K. Conversely, 
every exponential e on K- induces a middle exponential e' : A' _~ B'. 

An isomorphism fR from Iv onto 1 + Iv will be called a right exponential. 

Given a left exponential fL, a middle exponential fM and a right exponential 
JR, then fL HfM IIfR is an exponential on K, where 

Va C AVa' E A'Ve E Iv : f L H f M  l l fR(a + a ' + e )  :=fL(a)" fM(a ' ) ' fR(e )  (I0) 

In particular, if e is an exponential on K and e' the corresponding middle ex- 
ponential, then f = fL I3 e' l l fR  is an exponential satisfying f = e, that is, f 
lifts e. 

Every left exponential (and thus also every exponential)f  induces an iso- 
morphism 

~f " G<~ --+ F - 

given by ~of =ilk ~ a<o. More precisely, ~of is defined by 

~j(v(a)) = w ( f ( a ) )  = vo(v(f(a))).  
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This may be indicated by writing ~f = w o f  o v - l  . Indeed, by Lemma 3.4, the 
group A has G <~ t2 {oc} as its value set, and the isomorphism f " A ~ G 
thus induces the above isomorphism of the value sets. More precisely, f even 
induces an isomorphism of the skeletons of A and G, so in view of Lemma 3.2, 
all components of G will be isomorphic to (K, %0, <). 

Every right exponential (and thus also every exponential)f induces an auto- 
morphism 

el. �9 G>O ___+ G>0 

given by ~f =ilk ~ ~>0. It may be indicated by writing r = w o f  o v - l  which 
is defined by r  = w(f(e)) = v(f(e) - 1). This is because G >~ U {c~} is 
the value set of both Iv and 1 + Iv. Again, f induces also an isomorphism of the 
skeletons (but independently of the existence of f ,  we have already shown that 
the skeletons of Iv and 1 + Iv are isomorphic, cf. Corollary 3.15). 

As a corollary to Lemma 3.20 and the preceding remark, we obtain the 
following result which is due to Ailing (cf. [ALL], Th. 1.2 and Cor. 1.4). 

Corollary 3.22 I f  K admits an exponential f ,  then 

1) G <~ ~- 1"- as chains, 

2) B('~) ~_ (K,+, 0, <) for  every ~ E 1"-, 

3) the map 

- - > 0  
f "  (K ,+ ,O ,< )  ~ (K , - , 1 , < )  

ff ~ f ( a ) 

is an exponential o f  K. 

Note that 1) and 2) of this corollary already hold under the assumption that K 
admits a left exponential. 

This last corollary motivates the following definition: Let G be an ordered 
Abelian group with skeleton IF, {B(7); 7 E 1"}], and denote by vc the natural 
valuation on G (so v6(G \ {0}) = 1"-). Further, let A be an archimedean ordered 
Abelian group. Then G will be called an exponential group in A if 

1) it admits a group exponential ~, i.e. an isomorphism ~ : G <~ ~ 1"- of 
chains, 2) B(7) ~- A, for all 7 C 1"-. 

With this definition, the statement of the preceding corollary reads as follows: 

Theorem 3.23 I f  ( K , f )  is an exponential field, then (G, g;f) is a divisible expo- 
nential group in (K, +, O, <),  and ( K , f )  is an exponential field. 

Again, note that the first assertion of this theorem already holds under the as- 
sumption that f is a left exponential on K. 

Another consequence of the above remark is the fact that there are only very 
special extensions of an exponential field which are immediate with respect to 
the natural valuations. Let (L, v)](K, v) be an extension of valued (not necessarily 
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exponential) fields. Then (K, v) is said to be dense in (L, v) if for every a E L 
and ~ E v(L • there is some b E K such that v(a - b) > ~. We first need 
the following characterization of  density. Let AK be a group complement for the 
valuation ring of (K, v). Using Zorn's  Lemma, it may be extended to a group 
complement AL for the valuation ring of  (L, v). 

Lemma 3.24 (K, v) is dense in (L, v) if and only if AK = AL. I f  this is the case, 
then v(K • = v(L x ) and K = L, that is, the extension is immediate. 

Proof. If  (K, v) is dense in (L, v) then for every a E L with v(a) < 0 there is 
some b c K such that v(a - b) >_ 0 which implies that AK is already a group 
complement for the valuation ring of  (L, v). 

For the converse, assume that the latter holds. Let a E L and c~ C v(L • ). Then 
c~ c v(K x) since otherwise, an element d E L with value v(d) = -Ic~[ could not 
be represented as the sum of an element of  K and an element of  the valuation 
ring of L. So we may choose some c E K with v(c) = c~. By hypothesis, for 
ac - l  there exists some b ~ C Ax such that v(ac -1 - b  r) > O. Putting b = brc, we 
find v(a - b) > v(c) = c~. This proves the converse. 

If  c~ is chosen > v(a), then v(a - b) >_ o~ > v(a) implies v(a) = v(b) E v(K) 
and if v(a) = 0, also ~ = b C K. Hence, if (K, v) is dense in (L, v), then we have 
v(K •  •  [] 

Theorem 3.25 Suppose that ( K , f )  C (L, f)  is a nontrivial extension of nonar- 
chimedean exponential fields. Let v denote the natural valuation on both ordered 
fields and Fr, FK denote the ranks of v(L • resp. v(K• Then either (K,v)  is 
dense in (L, v), or FL \ FK is infinite. 

Proof. Let AK C AL as above. If  AK = AL, then the foregoing lemma shows that 
(K, v) is dense in (L, v). Now assume that AK C AL is a proper extension. Com- 
posing the exponentialf  with the canonical epimorphism given in Lemma 3.6 we 
then find that also v(K • ) C v(L • ) is a proper extension and thus, v(L • ) \ v(K • ) 
is infinite. Through the isomorphism ~f it follows that F~ \ Fx is infinite. [] 

We have seen in Corollary 3.18 that every power series field which is root 
closed for positive elements, admits a right exponential. As a further consequence 
of  the above remark, let us state here a necessary and sufficient condition for 
such a field to admit a left exponential: 

Proposit ion 3.26 Let E((G)) be a power series field, root closed for positive 
elements. I f  E((G)) admits a left exponential, then G is maximally valued; more 
precisely, 

G ~ H (E, +, 0, <)  . (11) 
G<0 

Consequently, G does not admit a valuation basis. Conversely, if G is exponential 
in E and maximally valued, then E((G)) admits a left exponential. 

Proof. ~ :  Since E((G)) is a power series field, it is maximally valued. That 
is, the additive group of  E((G)) with its natural valuation is maximally valued. 
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Assuming the decomposit ion (7), it then follows by Lemma 2.17 that A is maxi- 

mally valued. I f  E((G))  admits a left exponential, then G is isomorphic to A and 

thus also maximally valued. Hence, G will be a Hahn product over its skeleton, 

according to Corollary 2.8. Since G is an exponential group in (E ,+ ,  0, < )  by 

Theorem 3.23, (11) holds. On the other hand, G <~ - F -  implies that F -  con- 
tains infinite well ordered subsets, and by Lemma 2.9 it follows that G does not 

admit a valuation basis. 

~ :  If  G is exponential in E and maximally valued, then G is of the form (11), 

hence G -~ A, and this induces a left exponential (cf. Remark 3.21). [] 

C o r o l l a r y  3.27 Let E((G))  be a power series field, root closed for  positive ele- 
ments. Let e be an exponential on E. Then E((G))  admits an exponential lifting 
e if  and only if  G is exponential in E and maximally valued. 

Proof  =~: follows from Proposition 3.26. 

~ :  By Proposition 3.26, E((G))  admits a left exponential. On the other hand, 

by Corollary 3.18, it admits a fight exponential. The assertion now follows from 
Remark 3.21. [] 

To prove our next theorem, we need Lemma 3.29 below, which is based on 
the following result (cf. Fuchs [FU] for a proof): 

L e m m a  3.28 Let ~ : H -~ J be an isomorphism o f  ordered subgroups o f  1t~. 

Then there exists an element r E ~ > o  such that qo(a) = r .  a for  every a E H. 

L e m m a  3.29 Let H ,  J be archimedean ordered groups. I f  H =o~w J (as ordered 
groups), then H ~_ J (as ordered groups). 

Proof. We may suppose that H and J are subgroups o f N  (cf. Theorem 3.1). Let 

~o : Ho ~ Jo be a local isomorphism of a subgroup Ho C H onto a subgroup 

Jo of  J .  Then there exists r E It~ >~ such that ~o(ao) = r - ao for every ao E Ho. 
Hence, we have that r �9 Ho C J .  Let us show that r �9 H C J .  Let  a E H and H1 
be the subgroup of H generated by /4o  U {a}, and 

~Pj : H1 > J1 

a local isomorphism such that ~o C ~1- Then there exists s E ~ > o  such that 

~pl(al) = s �9 al for every aj E HI. It follows that r -- s and hence, r �9 a E J .  
By a symmetrical  argument, considering 

~o1 : J0 > H0 

b 0 ~-+ r -1 . b 0 , 

it may be shown that r -1  . j C H,  i.e. J C r �9 H .  It follows that J = r �9 H and 

hence, 
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~p:H ---+ J 

a ~-~ g - a  

is the required isomorphism. [] 

Remark 3.30 There are two essential ingredients for the proof of our next theo- 
rem: 
i) We will use Theorem 2.27. tn fact, (K,+,0,  <) and (K >~ -, 1, <) being di- 
visible ordered Abelian groups, we consider them as ordered Q-vector  spaces. 
It is important to verify here the following general fact. Let Gl, G2 be divisi- 
ble ordered Abelian groups; then G1 -=o~co G2 as ordered groups if and only if 
G1 - - ~ o  G2 as ordered Q-vector spaces. Let us briefly sketch a proof of the 
nontrivial direction. Let F : G~ ~p G2 as ordered groups; it suffices to find 
P : G1 --~p G2 such that for every f E F, domf  and im f  are divisible ordered 
Abelian groups (every isomorphism of divisible ordered Abelian groups being 
an isomorphism of ordered Q-vector spaces). The construction of P from F is 
done without difficulty as follows. I f f  6 F, domf  = H1, imf  = H2, and if/41 
(resp./q2) denote the divisible closures of H1 (resp. H2) in G1 (resp. G2), t hen f  
extends in a unique way to an isomorphism 

f :  /Jl----- '~ /~2 , 

and we take 
F = { f ; f 6 F } .  

ii) Every dense linear ordering without endpoints is ~0-saturated. Indeed, the 
theory of dense linear orderings without endpoints is complete and admits elimi- 
nation of quantifiers (cf. [R-Z]). Consequently, realizing a 1-type over a finite 
set of parameters reduces to solving finitely many inequalities of the form x < a 
and x > b. But this is always possible in such an ordering. 

It follows by Theorem 2.26 that any such ordering is L~-equ iva l en t  to Q,  
Conversely, if a chain is L~-equ iva len t  to Q,  then it is necessarily a dense 
linear ordering without endpoints. 

We will further use the notations of Theorem 3. I9. 

Theorem 3.31 Let K be a nonarchimedean ordered field such that (K >~ -, 1, <) 
is divisible. Then ( K, +,O, <) ---oo~o (K >~ -, 1, <) as ordered groups if and only if 

1) G =-oo~o [IQ(-K, +, O, <) as ordered groups, 

2) K admits an exponential. 

Proof 3 :  By part a) of Theorem 2.27, S((K,+,0,  <)) = ~  S((K >~ -, 1, <)) 
as ordered skeletons. By Theorem 3.19 and part b) of Theorem 2.27, we obtain 
that 

i) G --oow / ' -  + G ->~ as chains, 

ii) for every 7 6 F - ,  B(7 ) =oo~ (K, +, 0, <) as ordered groups, 
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iii) (~->0, ", 1, < )  --oo~ (K, +,0,  <)  as ordered groups 

(since all archimedean components of  (K, +, 0, <)  are isomorphic to (K, +, 0, <)). 
But (K >~ -, 1, <)  being divisible, G is also divisible and hence as a chain, is 
a dense linear ordering without endpoints (let us remark that G -7' 0 since K 
is nonarchimedean). By i), it follows that F -  + G ->~ is a dense linear Ordering 
without endpoints, so the same holds for F - .  By part ii) of the preceding remark, 
it follows that 

F--oo~ Q. 

Let �9 " f ' -  "~p Q .  Since by ii) and Lemma 3.29 all nontrivial archimedean 
components of G are isomorphic to (K, +, 0, <),  it is easy to construct from ~5 a 
family 

: S(G) ~-p S ( [ I ( K , + , 0  , <)  . 
Q 

So Assertion 1) follows now from part a) of  Theorem 2.27, and Assertion 2) 
follows from iii) and Lemma 3.29. 

~ :  Let us assume the decompositions (7) and (8) (see Lemma 3.4 and Theo- 
rem 3.8). Let e be an exponential on K and e '  the induced middle exponential: 

e I . A I ~ B l . 

By Corollary 3.16, we know that 

I v - - c ~  l + I v .  

So our assertion will follow as soon as 

A - - ~ ,  B 

is proved. In fact, if FL : A ~--p B and FR : I~ ~--p 1 + I~, then 

F : = F L I I { e ' } H F R  : ( K , + , 0 , < )  ~-p (K>~ 1 ,< )  

where FL H {e'} I I  FR = {fL H e '  l l fR I A e EL, fR ~ FR} (cf. definition (10)). 
But v (A) -  = G <0 is a dense linear ordering without endpoints, so 

G<o -- Q 
= O O O J  �9 

On the other hand, all components of  A are isomorphic to (K, +, 0, <),  so by an 
argument already used in the first part of  this proof, it follows that 

S(A) - - ~  S ( I_ I (K , +, O, < ) ) .  
Q 

It follows by part a) of Theorem 2.27 that 

- o ~  H(K, +, 0~ <). A 
Q 

But B -~ G, so together with the hypothesis of the theorem we obtain that 

--oo~o H ( K ,  +, O, <)  --oo~o A .  B [] 

Q 



180 s. Kuhlrnann 

As a corollary, we obtain the following theorem which gives us the "con- 
verse" to Corollary 3.22 if we replace ""~" b y " ~ " .  

Corollary 3.32 Let K be a nonarchimedean ordered field such that (K >~ ., 1, <) 
is divisible. Then (K , +, O, <) ----o~ (K >0, ", 1, <)  as ordered groups if and only if 

1) G <0 =__~,~ 1"- as chains, 

2) B(7) ~_ (K, +, 0, <)for every ~ c F - ,  

3) K admits an exponential. 

Proof. By arguments already used in the proof of the previous theorem, one 
can see that conditions 1) and 2) together are equivalent to condition 1) of the 
theorem. [] 

Note that by part ii) of Remark 3.30, Assertion 1) is equivalent to the property 
of 1"- to be a dense linear ordering without endpoints. Note also that by virtue 
of Lemma 3.29, the corollary is true also for archimedean fields. 

For the countable case, the above theorem yields: 

Theorem 3.33 (Countable Case Characterization Theorem) 
Let K be a countable nonarchimedean ordered field such that (K >~ ., 1, <) is 
divisible. Given an exponential e on K, it can be lifted to an exponential f on K 
(i.e., f = e) if and only if G ~- I_IQ(K, +, O, <). 

Proof. ~ follows from Theorem 3.31 and the fact that G and K are countable, 
by virtue of Theorem 2.25. 
~ :  Given an exponential e on K, let e '  and F be as in the proof of Theorem 3.31. 
Then every element f0 of F extends e'. So by virtue of Theorem 2.25, there exists 
an isomorphism f " (K,+,0 ,  <) --+ (K >~ ., 1, <) extending e'. It follows that 

f = e .  [] 

Note that the condition on G in the above theorem is actually equivalent to 
the assertion "G is an exponential group in (K, +,0, <)"; in fact, we have the 
following 

Proposition 3.34 Let G 5r 0 and A be countable divisible ordered Abelian groups 
and let A be archimedean. Then G is an exponential group in A if and only if it 
is of the form G ~- I l i A .  

Proof. 3 :  Let G be a countable exponential group in A. Then G <~ --- P - ,  
so P -  is a countable dense linear ordering without endpoints. By a classical 
theorem of Cantor, it follows that 1"- "~ ~ as chains. On the other hand, all 
components of G are isomorphic to A, so by part a) of Theorem 2.27, we have 
G -~ I_[Q A. 

~ :  Let G -~ I_[•A. Then 1"- ~- Q,  and G <~ is a countable dense linear 

ordering without endpoints. Again by Cantor's Theorem, G <~ ___ 1"-. Since all 
components of G are A, it follows that G is exponential in A. [] 
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From the proof of Theorem 3.31 we obtain the following corollary which 
contains the symmetrical analogue to Corollary 3.16: 

Corollary 3.35 Let K be an ordered field, root closed for positive elements. 

a) If G is an exponential group in (K, +, O, <), then G -oo~, I_[Q( -K, +, 0, <).  

b) Assume the decompositions (7) and (8). Then A -o00: B (as ordered groups) if 
and only ifG - ~  HQ(K, +, 0, <). If moreover K is countable, then K admits an 
isomorphism f " A ~ B of ordered groups (that is, K admits a left exponential) 
if and only if G ~- L[Q(K, +, 0, <). 

Remark 3.36 In all the preceding theorems and corollaries, we may replace the 
function "exponential" by "K-linear exponential". Indeed, the appearing value 
groups are not only Q -  but also K-vector spaces, and Theorem 2.27 holds 
for arbitrary ordered vector spaces. This is of interest because also the usual 
exponential on ~ is in fact R-linear. 

To finish this paper, let us say a word about the hypothesis of divisibility for 
(K >~ ., 1, <). In fact, Theorem 2.27 used in the proof of Theorem 3.31 is not 
true if one omits the hypothesis of divisibility. The following example, due to 
F.-V. Kuhlmann, shows that there exist two regular countable ordered Abelian 
groups, having isomorphic skeletons, which are not isomorphic as ordered groups. 
(An ordered Abelian group A is regular if and only i f A / B  is divisible, for every 
nontrivial convex subgroup B of A.) 

Example 3.37 In Q @ Q, take a subgroup H such that the projection to the first 
1 component is Q and the projection to the second component is ~-~-Z, but which 

is not a direct sum of Q and 1 ~ - ~  (the existence of such a group is well known). 
On Q | Q, take the lexicographic order, and on H the restriction of this order. 
We have 

I-I/C(H, (0, 1)) ~_ Q 
1 which shows the regularity of H. The archimedean components are Q and T~-Z, 

1 but H ;~ Q @ ~- ,~  implies that 
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